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ABSTRACT. In this note we derive the resolvent expansion for elliptic operators
with irregular singularities in the coefficients, like Laplace type operators on
manifolds with metric horns. The main technical tool is a generalization of
the “Singular Asymptotics Lemma” of Briining and Seeley.

1. Introduction

The resolvent trace expansion for elliptic operators is a well established tool
with many important applications in Geometric Analysis, see e.g. [Gi] and its
bibliography. It is known for a long time in the case of elliptic differential operators
on compact manifolds [MP], [S1] and differential boundary value problems [S2],
[Gre]. Recently, this expansion has been extended fully to pseudodifferential elliptic
operators and boundary value problems [GruS], [Gru].

The method has been developed further to cover spaces with singularities, no-
tably of conic type, including families of cones [Ch1], [BS2], [BS3]. Here, operators
of Laplace type are considered which are most interesting in applications. Typically,
near a conic éingularity such an operator takes the form

\?2
(1.1) A° = — (%) +372A(z), =€ (0,g),
where A is a family of Laplace type operators on the base of the cone (a compact
smooth manifold), and A varies smoothly with = € [0,e0]. The next step towards
more complicated (isolated) singularities will introduce operators of the form

oz
where ap > 1 and A is no longer smooth but admits an asymptotic expansion in
powers of =, as x — 0. This comprises the case of “metric horns” which refers

to Riemannian manifolds with metric singularities of the form dz? + 22*°gy on
(0,€0) x N, with (N, gn) a compact Riemannian manifold; in this case we have

(1.3) Alz) = 2720 A5+ 272 1A, + 2724,

2
(1.2) A° = — ( 0 ) +z72* A(z), z € (0,&0),
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Various aspects of this class of singular spaces have been studied, like Hodge theory
[Ch2] and index theorems [LPe]. In [B1], we have announced the full asymptotic
expansion of the heat kernel for the Laplacian (Thm 1.2) and have used it to
derive a Signature Theorem (Thm.1.3). The proof of the expansion result was
based on an extension of the Singular Asymptotics Lemma (SAL) (Thm.2.2) which
was introduced in [BS1] (cf. also the “push forward lemma” of Melrose [M]), a
very convenient tool to produce asymptotic expansions in singular situations which
admit scaling. Callias [Ca] has given a version of the SAL not requiring smoothness
up toz =0.

In this note we supply the proofs of [B1, Thms.1.2 and 2.2] and, at the same
time, provide substantial generalizations. The main observation concerns the struc-
ture of the SAL. Recall that it deals with a function, o(z,£), of two variables
z,& > 0, and derives an asymptotic expansion of the function

o0

(1.4) I(o;2) == /U(:v,scz)dac,
. 0

as z — o0o. To do so one assumes a differentiable asymptotic expansion of o as
¢ — oo, with coefficients in S(R4.) (as functions of z), and smoothness in z > 0,
in order to use the Taylor expansion at z = 0; both expansions are matched by a
special “integrability condition”. The emphasis on smoothness at z = 0 links the
SAL in this form closely to the special structure of the Taylor expansion, whereas
the expansion at oo is unrestricted.

The main generalization we introduce here is that we drop the differentiability
assumptions and put the expansions at 0 and at oo on an equal footing. This leads
us to different remainder estimates which replace the “Integrability Condition” in
[BS1]. It seems that they are more easily verified, but for the time being we do not
see the precise relationship between both types of remainder estimates. The price
we have to pay for now is the exclusion of “small eigenvalues” which can be easily
treated, however, by ode methods. It should be noted that our expansion includes
a new term which is not present if we assume smoothness at z = 0.

In Section 2, we prove Theorem 1, the generalization of the SAL, which was
announced (in a more restrictive form) in [B1, Thm.1.2]. In Section 3, we use this
result to deduce Theorem 2, as announced in [B1, Thm.2.2]. Thanks are due to the
referee who pointed out a gap in the proof of Theorem 1.

2. The Generalized Singular Asymptotics Lemma

We begin with some terminology which is essentially taken from [L, Ch. IIJ.
By T we denote a discrete closed subset of C with

(2.1) 7 :=inf Re v > —o0,
and
(2.2) I'y:={y€el;Re y< N}

finite for all N € N, and equipped with a “weight function” v : I' — Z;. In
addition, we write T'%, := 'y N {Re z > 0}. Then we consider the following types
of asymptotic expansions.
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(1) For f € L] .(0,1], we want the expansion

loc

(2.3) fl@)y=Y_ foa*loghz+ R (f;x),
ozEl"N
k<v(a)

with certain numbers f9, € C and remainder estimate
(24) B (f;2)] < Cnsz® ™2,

uniformly in z € (0, 1], for every 6 > 0. This class of functions we denote by .7-'12”,/.

(2) For f € L [1,00), we want the expansion

(2.5) fl@y="Y_ fpzPlog z+ RY(f;z),
oS

with certain numbers Ig7 € C and remainder estimate

(2.6) IR (f; )] < Cyox®™T,

uniformly in z € [1, 00), for every § > 0. This class of functions we denote by o
Then we put

(27) ‘7:1_‘,1/ = {f € Llloc(Ov OO);fo = f ! (Oa 1] € ]:9,1/7 Joo :=f l [1700) € ‘Fl?‘?u};

this is the function space we are interested in. We can define the Mellin transform
on Fr, by

(2.8) Mf(z) := Mfo(z) + Mfi1(z).

M f is meromorphic in C, hence we can define the “regularized integral” by
(2.9) ][f(ac)dx := Resg M f(1),
0

where “Resg” denotes the constant term in the Laurent expansion. This is the
appropriate notion for our purposes. We also employ the notion of “two-variable
asymptotic expansion”, associated with I and v, as explained e.g. in [B2]. By this

we mean an asymptotic expansion for functions, f, in L{ ((0, 1] x (0, 1]) of the form

(2.10) fle,w) = Z fﬁ;so‘ log¥e wPloglw + BRn(f;e,w),

«,B€l
k<v(e),t<v(B)

with certain % € C and remainder estimate
(2.11) |Rn(f;€,w)] < Cnole +w)" 2,

uniformly in 0 < g,w < 1, for every § > 0. We will mainly use the fact that
(2.10) determines the coefficients fc% uniquely. We are interested in the asymptotic
expansion of expressions of the form

(2.12) I{o; 2) == ][a(x,:cz)da:, 1<z 00,
0
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where o is in C((0, 00) x (0,00),C). To ensure the existence of the integral and its
asymptotic expansion, we introduce two assumptions. (Ag) For any Cp > 0 and
0<z<Cy &€(0,00), N €N, we have the expansion

o(z,6) = Y. 0%(§)z"log" z+ Ry (x,9),
o€l y
k<v(a)

where 00, € Fr,, and, for 0 < § < 1 and certain numbers a < 0,08 >0,
B (2, )] < C(N, 8, Co)a™ €3 (1 + €)%
(Aoo) For any Cy > 0 and £ > 1/Co, x € (0,00), N € N'we have the expansion
o(z,&) = Y ofi(@)¢ Plog € + BF (z,6),
e

where Ug? € Fr,and, for 0 < 4§ <1 and certain numbers af° < 0, a >0,
IR (2, £)| < C(N,8,Co)e* Nz (1+ ).

We point out the following consequence of (Ao), (Aw): as ¢ — 0, £ — oo we obtain
the expansion, from (Ao),

k _
o(z,&)~ > (005 =*log"z £7Plog'e,
ksuafjgr/(ﬁ)

and from (Aw),
o@,)~ > loflu a¥log"s ¢ log' €.
r

a,BE
k<v(a),l<v(B)

By uniqueness of the expansion coefficients, we conclude

oo

(2.13) [ng]ﬁz = [Ufiﬂgk = Oak,pl-

Now we can formulate the first result of this paper.

THEOREM 2.1. Let o € C((0,00) x (0,00),C). Under the assumptions (Ao)
and (Aoo) we have the following asymptotic expansion, as 1<z— o0

(2.14) Io;2) ~ Z ][(m/z)o‘ log" (x/2)0% (x)dz/ %
kE5(e) 0

(2.15) + Z ][(xz)_ﬂ logl(:vz)a/‘;?(x)dx

BeL 0

10(8)
(2.16)

e ' k Y -

+ Z z L 1ng+k +1 Z(k”) (—1)k k +1(k + k, + 1) I[ng]o_a_l’k/

«€l
k<v(a)
0<k! <k,0<k/<v(a+l)
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k /
(2.17) + E 2P loghtitl z(k,> (1% & +1+ D log5-1k-
r<EE D<)
0<k/ <k

In particular, I(o;z) € FR, with U(a) = v(a) + v(a+1) + 1.

REMARKS. Comparing with [BS1] we see that the terms (Ia) and (Ib) there
- which equal (2.14) and (2.15) here - are now seen in a more symmetric way;
indeed, our condition (Ag) replaces the Taylor expansion used before. Also, the
fairly subtle integrability condition [BS1, (1.2b)] and the remainder estimate [BS1,
(1.2a)] are now replaced by the rather straightforward estimates in (Ag) and (Ao).
They are enough for the application we have in mind here but it is not clear at the
moment how they relate to the previous assumptions in general. In particular, it
is not obvious how they imply the vanishing of (2.16). The systematic use of the
regularized integral throughout also adds some transparency, as pointed out in [L].
In particular, we see that the “singular” contributions (2.17) - which corresponds
to [BS1, (Ic)] - and the new contribution (2.16) arise simply from the formula for
the change of variables [L, Lemma, 2.1.4]; this was pointed out in [L,Ch.II].

PROOF. We clearly need to split the integral into a part where z is small, z <
Co, and one where z is large, zz > 1/Cy, in order to use the different asymptotics
(Ao), (Aco). This will be the case if we split at = 1/Cyz where the choice of Cj is
arbitrary. We take advantage of this by introducing two new expansion variables:

(2.18) €€ (0,1] and w:=¢g2z > 1.

Then we write

o0

I(o;2) = f(¢(xw)+(1—¢<xw>>>a(x,m>dx
0
(2.19) =: Ip(o;6,w) + Is(0; 6, w),

with 0 < ¢ < 1,6 € C§°(-2,2) and ¢ | [-1,1] = 1. We will show that I, and
I admit asymptotic expansions as € + w™! — 0, which will imply the theorem.
Beginning with I, we obtain from (Ao) and [L, Lemma 2.1.4.], since = < 2 on the
support of the integrand,

Iy(o;e,w) = ][¢(a:w)a(x,xz)dz
0

l

][¢(a:w) Z z®log”z 00, (22) + R (z,z2) | dz
0 B

(220) = 3 {f #lee)(o/2)" log /)08 x)da/ 2
0

a€l N
k<v(a)
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(2.21)
—a— ' k —K -
+ Z P 1 logk+k +1 z<k//) (_1)k k +1(k + E -+ 1) 1[0_216](1&_1,19,
aely
E<v(a)
0<k! <k, 0K Sv(atl)
(2.22) + R (036, w).

Now, (2.21) already gives the first singular contribution, (2.16). (2.20) we rewrite
as

(2.23) > [][ (z/2)*log"(x/2)0% (z)dz /2
nev(h 0
(2.24) - f @ - sl (@/2)° ot (2ot (w2,
0

such that (2.23) gives (2.14), while (2.24) will be dealt with later. Using (Ao) again,
we estimate the remainder (2.24), with § = 1/2:

IR (056,w)] < CN/QS(xw)zN—l/z(xz)o‘g(l —|—a:z)°‘g°d:v
0
(2.25) < Cy z°87e% wN-1/2-ag,

I, is now treated analogously. Since xz > e~1 > 1 on the support of the integrand,
we can use (Ao) to get

Io(oje,w) = ][(1 — ¢(zw)) Z oz () (z2)Plog' zz + RY (z,x2) | dz
0 B
(2.26) = Z {][(wz)—ﬁ log" zz o3 (z)dz
o) O
(2.27) - fq&(xw)(xz)_ﬁ log! zz og (z)dz}
(2.28) + EBX(0;e;w). ’

Again, (2.26) gives the desired term (2.15); and the remainder we estimate using
(Aw) and, again, 6 = 1/2:

EX(0ie,w)] < O / (22) V2N 2o (1 + 2)°%da

w
o0

Cyn / 2:—1—-0480xl/Z—N—%—(JtSQ(1_l__x/z)czzgda7

e—1
—1—ag® 6N—3/2—a8°——a§

Il

Cn z
CN Z_ago EN_(3/2+Q(°)°+Q§).

IA A

(2.29)
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It remains to deal with the terms (2.27) and (2.24). In the integrand of (2.24) we
have z > €1, so we plug in the expansion of 00, as x — oo; the resulting remainder
of order L > N can be estimated by

oo
CLN/ Zl/2-—a :c"‘“L_l/zdazchN Zl/Z—a EL—a—3/2 <Crn 21/2—1 EL—N—S/Z.
e—1

Using [L, IT (1.12)], this leads to the expansion

-3 f (1~ ¢(x2)) (2/2)* log*(2/2)0% (z)da/ 2

ael
kSV(Ic\xr) 0

= Y 5 dee)(/2) 08 w/2)a gl x daz
a€lpn,BETy, 0
k<u(e),1<u(B)
(2.30) + ONL(Zl/Q_ZEL—N_Sﬂ).
In the integrand of (2.27) we have £ < 2w™! < 2, so we can use the expansion of
og; as £ — 0. Then we obtain quite similarly:

- Z f(ﬁ(a:w)(xz)_ﬂ logl(xz)ag‘[(x)dm
Ceoh) 0

= - Z [og‘l’]gk ][gb(xsz)(xz)_ﬁ log' (22)z* log® zdz
BET @€l 0
1Su(B) k<u()
(2.31) +  Onp (242 2t/2-T=N)y,
But now we see from (2.13) and [L, Lemma 2.1.4 and I1(2.12)] again that the sums
in (2.30) and (2.31) with o, 8 € 'y add up to the term

k
2.32 o811k 2P Iogk+l+1z —1)k—F k E+i+1)71
BL;B-1,

kl
BET N k'=0
kEv(B+1),L<v(B)

which coincides with the second singular contribution, (2.17). It now remains to
estimate the terms in (2.30) with N < 8 < L, and in (2.31) with N < o < L. For
a term from (2.30), we have a < N < . We estimate with [L,,Ch.2,(1.6)]

| ]{;OO p(ze)(z/2)*log" (z/2)z P logl x dx /2|

Cnrz™* eP~271(1 4 |log” ¢]) log® =
CNLw—lz—a+1/26(ﬁ—a)/2'

IA A

If @ > N/2, we can estimate this by
Cnpz~ V=172 < Cnr E(N—l)/2’
and for o < N/2, implying 8 — a > N/2, by

1/2— N/4
CnpzY?2 N/4,
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hence altogether, with Dy := max {0, 1/2 — v} and for N > 2:

| ][00 ¢(ze)(z/2)* logF (x/2)z =" logl z dx/z|
0
(2.33) < Cnr 2P1gN/4,

A similar reasoning gives for a term in (2.31), with N >2and B< N <«

| ]/ d(zw)(zz) P log! (x2)z* log" = dz|
0 .
(2.34) < Cnp(ZPrw= N4 4 N-D/2

Putting now L = 2N and collecting all the remainder terms, (2.25), (2.29), (2.30),
(2.31), (2.33), and (2.34), we see that there is a problem only if one of the quantities

Dy, D5 := ag +al, Dy:=—0af, Dy:= -,

is positive. Thus, we put

4
D:=) |Di|
g=1

and consider the expansion of I(c;z) := z~PI(0; z) resulting from our considera-
tions. Then all remainder terms are small, so we obtain an asymptotic expansion
of I hence also of I. The proof is complete. O

3. Irregular Singular Equations

We want to apply Theorem 1 to obtain the resolvent expansion of certain
elliptic equations with irregular singularities. The prototypical example is given by
the differential operator

8\ a
(31) A° 2=——(—8“E> +~;’2~a?’ z>0,

with domain C2(0,00), here a > 0 and ap > 1. A° is symmetric in L*(R4) and
bounded from below, hence we can consider its Friedrichs extension, A, which is
self-adjoint and bounded from below with the same lower bound. The expansion
of the resolvent trace (or, almost equivalently, of the heat trace) for A has been
announced by Callias [Ca]. In [B1], we have auounced a different proof, in the
spirit of ‘regular singular analysis’, and have applied it to derive the Signature
Theorem for metric horns. Here we supply the missing details, in a more general
and probably also more accessible form then studied before.

In order to apply the results to singular spaces like metric horns, we generalize
(3.1) to an operator valued setting. Thus we consider a Hilbert space, H, a dense
subspace, H1, and a family of self-adjoint operators in H, A(zx), defined for z > 0,
with common domain H;. We assume in addition the following properties

(3.2) (0,00) 2 2 — A(z) € L(Hy,H) is smooth,

(3.3) A(x) > a>0 for all x> 0.
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The smoothness of A in R - which holds in the conic case - is replaced by assuming
an asymptotic expansion

(3.4) Al@)=4Ao+ > A,27+ Ry(z),
Te€lN_1

where all A, are defined and symmetric on H;, and

(3.5) |Ry(z)] < Cyva 45,

for some dn € (0,1] and some sequence py /0o (note that Ay is self-adjoint with
domain H, and Ay > a). We also assume, with Cp the Schatten-von Neumann class
of order p, that

(3.6) Agt e C,(H)

for some p > 0. Then we can consider the analogue of (3.1),
© e 9\*, A

(37) P (55) v A8

with domain CZ((0,00), H;), and also its Friedrichs extension, 4\, in the Hilbert
space H := L?(R,., H). Because R, is not compact, the resolvent may not be trace
class. To remedy this, we choose ¢ € C§°(—2,2) with ¢ =1in a neighbourhood of
0 and consider for z > 1 and [ € N, [ sufficiently large, the function

(3.8) r(z) == tr[p(A + 2%)7Y.

We will show that r is well defined and admits an asymptotic expansion in powers
of z and log z, as z — oo; this will be a consequence of Theorem 1. To put r into
the framework of the SAL we use the natural scaling, as in [BS 2,3], and the Trace
Lemma from [BS 2]. Starting with the latter, we have the following resuls.

LEMMA 3.1 Forl>p+1/2,(A+ 22~ has an operator kernel, (A + 22)~Y(z,y),
on R+ such that

(3.9) (A + 28"z, x) € Ci(H), z>0.

Moreover,

(3.10) r(z) = / b(@)trrl(A + )Yz, z)|dz.
0

PROOF. We write S := C§°(R,) and note that, by construction,

(3.11) Y$D(A) C D(A) for ¥ € 8.

We also write 1, > 9y, for 1,92 € S, if 9o = 1in a neighbourhood of supp ;.

Then, by the Trace Lemma, it is enough to prove that
(3.12) Y22 + 2°) 'y € Ci(H),

for all such 9; and 3 in & if [ is large enough. Thus, we fix ¢, € S, 1 <1 < 3,
with ¢3 > 19 > ¢, and supp ¥3 C [0,T), for some T > 0. We want to prove that

(3.13) Ya(A+ 287 g e Ciptr1/2)1(H),
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with p from (3.6). To show this for [ = 1, we denote by A the Friedrichs extension
of A in L2([0,T], H) with domain C3((0,T), H1). Then we obtain from the max-
min principle and (3.4), (3.5) the estimate

N~ m —(p+1/2)
I @r+ ) I e S C2 2 (TZ”Z +Aj)

1,521

[ o}
A2 —(p+1/2)
< Gy / (—%xu,\j) de

iz21ly

(3.14) < Csll A" ey

where we have written Hr = L2((0,T), H), (A;)j>1 = spec Ao, and the constants
C; depend only on Ay and p. Now we find by standard arguments

Yo A+ 22) W = Yo(Ar+28) 7y

(3.15) C 4 e(Or + 2T AT s (1= 92) (A + 27) e
Next we observe the easy a priori estimate
(3.16) I (A ey, ¥l lirteay < CE (A eyw, u)+ ||l ),

which holds for any ¥ € Sy and u € C3((0,00), H1), (C3((0,T), Hy)), where
Sr = C§°[0,T]. But then it is readily seen that (Aery +1,8(1y) satisfy the axioms
(Col) through (Co5) in [B3, Sec.4]; in particular, from (Co2) we see that

(3.17) (Ap + I)7Y2 [ Ar, 4] s bounded in Hr.
Thus, we deri.ve from (3.14), (3.15), and (3.17) that
P1(A + 22) My € Copra(H),
hence
P1(A +2%) 72 € Capya(H).
But then it follows from [B3, Lemma 4.1] that
(1 — ) (A + 22) "1y € Cg(H), for all ¢ >0,
which gives, with (3.15), (3.13) for I = 1. If we have proved this for some [ > 1,
then we write
Dol A+ 22y = (A +22) (A + 2%) M
+ Pa(8+ 27— 9s)(D + )

Using [B3, Lemma 4.1] again and the Holder inequality for Cp-norms, we complete
the induction; hence the assertion. O The scaling mentioned above is effected

through the unitary family

(3.18) Uou(X) := e/ ?u(ex), € >0, ueH.
Clearly, with ag =: 1 + fo,
A
U.LU: = &7 <—a§ g% -——(f)>
Tex0

(3.19) = e 2A2.
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It follows that for the Friedrichs extension, A, we have

(3.20) U AU = A,.

It follows also that

(3.21) e U(A+ 227U = (A + (e2)®) 7,

and for the kernels

(3.22) A+ ) ez, ey) = (Ao + (e2)?) !z, y).

Thus, we obtain with Lemma 3.1 (and z =y = 1,e = y)

(3.23) @) = [ eal(, + @), Dy
0 |

In the conic case (when ap = 1) we have applied the SAL directly to (3.9), cf. [BS2,
Sec.7]. To be able to do this also in this case, we rewrite our operator as

(320) Dy + @)=~ (6%) sy (L0 (g ).

:L-2ao

This suggests that we introduce 7 := z1/2® and write

(3.25) @) =) = [ oty
0
where
_ 5] _ Alyz e
(326)  o(y,0) =y Wtrnl(—(5o) +y (AU | camoyyoiy, )
In what follows, it is convenient to write
iy . Alz)
such that
_op Alyx - ~
(3.28) y Zﬁo}%'ao_) — g2 A(yz) = A, (z).

We also write

(3.29) P(y,&¢) == (€2 +y*A(y) + (2 Jy?P) 1.

Now, for any fixed y > 0, we have to determine the resolvent kernel expansion of
the elliptic operator with operator coefficients, (3.24), at a regular point, in order
to verify the conditions of Theorem 1. To do so, we have to add some assumptions
on resolvent expansions for the operator family A. First of all, we assume now that
the expansion (3.4) can be differentiated any number of times, i.e. that for j € Z,.
we have

A @)= " A (”) 277 + Ry;(z),
~er?, J
where, with uy and dy as above,
(3.30) |Rnj(z)| < OV I AL,
Moreover, we will have to consider expressions of the form
I.(A,By,... ,Bj_1;z,7)
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(3.31) :=try[(A)+7°)"* Bi(Alz) +n°)"**By--- Bj1(A(z) +n?)"¥].
Here, a € N7 is a multiindex satisfying

(3.32) le| > 7 +p,

and the operators B; are closed with domain containing H;; in addition, we assume
that

(3.33) Ay'B; € L(H),
and that there is a locally convex space, B, such that
(3.34) B, eB, 1<i<j.

We observe that (3.30), (3.32), and (3.33) imply that (3.31) is, indeed, well defined.
If we now add the assumption that

(3.35) A, € B and Rn(z) € B,

for all y e T*, £ > 0, N € N, then we see from (3.4,5) that, for z sufficiently small,
the Neumann series

(Al)+71)™ = (Ao +7) 7 (I + Ru(z)(Ao+ 0P~ 1)
(3.36) = Z(—l)j(Ao+772)_l(Rl(fﬂ)(Ao+"72)_1)j

is asymptotic in C;(H) as 7 — o0, in the sense that the trace norm of a suitable
remainder decays faster than any given power of (1 +7)~!. Hence the 7-expansion
of I, is reduced to the expansion of

Io(By,+  Bjyym) =

(3.37) trar[(Ao +7°) " Bi(Ao +7°)"**Ba ... Bj—1(Ao +1%) %],

for o € N?, |a] > j + p, and B; € B (possibly also depending on z). Thus, we are
lead to the following assumption:

There is an asymptotic expansion of the form

Ig(Blv“' 7Bj—1;n) = Z Ig,rym(Blv'” 7B],_1),’7’Ylogmn
YEr N
mZw(y)
(338) + RN(Bl, ,Bj__]_;’/]),

where the multilinear forms Igﬁm and "N Ry(Ba,...,Bj_1;n) are

bounded on bounded sets in B, uniformly in n > 0.

Note that in view of (3.3) we can in fact allow 1 > 0 for the resolvent estimates.
With these preparations we can turn to the expansion theorem we are after.
We begin with the following lemma which follows e.g. from the material in [BS2,
Sec.2]; a detailed treatment will be given in a forthcoming publication.
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LEMMA 3.2 Forl > p, j > 1, and o € Nﬂ_, g e Zi_l there are homogeneous
polynomials pag in R, of degree dog, such that for y,¢ >0

oy.¢) = 3 yzl“1¢(y)/paﬁ(f)trH[P(y,&C)aly”ﬁ‘fi(ﬁl)(y)--
aBEM R
- PP AP (y) Py, £ Q)] dg
(3.39) + Rn(y, Q).
Here, the indez set is
(3.40)

M ={(a,8) eV, x Z7 " |a| 2 1+ j — 1,dag — 2la] = =201+ j — 1) — |8},
and we have the uniform estimate
(341) IRn(y, )l < Cn(ll A(y) ™" Aza llzr) (@/2 + ¢/y*P) 7V,

with some continuous function Cpy :R; — Ry. Now we are ready for the proof of

our main result. THEOREM 2. Assume that the operator family, A(z), satisfies the

assumptions (3.2) through (3.6) and (3.30), (3.35), and (3.38). Then the function o
introduced in (3.26) satisfies the assumptions of Theorem 1. This implies a complete
asymptotic expansion for

r(z) = try[d(A + 22)7Y as z — oo,
whenever | > p+ 1/2. In particular, v € Fr5s with U as in Theorem 1.

PrOOF. We have to analyze the expansion of ¢ given in Lemma 3.2. Note first
that, since supp ¢ C [—2,2], we derive from (3.41) the remainder estimate

(3.42) IRy (4, )| < Cn(Co)y*MPe(a/2+ ()77,

uniformly in ¢ > 0. This estimate is good for (Ag) and (As) since o(y,¢) = 0
for y > 2. Hence it only remains to verify that the individual terms in the sum
(3.39) satisfy the assumptions (A¢) and (A). We begin with (Ao). Using (3.3),
and (3.40), we obtain for a typical term in (3.20) the form

+oo
21280l g ) / Pap(©) Ty, ™, O)de

+oo
(3.43) = yP~1+hoClel=das—1) (1)) / Pop(O)a(y, &, Q)de,
where
Io(y,£,C)

= L (A(y) — a/2,y* TP AP 2Bt JBi-0) (y); g, (€2 (200 4 a/2)/2).
Now, we observe that, from (3.27) and (3.30),
(3.44) y* T AC (y) = O (y~2),
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and admits a full asymptotic expansion with coefficients in B. Plugging this into
(3.43) and using (3.36), we obtain an asymptotic expansion as y — 0+, with typical
term

(3.45) ¥’ d(y) / p(E)I%(Bs,. .., Br_1; (€2 + (% + a/2)Y/?)d¢,
R

for some 6 and some polynomial p, and with Ag replaced by Ap — a/2. Using
(3.38) we see that each term of the form (3.45) is in Fr,, as required. For (A),
we use (3.36) and (3.38) first, as ( — oo, and plug in the asymptotic expansions,
as y — 04, for the operators (3.28) in each term. This completes the proof. O
We remark in conclusion that that condition (3.5) is unnecessarily restrictive, even

though it suffices to deal with Laplace type operators in metric horns, as explained
in the Introduction. It is fairly obvious how to modify the assumptions on the
functions I, in (3.38) in such a way that they are satisfied if A(y) is a family of
elliptic differential operators on a compact manifold, and still imply Theorem 2. It
would be desirable, however, to find a more general and less clumsy set of conditions
also implying this result. Let us finally spell out the result for the “metric horns”.
COROLLARY 3. Denote by A\ the Friedrichs extension of the Laplacian on forms

on a manifold with a metric horn, as in (1.8). Then we have for 1 > m/2
tr(A + 22)_l € o,
where, with ag =: 1 + Bo,
= {k+1fo:k ! €Zk>2—ml>0}
and v(a) = 1. PROOF: Since the conic case has been dealt with in [Chl] and

[BS2], we assume Gy > 0. In view of (1.3), Theorem 2 applies if we can prove that
A(z) > a > 0 for = near 0. The explicit form of the coefficients in (1.3), given in
[B1, (2.4)] shows that this holds if ker Ay = 0. Otherwise, the full operator function
A{x) is reduced by kerAs N kerAg which splits the problem as a sum of a “small
eigenvalue part” and a “large eigenvalue part”. To the latter, Theorem 2 applies,
and the former is dealt with by standard ode methods. O
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