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The Spectrum of Periodic Point Perturbations
and the Krein Resolvent Formula

J. Briining and V.A. Geyler

We study periodic point perturbations H of a periodic elliptic operator H 0 on a connected
complete non-compact Riemannian manifold X, endowed with an isometric, effective, properly
discontinuous, and co-compact action of a discrete group I'. Under some conditions on H 0 we
prove that the gaps of the spectrum o (H) are labelled in a natural way by elements of the K-
group of a certain C*-algebra. In particular, if the group I' has the Kadison property then o (H)
has band structure. The Krein resolvent formula plays a crucial role in proving the main results.

0 Introduction

The spectral analysis of periodic Schrédinger operators is an interesting problem
in physics and mathematics. Among these operators, those with point potential
play an important role in view of the fact that the corresponding spectral problem is
explicitly solvable [1], [2]. Thus, almost all textbooks on condensed matter physics
refer to the well-known Kronig-Penney model [3]. This model was generalized to
two and three dimensions in [4]-{6] (see also [2] for details and further references).

On the other hand, investigations of periodic elliptic operators (including
Schrédinger operators) on complete Riemannian manifolds have begun in the last
decade. Using K-theory for C*-algebras, J. Briining and T. Sunada have stud-
ied the band structure of the spectrum for such the operators [7], [8], [9]. The
results of the cited papers are based on the analysis of the heat kernels. For the
case of point perturbations, the heat kernel of the perturbed operator has a com-
plicated form; therefore, we study the resolvent here. The famous Krein resolvent
formula [10] provides an adequate tool for obtaining and analyzing the resolvent
of a Schrédinger operator perturbed by a point potential. As a result we show
in this paper that under certain natural conditions the Krein formula works for
the case of point perturbations of elliptic operators on a manifold, too. With the
help of this formula we prove that the gaps of a periodic point perturbation of
such an operator are labelled by the elements of the Ko-group of an appropriate
C*-algebra. These results may be generalized to the case of gauge-periodic point
perturbations of larger classes of elliptic operators [11].

In conclusion, we note that the spectral analysis of periodic Schrédinger
operators on manifolds of non-zero curvature is necessary in understanding many
physical phenomena like quantum chaos ([12], [13]) and charge transport in non-
planar systems [14].
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1 Preliminaries

Throughout the paper X denotes a connected complete non-compact Riemannian
C*-manifold of dimension n; I" denotes a discrete group which acts on X isomet-
rically, effectively, and properly discontinuously with compact quotient "'\ X. We
shall denote by d(x, y) the Riemannian distance on X and by dx the mesure on X
associated with the Riemannian metric; of course, dx is a I'-invariant measure. It
is known (see, e.g., [15]) that there exists a set F (called the Brillouin zone for T")
with the properties:

1) F is an open and connected set with a negligible boundary;,
) yFNF=0ify #e
3) F is compact, the system (yf)yer is locally finite, and

ny:X.

yell

By L we shall denote the standard representation I' in L2(X); fory € T’ Lyisa
unitary operator acting by the rule L, f (x) = f(y~'x).

Let 7g : C§°(X) — C§°(X) be a I'-invariant formally self-adjoint elliptic oper-
ator of order m, m > n/2. The closure HO of 7p in the Hilbert space H = L3(X)
is a self-adjoint operator with domain D(H?) = W3 (X) [8], [16]. Note that

(1) D(H®) c C(X)

in view of the Sobolev embedding theorem. By o(A) we denote, as usual,
the spectrum of a closed operator A and we put p(A) := C\o(A). For ¢ €
p(H®), R%(¢) := (H® — ¢)~! denotes the resolvent of H°. It follows from (1)
that R%(¢) is a bi-Carleman operator for every ¢ € p(H®) [17]. Recall that a
bounded operator A in L2(X) is called a bi-Carleman operator if there is a mea-
surable function K4 : X x X — C (the integral kernel of A) such that for any
feL*(X)

Af(x) =/XKA(x,y)f(y)dy for a.e. x,

and

/ [Ka(x,y)|?dy < +o0o forae. x,
X
@)
/ |Ka(x, y)[2dx < 400 forae. y
X

(see, e.g., [18] for details). We denote by GOx, y; ¢) the integral kernel of RO(¢)
and by Gl(x, y; ¢1, £2) the iterated kernel

Gl(x, y; 1, 2) = fX GOk, u; 21)G (w, y; £2) du.
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In what follows we shall suppose that the principal symbol a,, of 7y satisfies the
Agmon-Agranovich-Vishik condition:

(AAV) There exists a constant C > 0 such that |a,, (V) + A < C forall X > 0
andallv € T*X with |v| = 1.

The following result is proved in [16] (see Lemmas 4.5, 4.6, and Theorem 4.7); it
allows to employ the Krein resolvent formula to point perturbations of H?:

Theorem A (1) There exists E € R, E < 0, such that for E < E the kernel
: Go(x, y; E) is a C®-function outside the diagonal x = y.

(2) The operator H® is semibonded from below. Moreover; for everyt > 0 there
exist constants Eo(t) < 0, and ko(t) > O such that forany x,y € X, x # y, and
for E < Ey

IG°(x, y; E)| < kod(x, )" ™" exp(~td(x, y)),
ifm < n, and
IG%(x, y; E)'< ko(1 +d(x, y)™ "|log(d(x, ))|) exp(—td (x, y))
otherwise.
To prove Lemma 1 below we need the statement [16]:
LemmaB Let B(x,r) ={y € X : d(x,y) < r}. There exists a constant Cx such
that Vol (B(x,r)) <exp(Cxr)forallx € X andr > 0.

Lemma 1 The following assertions are valid.

(1) There is a constant E < O such that forany 1, ta € p(H®) the Junction
Gl(x,,y; L1, £2) is at least separately continuous on X x X if &5 < E or
&1 < E.

(2) Forfixed t € p(H®) the Junction GOx, y; ©) is at least separately con-
tinuous on X x X outside the diagonal x = y.

(3) For everye > 0 andt > 0 there exist constants E1(t,&) < 0, and k (¢,
&) > O such that ford(x,y) > &

IG%(x, y; E)| < kyexp(—td(x, y)),
whenever E < E1, and
|G (x, y; E', E")| < k1 exp(—td(x, y)),

whenever E', E" < E.

(4) Let K be a compact subset of X and xg be a point of X. Then for every
& > 0andt > O there exist constants E5(t, &) < O0andky(t, e, K, xg) > 0
such that for E < Ep

sup{|G°(x, y; E)|: y € K} < ko exp(—td(x, x0)),

whenever d(x, K) > &.
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(5) Let K be a compact subset of X and xo be a point of X. Then for every
t > O there exist constants E5(t) < 0, and k3 (¢, K, x9) > 0 such that for
E < E3

1/2
[ / 1G%(x, y; E)Izdy] < kz exp(—td(x, x0)),
K

whenever d(x, K) > &.

Proof: Using Theorem A, Lemma B, and the factthat G%x, y; ¢)isabi-Carleman
kernel for every £ € p(H?), it is not hard to prove that there is a constant E 1<0
such that forany ¢1, &3 € p(H®) we have the following: if £ < E ! then the func-
tion Gl(x, y: {1, £2) is continuous with respect to y for fixed x, and if &1 < E 1,
then this function is continuous with respect to x for fixed y. To complete the
proof of the assertion (1) it is sufficient to apply the identity

8

Gl(x,y; ¢1,02) = G (v, x5 {1, 8).

The assertion (2) is a consequence of (1) and the Hilbert resolvent identity. The
first inequality in (3) immediately follows from Theorem A; the second one is a
simple collorary of the first inequality and Lemma B. The proof of the statements
(4) and (5) is trivial in virtue of the first inequality in (3). O

In the remainder of this section, we present some necessary facts from
M.G. Krein’s theory of self-adjoint extensions (see [10] for more details).

Let HO be a self-adjoint operator in a Hilbert space , S a symmetric operator
which is a restriction of H?, and let Ny = Ker(S* — ¢), where ¢ € p(HY), be
the deficiency subspace of S. Fix a Hilbert space G with dim G = dim N;. A
mapping ¢ — B(Z) from p(H?) to the space £(G, H) of all bounded operators
from G to ‘H is called a Krein I'-field of the pair (H°, S) if the following conditions
are satisfied:

(T'1) B(2) is a linear topological isomorphism of G onto N¢;
(T'2) with

3) U2 :=H -H -2

we have

“4) B(z) = U(¢, 2)B(¢).

If we choose an arbitrary linear topological isomorphism B(zo) : G — Ny,
we can uniquely determine a I'-field B by B(z) = U(zo, 2)B(z0). A mapping
Q: p(H® — L(G, G) is said to be a Krein Q-function if

&) 2@) ~ 0(@)* = (¢ —DB@*B(X)
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for each z, ¢ € p(HO). It follows from Egs. (3)—(5) that Q(z) is a holomorphic
operator-valued function of ¢. This function is uniquely determined by the property
(5) up to a self-adjoint summand C € £(G, G). If C in L(G, G) is given, we can put

Q] Q(z) = C — iyoB(20)* B(z0) + (z — Z0) B(20)* B(2),

where zg is a fixed element of p(H®) and yp = Im zo. Recall that a self-adjoint
extension H of § is called disjoint from HO if D(H) N D(H% = D(S). The
following theorem is the main result of the Krein theory of self-adjoint extensions
(see [10] for the proof).

Theorem C Given an arbitrary self-adjoint (not necessarily bounded) operator
A in G, the formula

) Ra() = R°() — B()[Q(2) + A" B®@)*

determines the resolvent of a self-adjoint extension Hy of S that is disjoint from
HO. Moreover, the correspondence A — Hj estabilishes a bijection between the
set of all self-adjoint éxtensions of S disjoint from H 0 and the set of all self-adjoint
operators in G.

Below we need the following property of the operators U (¢, z):

Proposition D The mapping U (L, z) is a linear topological isomorphism of the
space Ny onto N, and satisfies the relation U(¢,z) = I + (z — £)R%(2).

2 Periodic Point Perturbations of H?

Let us fix a fundamental domain F and some finite subset K of F, and let A be
the T'-orbit of K: A = U,ryK. The set A may be viewed as the analog of a
crystal in Euclidean space. It follows from the properties of the domain F that
each point A € A has a unique representation of the form A = yx where y € I,
x € K. Now we define a point perturbation of H? supported by A: Formally, this
is a self-adjoint operator H of the form

(®) H=H"+) s5((ye)'x),

yel
k€K

where §(x) is the Dirac §-function and &, are “coupling constants”. To assign an
operator meaning to the formal expression (8), we use the so-called “restriction-
extension procedure” [1], [2]. Thus, we consider the set

® D(S) ={f e DH"): fB) =0 Vre A},

which is well defined since D(H®) C C(X). Let § be the restriction of H? to
D(S); evidently, § is a symmetric operator in . A self-adjoint extension H of §
disjoint from H?Y is then said to be a point perturbation of H® supported by A.
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Fix a point perturbation H of HY. Using the Krein resolvent formula (7) we
construct an explicit form of the resolvent R(¢) of H for which we need some
results from [19]. These results are obtained for the case H = L?(£2), © a domain
in R”, but it is easy to check that they are also valid for the case H = L*(M)
where M is an arbitrary locally compact space together with a Radon measure.

In what follows we shall denote by Iy the semi-axis (—oo, E) , with E the
constant from Theorem A. Let £ € Iy; for every a € X we denote by g,(¢)
the function X 3 x — G%x,a; ¢); if z € p(H®) is arbitrary, then we put
84() = U(Z, 2)g4(¢). In view of Proposition D, this definition of g,(z) does not
depend on the choice of ¢ in Ip. .

Lemma 2 Forsomez € Iy the matrix ((8(2)18,.(2)))xr,uea determines abounded
operator in the standard basis of the space I>(A).

Proof: It follows from Lemma B that there are constants cy > 0and ¢, > Osuch
that forall A € A andr € R we have

#HueA:dO,pu)<r}<cpaexp(@pr),

where #Y is the number of elements in a finite set Y. Denote for simplicity
(82(2)18,(2)) by W(A, ). According to Schur’s test [20], the operator W with
the matrix W (A, 1) is bounded on the space I2(A) if for some ¢’ > 0

(10) sup Z (W, w)l <c¢’ and sup Z (W, w)| <,
KEA JeA red oy

and in this case we have || W|| < ¢’. To find such a constant ¢’ it is sufficient to use
Lemma 1(3) and the following assertion which is proved in [21]: [}

LemmaE Let ¢ : A — C be a function such that for some 4 € A

lpM)| < cexp(—(1 +8) cad(d, u)),

where ¢ and § are positive constants. Then

Y lpl <céxs.

A€A

For each « € K we choose a function ¢, € C§°(X) such that g, (k) = 1,
supp @ C F, and supp ¢, Nsuppe, = @ if & # «’. For every A € A we put
@n = Ly, if A = yk. Itis readily seen that the family {gs : A € A} lies in
D(H"®) and possesses the properties:

(1) p(A) =1( € A);

(2) supppy Nsuppoy = Bif & £ A/;

3) sup{l| Holl + llgall : % € A} < oo.
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Taking into account Lemma 2, we can apply Theorem 3 and Proposition 3 from
[19] and get the following result:

Proposition 1 For every z € p(H 0y the family {g)(z) : A € A} is a Riesz basis in
N. This means that for each family (£ )aen froml 2(A) the family (& g.(Z))ren
is summable in 'H and the mapping

an B@2): P(A) 5 &) — Y &raa) € H

AEA

is a linear topological isomorphism from 12(A) onto N

Now we put G := I2(A); using (11) and Proposition D it is easily shown that
B(z) is a Krein I'-field.

Our next purpose is to construct the Krein Q-function for the pair (H®, S). Fix
apoint zg € Rsuch thatzg < E (cf. Lemma 1(1)), then for all z € p(H 0) and all
a € X the expression G%a,a;z) — G%a,a; 7o) is well-defined. Indeed, from
the Hilbert resolvent identity we get

(12) G%a,a;2) — G%a,a; 20) = (z —20)G'(a, a; z, 20).

Now, using Theorem 4 and Proposition 4 from [19] we can determine the Krein
Q-function by the infinite matrix (Qx, (2D, pen if

(13) o =
@ { GO0, ;) — GOh, As z0), if A = .

The results thus obtained are summarized in the following theorem.

Theorem 1 Let Hy be the point perturbation of H® determined by a self-adjoint
operator A in the space I12(A). Thenforeveryt € p(HY)Np(Hp)and f € E2(X)
we have

14)  Ra@f =R f =Y [ DI0@) + A7, w)igul ) | 1)

A€A \peA

We are interested in I'-periodic point perturbations of H 0 only. Proposition 2

below provides a necessary and sufficient condition for H4 to be a I'-invariant
operator. Before stating this proposition we note that there is a natural unitary
representation L of the group I' in I2(A): Lyga(x) ey~ M), 0 € I2(A). Itis
clear that for each z € p(H?) the operator Q(z) is L-invariant, that is, its matrix
satisfies the condition Qj4y uty(2) = Qipz) forally € I, A, u € A. In
particular, the diagonal elements Q) (z) depend only on K since we have A = y«
for some y € " and k € K.
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Proposition 2 The operator Hy is [-periodic if and only if the operator A is
invariant with respect to L.

We omit the easy proof of this proposition.

From now on, we consider only [-periodic point perturbations Hu of H 0,
From the point of view of physical applications, the most important operators Hy
are those where A has a diagonal matrix with respect to the standard basis of
12(A) 41, [221; only these operators appear as limits of Hamiltonians with short-
range potentials [4], [23]. On the other hand, even in the case of a bounded L-
invariant operator A with a non-diagonal matrix, the spectrum of the periodic point
perturbation Hy for the Laplacian H 0 — — A may contain a singular component
which is a Cantor set [24]. For this reason, we restrict ourselves to the case when
the following conditions are fulfilled:

(D) The operator A has a diagonal matrix Ay, = iy, A 1L € A
(Q) limg 00 |Qui (E)| = 00 forall k € K.

Yu.G. Shondin has observed (for the case of finite point perturbations) that the
conditions (D) and (Q) eliminate some pathological properties of H4 [25]. Namely,
under these conditions the operator Hy4 is “form-local” in the following sense: for
any ¢ and v from the form-domain Q (H ) of H the relation supp ¢ Nsupp ¢ = ¢
implies {¢ |Ha¥) = 0.

From now on, we shall suppose thath the condidtions (D) and (Q) are satisfied.
The following theorem is the main result of this section.

Theorem 2 For every t > 0 there are constants E4(t) < 0 and kq(t) > O such
that for every E € R, E < Ea, the operator Q(E) + A has a bounded inverse
with matrix obeying the condition

[Q(z) + ATy, | < kaexp(—td (A, ).

Proof: Let t > O be given. Denote by D(E) the operator in I2(A) with matrix
Dy (E) = (Qau(E) + Axp)diy, and set S(E) = Q(E) + A — D(E). Let
Cg = inf{|Dy(E)| : A € A}; according to the condition (Q), Cg — o0 as
E — —o00. Let s = max(¢, 265 ). By Lemma 1 there are E4 < 0 and ¢ > O such
that [Sy,(E)| < cexp(—2sd (A, u)), whenever E < E4. We can suppose |E4| is
so large that for E < E4 we have ¢ ¢ CEI <1/2and ID~Y(E)S(E)| < 1. Then

[Q(E) + A]' =) (=D H(E)S(E)Y.

j=0
We claim that for all j > 0
(D E)SEN],| < @ cCF'Y exp(—sd(h, w)),

implying the theorem.
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For j = 0 we have nothing to prove. If the assertion holds for some j > 0, we
estimate with Lemma E

I(D~UE)SENLE'| < C5' ) ISu(EXD™HE)S(ED,

KEA

¢C5'(@EacCz") ) exp(—2sd(r, )

KEA

exp(—sd(k, u)) < c¢Cz' (@ cCg') exp(—sd(, p)

Y exp(=26ad(h, 1)) < @acCq') ™ exp(=sd(h, w)).

KeEN

IA

Corollary: The operator Hy is semi-bounded from below.

3 Spectral Structure of Hy

In this section we denote by K the set of all compact operators in the space F =
L%(F). We set Cr, (T, K) =C},,(T) ® K, where C;,,(I") is the reduced group
C*-algebra of T" [7], [8].

We shall identify L?(X) with the space ] 2(T, F) by means of the correspondence
®: LX) 5 f > ¢ € X[, F), p(»)(x) = L, f(x). With R the right regular

representation of I' in I2(T") we set R = R ® I, where I is the identity.

Lemma 3 The mapping ® is an interwining operator for the representations L
and R.

Proof: This follows by direct calculation. O

This lemma implies that we can identify the space of all I'-invariant opera-
tors in L(H, H) with the space W*(T", F) of all bounded R-invariant operators
B : IX(T', F) — I*(T, F), and we can identify C¥,, (I", K) with a subalgebra of

W*(, F). If B € W*(I', F) we define the Fourier coefficient §(y) aty el'to
be the bounded operator on F given by

B(y)v = (B&)(y),
where

sU(y) = { v, ify =e;
1) 0 otherwise.

Recall that the canonical trace Try. on C;, (T, K) is given by
Tr, B = Tr B(e).

We need the following lemma [8]:
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Lemma F If§(y) € K foreveryy € T and

D IBW)I < oo,

yell

then B € C* , (T', K).

re.

The main results of the paper are consequences of the following theorem.

Theorem 3 The resolvent Ra(¢) of the operator Hy belongs to C},,; (T, K) for
every { € p(Ha).

Proof: Since C},; (T, K) is closed in L(H, H) and R (¢) is an analytic function

on p(Hy), it suffices to prove that R4 (¢) € Cr,, (I', K) when ¢ runs over some

semi-axis (—oo, x). Itis provedin [8] thatexp (—tH% € Cr,; (T, K)forallz > 0;
hence using the Laplace transform we get that Ra(E) € C},, (T, K) for every
E < 0. Put V(E) := RO(E)—R4(E); itremains to show that V (E) € Cr (T, K)
for all E in some interval (—o00, x). We abbreviate

(15) MG, 15 8) = [Q@Q) + Ay, .

According to Theorems 1 and 2 we can find constants cg < 0 and ¢o > 0 such
that for all E < cg

(16) IM(A, u; E)| < coexp(—Cod(X, 1)),

and for every f € L%(X)

a7 V@ F =Y | D MO, 1 )gu@If) | (@)

AEA \peA

Further, by Lemma 1 we can suppose that the following assertion is true: For any
compact set C C X, any pointk € K, and any E < cg there is a constant k(C, &)
such that

172
(18) [fc lgA(E)(x)Izdx} <k exp(—=Cod(A, k)).

Then we can choose ¢ in such a way that ¢y > 3¢, where ¢, is the constant from
the proof of Lemma 2.
For any 8 € I" define a matrix Mg(A, u; £) by the relation

Mg, u; 8)
(19)
B {M(A, w; &), ifa=vyx, u=ypx' forsomeyel, k, £ €K;

0 otherwise.
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Since (g1 (¢))rea is a Riesz basis, it follows from Lemma E and (16) that for any
fe L%(X) the series

reA \ueA

(20) Va@)f =) (Z Mg, u; :)(gu(Z)If)) r(2)

converges and defines a bounded operator in the space L2(X) (the sum over (. is,
in fact, finite). Let us prove that

@1) > VBB < +oo
Berl’

if E < cg. Because (g;(£))rea is a Riez basis in its own closed linear hull, we
have
(1) for each ¢ € I2(A)

(22) L 12 ea®| < a®lel;
AEA
(2) forany f € L3(X)
(23) > KB < GEIFI
AeA

Taking into account (16), (22) and (23) we get
2
D Mg, p; E)gu(ENS)

i

IVeEYFIZ <2 D
A

2

SL33))

k€K yel

> M(yk, vB's EXgyper (E) F)

k'eK
< clsup{|[M(yx, yBr’; E)? 1 y € Tsk, &' € K}
(24) DD Keype (BIP

yelk,k’eK
< (#K) 2 sup{|M(k, pr’s E)* : 1,6’ €K} Y Har(EMF)I
reA
< #K) c? ¢ max{exp (—2é d(k, f«)) : «, k' € K} Il £1?

(we have used the identity [M(yA, yu; O = IMG, us O, ¥y € T, A, p € A
which follows from the fact that Q(¢) is L-invariant). Thus

@5) IVB(E) < ¢z ) exp(—Eodc, i),

kx'eK

and Lemma E and (25) imply (21).
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Now we show that

(26) Y Ve(E) = V(E),

Bel

if E < cg. Itis sufficient to prove that for any functions f1, f, € C3°(X) we have
(27) Z(fllVﬁ(C)fz) = (filV(¢) f2).
pel’

Let f1, f2 be such functions; we prove (27) if we prove that the series

(28) Y MO, 1 E) (8,(B)| f2) (filga(E))

A, LeA

converges absolutely. Fix a point kg € K; using (18) we get with some & > 0:

(29) [{gA(E)I )] < kexp(=Zod (A, ko)) fill.

Since ¢y > &4, (25) follows from Lemma E.

It remains to prove that Vg(E) € Cr (T, Kyforall B eTand E < cg. In
what follows we fix B € I" and E < cg. First we find the Fourier coefficient
Vﬂ y) = Vﬁ(E)(y) By direct calculation, we obtain for u € L%(F)

(30) Vi@ =Y > Lo ),
ael’ k,x'eK

where L, is a one-dimensional continuous linear operator of the form

(31 Loy () = M(ak, afx’; E)<ga,8x (E),u)gyalc (E).

Here ii is the extension of u to the whole manifold X by zero, and  is the restriction
of g to F. To prove that Vﬁ () is a compact operator, we show that

(32) Z Lo ll < o0.

o,k Kk’

Fix a point kg € K, then from (18) we deduce that

(33) I8yax (E)| < k(F, ko) exp (—& d(ko, ya)).
Hence
(34) D MEyax (B < oo
cel
On the other hand,

35) sup{|M(ak,apc’ ; E)|: a €T, k,«" € K}
=sup{|[M(k, B« ; E)| : k,k' € K} =: ¢35 < o0.
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Thus

(36) I Lgew Il < c3c4 ”gyouc B,

where c4 := ||gA(E)| is obviously independent of A. Thus (32) follows from (34).
Finally we prove that

(37) > VI < oo

yell
Letu € L2(F), |ull < 1, then
(38) Ve @l < c3 Z Zl(gcxﬂlc’ (BE)la) 1&8yax (B

k,k'eK ael’

Fix «, k' € K and consider the sum

(39) > gay (BN} 1yacl,

aEy

where y = Bi’. From (18) we infer

(40) > 1gyax B) =Y Ig2(E)l =: ¢s < oo,
ael ael
(41) > Hgay(B)liE)| < cs,
ael )
(42) IZyae (B)Il < k) exp (—Eo d(ya, ),
(43) {gay (B)i)] < k(c) exp (—Eod(av, k).

Sinced(av, ) = d(ak, ))—d(av, ak)) = d(ok, k))—d (v, £)), the inequality
(43) may be rewritten as

44) {gay (E)i)| < c'(k, v) exp (—Co d(ak, k).
Write I' = I'1 U I'y, where
(45) M ={ael: dk y k) <dy 'k k)/2}),

(46) 'y ={xel: dux, y_llc) > d(y‘llc, K)/2}.

Ifa € Ty, thend(ak, k) > d(y"llc, k) —d(oxk, y‘llc) > d(y‘llc, x)/2. Thus,
using (40) and (44), we have

1
3" Keav B 1Zyax (B < cole, vy exp (—-2-Eod<y—1x, x))

cely

47 3
< cpk, v) exp <_§EA d(k, ylc)) .
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Similarly, using (41) and (42) we obtain

~ - 3.
(48) Z (8w (ENI#)| lI8yax (Bl < c7(x) exp (_ECA d(k, VK))-

o€l

Therefore,

~ 3.
(49) VeIl < es(B) 3 exp (~3Endle,v0) ),

xekK
and Lemma E implies
VeIl < 0.
Y

The proof follows from Lemma F. O

Corollary 1 Let E;, E; € R\o(H,), and E; < E,. Then the spectral projector
Pk, B, for the operator Hy belongs to Crq (T, K).

Proof: Indeed, there exists a function ¢ from C$°(R) such that Pg, £,; = ¢
(RA(E)) for some E < Ej.

Fix now a number E’ € R such that E/ < inf o (H,4) and consider the function

_ TI‘r P[E’,E]a E > El;
N(E)““{o, E < E'.
It is clear that this function is independent of the choice of E’. Moreover, N (E)
is constant on each gap of the spectrum of Hy such that the values of N(E) label
in a natural way the gaps of Ha [26].

Corollary 2 (Gap Labelling Theorem). The values of N(E) on gaps of the
spectrum of H4 form a countable set of real numbers Tr* (K Cr, () (here KoB
denotes the Ko-group of a C*-algebra B).

Recall that I is said to have the Kadison property if there exists a constant

ck > Osuchthat Tr. P > cg for every non-zero projector from Cl, T, K).

Corollary 3 If T" has the Kadison property, then the spectrum of Ha has band
structure.
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