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Classical and quantum models describing “the
- motion of particles in a constant magnetic and a perl-'
" odic electric field have very curious properties even'in
: ]'two dimensions (see, e.g.; [1-8]). If the magnetic field -

- is strong, then small parameters appear in both classical

- -and quantum problems. This makes it possrble to use ..
. averaging [9] ‘and semrclassrcal -approximations [10]. .
’ -f_”This circle of ideas was studled An many papers (see,
e.g., [2-8)). Nevertheless, based on the topological the- -

~’ory of Hamiltonian systems [13], we propose here a
= global point of view of the spectrum of the correspond-

1 FORMULATION ‘OF THE PROBLEM
We <want to desc 1be

mptotrc spectral

.+ Deutschland e e SRR
“** Institute for Problems of Mechamcs, Russian Academy
ofSczences, pr: Vemadskogo 101, Moscow, 1 1 7526 Russia.

e«mazl dobr@ zpmnet ru

: functions from Co :

ode ‘We : assume that
in a certain -

(C2-neighborhood of the plane Rz and is penodlc w1th

_respect to the lattice I" generated by the vectors a, —"

a 2 Looqa :
( ”) = (On) and (l}_\— (&21) i.e., we have. V(x+a,)—'

agz azz

v(x +a))= v(,t) Then H 1s essentlally self—adjomt ‘on :

It lS well known that th

depend crucrally 0

A—I\; is rational'then“the ‘spectril r

ture, smce "H has th

"“‘The structure of spec becomes much more comph— .
"cated if 1 is‘irrational. In partxcular Cantor sets may
“-arise in this case (7, 8]. We consider the situation when
~both parameters € and h are ;small (then 7 > 1) and

obtam asymptotic mformanon about specH by means




2 ; 0=0"+eli(y,
PO e<e,. With the new action variable I' = % (P2

:Fi.gure. Q'{ZJ), wfé_:_\ob_tainb the ,yrepreset»itqitﬁtfqn H=3%,1 ¢ +
O((exp(5). where 35, 1.9) ) = %60y 1, ) +
‘0(82),‘ with some K, (K,’ v)>0.Thereisalso KK, v)>0
R s T e e such that, in the domain_ of the..coordinate change,
2. AVERAGING, ALMOST INTEGRABILITY, AND Wil < Ky, j =1, 2, 3. ' Moreover, % and U; are real
-;f‘-CLASSIFICATI_ON OF CLASSICAL MOTIONS analyti¢ T-periodic fiinction PECEE R A
- For the operator (1), the classical Hamiltiian is = - .+, The proof of Theorem
» ; i the general result’in [9] (usingth
H “ables /;; @;) for the case K3
“to /=0 (where H is not'analy
~modify :the -approach[9] ‘by
.defined canonical transform
‘and Qasl, 0.

~of the semiclassical approximation'| as & — 0.

s‘immediately from o
¢ angle-action-vari- .~ |
o extend this result

ith respect to /), we
ing" an" appropriately
s-analytic in-P

amiltonian system gener- -
he cyclotron circles
nd angle @, centered at

that, modulo O(e™), the
.sufficiently’ small g
lic:;tion of averagi

Hamiltonian systems [13], for each fixed /,, we can
Separate the motion defined by the averaged Hamilto-
'n_ianf'ntQ’;gif:fr;rent{_.ﬁtopgzlogical egim

imes, which are co
its_Reeb’ graph as a
[14]). By translating

hise rogiines e
8y) half-plane {(/,, E)'e
ts in the phase space that
correspond to topologically similar edges of the Reeb
- graph. The union of all regimes gives the set 3 of actual’
- motions with a structure similar to a Riemann surface.
-We restrict ourselves to the simplest nontrivial situa-

veniently . described .in f

V7204, ; (y"yz)’

" L Apparently, Onsager and Azbel weré the first to point out that the

ne r H3s the Planck constant for : s e i ’

el “tion,- ralmost all /;; ion” 3

the ordinary , Schrodinger cequation. -We - emphasize--that " all . : tion, when, 0 d '—,t .eMorse functlon _.%\hi}s.»;

. ‘assumptions on , €, and a; are essential for our method. For  :€Xactly:one non egenerate ‘minimum and one maxi-"

+ example, if laj ~ &, then v="v(x,/h, %yfh) and, instead of standard . ' mum (see [13]). This S‘ltuatlan 1S lllqstrated by the foli

- semiclassical . methods,....the |- Born-Oppenheimer  (adiabatic) ; - lowing ¢Xample'featunng‘ the potential - o
‘approximation has to be used in this situation, which leads to ‘ R R S

! 61) L ' Acosx; +Bcos(Bux,),

quite different results
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i domain'is a projection o
any cut by a plane 1 i

change drscontmuously and nonsmoothly‘ respectlvely,

Moreover Z decomposes into regrmes ./l/t (lymg in’ v
in transition from one regime to another. The drift vec-

the interior) and AL".(containing boundary:curves) sep---
_ aated by the curves E = I % elAly(4210)]
. B|j0(B_,\/2'I ll, which form the common boundanes of

-each (11, 12) the tori Al (Il, [7) in the phase space R

 Mrand M’ (ris the index of a regime). It is natural to

~ distinguish between regular and singular boundaries of
“regimes, according ‘to whether they’ are external 'v-"‘-imders Ak (11, 17) can: be obtar

" internal. For each fixed /, b ‘the’ regular boundanes corre- these shlfts wrth l(k) k(f2a| 3

spond to. mlmma or maxrma of ?C| I, = consts and the sm-

_'degenerate saddle point at s ngnlaritres formed by
11_ gular boundary. components At smgulantles formed by

OF THE SPECTRUM

s
Next, we quantrze the reglmeso.M,"s M

- energy axis, we find the asymptotic approximation to

. tors related to a fixed /| comcrde up. to drrectron For

; accord-
ing to the Bohr-Sommerfeld rules to obtain quantized .
. regimes on the surface X." After projecting onto the

L the spectrum of the ongmal operator <The quantrzatlon UL




' muous ‘spectrum.> ]
; thlS onstructxon does not dej

‘ ~For example
aHow us to estlmate he

: e g .els.‘ ‘In \ example (3), the width is " esnmated ‘as
rd

v./f/(, or(ll ,12)e ./(/(, there extstcorrectzons g,,_({-: «'ZE(A!JU(/ u l+BIJo(ﬁ by )l+0(h))

by =0 O(hz) and g L(Iz, g, h) O(hz) xsuch that

p % ey " i O(RL 4 ek 7= Phys:cal consnderatlons mdlcate that -the- actual ——

S lSt{ ’( 22 F) i gfL (& ) Spec ) =0( e ) (contmuous) spectrum of the operator A lies in an
and dlst{%,(l 12,€)+ & L(I £, Iz) specﬁl } —O(h exponentxally small\lelghborhood :of :the; constructed

- ; Bohr-S rfeld

The prdof of Theorem 2 is based on the constructlon
'f : asymptotlc generahzed exgenfuncnons (quasl-

“dau level it 1s good to match ,'condmons (2) with the
- drift. Hence, one has to rotate the coordinates x and to-
change the gauge when movmg ‘from one Landau level
+to another. We assume that the coordmates (x,, xz) a

hosen in accordance with this rule:

OKLADY MATHEMATICS - =




famtly of elgenfunctlons w1th one dnft vector jumps to
- a family- with the opposite orientation of the drift vec- g
_tor. ‘Although -a ‘rigorous - descrlptlon of these effects
“must be based on tunneling, this explanation neverthe--
less allows us to heuristically find the number of sub-
bands for each Landau level. _ho thls for exam— h

v # 0 0therw¢se M I and N, are a (nonumque) pazr

-the number of Bohr=Sommerf; pomts on dges of
he Reeb graph related to finite 1 otlon. It IS e ual to the ;

v he umber.of subban
ach Landau le veli is approxzmatel y equal to the numer-
1

. naive quantization of the averaged Hamil-
‘leads ‘to a Harper-type difference .€quation
and correspondmg qua51-modes This allows us to com
are the generalized eigenfunctions ‘cor Structed above
ith the eigenfunctions of the difference equatxon “This
omparison shows that the functions featuring in Theo-
‘rem 3 correspond to solutions to diffe: nce equanons_

1th a 8-11ke structure [cf 7 14 15] ‘

plit into' M exponentlally ‘small subsets sepa

rated . by, exponentlally small gaps such that thelr-fpro
jections onto the E-axis glve,exponentlall “small:sub
bands and gaps:‘Note that, sing analogues ‘of: 1€ 50-
called Lifshits [1] and Herring [11] formulas, one can
find the asymptotics of the dispersion relatton‘m the
-form “of - a* trigonometric -polynomial 'in . the ‘quasi
.momenta g ;with - exponentially - small .-coefficient
;_(wl;xch can be determmed only thh the use of tunnel
.ng).
 Let us describe certain pomts that should be ‘inter:
. preted as traces of gaps. Specxﬁcally, substltut'ng thej

( Landau levels 1‘l and the functxons (6) mto the corre
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