THE RESOLVENT EXPANSION ON SINGULAR SPACES

JOCHEN BRUNING

ABSTRACT. We discuss the resolvent trace expansion for singular spaces. We prove the existence of such
an expansion for a certain class of isolated singularities.

INTRODUCTION

The resolvent expansion is a well established tool of geometric analysis. To recall what is involved,
consider a compact Riemannian manifold M, of dimension m, and a Hermitian vector bundle E over M.
On the smooth sections of E we consider, in addition, a “Laplace type“ operator, A, by which we mean a
second order formally symmetric differential opérator with principal symbol given by the metric tensor.
Typically, such operators arise as square of a generalized Dirac operator plus a potential; an example of
particular importance is provided by the Laplacian on differential forms.

Then it is well known that A is essentially self-adjoint in L?(E) with domain C$°(E) and that its
closure, also to be denoted by A, has a discrete spectrum. But much more is true: the resolvent powers,

Rl(z):= (A + 2%)7,

are trace class if 2/ > m, and as z — 0o we even have a full asymptotic expansion
oo

(0.1) trpe(m[BH(2)] ~ ) a2,
=0

Moreover, the coefficients are local, that is

(0.2) 0= [ ai) volur(o),

where the numbers a;(p) are given by universal formulas in the germ of the symbol of A at p.

It seems that Carleman [Ca) was the first to observe that already the leading term in (0.1) implies
Weyl’s law for the eigenvalue distribution. Carleman treated only a special case; the result was established
in great generality by Garding [Ga] who constructed a good parametrix for (A + 22)! (and actually for
scalar elliptic operators of any order).

On the other hand, Hadamard [H] constructed a very precise parametrix for the wave and the heat
equation which was adapted by Minakshisundaram and Pleijel [MPI] to the Riemannian case, thus ob-
taining a full asymptotic expansion for trrz(g) e~tA, This expansion gives the same coefficients, modulo
universal constants, as (0.1). And it is also equivalent to the knowledge of the poles of the ¢—function
which is given by

CA(S) = tI‘Lz(E) AT
for Re s large. The ¢ —function was Seeley’s point of departure for his thorough analysis of the resolvent
of general elliptic pseudodifferential operators [S] which proved in particular the analogue of (0.1) in this
generality.

The resolvent (or heat) expansion turned out to be very useful not only for the investigation of the
eigenvalue distribution but also for Getzler’s direct proof of the Atiyah-Singer Index Theorem [Ge].
Moreover, following the programmatic articles by Gelfand [G] and Kac [K] the field of spectral geometry
evolved, investigating the amount of geometric information encoded in the resolvent expansion; cf. [Gi]
for a good survey of many aspects. It is fair to say, however, that no satisfying picture has emerged yet
in spite of a lot of good work in this area.
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In the singular case, on the other hand, we should expect that the coefficients supported in the singular
set contain interesting information on the nature of the singularities. For example, we may hope to extract
the most important numerical invariants. That this is a realistic hope is shown already by the Dirichlet
problem in a bounded domain M in R?: the natural extension of (0.1) to this case determines both
vol M and vol M (so we can spectrally recognize the circle, in view of the isoperimetric inequality!) and
possibly even M itself, if we assume enough regularity for the boundary. The case of elliptic boundary
value problems has been dealt with thoroughly in the work of Seeley and Grubb [GS] deriving the resolvent
expansion in great generality.

Other types of singularities oceurred in the work of Cheeger [Ch] who was the first to extend the
relevant analysis to conic singularities and opened up a large new field of investigation. Despite the
considerably more difficult techniques to be mastered in the presence of singularities, one may suspect
that singularities are spectrally more rigid than smooth structures. That this suspicion is substantial has
been confirmed in the case of algebraic curves by the author and M. Lesch [BL1]; in this case it is possible
to distinguish smooth curves from those with singularities and, quite often, to determine all multiplicities,
simply from the knowledge of the resolvent expansion.

Such results provide a strong motivation for further efforts to extend this kind of asymptotic analysis to
larger classes of singularities. In this note, we develop an axiomatic approach which proves the resolvent
expansion for a certain class of isolated singularities which may be called hyperconical since it excludes
cones. It is not quite clear yet which e.g. algebraic singularities do satisfy these assumptions; this will be
the object of further investigation.

Our approach is based on a systematic use of self-adjoint “model operators“ which are attached locally
to the various strata of the given singular space such that their asymptotic analysis synthesizes to produce
the asymptotic spectral data for the elliptic (Laplace type) operator in question. Thus we start with a
somewhat new look at the classical case of compact manifolds and the simple model operators involved
(Sec. 2), after some general remarks on self-adjointness in singular situations (Sec. 1). It turns out that
an operator valued version of the analysis in the smooth case is the key to our result; this is done in
Sec. 3. For the singular asymptotic expansions we need a generalization of the Singular Asymptotics
Lemma from [BS1], which is quoted in Sec. 4; the proof can be found in [B2]. This reflects the fact that
the “conic® scaling is vital also in non-conic situations. The main result is given in Sec. 5, and Sec. 6
provides a sketch of possible extensions to more general stratified spaces.

I am indebted to Daniel Grieser for useful discussions and helpful comments on an early draft of this
work.

1. SELF-ADJOINT EXTENSIONS

We now keep the setting of the Introduction but we do not assume any more that the Riemannian
manifold M under consideration is compact. In what follows we think of it as the smooth part of a compact
stratified space, M, equipped with a metric which makes it a length space and induces the given metric
on M. In this section we describe some useful consequences of general results on self-adjointness which
have been obtained jointly with Henri Moscovici; a detailed account will be given elsewhere. Here we will
concentrate on the case of essential self-adjointness as indicated in the introduction. What we are going
to describe applies to symmetric elliptic operators of any order, in particular to the generalized Dirac and
Laplace operators. For the special case of the latter, we can always restrict attention to the Friedrichs
extension, in view of semiboundedness, even if the operator in question is not essentially self-adjoint. This
will be done in the rest of the paper, leaving a more thorough discussion for a later occasion.

The obvious idea is that we use different model spaces near the different strata, and we make this
precise through the following set of assumptions.

(SA1) M admits an open cover, (U, and partial isometries
ri : L*(E|U;) = L*(Ey),
with the property that
ri(C3(E|U:)) C C§°(Ex), 1 (C5°(Ea)) C Cg° (EU:):;

here E; is a Hermitian vector bundle over a Riemannian manifold M;, the “model space“. More-
over, on C$°(E;) we are given a Laplace type operator A;, the “model operator“.
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The model data and the given operator are linked by the following functional relations holding
on smooth sections with compact support:

riA =Ny and i) =10, Y€ ce(Uy),
~ Jor some map 7; : C°(U;) = C°(M;).
1t is easy to see that this axiom holds if the partial isometries are derived from smooth bundle maps,

with appropriate choice of A;.
In addition, we need an axiom to patch together the various model operators.

(SA2) There are functions ¢; € C*°(M) with supp do; compact in U; and such that

N
dodi=1
i=1

With these data we now obtain the following easy result.
Lemma 1.1. The map & : L*(E) = oY, L*(E;) given by
(1.1) du = (rypu)N,,

is a partial isometry, inducing a unitary equivalence between the operator A with domain C§°(E) in
L*(E) and PAP with domain ®Y.,Cs°(E;) in oN | L*(E)).
Here we have used the notation

P = 3™
and A is a differential operator of the form
(1.2) A=l A+ A,
(1.3) = Ao+ A;.

Here Ay is a differential operator of lower order if e. 9. A has scalar principal symbol.

It is obvious that Lemma 1.1 provides a basis for constructing and classifying self-adjoint extensions
of A provided we can deal effectively with A;. Since we concentrate on essential self-adjointness in this
discussion, we single out here only the relevant consequence of Lemma 1.1; it boils down to an application
of the Kato-Rellich Theorem.

Lemma 1.2. If all A; are essentially self-adjoint on C§(E;) and if, with some b < 1, the apriori
estimates

(1.4) I(PA(I — P) + (I - P)AP)ul| < bl|Au]| + Cllul],
(L5) [Avul] < bl|Aul| + C]lul].
hold for u € ®Y, C§°(E;), then A is essentially self-adjoint on C$°(E).

The crucial estimate necessary to check the assumptions of Lemma 1.2 can then be formulated in
terms of the model operators as follows.

Corollary 1.3. The conditions of Lemma 1.2 are satisfied if the model operators satisfy the apriori
estimates

1A, 75 (Wéi)lusll < ell Ajusll + Cellugll, w; € CP(Ey),
for all e € (0,1) and all j, and all ¢ € C>(U;) with supp diy compact in U;.

We remark in conclusion that the results described here provide a very simple approach to the standard
theory of elliptic operators on compact manifolds since in this case the model operators A; can be chosen
as small perturbations of constant coefficient operators. Thus we obtain the mapping properties between
suitable function spaces, arising naturally as domains of self-adjoint operators, and hence regularity and
Fredholm properties without building an elaborate calculus first. This approach seems to be very useful,
in view of its abstractness and flexibility, also in the singular case. We will return to these questions in a
future publication.
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2. THE SMOOTH SCALAR CASE

We begin by considering an arbitrary Riemannian manifold, M, of dimension m, a Hermitian bundle,
E — M of rank k, and a Laplacian, A, acting on the smooth sections of E, as described in the Introduc-
tion. We fix a self-adjoint extension of A which we denote by the same symbol; note that such extensions
do always exist since A is semibounded. The resolvent will be denoted by

R(z) := (A +2%)7L,
where we will always assume that 2z > 1. We will also write R'(z) := (R(2))!, for | € Z,. We also fix a
function ¢ € C§°(M). Next we introduce a “continuous partition of unity* as in [B3]. By this we mean a

family of functions, xpe € C§°(Bc:(p)), where p € M and ¢ is any sufficiently small positive number, with
the following properties:

. Xpe 2 0,
the map p — X, is continuous,

/ Xpe(q) volpr(p) =1 for all g € M,
M )

lim / Xpe(q) volar(g) =1 for all p e M.
e—0 Jar

With these preparations, we can state our first expansion result which is, in principle, well known. Our
derivation leads to a different description of the expansion coefficients, though, which will be important
later on.

Theorem 2.1. For 2l > m, ¢R'(2) is a trace class operator in L2 (E).
As z — o0, we have an asymptotic expansion

e [9R!(2)] ~ 3 2m=2-7 / ba; (p) volas (p).
>0 M
The coefficients a; arise from the two-parameter asymptotic expansion of the trace trr2 g [xpe R (2)], as
€ = 0 and z — oo, as precisely those terms which are independent of e.

The proof of this theorem will occupy the rest of this section. The first step consists in showing that
#R'(2) is actually of trace class. By the compactness of supp ¢, it is enough to consider the situation
when ¢ is supported in an arbitrarily small neighborhood of a given point p € M.

Thus we are in the position to compare A near p € M with a suitable model, A,, in R™. To do so
we determine €9 such that the exponential map is a diffeomorphism in B(0) and we choose a local
orthonormal frame for E in B, (p). These data determine an isometry

@, : L*(E|Bx, (p)) — L*(R™,CF).
For ¢ € C§°(B:,(p)) and u € L*(E|B,,(p)) we obtain
Bp(pu) =: &, (w),

with a suitable ¢ € C§° (BZ:(0). In particular, we get a coordinate representation of A in BZ(0); note
that this construction can be carried out continuously for p € By, /2(po), for any po € M. We extend the
constructed differential operator on BZ(0) smoothly to a symmetric differential operator on all of R™ by
making it equal to its principal plus zero order part with coefficients evaluated at 0 — this is the “model
operator“ — outside BT /2(0). The resulting operator will be denoted by A,; it can be thought of as a
small perturbation of a constant coefficient operator. In the chosen coordinates and frames we write

(2.1) Ap= ) A2(z)Dg,
lal<2
m 62
(2.2) Apo := Y AZ(0)DZ + Re A%(0) = — 5.7 + Re A2(0),
lal:z =1 z
(2.3) Apj:=AJ — Al for j €N

The last identity can be extended to j = 0 by setting Apo = 0.
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We may assume that Re AJ(0) > 0 so that we can write

(24) Re 43(0) =: (4p)% |

the reason for this choice of the model operator will become clear below when we treat operator coefli-
cients. Since supp ¢ is compact, we can make o as small as we want. Thus, denoting by || - | the norm in
L*(R™,C*), we may assume that we have the apriori estimates

(2.5) | 1Apgull < bl AJgull + Callull, v € C§°(R™,C),

for any fixed b < 1, with some positive constant C, and uniformly in p € supp¢ and j € Z,,j < I,.
In view of the Kato-Rellich Theorem we conclude that both A, and A,y are essentially self-adjoint in
L?(R™,C*) with domain Cg°(R™,C*). Thus we can introduce the localized resolvents,

(2.6) C Ri(2) = (A, + 227,
(2.7) RI0(2) i= (Apo + 22) 7.
We calculate for | < l:

Y l . ~
(@5 + 2 B = 3 () 20+ By Rig(2)

=171 + Z (;) z2(l_j)Aij;O (Z)

i=1
—. 14
=1 - Qp(2).
A straightforward estimate using (2.5) shows that
(2.8) ' 1Q4()ll < 2(b + Cyz?),

and we deduce the following lemma.
Lemma 2.2. If 2'(b+ Cy27?) < 1, then
Ry (2) = Ry (2)(I - QL (2)) ™
=D Rpo(2)(Q4(2)).
Jj=20

We wish to replace R!(z) by ng (z) and then to use the Neumann series Jjust derived. To do so we want to
apply the abstract framework of [B3, Sec. 4] to R, (z), wherefrom we adopt the notation ¢ < 9 iff ¢ and ¢
are in Cp(R™) and 9 = 1 in a neighbourhood of supp @. This makes it necessary to establish some relevant
(and probably well known) Schatten estimates. We use the following notation: the Schatten—v.Neumann
class of order ¢ > 0 in a Hilbert space H will be denoted by Cq(H), with norm || -||g; [ - [l then denotes
the norm in H. To establish the needed estimates we work with a simple class of homogeneous vector
valued symbols in R™: for a complex vector space V, a function p € C®(R™ x Ry \ {0},End V) is said
to be in the symbol space S™7(R™ x Ry,End V) =: S~7(V), ¢ > 0, if

(2.9) p(té,tz) =t p(¢,2) for all t > 0.
With such a symbol we define the usual pseudodifferentia] operator

(Opp(=))u(z) = (2m)~"™ / K@ p(E, 2)(a(€))de.

R
Then we have the following estimates.
Lemma 2.3. Let p € S77(CF) with o > 0; assume also that z > 1.
1) [[Opp(2)llee < C277.
2) For ¢,9 € C°(R™) with ¢ < v we have
¢[Opp(2)](1 - ¢) € CL(L*(R™,C*)) and

18[0pp(2)](1 = Y)|ly < Oz,
for all N € N.
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3) If o >m/q, then ¢[Opp| € Cy(LA(R™,C*)) and
llpOpp(2)lly < C2™7.

Proof. 1) is obvious. For the proof of 2) we fix ¢ and choose R > 0 such that supp ¢ is contained in
Br(0). If A denotes the Dirichlet Laplacian on B r(0) then it is clearly enough to show that for 2l > m
and all N € N the operator Q(z) := (Ag + 2z%)!¢ Opp (1 — 9) is bounded with norm bound Cyz~N. To
see this we observe that the kernel of Q(z) becomes a convergent oscillatory integral after multiplication
by (z — )2V, implying the estimate

1Q(z,y;2)] < Cn(1+ |z —y| +2) Vx(2)A = ¥ (),

for all N € N and some x € C$°(R™) satisfying x < ¢. Then the claimed norm bound follows e.g. from
Schur’s test.
We turn to the proof of 3). In view of 1), we may assume that

p(&,2) = (|€7 +2%)77 =:po(£,2)™°.

Assume first that our assumption holds with ¢ = 1. Then, since Oppo is nonnegative we see that ¢ Op po¢
has a finite trace which equals its trace norm. Hence ¢ Oppo¢ is trace class with

l|¢ Op podllr = tr ¢ Op po¢.
Thus, with 1 > ¢ we may write
‘ ¢ Op po = $[Op poldyy + ¢[Op po] (1 — ¥),

so the assertion follows from 2) in this case. Next we see by an easy induction that the assertion holds
for ¢ = 2%, for any k € Z. Finally, for arbitrary ¢ we choose go < ¢ such that go has a finite dyadic

expansion,
N
— E —ki
Jo = 2 )
i=1

with k; < ki+1. Now we choose g; > k; such that Zai = ¢ and a sequence ¢Z c Cgo (Rm) with ¢1 - ¢,
¢; < ¢ir1. Then we write

N
¢Opp;° =: [ #: Opp;”* + R.
i=1
By 2), R € C1(H) with rapid norm decay in z, and the ith factor of the operator product is in Cor; (H),
with the right norm estimate. But then we obtain the assertion for ¢ Oppo and go from the “Holder
inequality “ for Schatten norms. Using the simple interpolation inequality

llAlly < LA/ AllR9, |
valid for all A € Cp(H) and all ¢ > p > 0, we complete the proof. O

" The estimates just derived imply that we can replace locally RY(z) by Ré(z) as intended.
Lemma 2.4. Let 21 > m. Then for all N € N, allp € M, and all ¢ € C§°(Be, (p)), we have, locally
uniformly in p, ~

| trr2(m) [¢Rl(z)] — trgam, o) [PR(2)]| < Onz ™"
Hence $R!(2) is trace class for any ¢ € C§°(M).
Proof. We pick functions ¢,%, x in C$°(Be, (p)) with 1 > ¢ > x and introduce the operator
Bp(z) = &' $RL(2)®px.
Then, clearly, By(2)(C$(E)) € C§°(E) and we compute with Lemma 2.2
(A + 22 By(2) = x + & ' [(Ap + 2°)', @1 Ry (2) @pX
=: X + By(2)
= x + ¢B, (2).
This implies the identity
- (2.10) . By(z) = RY(z)x + R! (z)¢B11,(z).
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Next we observe that

!
[(Ap+2%),6]Ro(2) =D Y By’(&)DgRLy(2),

J=0 |a|<2j—1

with certain Bg7 € C§°(B™(0), End C*). Now DgRL,(z) = Op[€®po(€,2)7"], and all symbols involved
are in 77 for some o > 1. Hence Lemma 2.3 applies and gives

By(2) € Cm1,  |1By(2)llmia < C272/m D),
Using this in (2.10) gives
1B (2)x = Bp(2)llms1 < Cz~H/(m+0),
Tierating this argument, using the “Holder inequality “ for Schatten norms, we find for 1 <j <m +1
(R'(2)x — Bp(2)) € Coms1)7i> 1R (2)X = Bp(2)||(mt1)/5 <0z 20+jm/(m+1)
In particular, we see that for any x € C§° (M) :
R(z)x e G(LE), IR (xlh < 22,

To prove the asserted rapid decay of R!(z )¢BL(z) we use Lemma. 2.2, plugging in the Neumann series in
the definition of B; (2). Since supp dé is disjoint from supp x, by construction, we can apply Lemma 2.3, 2)
to each term in the series. Hence, given N € N we can split B}, (2) in a term with rapid decay in C; and
a term with operator norm O(z~"); thus the assertion follows from (2.10). 0O

Now we bring in the continuous partition of unity introduced above; an easy calculation shows that

(2.11) : trpecm [pRN(z)] = /M trp2(m) [@xpe B (2)] volar (p).

By Lemma 2.4 and the local uniformity in p we then immediately obtain the following consequence:

Corollary 2.5. If Xpe denotes the function in C°°(]Rm) induced by xpe and the chosen coordinates, then
fore <eq and all N € N we have

trrpz(m) [¢Rl(z)] = /1\/1 triz(mm,ck)[(g)ngRé(Z)] volpy (p) + On (E—mz_N).
For the remainder estimate in Corollary 2.5 we have used the estimate
IXpe(9)] < Cpe™™, for all ¢ € M, and locally uniformly in p.

To derive the desired asymptotic expansion from Corollary 2.5 we want to plug in the Neumann series
for R’( ). This series is not asymptotic in z but it will be asymptotic in the sense of a two-variable
expansion in € and z, i.e. if we admit remainder estimates of the form Cy(e + z=!)V. To substantiate
this, we have to elaborate on our estimates in Lemma 2.3. Thus we choose a functlon X € C§°(B1(0))
and define, for € > 0, Xc(z) := %(z/e). We also consider 4; € CZ°(R™,End C*), the space of smooth
sections with uniformly bounded derivatives, p; € S~%¢, and multiindices a; € ZT'. With these data, we
introduce the operator

(2.12) B(e, z) := Xe A12% Opp1(2) - - ALz Oppy(2)
Then we obtain the following result.

Lemma 2.6. Put o := Zle Oi, 0= Zle loi|. Then the operator B(e, z) is in Co(H) if o > m/q, with
norm estimate
L

1B, 2)lls < C] sup [|4@)l(e +2~ 1yag=m ,m/s—o

i=1%

where C is independent of € and z. This estimate also holds for ¢ = co
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Proof. We put
L

b:= Z i]ai]
i=1
and do the proof by induction on b > a. For b = a we have a; = 0 if ¢ > 1, so the assertion follows from
Lemma 2.3. Assume next that the assertion holds if b < by and consider an operator B with b = by + 1.
We assume that o] > 0 and observe the commutation relation

[OppL-1,25] = Op Djpr—1.
This splits B into two parts to which the induction hypothesis apphes and the proof is complete. O

To see that the estimate in Lemma 2.6 actually implies the asymptotic character of the Neumann series
after left multiplication with ¢Xpe, we only have to observe that the jth term in the Neumann series,
R;(z) say, produces a finite sum of operators of the type. just considered, with L = j and o; = 21 — b;,
for certain numbers 0 < b; < 2I, such that b; = 0 and, for ¢ > 2, |a;| > 1 if b; = 2I. Hence, Lemma 2.6
gives the estimate '

R|l: < Cjem™(e + 27 1),
It remains to recall that € can be chosen as an arbitrary number not larger than &g, so the asymptotic
character of the series follows if we put £ := z71.

By the same token, we obtain an asymptotic expansion upon using the Taylor expansmn around zero
for all arising coefficients in the Neumann series

Next we have to take a closer look at the structure of the expansion coefficients arising in this way.
By our discussion so far, we know that the coefficients are given by operators of the form dealt with in
Lemma 2.6, where all endomorphisms A; are independent of z. In this case, the pseudodifferential calculus
is exact so we get explicit formulas, at least in principle. It is well known that important geometric
information can be derived from good knowledge of these coefficients. In this paper, however, we restrict
attention to the existence of the expansion; the (closely connected) discussion of computation will be
pursued elsewhere. For our purposes here it is thus enough to have the following description of the
expansion coefficients, which follows directly from what we have done.

Lemma 2.7. Consider the summand with ¢ factors in the Neumann series for trp2@m cr)[Xpe Rb(2)]-
Every term arising from it by expanding the coefficients in Taylor series around 0 can be written as

=~ 2il-27 .«
Xpe E "% 2% Op pa,
fa|<a, 0K <l

where a is the total number of z—powers involved, and po € S~°=(C*) with |og| > 21(i+1)—2j+a—|a].

Moreover, each p, is a product with i factors of powers of £ and £—derivatives of po(€,%), where
2= (27 + (4,)%)2.

Finally, we observe that our expansion argument actually gives the expansion of the resolvent kernel
on the diagonal.
Lemma 2.8. If 2l > m + 1, then Rl(z) has a C'—kernel near supp ¢ x supp ¢ such that
(2.13) tre, R (p,p;2) = Y a;(p)z™ % +0(z7").

0<j<L4m

The functions a; are given by universal polynomials in the derivatives of the coefficients Ay of the chosen
trivialization, evaluated at 0.

Proof. 1t follows from our discussion that, uniformly in p € supp ¢,

trLZ(E') [XpeRl(Z)] = Z a; (p)zm—Zl—j + OpN(E_m(E + Z_l)N + 5)-
0<j<N+m

On the other hand, by elliptic regularity we see that the kernel of R!(z) is C* near supp ¢ x supp ¢ if

2l > m 4+ 1, hence
tre, R (p,p; 2) = trre(m) [xpsRl(z)] + Op(e).
Choosing N := (m + 1)L and € := 2z~ gives the desired expansion. O
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3. THE CASE OF OPERATOR COEFFICIENTS

As we have already pointed out, our method focuses on the self-adjoint operators appearing naturally
in the discussion. This makes it necessary to consider model operators with operator coefficients. The
analytic properties we have to develop follow closely the outline of the previous section, however, so we
will only point out where we have to use different arguments. To begin our approach we consider the same
situation as before but assume that the operator under consideration is a second order partial differential
operator, A, acting on the sections of a Hilbert bundle, £, over M. Instead of describing its properties
we assume now the existence of local trivializations which transform the situation locally isometrically to
differential operators acting on Hilbert space valued functions defined on R™. Precisely, we assume that,
on smooth sections of £|Be,(p), A is unitarily equivalent, under an isometry

®,: L&)~ L*R™, H) = H
to
(3.1) Ap:= D" A%(z)D2
lof<2
acting on C§° (B, (0), H;) where H is a sepa;able Hilbert space and H; is a dense subspace. Concerning

the coeflicients, we assume that each Ay is a closed operator in H with domain D(Ag) D Hi, and that
there is a selfadjoint operator fip > 0 with domain Hy, for all a. In addition, we assume that

(4,)? = Re 4(0);

Ay is scalar for ]al =2, with AY(0) = d;;.

We recall the notion of order with respect to A,, as introduced e.g. in [BL2, Sec. 2. A}, We then also
assume that A7 is of order 2 — |af, for |a| > 0, and that Im AJ is of order 1, together with all derivatives.

As before, we construct a model operator, Apg, with constant coefﬁc1ents and extend A, symmetrically
to all of R™ such that it equals the model operator outside a small neighborhood of 0 the resulting
operator will still be denoted by A,. Then we have as before

(3.2) Apo = Y A2(0)DZ + Re AS(0 Z 52 +A;,
|ol=2
(3.3) Apj = A — Al forjeZy.

We assume, of course, that this construction depends again locally continuously on pPEM.

Now we follow the outline of the previous section step by step. First, we observe that we arrive at the
apriori estimates (2.5) and (2.8) exactly as before. Next we introduce the appropriate operator valued
symbol space S™7(R™ x Ry x Ry, L(H)) =: ST7(H) as the set of functions in C®(R™ x Ry x Ry \
{0}, L(H)) satisfying

(3.4) p(tE,tA,tz) =t~ p(&, A, 2), forallt > 0.
Then it is clear that we can form the operator symbol p(¢, 4, 2), for any self-adjoint and nonnegative

operator A. We denote by Op p(4, 2) the corresponding pseudodifferential operator acting on C$°(R™ , H),
as before. Then we obtain easily the following analogue of Lemma 2.3.

Lemma 3.1. Letp € S77(H) witho > 0, and assume z > 1. Assume, moreover, that (A+I)~1 ¢ Cqo(H),
for some g0 > 0.

1) |1Opp(A, 2)]jeo < Cz7°.
2) For ¢,v € C°(R™) with ¢ < ¢ we have

¢Opp(A,Z)(1 - 'l/)) € Cl (L2(Rm7H)) and
l40pp(4,2)(1 - )lly < Cnz"V,

for all N € N.
3) If o > (m + qo)/q, then ¢ Opp(4,z) € C,(L*(R™, H)) and

16 Opp(4, 2)|l; < Czlm+a)/a=o,
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Proof. 1) is again obvious, in view of the homogeneity properties of p.
For 2) we proceed as before, using now as comparison operator Ag + A% + 22, i.e. the Friedrichs extension
of this operator with domain C§°(Bg(0), H1) in L?2(Bg(0), H). An easy argument shows that the inverse

of this operator raised to the power [ is in C, for 2¢ > (m + go)/!l. Then we conclude the proof as in
Lemma 2.3.

3) is again proved as in the scalar case, now using for comparison the symbol po(&, A, z) := (€2 + A% +
221, : . O
With these preparations we are able to establish the analogue of Corollary 2.5 since the necessary estimates
needed in the argument are now provided by Lemma 3.1.

Lemma 3.2. With xpe and Xpe as before, we have for sufficiently small €q and for all e < g5, N €N
(3.5) trrz(g)[9R' (2)] = /M trr2(e)[$%pe R, (2)] volas (p) + On (™™™ V).

The desired asymptotic expansion is now, again, derived as before: in (3.5), we plug in the Neumann
series for Rﬁ,(z), and then we use on all coefficients arising in the jth term their Taylor expansion around
zero. This leads to two kinds of remainder terms with similar structure, which are both estimated by the
following analogue of Lemma 2.6. Thus we consider operators of type (2.12),

(36) B(/Ip) £, Z) = )ZE Almal Oppl (AP: Z) T ALzaL OppL(Apa Z),
where a; € Z7, A; € Cg°(R™, L(H)), and pi(Ap,z) € S™9(H), for 1 < i < L. The proof of Lemma 2.6
now carries over verbatim to give the necessary estimate.

Lemma 3.3. Put 0 = Zle g, @ = Zle lo;|. Then the operator B(Ap,e,z) is in Cq(H) if 0 >
(m + q0)/q, with norm estimate ‘

L
1B(Ap, &, 2)llg < C ] sup [[4i(@)ll(e + 2~)2e™m2tmHad/a=e,
z€ER™

i=1
where C is independent of € and z. This estimate also holds for ¢ = oc.
These results lead to the resolvent expansion in the operator valued case as before.

Lemma 3.4. Consider the summand in the Neumann series for try [)ZPER;(Z)] with i factors. Every term
arising from it by expanding the coeﬁicients in Taylor series around O can be written as

Xps Z ZA=2 g Oppaj(f‘ip;z)

la|<a, 0<j<il

where a is the total number of x—powers involved, and poj € S™7%3 (H) with |04;] > 21(i+1)—2j+a—|al.
Moreover, each po;j{Ap,z) is a noncommutative product with i factors where each factor is of the form

DPA%(0)6"Dipo(€, Ay, 2),

for certain multiindices o, 8,7,6 € ZT. »
Thus, trrz(g) [#R!(2)] admits an asymptotic expansion as (¢ + z~ ') — 0 with coefficients derived from

(3.7) Z / tro[BXpe 22472 2% Op pajl.
lol<a, 0<j<it 7 M

If 21 > m + 1, then R(z) has a C*—kernel near supp ¢ X supp ¢ such that

(3.8) tre, R(p,pi2) = Y, a;(p)z™ 277+ 0(z7").
0<j<L+m

The functions a; arise from the expansion (3.7) as the coefficients which are independent of €.

R R R ) U e

BB
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4. THE SINGULAR ASYMPTOTICS LEMMA

In the singular case, new tools have to be used to derive the asymptotic expansion. The main technical
device, introduced already in the groundbreaking work of Jeff Cheeger [Ch], is scaling along the “cone
axis“, which reduces the expansion problem essentially to a regular problem with parameters. The price
one has to pay, at least in the conic case, is that we can no longer restrict the analysis to large negative
values of the resolvent parameter; in our terminology, we have to go down to z = 0 where the resolvent
becomes singular. To deal with this problem and the resulting special form of the integrals to be expanded,
Briining and Seeley derived the Singular Asymptotics Lemma [BS1]. This result has several variants and
generalizations; for a thorough discussion, cf. [GG]. The version in [BS1] was designed to handle the case
of asymptotic cones, and the remainder estimate made crucial use of a smoothness assumption. Even
though this formulation leads to very precise results for cones, it is not sufficient to deal with more
general situations like metric horns (cf. [B1] and [LP] for some relevant material). Therefore, we have
given in [B2] a generalization which was shown to be sufficient to handle metric horns; it will also be the
basic tool for the present discussion. Thus, we quickly review some terminology and the relevant results
here from [B2].

By I' we denote a discrete closed subset of C with

(4.1) 7 :=infRey > —oo, and
(4.2) 'y :={yeT; Rey < N}

finite for all N € N, and equipped with a “weight function” v : I' — Z. In addition, we write I'}, :=
'y N {Re z > 0}. Then we consider the following types of asymptotic expansions.

(i) For f € L} (0,1], we want the expansion

loc

(43) f@)= 3 faxs®log" s+ RY(f;2),
€l N .
k<v(a)
with certain numbers f9, € C and remainder estimate
(4.4) |RY(f;2)| < Cnsz™ 0,

uniformly in z € (0,1}, for every 6 > 0. This class of functions we denote by 72 .

(ii) For f € L{ [1,00), we want the expansion
(4.5) f@) = ) f52 " log' e+ RR(f; ),
BelN
<v(8)
with certain numbers f5i € € and remainder estimate
(4.6) |BR (f;2)| < Cnga® ",

uniformly in z € [1, 00), for every § > 0. This class of functions we denote by FF5,.
Then we put
(4.7) Frp = A{f € Lise(0,00); fo = flio,) € FLor foo = flin,e0) € F};

this is the function space we are interested in. Occasionally, we will refer to an expansion as in (4.3) or
(4.5) as an expansion of type T',v.
We can define the Mellin transform on Fr , by

(4.8) Mf(z) == Mfo(z) + M foo(2).
M f is meromorphic in C, hence we can define the “regularized integral” by

(4.9) /0 " F(@)ds = Reso MF(1),

where “Resg” denotes the constant term in the Laurent expansion. This is the appropriate notion for our
purposes. We also employ the fairly obvious notion of “two-variable asymptotic expansion”, associated
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with I' and v. By this we mean an asymptotic expansion for functions, f, in L. ((0,1] x (0, 1]) of the
form

(4.10) fle,w) = Z C’flﬁ e%log* e WP loglw + Ry (f;e,w),
aiﬁer‘N
k<v(a), ISv(B)

with certain f% € C and remainder estimate

(4.11) |BN(fie,w)| < Onsle +w)N 9,
uniformly in 0 < g,w < 1, for every § > 0. We will mainly use the fact that (4.10) determines the
coefficients f{% uniquely. We will have to determine the asymptotic expansion of expressions of the form

(4.12) I{c;2) = / o(x,zz)dz, 1< 2z— oo,
0

where o is in C((0, 00) x (0, 00), C). To ensure the existence of the integral and its asymptotic expansion,
we introduce two assumptions.

(Ao) For any Cp > 0 and 0<z<Cy, £€ (0,00), N €N, we have the expansion

o(z,6) = Y 0% (&) 2% loghz + RY (z,¢),
aeI‘N
k<v(a)

where 69, € Fr, and
|RY (2, €)| < C(N,8,Co) zV =0 £28(1 4 )k

for 0 <6 <1 and certain numbers of < 0, a2, > 0.
(Aw) For any Cp > 0 and ¢ > 1/Co, z € (0,00), N € N we have the expansion

a(z,8) = Y o5(z) ¢ P logl ¢ + RX(z, €),
[

where af;? € Jr,, and
|R%Y (z,6)| < C(N,8,Co) €8N 228 (1 + 2)°&

for 0 < § <1 and certain numbers ag® <0, a2 >0,

We point out the following consequence of the axioms (Ap) and (A):
as £ — 0, £ = oo we obtain the expansion, from (Ay),

o(z,&) ~ Z [agk]g? z*logh x £ P logl ¢,
a,Ber
kE<v(a), L<v(B)
and from (A),
0@ ~ Y [ofler a®log" s £ P logl €.
o,Bel’
k<v(a), 1<v(B)
By uniqueness of the expansion coefficients, we conclude

(4.13) [ook)3t = [051%% =: Oan -

Now we can formulate the main result of this section; the proof is given in (B2].

O s e
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Theorem 4.1. Let 0 € C((0,00) x (0,00),C). Under the assumptions (Ag) and (As) we have the
following asymptotic expansion, as 1 < z — oo:

Hoi2) ~ % [ (/) 0840/ olu(a)da/s
kgS(Foz

+ E / (z2) " log’ (w2) o) (z)dzx
ger “0
1<v(B)

o ! k Y _
+ Z P 1logk+k +lz<k”) (_1>k k+1(k+kl+1) 1[ng]0—a—l,k’
acl
k<v(o)
o<k <k, ogko"gu(aqul)

k y
+ > 2 Ploght* Z<k,> (D* M E +1+1) " opp-1k

ger
k<v(B+1), I<v(B)
0<k'<k

In particular, I{o;2) € F£5, with #(a) = v(a) +v(a+1)+1.

5. ISOLATED SINGULARITIES

We now use the analysis described in the previous sections to develop an approach to the resolvent
expansion of Laplace type operators on certain isolated singularities. Qur discussion will proceed ax-
lomatically; it remains to be seen which specific examples, beyond metric horns, are actually covered by

our method.
;From now on we study a Riemannian manifold, M, which decomposes as
M =: M, UU.
Here, M; is a compact manifold with boundary N :=‘:"8M1 = U, and
U = (0,g0) x N.

R P R R R

7

It will be seen that our method also allows us to treat more general compact metric spaces than mamfolds
provided we know enough about their spectral theory.

The “singularity“ U comes with a distinguished coordinate z € (0,eq). We build our model operator
according to the simplest possible separation of variables expressed through the form of the Laplacian:
we assume that A, considered as an operator in L?(E|U) with domain C§°(E|U), is unitarily equivalent

to
(5.1) ~0%/8z% + A(z),

acting in L2((0,&0), H) with domain C§°((0,&0), Hy), where H; is the common domain of the family
A(Z)ze(0,e0)- We write Ao := A(eo/2). We remark that (5.1) is, at least for the geometric operators, a
consequence of z being a normal coordinate in the sense that the metric, g, on U is given by

(5.2) g =dz® + gn(z),
with a smooth family g (z) of metrics on N.

Our assumptions will prescribe functional analytic properties of the operators A(z). The first assump-
tion concerns smoothness and self-adjointness.

(O1) The function

=

R

S

(0,e0) 2z — A(z) € L(Hy, H)

is smooth and all A(z) are self-adjoint with domain Hy. Moreover, the operators AU (z) are of
order 1 with respect to Ao, for allj € 7.

Next we assume that the operator coefficient, A, is extended to all of (0, 00) in such a way that (01)
remains valid and in addition

(5.3) A(z) = Ap for z > 2.
Then the Friedrichs extension of the model operator exists in H := L?*(Ry., H); it will be denoted by T.
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To handle the necessary trace class estimates, we introduce a second axiom.

(02) For some positive constants C' and o we have
A(z) > Cz™27204,,

Moreover, Ag > C, and there is qo > 0 such that Aal € Cyo/2(H).
Now we can derive the trace class properties of 7T'.
Lemma 5.1. T > 0, and if 21 > 1 + gy then for any ¢ € CP(R) and z > 0 we have

¢(T +2°)7% € C1(H).

Proof. The first assertion is clear from (02). The second assertion is proved along the lines used in
Lemma 3.1, Part 2. Note first the estimate

(5.4) 10zl < (Tu,u),

valid for all u € C3((0,0), Hy). Next we pick R > 0 such that supp ¢ C [-R, R] and denote by Tg the
Friedrichs extension of the operator (4.1) in L%((0, R), H). Then we compute

(Tr+ 2T +2%) " =¢— (¢ +208) T + 227"

Now (0O2) allows to estimate the eigenvalues of T from below, by the max-min principle, and we
conclude that ¢(T +2%) 1 € C(1440)/2)- This allows us to apply [B3, Lemma 4.1] and the assertion follows
by induction on [. O

Now we observe that (T' + z%)~* has an operator kernel, by the Trace Lemma of [BS2], to be denoted
by

Rl(x,y;z) € L(H), z,y,z>0.

Since T' > 0, this kernel is nonnegative on the diagonal.
Next we bring in the unitary scaling map in #, defined by

(5.5) Usf(z) := 6*?f(6z), z,6> 0.
Then we obtain
Ty := 82UsTU;
= —92 — 2 A(52)
=: —0; — As(z).
If we denote the kernel of (Ts + 2%)~* by RL then we deduce the identity
(5.6) R(z,y;2) = 521—11%3 (z/6,y/68;62).

With these preparations we can prove the trace formula which gives the basis for the application of
the Singular Asymptotics Lemma stated in the previous section.

Lemma 5.2. Choose ¢ € Cg°(—e9,€0) and ¢ € C§(1/2,1) with
x>
/ W(z)dz = 1.
0
Then, with ¥, {y) := ¢(zy)¥(y)y we have for 2l > 1+ qg and all N € N

trre g [¢Rl (z)] = /Ooo 22 1 try [szé (z2)|dz + Cnz~N.

Proof. Using again [B3, Lemma 4.1], we see that
trp2(g) (PR (2)] = trra(m)[9R (2)] + Cnz ™Y,

W|

S B s B sy




THE RESOLVENT EXPANSION ON SINGULAR SPACES 15

for all N' € N. Then we calculate with the Trace Lemma and (5.6)
tr2(m) (PR (2)] = /O°° /0°° ¢(@)Y(y) trg[R'(z, z; 2)|dyda
= /O N /0 N $(@)b(y)(z/y)* ™ tru[RL ), (v, y; (2/y)2)|dzdy
= /O"O /000 P(zy)p(y)yz® try[RL (y, y; 22)|dydz

-/ 2?7 tryy [, B (22)]dyde.
0

This proves the lemma. O

With Lemma 5.2 we achieve the complete reduction of the expansion problem to the case treated in
Section 2, but we have now also to control a small parameter; the structure of the trace formula also
shows why it is necessary to apply something like the Singular Asymptotics Lemma. Hence Lemma, 5.2
will be our basis for the resolvent expansion but in view of the very abstract setting, we have to introduce
two more axioms. Before doing so, we pause to look at an instructive example, namely the case of metric
horns mentioned before. By definition, in this case IV is compact Riemannian and the metric is given by
(5.2) with

gn(z) = 2" g (e0/2),

with some a > 0. For & = 0 this is the conic case which has been studied intensively but, in view of (02),
this case is excluded from the present discussion. Indeed, it will become apparent that from the point of
view of our analysis, the conic case is the most difficult.

For a > 0, Axioms (O1) and (02) are satisfied for the geometric operators with the possible exception
of positivity; we will return to this problem in the next section. Typically (cf. [B1]), we will encounter
the structure

(5.7) Alz) = z7272%(A; + 2% A, + 2%° 43),

which exhibits actually a complete asymptotic expansion of the operator function A(z). This assumption
was the basis of [B1] but it is considerably stronger than our present axioms; we have reason to believe
that already for very simple algebraic singularities, no such expansion will exist.

Resuming our discussion of the asymptotic expansion of tr 12(8)[¢R!(2)], we state now the additional
assumptions on A which we will need. Clearly, we need bounds on the derivatives, which take the following
form.

(03) Fork €N, ji,...,j5x € Z, we have
|49 (@) - AU () A)~H|| < Cy, sz "

Our final axiom concerns the existence of asymptotic expansions connected with the operator fam-
ily A(z), as dictated by Lemma 3.4. To formulate it, we denote by J = (ji,-..,4k) € Z% and L =
(li,...,lx) € Z* multiindices and abbreviate

Az, 2) = A(jl)(:v)(A(x) +2%)7h ---A(j’“)(ac)(A(z) + 2%) e,

(O4) The operator Ay (z,2) is in C;(H) for Zfil(%i —1) > qo/2, and its trace admits an asymptotic
expansion as z — oo of type ', v, such that all expansion coefficients admit asymptotic expansions
inz as x — 0 of the same type.

These assumptions are sufficient to obtain the following expansion result.

Theorem 5.3. Assume that 21 > 1 + qo. Then trpe g [¢Rl(z)} admits a complete asymptotic expansion
of type T',v', for some weight v’ > v.

Proof. We want to apply Theorem 4.1 to the trace formula of Lemma 5.2. Since e admits a smooth
Taylor expansion around z = 0, it is enough to check the assumptions of the theorem for try[xR. (z2)]

)
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with any x € C§°(—eo,&0). To do so we rewrite
T +2% = ——85 + 2? A(zy) + 2°
— 82, .2 2, —2-2 —2a (2 1/(14a)y24+2a
= ~0,; + z*(A(zy) — C%z ) + 272 (C? 4 (z21/(HHe))2420y
— 82 ] —2a /2 242
=i =0y + Az (y) + 27°%(C? + (zw)?+?9).

By (02), we have 4, (y) > 0, and the resolvent parameter has been transformed to
A=z7?%(C? + (zw)?*+2e),

Thus, Theorem 4.1 can be applied with respect to w, and the A—asymptotics of the above operator
valued elliptic equation promise to produce remainder terms which are simultaneously small in z and
w. Turning to Lemma 3.1 we see that this is, indeed, the case if we choose the free parameter as € =
z72*(C? + (zw)?+2), since the contributions of the derivatives are uniformly bounded, in view of (03).
This is also true, by the same token, for the remainder terms arising from taking Taylor expansions of
all coefficients. Next, the remaining terms are expanded in A using (04), producing again terms which
are small in z and w. Finally, again from (04), we know that the resulting terms admit asymptotic
expansions in z. All expansions are easily seen to be-of type I', v’ with some weight v/ > v.

By the uniformity of all remainder estimates, the assumptions of Theorem 4.1 are satisfied and the
theorem follows. O

Let us emphasize that our axioms (O1) through (O4) simplify considerably if we assume a full asymp-
totic expansion of the operator function A(z) as z — 0, as assumed in [B1].

Having established the existence of the asymptotic expansion, we can investigate the structure of
the expansion coefficients and attempt their explicit computation. As in the smooth case, we restrict
our attention here to the most basic questions, in particular, we are interested in the separation of the
coefficients into “regular“ and “singular® terms. In view of Lemma 2.8 we have

(5.8) R~ Y [ o,

>0

R ey

for any ¢ € C§°(M). Hence we may speculate that the expansion for ¢ = 1 contains suitably regularized
integrals of the a; over M plus contributions of the singularities. The most natural regularization imitates
the regularized integral introduced in Section 3: we let for & <eo

M, := M1 U (g,60) x N,

and assume that, for all j,
/ a; admits an asymptotic expansion as £ — 0.

Then we can define, using “Resg“ again to denote the constant term in this asymptotic expansion,

(5.9) f a; = Reso/ a;.
M M.

Next we introduce the space C3°(M) of complex valued functions on M which are smooth on M and
constant near the singularity; this space inherits a natural topology from C'*°(M). It is clear from what
we have said that the expansion coefficients of tr2g) (@R (2)] define continuous linear functionals on
Ce° (M) which, of course, would also be true of

Ew=£ﬁ%'

if we show that it is well defined. With this terminology we can formulate the following result.
Theorem 5.4.
1) The distributions F; are well defined.
2) The coefficient of z2™~%~J in the expansion of trpgy (@R (2)] as z — oo can be written as a
sum of Fj and a continuous linear functional on C°(M) which vanishes on C§°(M). All other
expansion coefficients vanish on C$°(M).
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Proof. We choose variables 0 < ¢ <1 < w and put z := w/e > 1. We also choose ¢ € C§°(—&g,&9) with
¢ =1 near 0, and put ¢.(z) := ¢(x/e). Then we write for ¢ € C* (M)

tr2m [ R (2)] =: (¥, 2) = (3, w/e)
= J(¢ep,w/e) + J((1 — ¢e)p,w/e)
=:J' (Y,w,e) + J" (¢, w,¢).

It follows from the proof of Theorem 5.3 that J'(1,w,e) has an asymptotic expansion of type I, v as
(e+2z71 —0.
On the other hand, by Lemma 2.8 we can write for N ¢ N:

N
(5.10) T, w,e) =Y 2™ I (1 - ¢ )y) + Rv(¥, €, 2).
7=0

Let us assume for a moment that we have with some § > 0 the remainder estimate
|RN(1,€,2)] < Cn,y(e +w ™ t)m2-3=3,

Then, coupling the expansion variables by w = ™ with L large, it is easily proved by induction on j
that F;((1 — #¢)v) admits an asymptotic expansion as € — 0 proving 1). The second assertion is then
obvious.

Hence it remains to prove (5.10). It is clearly enough to treat the case where ¢ € C$°(—¢g,e0).
Then we can rewrite J"(¢,w,€) using Lemma 5.2 to obtain an expansion in z, in terms of the local
expansion coefficients of RL, to be integrated over [€,€0]. By the arguments in the proof of Theorem 5.3,
the remainder term of order N can be estimated by On ([ ° 2%~ (z2) "V ~%dz) = On (w=N-9).

Since the expansion coefficients are unique, (5.10) is proved. d

6. THE GENERAL CASE

We now outline the treatment of the general case. This section should be considered as a research
program rather than a summary of results but this does not seem entirely inappropriate, given the
intentions of the present collection of articles.

First of all, it must be emphasized that the discussion we have presented needs to be substantiated by
identifying classes of singularities which satisfy the axioms of the previous section. For the time being,
we are confident that this class is rather large among all algebraic singularities so we propose to name it
the class of hyperconical singularities. It is envisageable that their analysis, together with the rather well
known conic case, will lead to a much better understanding of the spectral theory of algebraic varieties.

We turn next to the question of essential self-adjointness already discussed in Section 1. It seems likely
that our axioms do actually imply that A with domain C§°(E) is essentially self-adjoint in L2(E). On the
other hand, simple examples show that the assumption of positivity for A(z) is not very realistic at least
for the Laplacian on forms. Our approach, however, lends itself to a fairly straightforward generalization
by splitting the (discrete) operator coefficient into a “low eigenvalue part“ and a “large eigenvalue part®,
such that the latter satisfies our assumption and the former is amenable to essentially known asymptotic
analysis of ordinary differential equations. A similar approach has been taken in [BS2],[BS3]; we will deal
with this question in a forthcoming publication.

Very little has been said here about the precise structure of the coefficients. In the smooth case, a lot
of effort has been given to analyze it, building the basis for what is now called spectral geometry and a,
cornerstone of inverse spectral theory. In spite of all this work, no satisfying structure has evolved yet,
except for the special case of the Local Index Theorem. A recent preprint of Polterovich ([P]) as well
as unpublished work of Weingart and Frey indicate, however, that much more can be said about the
expansion coeflicients in general.

In the singular case, we should expect that the coefficients supported in the singular set contain very
interesting snformation on the nature of the singularities. For example, we may hope to extract the most
important numerical invariants. That this is a realistic hypothesis has been fully confirmed in the case
of algebraic curves by the author and M. Lesch ([BL1}); in this case it is possible to distinguish smooths
curves from those with singularities and, quite often, to determine all multiplicities.
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A final question to be asked in the case of isolated singularities is whether or not the model operator
(5.1) is really the most natural one. Most examples beyond the simple case of metric cones or horns lead
to metrics with off-diagonal terms and hence to differential operators involving first order derivatives.
Their analysis is considerably more complicated so it is important to clarify this point.

Let us now turn to the case of non-isolated singularities i.e. the case of strata with positive dimension.
For a single stratum with conical fibers, the analysis described above has been developed and applied in
[BS3]. This will serve us as a model for the general case which can be developed, under suitable positivity
assumptions, quite analogously to the present discussion, relying heavily on the operator valued approach
we have designed. In particular, we can admit in our axioms also operator coefficients which are defined
as self-adjoint extensions of geometric operators on singular spaces i.e. the links of the given stratification;
the necessary properties are then guaranteed by induction. The new feature emerging here is the need for
more elaborate apriori estimates as derived in loc. cit. for the conic case; but in the required generality,
they are not yet available.

The question of general self-adjoint extensions, however, becomes much more complicated in this case
since the deficiency indices are infinite. One cannot hope for a complete analysis as in the previous case;
one should perhaps concentrate on finding a description of the “regular® extensions in analogy to [BL2,
Theorem 5.6] and extend the expansion result to this class.

Finally, we have to address the case of a general stratified space with a suitable metric. Knowing the
case of a single singular stratum opens the way to an obvious inductive argument. Thus, we can produce
an existence proof for the resolvent expansion along the lines of [BS3]. A more detailed knowledge of the
structure of the coeflicients, extending Theorem 5.4, is necessary, however, to derive the geometric index
theorems. This requires some new combinatorial and analytic tools which seem, however, available.
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