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Introduction

Let M be a complete oriented Riemannian manifold. If M is closed and D is a formally
self-adjoint elliptic operator which acts on the smooth sections of a Hermitian bundle E over
M, then the essential spectrum of D is empty. In particular, D is a Fredholm operator. If M is
noncompact, then the essential spectrum of D depends heavily on the coefficients of D and the
end structure of M. In this work we are interested in the spectral properties of generalized Dirac
'operators in the sense of Gromov and Lawson, see [24]. We study the case when the ends of M
are cuspidal, see Section 3 for the precise definition. In particular, we assume that each end U
of M is of finite volume and diffeomorphic to a product (0, co) x N, where N = Ny is a closed
manifold, and that the metric on U is of the form: .

€)) ‘ g=dt* + g,

where g; is a family of metrics on N. The most important examples are complete Riemannian
manifolds of finite volume and pinched negative curvature.

Let E be a graded Dirac bundle over M; that is, E is a bundle of left modules over the Clifford
bundle C1M of M with compatible Hermitian metric and connection together with a parallel
unitary involution & which anticommutes with Clifford multiplication by vector fields. These
data determine a Dirac operator D and a decomposition E = E™ @ E~ into the eigenspaces of
o with eigenvalue 1. The main examples are the Clifford bundle and spinor bundles.
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In what follows, M is a noncompact manifold with finitely many cuspidal ends U, such that
along each end U, the sectional curvature K of M is pinched between two negative constants,

2) —b?* <K < —d?,

where 0 < a < b. It will be convenient to set dimM =n + 1.

THEOREM A. — Let F be a flat Hermitian vector bundle over M and D = d + d* the Dirac
operatoron A*M ® F ZCIM Q@ F. Suppose that n+ 1 is even and that (n +1)a — (n — 1)b > 0.
Then D is a Fredholm operator.

Note that D is a Fredholm operator if and only-if the twisted Hodge Laplacian A = D? is
a Fredholm operator. Since F is flat, A preserves the degree of forms, and hence induces an
operator Ay on k-forms. One may wonder whether Theorem A can be improved for Ag.

THEOREM B.— Let F be a flat Hermitian vector bundle over M and A the twisted Hodge
Laplacian on A*M @ F ZCIM Q F. Let k < n/2 and suppose that (n — k)a — kb > 0. Then
Ay and Ay41—k are Fredholm operators.

Thecases k= (n+1)/2ifn+lisevenand k =n/2 or k =n/2 + 1 if n + 1 is odd are not
covered. In fact, in the latter cases the essential spectrum of A on A*M is equal to [0, co) if M
is a noncompact quotient of finite volume of the real hyperbolic space H"*1, see Example 1.15.

In Examples 4.2 and 5.5 we show that Theorems A and B are optimal with respect to the
pinching conditions.

In the special case k = 0, Theorem B gives the result of McKean in [28]. Theorems A and B
improve the corresponding results of Donnelly and Xavier in [15].

Except for the case of constant sectional curvature, the pinching condition of Theorem A
is violated for locally symmetric spaces of finite volume and negative curvature. In this case,
however, Borel and Casselman [9] have shown that D is a Fredholm operator if the dimension of
M is even.

Suppose now that E = E* @ E~ is a grading defined by an involution o as above. Then D
maps sections of E¥ to sections of E~. This restricted operator will be denoted by D*. Note
that D is Fredholm if and only if D is. Our methods also allow to compute the index of DT,

THEOREM C. - Suppose that n + 1 = 21 is even and that (n + 1)a — (n — 1)b > 0. Let
ATM @ F be the even—odd decomposition of A*M & F. Then

ind D* = / wes+ Y (~1bi(Ny: F),
M U,i<l

where wgp is the Gauss—Bonnet integrand and where, for each end U, b;(Ny; F) is the i-th
Betti number of Ny with respect to the coefficient bundle F.

Suppose next that dimM = n + 1 is divisible by 4 and consider the splitting of
ClIM ® F = A*M ® F defined by multiplication with the complex volume element 7j7. Re-
call that when M is closed and A*M is untwisted, the index of D% is equal to the signature of
M. For an end U = (0, 00) x Ny we write Ny ; := {t} x Ny.

THEOREM D. — Suppose that n + 1 is divisible by 4 and that (n 4+ 1)a — (n — 1)b > 0. Let '
ATM ® F be the splitting of A*M ® F defined by multiplication with ty;. Then

. 1 . '
ind D+=/wL+§XU:t1_1>rgon(Af),
M
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where wr is the integrand corresponding to the Hirzebruch L-form and where, for each end U,
A;" =1tNy, (d: +df) is the odd signature operator on A*(Ny ) ®F.

John Lott pointed out to us that it follows from the work of Cheeger and Gromov that
lim;— 00 n(A;F) is a topological invariant of Ny, see [14, Theorem 4.1], and that this invariant
has been studied — among others — by Meyerhoff, Ouyang and Rong, see [29,30].

We can also treat the Dirac operator on spinor bundles.

THEOREM E. — Suppose that M is spin and that the spin structure of M is non-trivial along
all ends of M. Let E be a spinor bundle over M. Then spec, D = @ and, in particular, D is a
Fredholm operator.

Suppose, furthermore, that n + 1 is even and let E* be the splitting of E defined by
multiplication with the complex volume form tyr. Then

. 1 .
nd 0 = [oas-+5 3 i (7).
M

where was is the A-form and where, for each end U, A;" is the Dirac operator on the induced
spinor bundle over Ny ;.

Our results fit into an obvious general scheme to describe the fundamental spectral properties
of geometric differential operators on complete Riemannian manifolds: describe the essential
spectrum as precisely as possible and compute the index, as the most accessible invariant of the
situation, in the Fredholm case. In this work, we develop an axiomatic approach to fulfil this
task which seems very promising in the case of manifolds with cuspidal ends. The axioms are
inspired by [6] but contain some new ingredients, notably the construction of a flat connection
V of finite holonomy on the cuspidal ends which allows us to control the kernel of a crucial
operator arising from separation of variables. The first two axioms together allow us to construct
a first order ordinary differential operator on the half line with the same essential spectrum as D;
this is related to the work of Lott ([26,27]). Our third axiom gives a sufficient condition for D to
be Fredholm and allows us to compute the index of D™. We check the axioms only in the case
of twisted Clifford bundles, where the result is sharp in terms of the pinching constants, and for
spinor bundles. Note that it follows from the work of Borel and Casselman in [9] that our axioms
also hold in the case of twisted Clifford bundles over locally symmetric spaces of finite volume.
and negative curvature, see Remark 4.9 in the text.

For other relevant results related to the questions discussed in this paper see for example [4,5,
10,15,31], and [13].

The proof of Theorem B is contained in Section 5. It is quite elementary and follows the line
of argument for the corresponding result in [15]. This section is more or less independent of the
rest of the paper.

In Section 1 we discuss the general setup. In Section 2 we generalize the approach from [6].
This section contains the proofs of Theorems C, D, and E. In Section 3 we discuss the geometric
structure of cusps and define and discuss the flat connection V. We note that V is different
from the connection constructed by Kanai in [21], although some of the problems we face in the
discussion are similar. In Section 4 we derive estimates in the case of the Clifford bundle and
prove Theorem A.




596 W. BALLMANN, J. BRUNING / J. Math. Pures Appl. 80 (2001) 593-625

1. The setup

In this section we set the stage for our discussion. Let M be a complete Riemannian manifold
of dimension m. We assume that M decomposes as:

(1.1) M = My U {ends},

where My is a compact manifold with boundary and each end, U, is diffeomorphic to a product,
U = (0, 00) x N, where N is compact and connected and of dimension » = m — 1. Moreover,
we assume that the metric on U has the form:

(1.2) g=dr’ +g,

where g; and 8;g; are C! on U. In our dlscussmn of cuspidal ends in Section 3 we will be more
specific concerning the regularity of g.

Let U = (0, oo) x N be an end of M. Welet T = 9/9; be the unit vector field in the z-direction.
We use the prime ’ to denote covariant differentiation in the direction of T'.

The projection U — (0, 00) onto the first coordinate is a Riemannian submersion. The fiber
over ¢ is the cross section Ny := {t} x N. For each point p = (t, x) € U, the curve y, (1) = (¢, x),
t > 0, is a geodesic ray and y,(t) = p. The family of such rays is perpendicular to the family of
cross sections Ny .

We denote by S = S’ the second fundamental form and by W = W' the Weingarten map of
N; with respect to the normal vector field T,

(1.3) WX =-VxT, S(X,Y)=(VxY,T)=(WX,Y),

where X and Y are vector fields tangent to N;. The eigenvalues 1, . .., kn of W are the principal
curvatures of N;. We suppose that there is a uniform bound

(1.4) lici| < b,

where b > 0 is a constant independent of 7 and U. This is equivalent to the pointwise bounds
S| < b or ||[W|| < b of the operator norms of S or W. We let:

(1.5) K=Kki+ +rp=tW.
Frequently, we will consider the shift map:
(1.6) fro:Ne = Nis (7, %) = (8, %).
The Jacobian of f; ; is denoted by j <. It satisfies the ordinary differential equation:
(1.7) ' Jio ==K Jez
This differential equation is the reason why we use « instead of the mean curvature « /n. This
concludes our setup as far as the structure of the ends of M is concerned.
We now turn to the Dirac bundle. We say that a Dirac bundle E over a Riemannian manifold

'V is geometric if the pull back of E to the universal covering space V of V is (isomorphic to)
a Dirac bundle associated to the principal bundle SO(V) of oriented orthonormal frames via a -
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unitary representation of SO(m) or to a spin structure Spin(V) via a unitary representation of
Spin(m), m = dim V. Then the local formulas for induced connections and their curvature are
available.

Let U be an end of M and E — U be a geometric Dirac bundle. Note that the restriction
E; ;= E|N; of E to a cross section N; is a geometric Dirac bundle. Hence the Levi-Civita
connection V* of N, induces a Hermitian connection on E; which we also denote V?. It will
be convenient to denote the difference between the induced connections V and V* by S7,

(1.8) St =V — V',

since it is equal to the operator on E; induced by the second fundamental form of N;. The actual
formula for §* depends very much on the representation defining E. In any case, S’ is tensorial
and, by (1.4), pointwise uniformly bounded independent of ¢.

Corresponding to the decomposition of V in (1.8), we obtain a decomposition of the Dirac
operator D,

Do =T(Vro =Y TXiVio -3 TX; $i.)

(1.9) B

with
(1.10) , Ao == "TX;Vyo
and
K
(1.11) Btazza—ZTX,-Sgia.

The index ¢ indicates that A; and B; act on sections of E;. We recall that A; is a Dirac operator on
E; and that B, is $ymmetric, tensorial and, by (1.4), pointwise uniformly bounded independent
of t. : ‘
We will work in the Hilbert space L?(E) which we view as the direct integral over (0, 00)
of the Hilbert spaces LZ(E,). We use the notation (-, -) for the Hermitian product on E or E;,
respectively, and we write :

(L12) wmw=/mm

N

for L2-sections o, n of E;. Then the scalar product on L?(E) is

(1.13) (m@:f@mmm
4]

where o; = o|E; and n; = n|E;. Occasionally, we will consider only the direct integral over
some interval I; this we will indicate by a subscript “I” for the relevant quantities. The following
lemma is now immediate from (1.7).

LEMMA 1.14.— Let I =1y, 11} C (0, 00) be an interval and d, n be C! sections of E. Then
(@', mi1=(0,—n + )+ {(o. My — (0, 1)y}

In particular, T (VT — «/2) is symmetric on Cé (E).
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Example 1.15.— Let Mp be a compact (rn + 1)-dimensional manifold with boundary
9M = T", the n-dimensional torus. Attach an end U = (0, 00) x T" to Mp and consider a
Riemannian metric on M = Mo U U whose restriction to U is given by the hyperbolic metric:

g — dtz + e-—2al‘g0,
where go is a flat metric on T", of volume 1, say. Then S(X,Y) = a(X,Y)T. In particular,
K =na.

Let Xi,...,X, be a global parallel orthonormal frame on T”. In ClU, consider the
multivector

XzeaktXl/\-”/\Xk.

Note that X has norm one and is parallel in the T-direction. By a straightforward computation,
we obtain: s

AX=0, A(TX)=0, BX= (% _ k)aX, B(TX) = (k — g>aTX.

The density of the volume element of the warped metric is exp(—nat). Hence along the end U,
the linear map:

W :L2(0,00) ® C2 — L2(E), (u,v) > " >X +vTX),
preserves L2-norms. We obtain a Dirac system,

v DY =y (3, — 18/2),

(0 -1 (1 0
Y=l1 o ) =\o —1)

and § = (k — n/2)a. In particular, if » is even (and k = n/2), then spec, D = R.

where

2. An axiomatic approach

In this section we develop an axiomatic approach to the spectral theory of Dirac operators
on Dirac bundles which are geometric over the ends of M. Our approach is inspired by our
previous work on surfaces with cusps [6]. We keep the notation and the assumptions on the ends
introduced in Section 1.

We fix an end U of M and a geometric Dirac bundle E — U. We formulate the properties we
need in our discussion as additional axioms on the structure of U and E. In Sections 3 and 4 we
discuss an important example where we verify these axioms, namely the Clifford bundle.

AXIOM 1: There is a continuous Riemannian connection V on U such that V is flat in the
sense that there is an open cover V of N such that foreach V € V we havea C ! Jocal orthonormal
frame (Xo, ..., X») of TU definedin V x (0, co) which is V—parallel and such that the transition
functions between any two such frames are locally constant. If Xo = T, then such a frame (and
any associated frame for E) will be called special. Moreover, we assume that:
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@T = VT, 6T = 0,
and S:=V — V is uniformly bounded.

Note that the meaning of the operators S and S is quite different. However, the analogy in
notation associated to the two different splittings of V will be kept for mnemonic reasons. In
accordance with this, the uniform bound on the pointwise operator norm of S on TU will be
denoted b,

2.1 IS <b

For any ¢ > 0, the restriction of V and S to N; and E, will be denoted V! and St. We also
consider V? as a first-order differential operator on CY(E;) with values in L*(T*N; ® E;). The
formal adjoint of V* is denoted (V?)*:

Let (T, X1, ..., X,) be a special frame of TU and (o7) be an associated special frame of E
Locally we write secuons o of E in the form

o = Z‘PIUI

In terms of such linear combinations, we have:

Vio = ngoj ®oy and

22) SEVE ST St Ot t
(V) va=_Z{VXiina VV, X o}.

The kernel K; of V' consists of sections o of E; which are parallel with respect to V’. Since a
parallel section is determined by its values at one point, we have dim K; =: k <tk E. Now Vv is
flat, by Axiom 1, hence the family K = (K;) is parallel in the direction of T'. Moreover, K is
invariant under Clifford multiplication by T since T is parallel with respect to V.

Once and for all we choose a basis o1, .. ., ox of pointwise orthonormal sections spanning K.
Note that these sections are defined on all of U. In terms of this basis, a section o € L2(E) is
in K if and only if ¢ is of the form o = Zi< « ¥ioi, where the coefficients ¢; depend on ¢ only.
Throughout, we choose our special frames (oy) such that o1, ..., oy are its first kK members. -

Next we introduce the orthogonal projection Py(t): L%(E;) — K;. Using the orthonormal
frame o1, ..., 0%, we have:

Po(t)o = (volN) ™' ) (o, 01): 0.
i<k

We see that the family (Po(t))t>o integrates to an orthogonal projection Py in LZ(E). The
following lemma is the analogue of [6, Lemmas 4.2 and 4.3].

LEMMA 2.3.- On CY(E) we have
PoVrPy=V7Py orequivalently (1 — Py)VrPy=0.
Furthermore, T Py = PoT and
|70D(1 = P = [0~ ByDRo] <]t ~ Po)SPo] <n[3],

where ||S|| denotes the pointwise uniform norm of S as a field of operators on E.
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Proof. — The first assertions are clear since K consists precisely of sections of the form
Zi< © ¥i0i, where the coefficients ¢; depend on ¢ only. The next assertions follow since Clifford
multiplication by T is orthogonal and leaves K invariant. As for the last assertions, we note that
PoD(1 — Py) = ((1— Py) D Py)*, hence it suffices to estimate ||(1 — Po) D Py |. Now V! (Pyo) =0
by the definition of 130, hence:

(1= F)DPoo = (1 = Py [T 97 (Poo) + 3 X, (oo + Y XS, (Poor) )

=Y {1 - P)X:8x, Po}o.
Now || X;]| = 1, hence the lemma follows. O

We now turn to the discussion of the Dirac operator. It is reasonable to write D as follows:

K — K -
Do = T<<VT —~ 5>a — > TX;Vio+ <5 - ZT&S&)U)

= T<<VT - g) + A + Et)ff,

where we recall that Vr = V. Using Vo7 =0 we obtain:

2.4)

@53) Ao ==Y {Xi(pD}T X;01
and
2.6) Bio = gcr ~> ot Xi{Vx01).

The following result is obvious from the assumptions in Axiom 1 and the definitions.

LEMMA 2.7.— A; is a first-order symmetric elliptic differential operator on E;, and B; is a
zero-order symmetric differential operator on E; with uniformly bounded norm. Furthermore,
forany C! section o of E; we have the pointwise estimate

1Al < V] o,

The next axiom will enable us to study the essential spectrum of D. The axiom involves the
smallest nonzero eigenvalue of (V!)*V?, :

(2.8) 217 == inf{spec((V')*V') \ {0}}.
The normalization of A, will become clear from Lemma 2.9 below.
AXIOM 2: limy_y o0 Ay = 00.

In the following lemma we show that Axiom 2 allows to reverse, in L2 (E;), the estimate in
Lemma 2.7.-

LEMMA 2.9.- Forallt > 0, we have ker V! C ker A;. For all sufficiently large t, we actually
have ker V! —=ker A, and ' '

Vo |? < 214012

for any C! section o of E;. In particular, A, is a lower bound for the modulus of the non-zero
eigenvalues of A;. :
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1t will be convenient to shift the parameter ¢ such that the assertions of Lemma 2.9 hold for all
t>0.

Proof of Lemma 2.9. — The first assertion is clear. To prove the other assertions, we need to
compute A;?'. For this we let o = Y pyo7, where the coefficients ¢; are C2. Then we have:

Ao)= -4 (Z X;(enTX m) =Y XiX;j(enNTX,TX;or
g1 i,j,I

=— ZXiXi (pr)or + Z [X:, X; oD X; X jor
il <)l

— () Fo + Y5 X)) @0 XiX o1 = (7)o + Cro
L ,
Since the fields X; are parallel with respect to V, we have ||V§(i Xil<b+ b. Therefore,

20Cioll <n(n+ DB +b)|Via].

Now for any § > 0, we have _
nm~+ 1)(b + b) < A

for all ¢ > 0 sufficiently large. For a section o of E; perpendicular to the kernel of V! this gives:
“?ta “f < 2Re((?t)*§tcr + C;o, a)t =2 ]|/i,c]|t2.
In particular, o is not in the kernel of A;. The lemma follows. O

It is now easy to deduce the following analogue of [6, Lemma 4.4]. Since Ay is essentially self-

adjoint on C! (E;) with discrete closure, we can form the spectral projection onto the positive and

negative eigenspaces, to be denoted by P-o(r) and Poo(2), respectively.

LEMMA 2.10.- Let I =[fo, 1] C (0, 00) be a compact interval and suppose that o € C YE)
satisfies P-o(to)or, =0 and Pg(t1)oy, = 0. Then

lAc |z < IDollr + Cilolly,

where C1 = 2./nb + || B].

Proof. — We proceed exactly as in loc.cit. In terms of a special frame we write o = ) ¢r07.
By approximation we may assume that the coefficients ¢; are C?. We have

[T,X:1=VrX; = Vx,T=WX;,
where W is the Weingarten map as in (1.3). Furthermore,
—[A,Vrle = Y (XiT —TX)(eDT Xio1
= [Xi, TienTXior ==Y _(WX)(en)TX;o1,
and therefore, by the bound (1.4) on W,

ItA,vr1o|, < Vb Vo]
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By Lemma 1.14 we have

(o', Ao); = (0, ~Ac’ + K Ad) + (0, [A, Vrlo), + {(0, Ao)y — (0, Aoy }.
Now A is symmetric, hence we conclude
2Re(0”, Ao); > —2+/nb o1 | Ac |l + Re(o, kAo,

where we use our assumption on the boundary values of o and Lemma 2.9. Therefore,

IDolir|Ac|l; > Re(Do, T Ac); ‘ |
= Re(o-’ - ga, Aa) + Ao || +Re(Bo, Ac);
I
> |Aolf? — (2/nb+ 1B1) ol Aol

This concludes the proof of the lemma. O

COROLLARY 2.11.— Let I =[tg,t1] and Ay :=inf{); | t € I'}. Then for o as in Lemma 2.10, -
we have: : :

(1 —CD| (1 = Po)o ||, <IDoli; + Cill Poc ;.

We denote by spec, (D, U) the part of the essential spectrum spec, D of D related to our end
U. Now we show that our two axioms reduce the study of spec, (D, U) to a Dirac system in one
variable. We follow the line of argument given in [6, Theorem 5.7]. In particular, we recall the
notions of special Weyl sequence and of spectrum at infinity, speces, given in loc.cit. (5.2) and
(5.5). The Dirac system in question is formed by means of the projection Py as

(2.12) Do := PyDP,.

The following theorem is an analogue of Theorem 2 in [26] (and Theorem 5 in [27]), the proof
is similar to the proof of the correponding Theorem 5.7 in [6].

THEOREM 2.13. - We have spec, Dy = spec, (D, U).

Proof. — We need to introduce the complete decomposition of D determined by Py. Thus we
put Py ;=1 — Py and write: '

D= Plel, Dy = PlDﬁo, Do1 := PoDlsl.
We recall from Lemma 2.3 that D1 and Do; = (Dj0)* are uniformly bounded.
Now assume that A € spec,(D, U). Then we can find a special Weyl sequence (o,,) with
supportin U such that:
. lim Jlopll=1 and lim (D —A)o, =0.
n=>oo n—>co0
W.l.o.g. we assume that supp on C[n,00) x N. We decompose

On :POUn‘i'PlO'n =!0po + Onl-
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Then we deduce from Lemma 2.10, for n sufficiently large, the estimate
2
lowt | < — (1Al + C1).
An

This implies that (on0) is a special Weyl sequence. From the identity
(Do — A)ono = Po(D — )0 — Do10w1
we infer that lim,_, oo (Dg — A)o,0 = 0. Hence we conclude that:
spec., Do C spec, (D, U).
Next assume that A € spec,, Do. Then we have a special Weyl sequence (0y) for I_’O(E ) with
Jim Jlonoll =1 and Jlim (Do — A)ono = 0.

Wlo.g. we assume that suppoyo C [ + 1,00) x N. We want to construct a sequence
(on1) C Cé(Pl(E)) such that o, := opo + 0,1 is a special Weyl sequence for E with
limy,—s 00 (D — A)oy, = 0. In view of the decomposition:

(D — M)on = (Do — M)ono + (D1 — AM)on1 + D1oono + Do10n1,

we define

Onl := Gn(D1n — A) " (—D100no)-

Here we choose cut off functions ¢, € C*°(0, oo) with

supp @y C (n,00) and (6] + |, ®)]) < 3-

sup
n,t=2n

Moreover, D1, denotes the self-adjoint extension of D in L2(131 (E)) defined by Atiyah-Patodi—
Singer boundary conditions at N,,. In view of Axiom 2 and Lemma 2.10, we have

| (D1 =2~ =0(;).
This implies limy,— oo [|o%1 || = 0; using this we deduce that lim,_, oo (D — A)oy, = 0, proving
spec, (D, U) C specy, Do,

as desired. O

It is now easy to get estimates on spec, (D, U). We first note the following trivial consequence
of Theorem 2.13.

COROLLARY 2.14, - If dim K =k =0, then spec, (D, U) = 0.

Recall the estimate from. Corollary 2.11. The corresponding estimate for Pyo ensures the
Fredholm property of D. We use the notation U; := (¢, 00) x N.
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LEMMA 2.15. - Suppose that there are positive constants § and Cy such that:
1200l <871 (Do [| + C2|| (1 = Po)or )
for all o € CY(E) with compact support in U. Then for any & > 0 there is t > 0 such that
II.DUII z@—aloll

for any o € CY(E) with compact support in Us. _
In particular, D is Fredholm if and only if the above apriori estimate holds for all ends U
of M.

Proof. — Recall that D is Fredholm if and only if the estimate
ol <ClDo|

holds for all o € Cé (E) with support outside a sufficiently large compact subset of M; and the
analogous estimate for Dy is equivalent to O ¢ spec_, Dg. Now the lemma follows from an easy.
calculation, using Axiom 2 and Theorem 2.13. @O

In the Fredholm case, it is natural to study index problems. We will model our approach to
such problems after the method we used in the surface case [6], which will lead to very explicit
index formulas in the case of the Clifford bundle.

We assume now in addition that there is a natural involution « on E, thatis, « is induced by an
involution of the representation space which defines the given bundle E, and that ¢ anticommutes
with Clifford multiplication by tangent vectors. By naturality, « is parallel with repect to all
connections involved. The induced parallel splitting of E we write as E = E* @ E~. For any
operator R acting on sections of E, we obtain the decomposition R = R* 4+ R~, where R*
denotes the restriction of R to sections of E*. Since E* and E™ are parallel with respect to V
and o anticommutes with Clifford multiplication by vector fields, D* maps sections of E¥ to
sections of ET. We will be concerned with the index of D7 ..

By P.o(z) we denote the spectral projection of A; onto the eigenspaces with nonnegative
eigenvalues. We use similar notation for other spectral pI‘OJCCthIlS of A; and recall that the
corresponding objects for A, are decorated by a bar.

Our next axiom is formulated in such a way that we do not only get that D is a Fredholm opera-
tor but also an explicit index formula for D™; it is inspired by the apriori estimate in Lemma 2.15.

AXI0M 3: For each end U and all sufficiently large ¢, there is an orthogonal projection
Q = Q) in L2(E;) such that the following propertles hold:

(1) «Q = Qu;

@ TQ=(1-O)T;

(3) Q=P

(4) there are positive constants § and Cy such that:

I Pool| < (uDan +C2|| (= Po)al)

for all » .
o €Dy, :={o € CHEIT) | (1 — Qt))or =0}.
Remark 2.16. - Tf ker A = {0}, then Axiom 3 holds with Q := P_q.
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Throughout the rest of this section we assume that Axioms 1-3 are satisfied.

LEMMA 2.17.— For all sufficiently large t, there is a subspace Ko = Kg(t) of '

K =K (1) =ker Ay, such that TK g = K ; and
imQ=imPo+Kg and im(l—Q)=imP.o+Kj.
Proof. — Note that Clifford multiplication by T anticommutes with A, hence T preserves K

and maps im P.g to im P.¢. By Axiom 3 we hgve TQ=(1— Q)T, hence the lemma. 0

We say that a pair (P, Q) of orthogonal projections of a Hilbert space H is a Fredholm pair if
Q:im P — im Q is a Fredholm operator. If (P, Q) is a Fredholm pair, then we set:

ind (P, Q) :=ind(Q :im P — im Q).

Recal_l that K has finite dimension. Hence by Lemma 2.17, (}_)<0, Q) is a Fredholm pair with
ind (P<o, Q) = —dim K. ‘

By assumption, Q commutes with the involution o, hence Q(¢) restricts to orthogonal projec-
tions Q% (¢) in L2(E;") and @~ (¢) in L2(E;"), respectively. It follows that (P}, (), Q* () isa
Fredholm pair, too.

LEMMA 2.18.— For all sufficiently large t, the pairs (Pgo(t), Q(t)) and (on(t), Ot (@) are
Fredholm pairs. Moreover, if u satisfies ||B — B|| < —i < A; — | B — B||, then

ind (P£y (1), 0* (1)) = dimker A} + dimim P, (1) — dim K (2).

Proof-— Recall that A+ B = A+ B. Hence spec A; U (—specA,) does not intersect the interval

(I|B = B||, A — | B — B|)). By Corollary A.7 we have || Pog — P_,ll < 1, for ¢ sufficiently large.
It follows that:

(1= PooPoy):imPog—imPey and (1 — PeyPo):imPoy — im Py,

h_ave norm < 1, hence 15<0 :im Poy, — im P.o is an isomorphism. By assumption we have
Py < @ with ﬁrlite codimension, hence (P.,, Q) is a Fredholm pair and
ind(PL,, 0%) =ind (P¥,, OT). We conclude that (P<g, Q) is a Fredholm pair and that

ind (Py, 0F) = dimim P}, 5 +ind (P2, 0¥)
= dimim P, ;) +dimker Af +ind (P, 0%).

The lemma follows. O

We obtain elliptic boundary value problems on Dy ; (from Axiom 3) for D on the noncompact
manifolds U; introduced above and on

Dint,s 1= {o € CLE|M;) | Q(t)o; =0 for each end U}
on the interior part M; = M \ | U;. The resulting self-adjoint operators we denote by Dy ; and

Dint s, respectively. By the splitting formula for the index given by Briining and Lesch [11] we
have the following result:
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LEMMA 2.19.— For all sufficiently large t, we have ind DV = ind Di_;t,z + Y yind D;’t.

We remark that the quoted result from [11] is applicable in our situation since we can view
Vr — k/2 as a connection on the Hilbert bundle LZ(E ) over (0, 00); the corresponding parallel
transport gives the needed trivialization.

We proceed to compute the index of D™ . The first use to be made of Axiom 3 is to establish
the vanishing of ind D U.:- We actually prove more.

LEMMA 2.20.— For each end U and all sufficiently large t, we have ker Dy ; = 0.

Proof. — We note that Dy ; is essentially self-adjoint in L2(E |Uy) with domain Dy ;, cf. [11].
Thus, for o € ker Dy we have the a priori estimate of Axiom 3; and since (1 — Q) = P.g we
also have the estimate from Corollary 2.11. Hence

_ Cy - C1Cy
| Poc'l] <7||(1jpo)0|| <W|l Poor |,

where A¢,o0) = inf{A; | £ < 7 < co}. This implies the asserted vanishing for ¢ large enough, in
view of Axiom 2. O

Next we have to deal with Djy ;. For each sufficiently large ¢, we choose a Riemannian metric
g0 = go(?) of M which coincides with the given metric g on M; outside a neighborhood of 3 M;
and along 8 M, and such that for each end U, U; . is a metric cylinder. We will use the following
version of the Atiyah—Patodi—Singer index formula.

LEMMA 2.21.— Let a)% denote the index form of DT with respect to go given by the Local
Index Theorem. Then

1 : :
ind D, / o+ 5(n(A;r) — dimker A]") +ind (PZ,(), 0 ().
M;

~ Proof. — The deformation (1 — s)go + sg, 0 < s < 1, from go to g induces a smooth
deformation of first-order elliptic differential operators on the space Diy, ;. By our assumptions
on Q and since g.= go along dM,, all these operators are Fredholm, hence the index remains
constant. Thus the result follows from the index formula of Atiyah, Patodi and Singer [3] and the
relative index formula of Agranovic and Dynin [1], cf. Theorem 23.1in [8]. O

We now discuss the terms in the above index formula. One aim is to eliminate the dependence
on go and ¢. To that end, we assume from now on until the end of this section that M has finite
volume and that, for each end U of M, the volume of the cross sections Ny tends to O as t tends
to infinity.

Then the first term on the right-hand side of the index formula can be easily dealt with using
Chern—Weil theory.

LEMMA 2.22.— Let wp denote the index form of DT with respect to g given by the Local
Index Theorem. Then

Proof. — We have a)OD — wp = d®, where @ is the transgression form; by Lemma 5 in [23,
p. 297], @ is a universal polynomial in the connection forms and curvature tensors of g and go.
By assumption g agrees with g along 9 M;, hence the connection forms of gg and g differ by
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the second fundamental form S of 3 M; with respect to g. Furthermore, the Gauss and Codazzi
equations express the difference of the curvature tensor of go and g along 3M; in terms of S°. It
follows that @ is a universal polynomial in the curvature tensor R of g and §%, see loc. cit. Hence
the pointwise norm of @ is uniformly bounded. By assumption, the volume of 3 M; tends to 0 as
t — 00, hence [y, ¢ — 0. Now

hence the lemma. O

We proceed to formulate an additional axiom which will allow us to compute ind(f’:o(t),
Q1) explicitly.
AXI0M 3’: For each end U, there is é symmetric involution 8 of E over U and a number § > 0
such that:

(1) af =pa;
2 Poﬁ ,3P0,
() TB=-BT;
4) VrB=0;

(5) (Bo, Ea‘) > §||o'||? for all sections o of E in the kernel of Py.
We denote by Py(t) =: (1 — Qo)(t) + Qo(?) the splitting of im Py(z) = ker A; induced by the

positive and negative eigenspaces of B(r) acting on K (¢), and we define:

(2.23) 0(t) == Poo(®) + Qo).
In other words, the subspace K¢(#) of K () in Lemma 2.17 is equal to im Qo(¢), the negative
eigenspace of S(¢) on K (t).

LEMMA 2.24._—' With this choice of Q, Axiom 3 implies Axiom 3 (with the same § as there).
Moreover, ind (Pgo(z), Q(t)*) = dimker A} — dimim Qf (¢) is independent of 1.

Proof. — The proof of the first claim is the same as the proof of Lemma 4.5 in [6]. The formula
for ind (PI()(’) Q@) is clear from the definition of Q. By assumptlon B is parallel in the
T- dlrectlon hence the last claim. 0O

Since ||A — A|| = ||B — B]| and the non-zero eigenvalues of A; have modulus at least A, we
have:

dimker A} + dimim P(+_ 0@ < dimim P(t sy (#) = dimker Af

for all 4 € (|B — Bll,A — |B — B|)). In particular, if dimker A} = dimkerA;", then

dimim P(t 50 = 0. From Lemmas 2.18-2.22 and 2.24 we get the index formula as we need
it in our applications.

LEMMA 2.25.— Suppose that dimker A} = dimker A for all ends U and sufficiently large
t. Then we have: :

1
ind D =/a)D + —{ lim n(A;f") +dimkerAjf} — dimim Qf ().
2 Lt—>00
M
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Proof of Theorem C. —Let E = C1M ® F = A*(T M) ® F, where F is a flat Hermitian bundle
with a compatible connection. Let D = d + d* and let « be the involution corresponding to the
even—odd decomposition of E. '

Let U be an end of M. By extending the map X + TX to the Clifford algebra, we
identify A*(TN;) ® F with E;'. Under this identification, A/ corresponds to —(d; + djf) on
L?(A*(T N,) ® F). In particular, the kernel of A;r corresponds to the space of harmonic forms
on N; with valuesin F.

Since all ends of M are cuspidal, Axiom 1 is satisfied, by Corollary 3.16. By assumption,
along each end U of M, the curvature bounds satisfy (n + 1)a > (n — 1)b. Then Axiom 2 holds,
by Lemma 3.23. Furthermore, we let B be as in (4.7). Then Axiom 3’ holds, by Lemma 4.8. We
conclude:

(1) Since d; + d; anticommutes with the involution defining the even—odd decomposition of

A*(N;) ® F, we have n(4;) =0.

(2) By Hodge theory, dimker At is equal to the sum of the Betti numbers of N; with
coefficients in F. Moreover, dimker A} = dimker A;", by Lemma 4.4.

(3) To determine dimim Qg' (t) we have to use the definition of B as given in (4.7). For k </
odd or k > I even, respectively, a section of A*(TN) @ F of degree k corresponds, under
the above identification, to an eigenvector of 8 with eigenvalue —1, and for k >/ odd
or k < [ even, respectively, to an eigenvector of B with eigenvalue +1. Using Poincaré
duality, we get:

1 .
- dimker A —dimim OF (1) = > (=)' bi(N;; F).

i<l
Collecting terms we get the asserted formula for the index of D" in Theorem 0.2 C. O

Proof of Theorem D.-For E and D as before, we now let ¢ be the involution of E
corresponding to multiplication by the complex volume form zj.
Let U be an end of M. We use the map o > —ﬁ(a + 1p0) to identify A*(TNy) ® F with

E;". Under this identification, A" corresponds to the odd signature operator Ty, (d; + d;) on
L2(A*(T'N;) ® F). In particular, the kernel of A} corresponds to the space of harmonic forms
on N; with valuesin F.

Since all ends of M are cuspidal, Axiom 1 is satisfied. Again we assume that along each end
U of M, the curvature satisfies (n + 1)a > (n — 1)b, and then Axiom 2 holds, by Lemma 3.23.
With S as in (4.7), Axiom 3’ holds and we have:

(1) dimker A = dimker A; by Lemma 4.4.

(2) Exactly half of the kernel of A" consists of eigenvectors of B for the eigenvalues

"1 dnd —1, respectively. Hence '

1
3 dimker A, — dimim Q§ () =0.

Collecting terms we get the formula for the index of D claimed in Theorem 0.2D. O

Proof of Theorem E. — In this case, E is the spinor bundle of a spin structure of M. Since the
ends of M are cuspidal, Axiom 1 holds. The holonomy of E is at most twice the holonomy of
ClU, hence it is finite, by Lemma 3.17. Therefore Axiom 2 holds, by Lemma 3.23.

Now if the spin structure is non-trivial along each end U of M, then ker A; = {0} for each end
U and all # > 0. Then Axiom 3 holds, by Remark 2.16, and we get the claimed index formula. O
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3. Cuspidal ends

In this section we study a special situation where the axiomatic approach from Section 2
applies. Let U = (0, co) x N, where N is a closed manifold, and let g = dt?+ g, be a Riemannian
metric on U, where g; is a family of Riemannian metrics on N. Then the projection U — (0, 00)
onto the first coordinate is a Riemannian submersion. The fiber over ¢ is the cross section
N ={t} x N.

We let T = 3; be the unit vector field in the ¢-direction. We use the prime ' to denote covariant
differentiation in the direction of T'.

For each point p = (7, x) € U, the curve y,(t) = (¢, x), t > 0, is'a geodesic ray perpendicular
to the family of cross sections N;. For u € T, U we denote by J = J,,(¢) the Jacobi field along y,,
corresponding to variations y (¢, s) = ye(s)(t + 7(s) — T) of yp, where ¢ = c(s) = (7 (s), x(s)),
—e<s <eg,isaC! curve with ¢(0) = p and 3;¢(0) = u. Note that J,(t) = u and that T = Jr
along y,,. The Jacobi fields J = Jj, satisfy the ordinary differential equation

3B.n . J =-Wl/,
where W is the Weingarten map as in (1.3), and W satisfies the Riccati equation:
(3.2) W =W?>+ R(, T)T.

We assume that U has the geometry of an end of a complete Riemannian manifold of finite
volume and pinched negative curvature. That is, we assume that there are constants 0 < a < b
such that

(3:3) —b? |1 X > <{R(X, T)T, X) < —a* | X|?

for all vector fields X perpendicular to T and that, for ¢ > 7,
(34 @) <0 <P I@)]

for Jacobi fields J = J,, as above which are perpendicular to the corresponding ray. That is, we
assume that such Jacobi fields are stable in the sense of dynamical systems.

There is the question of regularity. For the application in the case where U is an end of a
complete Riemannian manifold of finite volume and pinched negative curvature, the map which
establishes the diffeomorphism of U with (0, 00) x N is only C2, see [19], such that g may
only be C!. However, it turns out that ;g is also C!, and hence (3.2) and (3.3) are defined and
meaningful.

We will need a bit more, though. For example, we will need to estimate parallel translation’
along small loops. To that end we assume that there is a C3-atlas on U such that g is C? with
respect to this atlas. Then the curvature tensor R of g is defined. We assume that the pointwise
norm of R is uniformly bounded on U. We denote this uniform bound by || R|}, thus

(3.5) |RX, VZ| <IIRI XTIyl

uniformly on U. We say that U = (0, 00) x N is a cusp or a cuspidal end if N is closed and
connected and the metric g = dt? + g; on U satisfies the above smoothness assumption and the
estimates (3.3), (3.4), and (3.5). ) ‘

The assumptions (3.3) and (3.4) imply bounds for the second fundamental forms S of the cross
sections, '

(3.6) asS<b,
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and, equivalently, for the principal curvatures,
3.7 a<li <b.

These estimates will be crucial in our discussion below. ;

Let p=(t,x) € U, u € T,U and ¢ = c(s) = (z(s), x(s)) be a curve in U with ¢(0) = p
and 9;¢(0) = u. Consider the 1-parameter family y(z,s) = ye()(t + 7(s) — 7) of rays and
denote by J = J(t,s) the corresponding family of stable Jacobi fields. Then [T, J] = 0. Let
v, we€ TpU and X = X(t,5), Y = Y(t, s) be vector fields along y with X (z,0) =v, Y (7,0) = w
and V7 X = V7Y = 0. Then

T(V;X,Y)=(VrV;X,Y)=(R(T, NX,Y).

Define a tensor field S with values in 7U by:

o
(3.8) ’ (S, v), w)=— / (R(T, DX, Y)@, 0) de.
T
By (3.4) and (3.5) th{: integral converges uniformly, hence S is well defined.

LEMMA 3.9.— The tensor field S is continuous and uniformly bounded,
= 1
I8, v)| < ;IIRIIHMIHleI-

Proof, — Fix a point p = (t,x) € U. Let J be the stable Jacobi field along y, with J(7) =u
and X and Y be the parallel vector fields along y;, such that X (v) = v and such that ¥ is of
length one and points in the direction of S(u, v) at p. Then by (3.4) and (3.5),

(R, DX, Y)|(vp®) <e DRIl ullv].
This uniform bound on the integrand in the definition (3.8) of S implies that S is continuous and

satisfies the asserted bound. O

Define a new connection V on U by
" (3.10) V=V-8§.

LEMMA 3.11.— The connection V is continuous and Riemannian.

Proof. ~ Continuity of V follows from the continuity of S. Now the integrand in the definition
(3.8) of S is skewsymmetric in X and Y. Hence V is Riemannian. O

In general, the connection V may not be smooth. However, parallel translation with respect to -
V is well defined. .

If y = y(t,s) is a 1-parameter family of rays, J = J (¢, s) the corresponding family of stable
Jacobi fields along y and X and Y are vector fields along ¥ such that Vr X = VrY =0, then

(3.12) T(V;X,Y)=0 and V7rX=0.
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Using the approximation of cross sections by large geodesic spheres, we also get that
(313) 9T =0.

We denote by Tor the torsion tensor field of V.

COROLLARY 3.14.— The torsion tensor field is uniformly bounded,
— 2
|Tor(X, )| < - IRIHXIENY Y.

Proof. — We have Tor(X, ¥Y) = —S(X, Y) + S(¥, X). Now Lemma 3.9 applies. O

The curvature tensor R of V may not be defined since V may only be continuous. Nevertheless,
the statement R = 0 is still meaningful.

LEMMA 3.15.— In the sense of parallel translation, R =0. That is, parallel translation with
respect to V depends only on homotopy classes of curves.

Proof. — 1t suffices to prove this locally along a cross section N;. Let p = (r,x) € N, and
c=c(s),0<s<,beaC 1 loop in N at x which is homotopically trivial. Let X be a V-
parallel vector field along the curve c;(s) = (7, ¢(s)) in N;. Since cis C 1. X solves an ordinary
differential equation with continuous coefficients; hence X is also C'.

Let y (¢, 5) = (¢, c(s)) and extend X along y by parallel translation in the ¢-direction (which
coincides with respect to V and V). Then VX = 0 by (3.12), hence VX =0 along y. Therefore,
by (3.4) and Lemma 3.9,

IVa, X 1|2, 5) = [V, X — V3, X||(2, 5) < const - e 7,
Therefore, if /; denotes parallel translation along the curve ¢;(s) = (¢, ¢(s)) with respect to V,
then
||hz (X(l, 0)) — X(t, 1) " < const - e—a(l‘—f)'

Now choose a proper C 1 contraction C of ¢; in N; to the point curve and denote by A, the area
" of this contraction. Then C; = f; ; o C o fr; is a contraction of ¢;, and by (3.4), the area A; of
C; is bounded by

At <e—2a([—‘f) A‘E-
Now
1%, 0) = ke (X2, 0) | < A IR X,

see Inequality 6.2.1 in [12]. On the other hand, X (¢, 1) — X (¢, 0) is parallel along y,, hence
1X (@, 1) — X(z,0)] is independent of ¢, and hence X (¢, 1) = X(¢,0). O

COROLLARY 3.16.— Suppose V C N is open and simply connected. Then there is an
orthonormal frame (T, X1, ..., Xn) of TU over (0,00) x V which is parallel with respect to'V.

This verifies Axiom 1 for TU, hence also for any geometric bundle £ — U.
In the proof of the following lemma, we use one of the crucial ideas and results in Gromov’s
- proof of his celebrated theorem on almost flat manifolds [17].

LEMMA 3.17.— The holonomy of V is finite.
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Proof. — The second fundamental form S of the cross sections is uniformly bounded, see (3.6),
hence the curvature tensor of the cross sections is defined in the sense of the Gauss formula and is
uniformly bounded. Hence for each ¢, the metric on N; can be C!-approximated by a C2-metric
with uniformly bounded curvature, where the bound does not depend on ¢. Hence the standard
arguments from comparison geometry apply to the cross sections.

The result of Gromov we use is as follows: Let & > 0. Then, by Proposition 3.4.1 and
Corollary 3.4.2 in [12], there is p > O such that for all ¢ sufficiently large, the V-holonomy
along a loop in N, of length < p rotates vectors by at most 6 if it rotates vectors by at most 1/3.

Now let ¢ = c(s) be a loop in N. Then the V-holonomy #; along the loop ¢¢(s) = (¢, c(s))
in Ny is parallel in the ¢-direction. We claim that h; = id if h; rotates vectors by at most 1/3.
For this we note that the length of ¢; is as small as we please if only ¢ is sufficiently large, and
that the difference between the holonomy along ¢, with respect to V and V respectively can be
estimated in terms of the length of ¢; and the norm of S =V — V. Hence the above result of
Gromov applies and shows that #; is as close to the identity as we please if only ¢ is sufficiently
large. On the other hand, hy is parallel i in the ¢-direction, hence 4; = id.

Let p € U and denote by H » the image of the holonomy representation of 71 (U, p) = m1(N)
in the orthogonal group O(T,U). By the above, if B is the ball of radius 1/3 about the identity
in O(T,U), then I-:Tp N B = {id}. Now ﬁp is a subgroup of O(7,U), hence Hp is finite. O

_ COROLLARY 3.18.~ There is a finite cover N of N such that the holonomy of V on
U = (0, 00) x N is trivial. In other words, U admits a global orthonormal frame which is parallel
with respect to V.

Example 3.19 (Doubly warped products). — The warped metric df? + e 2%'g, on R x R",
where g, is the Euclidean metric on R”, is a modél for hyperbolic space of curvature —a?. We
consider the metric:

dt.2 4 e—Zatgm 4 e—2btgn

onU = (0,00) x R"” x R* with a, b > 0. Let oy T + X+ Yo and 1 T + X1 + Y1 be vector fields
on U, where X and X are tangent to the factor R™ and Yy and ¥; are tangent to the factor R”.
Then using the formulas in Lemma 7.4 in [7], a straightforward computation shows that:

{R@oT + Xo+Yo,auT + X1 + Y1) (1T + X1 + Y1), 0T + Xo + Yo)
—a*{llaoT + Xol*lloen T + X111 — (oo T + Xo, eu T + X1)?}
— b*{llewT + Yol*llea T + Y111* — (00T + Yo, 01 T + ¥1)?}
— ab{[I Xol* 1¥111* + [ X111 Yoll* — 2(Xo, X1){¥o, Y1)}
The first term on the right-hand side reflects the fact that the submanifolds
Hy =(0,00) x R" x {y}, yeR",
are totally geodésic hyperbolic spaces of curvature —a?, the second term that the submanifolds
Hy :=(0,00) x {x} x R® xeR™,

are totally geodesic hyperbolic spaces of curvature —b?. The third term mediates between the
two first terms. It is linear in @ and b and gives constant sectional curvature —a? = —b? for
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a = b. It follows that the sectional curvature satisfies
—b? <K<K —a? <0

ifa<b.Nowlet p=(r,x,y) € U and let u, v € T,U be perpendicular to T (p). Then since
the submanifolds H, and H, are totally geodesic hyperbolic spaces of curvature —a? and —b?,
respectively, we have

B 0 if u 1s tangent to H, and v to Hp,
S, v) =3 alu,v)T ifuand v are tangent to H,,
b(u,v)T if u and v are tangent to Hp.

Hence S = § and, therefore, V = V!, Now for constant vector fields v on R™ and w on R”, the
restriction of the vector fields

a

X(t,x,y)=¢%(0,v,0) and Y(t,x,y)=¢e"(0,0,w)

to the hypersurfaces {¢ = constant} are parallel with respect to V!, It follows that they are globally
parallel on U with respect to V.
This example will be of importance in our discussion of the pinching constants below.

Example 3.20 (The complex hyperbolic plane).— Let H be the Heisenberg group of
dimension 3. The Lie algebra § of H admits a basis of left invariant vector fields X, ¥, and
Z with

(X, Y]=

and such that the other Lie brackets between X, Y, and Z vanish. In particular, H is 2-step
nilpotent. Let f; : H — H be the automorphism such that

faX=e"'X,  fuY=e¢'Y, and f.Z=e¢2Z,

and let § =R x H be the corresponding semidirect product. Then § is solvable. .

Define an S-invariant metric g = dt? + g; on S by requiring X, ¥, and Z to be orthonormal.
Then § is a model of the complex hyperbolic plane with sectional curvature in [—4, —1]. In fact,
the product S = RH corresponds to the factor AN in the Iwasawa decomposition G = K AN of
the component of the identity G of the group of isometries of the complex hyperbolic plane.
If M is a noncompact quotient of finite volume of S, then the ends of M are of the form

= (0, 00) X N, where N is a compact quotient of H. _

A straightforward computation shows that the vector fields X, Y, and Z are parallel along the
rays y =y, and that they are parallel with respect to V. Hence V corresponds to the canonical
flat connection on S.

The situation for the other symmetric spaces of negative curvature and their finite volume
quotients is similar.

We now consider the restriction V! of V to E; = E|N;. The kernel K (t) = kerV? of V*
consists of sections of E; which are parallel with respect to V¥, It is a finite-dimensional vector
space and the family of these spaces is parallel in the T-direction. For a C! section o of E;, the
pointwise norm of Vo is given by: :

(3.21) |9 |* =" | Vy.o |,
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where X1, ..., X}, is a local orthonormal frame of N;.

Denote by IT; ; parallel translation from E, to E; along the rays y,, p € N;. The next lemma
implies that the non-zero eigenvalues of (V/)*V* grow exponentially if the sectional curvature
of U is sufficiently pinched. '

LEMMA 3.22.— Assume that (n + 1)a — (n — 1)b=:8 > 0. Let o; be a C'-section of E; and
assume that ’

”VTO"E “T Z Aozl
forsome . > 0. Let t > t and set 0; = Il; y 0 0¢ o fr ;. Then

Vo], = 420 oy ;.

Proof. — Let p=(t,x) € Ny and vy,..., v, be an orthonormal basis of T, N, such that their
images wi, ..., w, under the differential of f;. are pairwise orthogonal at (¢,x) € N;. Let
o; =In||lw; || and assume o3 2 g = - - - 2 . By (3.4),

e—b(t—r) < e < e—a(t—r).

" Choose a special frame (o) of E. Then o, = > @oy(r,-) with appropriate functions
@1 = @i (x). Since Vroy =0, we have o, = Y _ ¢yoy(2, ) and hence

|90, dee = 3 e witen Jor (e, x) e+
> Hwilen}or ¢, x) [Peeiroat—ten
= Z H{vi (@D }or(z, x) ||2e_“1+0l2+---+an
=||V¥oc(r,x) |[2e_°‘1+0!2+---+a,,
> [ V0, (x, x) [Pele— = DDE=D)
Therefore, |
[9arl? = [(19'a] o )i
N:
S
R
> ela=(r=1)h)(t~1))2 / o2 |
Ny

> 0096932 [ (1o, P o £, 1)
Nz
=" TN oy 17
This is the asserted ine(iuality. a |

LEMMA 3.23.— Let U be a cuspidal end and E — U be a geometric bundle. Let (VH*V?
be the connection Laplacian associated to Vi Let )\,2 > 0 be the smallest nonzero eigenvalue of
(VH*V*. Suppose that at least one of the following three conditions is satisfied:
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(1) The holonomy of V is finite.
2) m+1Da—(@m—1b=>0.
(3) |IVRY is uniformly bounded on U.
Then there exists a positive constant ¢ such that A; > c exp(ct).

Proof. - In the first case we can assume, by passing to a finite covering space U =(0,00)x N
of U if necessary, that E admits a global special frame (o7). Then (VH*V! is equal to Tk E
copies of the standard Laplace operator of Ny, acting on the different components ¢; of sections
with respect to the frame. The asserted estimate then is immediate from the corresponding and
well known eigenvalue estimate of Li and Yau, see Theorem 7 in [25] (and [32] for an improved
estimate). ‘

In the second case we recall that A, can be characterized as the maximum of all possible

Ay = inf] ||6’(3||2 lo eV, ol =1},

where the maximum is taken over all complementary closed subspaces V' of the kerne] of V! in
L?(E;). Hence Lemma 3.22 applies.

In the third case we recall that a simplification of the arguments in [20] shows that the ratios
jr.r(x)/jr,z(y) of the Jacobians j; . of the shift maps f; ; are uniformly bounded in terms of a,
bandaboundon |VR|. O

Lemma 3.23 verifies Axiom 2 for all geometric bundles which satisfy its assumptions. In
particular, for these bundles we obtain the characterization of the essential spectrum given in
Theorem 2.13.

4. The Clifford bundle

Throughout this section we assume that E = ClU ® F = A*U ® F, where F is a flat
Hermitian bundle with a compatible connection, and that D = d + d*. Our main result is
Lemma 4.8 which verifies Axiom 3’ if the dimension n + 1 of M is even and along all the
ends, the sectional curvature satisfies the pinching condition (n + 1)a > (n — 1)b. The following
estimate is a consequence of Lemma 2.15 and Lemma 4.8 and shows that D is Fredholm under
these assumptions.

THEOREM 4.1.— Suppose that dimU = n + 1 = 21 is even and that the sectional curvature
on U satisfies the pinching condition

la—(I—1b=68>0.

Then for any & > 0 there is t > 0 such that
s—¢
Dol 2 —— ol

for any C' section o of E with compact support in U; = (£, 00) X N.

Example 4.2.— Suppose that dimU = n 4 1 = 2/ and consider the case F = C. Suppose
furthermore that (n + 1)a > (n — 1)b, where 0 < a < b. Let My be a compact 21-dimensional
manifold with boundary M = T", the n-dimensional torus. Attach an end U = 0,00) x T"
to My and consider a Riemannian metric on M = My U U whose restriction to U is the metric
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considered in Example 3.19, where the m there equals [ here and n there is equal to I — 1. Let
v1, ..., v; be an orthonormal basis of the factor R!. Consider the multivector

X=ely A Ay

which has norm one and is parallel in the T -direction. Then the tangential parts A, X and A, (T X)
respectively are zero.

Recall that the density of the Volume element of the warped metric is exp(—xf) with
« =la + (I — 1)b. Hence the linear map

W:L2(0,00) ® C2 — L*(E), (u,v) > "X +vT X),
preserves L2-norms. We obtain a Dirac system,
ULDY = (8, — 28/2),

where y and 7 are as in Example 1.15 and § = la — (I — 1)b. In particular, £8/2 belong to
spec, D. Hence Theorem 4.1 is optimal with respect to the pinching constant and D is not
Fredholm if § = 0.

For a special frame T = Xo, X1, ..., X, of TU, a naturally associated special frame of E
consists of sections of the form X; ® Py = (X;,--- X;, )@ Py and TX; Q Py = (TXi - Xi)®
@, respectively, where I is a multiindex with {; > 1 and (®;) is a local parallel orthonormal
frame of F.

As above, we denote by V* the Levi-Civita connection of N;. Then for the induced connection
on TU|N; (viewed as a geometric bundle over N;) and the Clifford bundle C1U|N; we have
VT =0.

Recall the definition of the operators A;, B; in (1.10), (1.11) and A;, B; in (2.5), (2.6). Now

At + Bt At + Bt and POAtP() = O hence:
4.1 PyB; Py = PyA; Py + PyB, P,.

For a section ¢ we call 130A11300 the tangential part and f’oBt Pyo the normal part. The
tangential part is determined by the interior geometry of the cross sections, the normal part by
their exterior geometry.

LEMMA 4.4.- Ifn <2, orifn >3 and2a > b, then dimker A, = dimker A, and
| PoA; Polls — 0 ast— oco.

Remark 4.5.-The example of the complex hyperbolic plane shows that the pinching
" assumption 2a > b is optimal for n > 3, see Example 3.20.

Proof of Lemma 4.4. —If n = 1, then Ny is a circle. If n = 2, then N, is a torus (since M is
orientable). If n > 3, then a?/b? > 1/4. Then Gromov’s theorem on almost flat manifolds applies
and shows that N; is a finite quotient of a torus, see Corollary 1.5.2 in [12]. Hence in each of
the cases we may assume, by passing to a finite cover if necessary, that U = (0, c0) x N, with
N=T"

Consider the splitting E = E™ + E~ into even and odd part, which is parallel with respect to
V and V. Furthermore, the restrictions E;" and E; are each isomorphic to C1 N; ® F such that
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A; corresponds to d; + djf, where d; is exterior differentation on N;. Hence by Hodge theory,
dimker A, =2 _b;(N; F).

Now N = T" is a torus of dimension n, hence Y _ b;(N; F) is equal to 2" times the dimension of
the trivial representation in the representation of 71 (N) defining F.
On the other hand, for ¢ sufficiently large, we have

dimker A; = dimker V*,

and the latter consists of globally V-parallel sections of E;. Now by Lemma 3.17 the latter is
equal to rk C1U, again times the dimension of the trivial representation in the representation of
71(N) defining F. Hence dimker A, = dimker A;.

By Lemma 3.23, there is a positive function A = A, with lim; .« A; = 00 such that

Aol = Al

for all o in the domain of A; and perpendicular to the kernel of A;. Moreover, ||A; — A:| is
uniformly bounded, hence Corollary A.7 applies and gives

| Po— Poll: = 0 ast— oco.

Since
PyAs Py = (Py— Po)(A; — Ap) Py,
the lemma is proved. O
LEMMA 4.6.—Let p € U. Choose a special frame T = Xo, X1,...,Xn of TU such.that
Sx; X j = 8iji;T at p. Consider an associated special frame X1 ® @5, TX1 ® @y of E, where

I =1iy---ip is a multiindex with i > 1 and (@) is a parallel local orthonormal frame of E.
Then at p,

1
Bi(X;®P,)= 5{

ZK:‘ - ZKi}XI Py,

i¢l iel
1
B(TX;® D))= 5{§m — %{jxi}rxl QD
: i gl

Proof. — At p we have
Y TXiSx, (X1 @ @)=Y (TXiXi, - Sx, Xij -+~ Xi) ® Py
i,j
=Y ki (TX;; Xiy T Xi) @ Dy
J
= (ZK:‘,»)XI Py = <Z’Q’)XI RPy.
J iel ’

Therefore,

Zlci —ZKi}XI RPDy.

v K 1
B(X1®P5)= EXI @Dy — (ZKi)XI RPy = -{
i¢l iel

2
iel
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This proves the first equation. The second follows by a similar computat1on observing that
Vx,T=—k;T atp. O

We assume now that dimU =n + 1 =2/ is even. We let 8 be the field of endomorphism of
the Clifford bunlde E — U such that in terms of a special frame X; ® @, (TX;) ® &7 of E as
above

_ o
BXr®Py) :{ X, if|Il<l,

_X; @b, i1
@7 1@ it
TX; @0, if|I]>],

BTX; D) = {—TX1®€15J if 1] <.

In other words, B = sign B. ~

Note that § only depends on the degree k = |7 and on the absence or non-absence of the factor
T.Now T is parallel with respect to V’ and V. It follows that § is well defined independently
of the choice of frame and that it is parallel with respect to V and V. The following lemma
establishes the last requirement of Axiom 3'.

LEMMA 4.8.— Suppose that dimU =n+ 1=2I and that § =la — (I — l)b > 0. Then for
any ¢ > Q there is t > 0 such that:

o - §—e& -
(PoB; Pyo, BPoo); > TIIPOGII?

for any C! section o of E with compact support in Uy.

Proof. — We first note that j Py = PyB. Hence it suffices to estimate (B; Pyo, BPyc’). Now
a<k; <bandn=2[—1is odd, hence

ST

iel il

zla—(—-1)b

for each multiindex 7. Moreover, by Lemma 4.4, the error term ( Py A; Pyo, ,BPoa), from “4.1)is
as small as we please if only 7 is sufficiently large. O

Remark 4.9. - By the work of Borel and Casselman [9], the Dirac operator on the Clifford
bundle is a Fredholm operator if M is an even-dimensional locally symmetric space of finite
volume and negative curvature. For each cuspidal end U of such a space M, B is parallel in the
direction of T It follows that j := sign B is an operator as required in our Axiom 3, hence the
‘method developed in Section 2 applies to M.

5. The Hodge Laplacian

In this section we improve results of Donnelly and Xavier in [15]. Let U be an open subset of
a Riemannian manifold M of dimensionn +1 and E = A*(TU) ® F, where F is a Hermitian
bundle with a compatible connection.

For the following, compare page 123 in [24]. The Riemannian metric induces a contraction
“"on E,

(5.1) (Xvo,n) = {0, X A7),
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where o and 7 are sections of E. For a vector field X and a multivector X; = X; A--- A Xi»
we have

XX ®@®) =Y (DX, X)Xy A AKX A=A X)) ® D
Furthermore, if o is a section of A¥(TU) and 7 a section of E, then
X (o An) = (XLo) An+ (—DFe A (Xip).

We identify CI(U) = A*(TU). With respect to this identification, Clifford multiplication by a
vector field X from the left and right, respectively, is given by

X o=XAno—XLo,

- X=CD"X Ao +Xio) onANTU)QF.

Exterior differentiation d and its adjoint 4* are given by
do’==:£:;¥iﬁ\VX}U and d*G==-jE:X3LVGQU,

where Xy, ..., Xn is a local orthonormal frame. Clifford multiplication from the right is well
defined and leads to the right handed Dirac operator:

Do =ZVX,.U - X;.

‘We have
D=d+d* and Do =(-1)*d—d*) onAYTU)®F.
If F is flat, then d? = (d*)? =0 and

D?=D?=A,

where A is the twisted Hodge Laplacian.

Let T be a prefered vector field on U and VT be the covariant derivative of T'. Recall that
VT is skewsymmetric if T is a Killing field and that VT is symmetric if T is the gradient of a
function on U locally. We are interested in the symmetric part of V7.

Let p be a point in U. The quadratic form g7 (v) = (V,T,v) on TpU only depends on the
symmetric part of VT (p). Let ag > o1 > - - - > o, be the characteristic values of gr and set:

(52) Se=8(p)= ) o~ ), &, 0<k<n

i>n—k isn—k

Then the divergence div T = —8&. If T is the gradient of a function f, then Af = do.
In this section we use an index U to denote the L2-norm on U. Our main result is as follows:

THEOREM 5.3.— Suppose |T| < 1. Then

A 1
IDolluliellu, 1Dallulioly = 5/5k”0”2
u

for any differential form o of degree k or n + 1 — k with compact supportin U.
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This improves the main Theorem 2.2 in [15]. The applications of that theorem in [15] can be
improved accordingly. In this work we concentrate on cuspidal ends as before and let T = 9;.
Then |T|=1,00=0and —a > o; = —«; > —bforalli > 1. Hence

> (n—k)a — kb.

In conclusion, we have the following application to cuspidal ends.

COROLLARY 5.4.— Suppose F is flatand (n —k)a —kb =46 >0 (where k <n/2). Then we
have:

52
Aoy = ZHGHU

- Sfor any differential form o of degree k or n + 1 — k with compact support in U.

In the special case &k = 0, Corollary 54 gives the estimate of McKean in [28]. It improves
Theorem 5.3 in [15] and is optimal with respect to the pinching constants, see Example 5.5
below. The cases k = (n + 1)/2 if n + 1 is even, respectively k =n/2,n/2 + 1 if n + 1 is odd,
are not covered. In fact, in the latter case the essential spectrum of A on L2(A¥(T M)) is equal

to [0, co) for noncompact quotients of finite volume of the real hyperbolic space H"*1, see ..

Example 1.15.
Example 5.5.— Let k < n/2 and consider doubly warped products as in Example 3.19, where

the dimensions m and » there correspond to # — k and k here, respectively. Let wy, ..., wg be an
orthonormal basis of the factor R*. Consider the multivector

Y=ekbtw1/\'-'/\wk,

which has norm one and is parallel in the T-direction. Recall that the density of the volume
element of the warped metric is exp(—«t) with k¥ = (1 — k)a + kb. Hence the linear map

W:L30,00) ® C* — LX(E), (u,v) > e">(uY +vTY),
preserves L?-norms. We obtain a Dirac system,
viDW =y (5, + 18/2),
where y and ére as in Example 1.15 and § = (n — k)a — kb. In particular,
oID2w =52 + 32/4,

hence the estimate in Corollary 5.4 is optimal with respect to the pinching constant.

Proof of Theorem 5.3. — Let o be a C! section of Ak(T U) ® F with compact support. Let vV

be the vector field on U such that:
(5.6) - (V,W)=(Tvro,WLo)
for any vector field W. In a first step, we compute the divergence of V. To that end, fix p € U.

Choose a local orthonomal frame Xo, X1, ..., X, in a neighborhood of p such that VX;(p) =0
for all i. Then the divergence of V in p is given by:
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divV = ) X;(Tio, XiLo)
= Z((in T)o, Xio)+ Y _(T(Vx,0), XiLo)— (TLo,d%0)
=1+ — (TLo,d" o).

To compute the first term I on the right-hand side, decompose VT = A + B, where A is the
symmetric part of VT and B the skewsymmetric part. Then

I=) ((AX))o, XiLo)+ Y ((BXi)Lo, XiLo).

Using the normal form of skewsymmetric endomorphisms, it is easy to see that the second term
on the right-hand side is purely imaginary. Now choose the frame (X;) such that AX; = o; X; in
p. Thenin p, ’

Rel=) o;(XiLo, XjLo) =Y ai| XiLo|.

To compute the second term II, we choose the frame (X;) such that T is a multiple of Xo in p.
Then in p,

=) (X; A (TLVx,0),0)
=— Z(qu,- AVx,0),0)+{Xo A (TLVx,0), 0)+ (T (Xo A Vx,0), )
=—(Tv do,0)+ (Vro,0)=—{do, T Ao} + (Vro,o).

Now o has compact support, hence the integral of the divergence div V of V vanishes. Therefore,

Re{(da, T Aoy +(Tro,d*o)y}

' 1 . 1 .
:RC{/ZaillXiLU|[2+ <<VT+§d1VT)a,0)U—— EdeVT”G”z}'

Here the integrand in the first term on the right-hand side has to be understood pointwise as
explained above. The second term is imaginary since Vr 4 % div T is skew Hermitian. Hence we
obtain the following version of the integral formula (2.7) of Donnelly and Xavier in [15],

(5.7 Re{(do,T Aoy + (Tuo,d*o)y} = /{Zai 1Xiio|® — %divTHa]]z}.

Pointwise we have (do, TLo) = (d*o, T A o) = 0 since the degrees of the factors are different
in each case. Hence the left-hand side of (5.7) is equal to:

Re(do +d*o, T Ao+ Tio)y = (—1)*Re(Do, o - Ty

and also to
Re(do —d*0, T Ao —Tia)y = (—1)*Re(Do, T - 0)y.

As for the right-hand side of (5.7), we express o locally as a linear combination,
o= 077X; ® ®;. Here I denotes a multiindex, I.= (i1, ..., i) withi; <iz <--- <ig, and
Xr=X; A--: A X, is the corresponding multivector. Furthermore, @ is a local orthonormal

frame of F. Now »
Zai |Xin(xr ® ¢J)||2 =Y o
i :

iel
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and divT =Y ;. Therefore,

1 1
Y| XX @en| - SV T = -Z-{Za,- - Zai}-
i

iel igl

Hence the integral formula (5.7) can also be written in the following way,

: _1N\k
(58) Re(Do,o-T)y =Re(Do, T -0)y = (—21—)—/2{2% - Zai}[oulz.
b L7

iel igl

Now the claimed estimate in Theorem 5.3 in the case where o is a k-form is an immediate

consequence of (5.8) since
S < Z o — Z o
iel i¢l
by the definition of §;. Now for a multiindex I of length n 4+ 1 — k we also have:
8 < Z o — Zoti .
igl iel
Hence the claimed estimate in Theorem 5.3 in the case where o is a form of degree n + 1 — k

also follows from (5.8), where k is substituted byn+1—%k. 0O

Remark 5.9. - Instead of considering the vector field V' as in (5.6), it is also possible to
consider the vector fields V and V defined by

(V,W)=(o-T,W-0) and (V,W)=(T 0,0 W).

Then integrating the divergence of V and V one gets the integral formula (5.8) for
Re(Do, o - T)y and Re(Do, T - o)y, respectively. The integral of the divergence of the vector
field V defined by:

(V.W)y=(T-0,W.0)

does not give any information, it results in the equality 0 = 0.

Appendix. A lemma from spectral theory

The following lemma (and its corollaries) are used several times in our considerations. It is
basically well known and implicit, e.g., in Section 5 of [22, Chapter VI], but we have been
unable to locate a reference for the following statement:

LEMMA A.l.— Let Aj, j = 1,2 be self-adjoint operators in some Hilbert space H, with
common dense domain Hj. Consider 7o € R\ spec A| U spec Ay and put, for any self-adjoint
operator A,

B(A, zp) := dist {zg, spec A}.

Consider next a family, B(z), of closed operators in H, defined for Re z = zo and satisfying for
these 7 the relation :

(A.2) D(B(2)) D Hi,
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and the estimate

(A.3) 141 — 207 B(2)| A2 — 20| ~*?u|| < 2Coljul,

for u € Hy and some numbers o € [0, 1/2]. ‘
Then the integral

(A.4) I:= _1_ f (A1 —2)"1B(2)(Ay —2) "l dz
271
Rez=zp

is strongly convergent and defines a bounded operator in H with
(A.5) 171l < CoB(A1, 20)™ ~V/*B(Az, 20)* V2.
If aj < 1 for some j, then I converges in the operator norm. If, in addition, Aj has compact

resolvent, then I is compact.

Proof. — Since 7 is real we may and will assume that zg = 0. Then, for z € R, we have the
estimate

a6 lcA; —iz)~11A4;1% || = sup{IA|*|A —iz|™'; A e spec A}
< (B(A 02+ @7V

Assume next that oy = 1/2 — 2, for some ¢ > 0. Then we write
(A1 —iz) ' B(iz) (A2 —iz) ™!
= |A1]7 (A1 —iz) VAL M8 AT @) B(iz)| Ap| T2 (Ag — iz) 1| Aal®
=:|A1]7°C(e, 2).

 We deduce from (A.3) and (A.6) that C(e, z) is bounded in H and has, for large |z/, the norm
estimate :

[Ce. | < Co(,B2 + Zz)—(1+s)/z,

where 8 := min{8(A, 0), B(Az, 0)}. This implies the norm convergence in this case, and also
the compactness of I if Al_1 is compact.

Consider now the general case ag, ¢ < 1/2. Then we form, with (-, -) the scalar productin .

H, the bilinear form
e, 1)(2) = (A1 — i2) " B(i2) (Az — iz) "\, v),

which is defined for z € R and u, v € H. In view of (A.3) and the Cauchy—Schwarz inequality it
is enough to estimate, for T e R,

[o,0] [v. ol e
/ [14;1% (4; —iz) " u | dz = / f AP (02 + 22) 7 | Pea(Au|? dz
T T —o0

= / M2~ (/2 — arctg (T/IA])) d]| Pa(Apu)?

<mlul.
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This implies the desired estimate and, by dominated convergence, also the strong convergence of
the integral. O

COROLLARY A.7.— Let A be as in Lemma A.1 and assume that Ay = Ay + B, where B
satisfies (A.3). Then

[P (A0) = Posg(42)| = | Poso(41) = Py (A)]
< CoB (A1, 20)* /2B (A, 20)2 71/,

Proof. — We observe the well known formula (see, e.g., Lemma 5.6 in [22, Chapter VI])

: 1 _ 1
AB) — / (4= 97 o= (Pay(4)) — Poy(4)),

Rez=zy

where the integral is strongly convergent. Taking the difference of these operators for j = 1 and
J =2 and estimating it with the lemma easily implies the assertion. [
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We would like to add: Gilles Carron pointed out to us that the definition of the n-invariant needs further
explanation in the case where the metric on the cross sections is not sufficiently smooth. This explanation
will be supplied in a forthcoming joint paper of the authors with Carron.




