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Averaging for Hamiltonian Systems
with One Fast Phase and Small Amplitudes
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Abstract—In this paper we consider an analytic Hamiltonian system differing from an inte-
grable system by a small perturbation of order ε . The corresponding unperturbed integrable
system is degenerate with proper and limit degeneracy: all variables, except two, are at rest
and there is an elliptic singular point in the plane of these two variables. It is shown that by an
analytic symplectic change of the variable, which is O(ε)-close to the identity substitution, the

Hamiltonian can be reduced to a form differing only by exponentially small (O(e− const /ε))
terms from the Hamiltonian possessing the following properties: all variables, except two,
change slowly at a rate of order ε and for the two remaining variables the origin is the point of
equilibrium; moreover, the Hamiltonian depends only on the “action” of the system linearized
about this equilibrium.

Key words: Hamiltonian system with fast phase and small amplitudes, averaging for Hamil-
tonian systems, Neishtadt method, small perturbation.

1. INTRODUCTION

The problem of averaging for systems with one fast phase was studied on numerous occasions
from different points of view in a multitude of papers. The studies in question were based on the
well-known Krylov–Bogolyubov averaging method [1] and on methods of KAM theory. The most
complete and definitive results were obtained by Neishtadt in [2]; in that paper, the coefficients of
the equations were assumed to depend on the variables “action–angle” as real analytic functions.
However, there exists a large number of problems, interesting from the point of view of applications,
in which the analyticity assumption fails in the neighborhood of certain points.

For example, consider the motion of a charged particle in a small periodic electric field and a
constant magnetic field. The Hamiltonian of such a system is of the form

H =
1

2
((p1 + x2)

2 + p22) + εV (x1 , x2).

By the canonical change of variables

x1 = Q+ y1 , p1 = −y2 , x2 = P + y2 , p2 = −Q, Q =
√
2I cosϕ, P =

√
2I sinϕ,

it can be rewritten as
H = I + εV

(√
2I cosϕ+ y1 ,

√
2I sinϕ+ y2

)
.

This system depends on one fast phase ϕ ; it is not analytic in I (∼ √I) in the neighborhood
of the point I = 0. From a mathematical point of view, the measure of this region is small.
Nevertheless, this region can play a crucial role for physical applications. For example, in the
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problem of semiclassical quantization, the neighborhood I = 0 is associated with the so-called
lower Landau levels related to Hall conductance.

The Neishtadt procedure [2] is based on successive changes of variables, as in the KAM method.
The goal of this paper is to show that we can choose a transformation such that the averaging
procedure [2] will be applicable in the neighborhood of the point I = 0; moreover, the transition
from I > κ > 0 to I = 0 will turn out to be uniform.

2. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Consider the Hamiltonian

H = H0(I) + εg0(q, p, y1 , y2), I =
p2 + q2

2
, (1)

where 0 < ε < ε0 is a small parameter and H0 and g0 are real analytic functions in a complex δ-
neighborhood of the domain

D := D2n{y1 , y2} ×Dκ2 {q, p}, D2n ⊂ R2n , Dκ2 = {(q, p) ∈ R2 | I < κ}.

Suppose that the following conditions are satisfied in D:

|H0| ≤ C, |g0| ≤ C,
∣∣∣∣∂H0∂I

∣∣∣∣ �= 0.

Just as in [1, 2], we wish to show that for each m > 0, m ∈ N , there exists a real analytic canonical
change of variables (q, p, y1 , y2) → (Q, P , z1 , z2) , which is close to the identity substitution and
is defined by the formulas

q = Q+ εQ1(Q, P , z1 , z2 , ε), y1 = z1 + εZ11 (Q, P , z1 , z2 , ε),

p = P + εP 1(Q, P , z1 , z2 , ε), y2 = z2 + εZ12 (Q, P , z1 , z2 , ε),
(2)

where |Q1|+ |P 1|+ |Z11 |+ |Z12 | ≤ C , such that the Hamiltonian (1) is transformed to the form

H = Hm
(
Q2 + P 2

2
, z1 , z2 , ε

)
+ εgm(Q, P , z1 , z2 , ε), (3)

and the following theorem (announced in [3]) is valid.

Theorem 1. Suppose that the conditions given above are satisfied in (Q, P , z1 , z2) ∈ D + 1
2
δ .

Then there exist an interval (0, ε1] , an integer r , and a real analytic canonical change of vari-
ables (2) that takes the Hamiltonian (1) to (3) with an exponentially small g :

|gr|+ |∇gr| < c2 exp

(
− 1

c1ε

)
, |Q1|+ |Z12 |+ |P 1|+ |Z11 | < c3 , |Hr −H0| < c4ε. (4)

Here ε ∈ (0, ε1] and ε1 , r , ci , i = 1, 2, 3, 4 , are constants depending on ε0 , δ , C , κ .
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3. AUXILIARY LEMMAS

Suppose that w(I , µ) and g(q, p, µ) are analytic functions of I and (q, p) , respectively, and
also of the parameter vector µ , ∂w/∂I �= 0, I = (q2 + p2)/2. Denote ∂w/∂q = q∂w/∂I ,
∂w/∂p = p∂w/∂I . Consider the equation

∂w

∂p

∂W

∂q
− ∂w

∂q

∂W

∂p
+ g(q, p, µ) = ḡ

(
q2 + p2

2
, µ

)
, (5)

ḡ

(
q2 + p2

2
, µ

)
=

∫ 2π
0

g(q(ϕ, I), p(ϕ, I), µ) dϕ

∣∣∣∣
(ϕ=ϕ(q,p)I=I(q,p))

, (6)

g(q, p, µ) = ḡ

(
q2 + p2

2
, µ

)
− g̃(q, p, µ), (7)

where ḡ((q2+p2)/2, µ) is the average value of g(q, p, µ) over the angle and g̃(q, p, µ) denotes the
remaining part of g , which, for convenience, is taken with the minus sign.

Lemma 1. Equation (5) has a solution which is analytic in (q, p) and in the parameter µ . The
function W (q, p, µ) , given by the formula

W (q, p, µ) =
1

∂w/∂I

(
1

2

∫ ϕ
0

g̃(q(ψ, I), p(ψ, I), µ) dψ

+
1

2

∫ ϕ
π

g̃(q(ψ, I), p(ψ, I), µ) dψ

)∣∣∣∣
ϕ=ϕ(q,p),I=I(q,p)

, (8)

is an analytic solution of Eq. (5).

Remark. The general solution of Eq. (5) is of the form

W (q, p, µ) =

(
1

∂w/∂I

∫ ϕ
0

g̃(q(ψ, I), p(ψ, I), µ) dψ +W0(I , µ)

)∣∣∣∣
ϕ=ϕ(q,p),I=I(q,p)

,

where W0(I , µ) is the constant of integration. It is obtained by applying the method described in [2]
for the variables (q, p) . It will be shown that, by choosing the constant of integration according
to (8), we can integrate Eq. (5) in the neighborhood of the point q = 0, p = 0, preserving at the
same time the analyticity of its solution.

Proof. Let us perform the canonical change of variables:

q =
u+ iv√

2
, p =

v + iu√
2
.

Equation (5) takes the form

(
∂w

∂v

∂W

∂u
− ∂w

∂u

∂W

∂v

)
= g̃

(
u+ iv√

2
,
v + iu√

2
, µ

)
. (9)

Now let us expand g̃ in a Taylor series. The expansion is of the form

g̃

(
u+ iv√

2
,
v + iu√

2
, µ

)
=
∑
k,l∈N

g̃kl(µ)u
kvl

(k + l)!

k!l!
.
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Using the coordinates (ϕ, ρ): u = ρeiϕ , v = ρe−iϕ , we can easily integrate Eq. (9):

W =
ρ

∂w/∂ρ

(∫ ϕ
0

g̃

(
u+ iv√

2
,
v + iu√

2
, µ

)
dψ

)
+W0(ρ, µ)

=
ρ

∂w/∂ρ

( ∑
k,l∈N

g̃kl(µ)
uk(ϕ, ρ)vl(ϕ, ρ)

i(k − l)
(k + l)!

k!l!

−
∑
k,l∈N

g̃kl(µ)
|uv|(k+l)
i(k − l)

(k + l)!

k!l!

)
+W0(ρ, µ), (10)

where W0(ρ, µ) is the constant of integration.

Obviously, at the lower limit of integration a nonanalytic (∼ (uv) =
√
2I) dependence on I can

occur at the point (u = 0, v = 0). But we can choose W0(ρ, µ) so that the nonanalytic summand
disappears. Define W0 as follows:

W0(ρ, µ) =
ρ

∂w/∂ρ

(
1

2

∫ ϕ
π

g̃(u(ψ, ρ), v(ψ, ρ), µ) dψ − 1

2

∫ ϕ
0

g̃(u(ψ, ρ), v(ψ, ρ), µ) dψ

)

=
ρ

∂w/∂ρ

( ∑
k,l∈N

g̃kl(µ)
|uv|(k+l)
i(k − l)

(k + l)!

k!l!

)
. (11)

Obviously, the expression (11) “destroys” the nonanalytic term in (10), and the function W be-
comes an analytic function of I at the point I = 0. It is also obvious that ∂w/(ρ∂ρ) = ∂w/∂I .
The function W (q, p, µ) is analytic in µ by construction: at each step the dependence on the
parameter µ is analytic. Therefore, W is an analytic function of (q, p) and the parameter µ .
The lemma is proved. �

In the proof of the main theorem, we use the generating function to construct a canonical
transformation.

Suppose that S(q, P , y1 , z2 , ε) is an analytic function of all of its variables (q, P , y1 , z2) and
of a small parameter ε ∈ [0, ε0] ,

(q, p, y1 , y2) ∈ U , (Q, P , z1 , z2) ∈ U − δ, δ > 0, U ⊂ R2n+2 ;
U − δ is the set of points appearing in U together with their δ-neighborhoods [5]. Consider the
system of equations

Q = q + ε
∂S(q, P , y1 , z2 , ε)

∂P
, z1 = y1 + ε

∂S(q, P , y1 , z2 , ε)

∂z2
,

p = P + ε
∂S(q, P , y1 , z2 , ε)

∂q
, y2 = z2 + ε

∂S(q, P , y1 , z2 , ε)

∂y1
.

(12)

Suppose that max{|∂S/∂q|, |∂S/∂P |, |∂S/∂y1|, |∂S/∂z2|} < CU in the domain U .
Using the following lemma, we can prove that the transformation introduced above is a change

of variables and construct estimates required for corrections.

Lemma 2. If ε < δ/(2CU (n + 1)) , where n is the dimension of y1 , then system (12) has a
solution of the form

q = Q+ εQ1(Q, P , z1 , z2 , ε), y1 = z1 + εZ11 (Q, P , z1 , z2 , ε),

p = P + εP 1(Q, P , z1 , z2 , ε), y2 = z2 + εZ12 (Q, P , z1 , z2 , ε),
(13)

where Q1 , P 1 , Z11 , Z
1
2 are analytic functions in the domain U − δ × [0, ε0] with

max{|Q1|, |P 1|, |Z11 |, |Z12 |} < CU

in the domain U − δ .
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Proof. Let us express system (12) as

f1(q, p, y1 , y2 ; Q, P , z1 , z2 , ε) = 0, f3(q, p, y1 , y2 ; Q, P , z1 , z2 , ε) = 0,

f2(q, p, y1 , y2 ; Q, P , z1 , z2 , ε) = 0, f4(q, p, y1 , y2 ; Q, P , z1 , z2 , ε) = 0
(14)

and F = (f1 , f2 , f3 , f4) . By the implicit function theorem, system (14) is solvable with respect
to (Q, P , z1 , z2) if det |DF/D(q, p, y1 , y2)| �= 0, and its solution is analytic on U − δ× [0, ε0] . In
our case

det

∣∣∣∣ DF

D(q, p, y1 , y2)

∣∣∣∣ = det

∣∣∣∣∣∣∣∣
1 + ε

∂2S

∂P∂q
ε
∂2S

∂P∂y1

ε
∂2S

∂z2∂q
1 + ε

∂2S

∂z2∂y1

∣∣∣∣∣∣∣∣
,

where S(q, P , y1 , z2 , ε) is an analytic function of ε . Using Cauchy estimates for analytic func-
tions [4], we obtain

det

∣∣∣∣ DF

D(q, p, y1 , y2)

∣∣∣∣− 1 <

n+1∑
i=1

(
ε
CU
δ

)i
(n+ 1)!

(n+ 1− i)! <
∞∑
i=1

(
ε
CU
δ

(n+ 1)

)i
< 1. (15)

Therefore, if ε < δ/(2CU (n + 1)) , then inequality (15) is always satisfied in U and the system is
solvable in U . The uniqueness of the solution is proved in the same way as in [5]. The solution
must satisfy Eqs. (12), including the case ε = 0, so that it can be expressed as (13). Let us
substitute the solution into Eq. (12). From the equations for q and y1 , we obtain the following
expressions for Q1 and Z11 :

Q1 = −∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂P
, Z11 = −∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂z2
.

Therefore, |Q1| < C , |Z11 | < C . For p and y2 , we use the formulas

p = P + ε
∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂q
= P + ε

∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂Q
,

y2 = z2 + ε
∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂y1
= z2 + ε

∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂z1
.

Thus

P 1 =
∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂Q
, Z12 =

∂S(Q+ εQ1 , P , z1 + εZ11 , z2 , ε)

∂z1

and once again |P 1| < C , |Z12 | < C . The lemma is proved. �

4. PROOF OF THE MAIN THEOREM

We construct the change of variables as the composition of successively defined canonical trans-
formations yielding a dependence of the Hamiltonian on q and p of the form (q2 + p2)/2, of
progressively higher degree in ε .
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4.1. Procedure of successively defined changes of variables

Assume that the Hamiltonian obtained after i changes of variables is of the form

H = Hi
(
q2 + p2

2
, y1 , y2 , ε

)
+ εgi(q, p, y1 , y2 , ε), (16)

(q, y2 , p, y1) ∈ Di , Di = D1 − 2(i− 1)Kε, D +
δ

2
⊂ Di ⊂ D + δ, D1 = D +

3

4
δ.

At the (i + 1)st step, it is necessary to construct a canonical change of variables (see [2, 4, 5])
(q, p, y1 , y2)→ (Q, P , z1 , z2) ,

q = Q+ εQ1(Q, P , z1 , z2 , ε), y1 = z1 + εZ11 (Q, P , z1 , z2 , ε),

p = P + εP 1(Q, P , z1 , z2 , ε), y2 = z2 + εZ12 (Q, P , z1 , z2 , ε)
(17)

close to the equivalent one so that the Hamiltonian takes the form

H = Hi+1
(
Q2 + P 2

2
, z1 , z2 , ε

)
+ εgi+1(Q, P , z1 , z2 , ε),

Hi+1 = Hi + εḡi , gi+1 = O(εi+1),

(18)

where Hi+1 contains terms of order i + 1 in ε and the operation “bar” is defined in Sec. 3 (cf.
Eq. 6).

This can be performed using the generating function

S = S(q, P , y1 , z2 , ε) = qP + y1z2 + εS1(q, P , y1 , z2 , ε).

(Note that the transformation thus obtained will immediately be canonical.) All the other variables
can be expressed in terms of (q, P , y1 , z2) and S(q, P , y1 , z2):

Q = q + ε
∂S1(q, P , y1 , z2 , ε)

∂P
, z1 = y1 + ε

∂S1(q, P , y1 , z2 , ε)

∂z2
,

p = P + ε
∂S1(q, P , y1 , z2 , ε)

∂q
, y2 = z2 + ε

∂S1(q, P , y1 , z2 , ε)

∂y1
.

(19)

Let us substitute (19) into (16) and (18) and equate the Hamiltonians in these “mixed” old–new
variables:

Hi
((

q2 + (P + ε ∂S1/∂q)2

2

)
, y1 , z2 + ε

∂S1

∂y1
, ε

)
+ εgi

(
q, P + ε

∂S1

∂q
, y1 , z2 + ε

∂S1

∂y1
, ε

)

= Hi
((

(q + ε ∂S1/∂P )2 + P 2

2

)
, y1 + ε

∂S1

∂z2
, z2 , ε

)

+ εḡi

(
(q + ε ∂S1/∂P )2 + P 2

2
, y1 + ε

∂S1

∂z2
, z2 , ε

)
+ εgi+1

(
q + ε

∂S1

∂P
, P , y1 + ε

∂S1

∂z2
, z2 , ε

)
.

Expanding in a Taylor series, let us write out terms of identical order in ε and take into account
the relation ∂Hi/∂y1 = ∂Hi/∂z2 = O(ε):

Hi
(
q2 + P 2

2
, y1 , z2 , ε

)
= Hi

(
q2 + P 2

2
, y1 , z2 , ε

)
, (20)

∂Hi
∂P

∂S1

∂q
− ∂Hi

∂q

∂S1

∂P
+ gi(q, P , y1 , z2 , ε) = ḡi

(
q2 + P 2

2
, y1 , z2 , ε

)
. (21)
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Equation (21) can be integrated using Lemma 1:

S(q, P , y1 , z2 , ε) =W (q, P , µ), where µ = (y1 , z2 , ε).

The function S is an analytic function of all of its variables and of a small parameter ε , so we
can solve system (19) using Lemma 2. The solution is continuous and has continuous derivatives;
therefore, it determines the change of variables. We found the canonical transformation (17). On
substituting into (16), we obtain an explicit formula for Hi+1 and εgi+1 .

4.2. Estimates

Suppose that r steps have been made. The domain Di in which our Hamiltonian is considered
after i steps is defined as Di+1 = D1 − 2(i − 1)Kε , where D1 = D + (3/4)δ and K is a positive
constant to be determined later.

At the first step, it is readily shown that if (q, p, y1 , y2) ∈ D1 and ε is sufficiently small,
then (17) is defined and the following conditions are satisfied:

|g1|+ |∇g1| < k1ε, |Q1 + P 1 + Z11 + Z12 | < k2 , |H1 −H0| < k3ε,

where the {ki} are positive constants. Indeed, from (18) we readily see that g1 = O(ε2) . All the
other inequalities follow from the estimation procedure defined below.

Take the inductive conjecture that for i : 1 ≤ i ≤ r the following estimates are satisfied:

|Hi| < 2C, c <

∣∣∣∣∂Hi∂I

∣∣∣∣ < 2C, |∇gi|+ |gi| < Mi , Mi =
k1ε

2i−1
, (22)

where I = (q2 + p2)/2. Now we must find ε1 and K so that for 0 < ε < ε1 we have

(Q, P , z1 , z2) ∈ Dr+1 = Dr − 2Kε,

system (17) is defined with i = r , and the estimates (22) are satisfied with i = r + 1.
For ∂S1/∂ϕ , we have the following estimates from the definition of g̃i (7), Eq. (21) and the

form of the solution (8): ∣∣∣∣∂S
1

∂ϕ

∣∣∣∣ < |g̃i| ≤ |gi| < Mi.

Estimates for ∂S1/∂J , J = (q2 + P 2)/2, are obtained as follows:

∂S1

∂J
=

∂

∂J

(
1

∂Hi/∂J
(
1

2

∫ ϕ
0

g̃(ψ, J) dψ +
1

2

∫ ϕ
π

g̃(ψ, J) dψ

))

= −∂
2Hi
∂J2

S1

∂Hi/∂J +
1

∂Hi/∂J
∂

∂J

(
1

2

∫ ϕ
0

g̃(ψ, J) dψ +
1

2

∫ ϕ
π

g̃(ψ, J) dψ

)
. (23)

We can estimate ∂2Hi/∂J2:
∣∣∣∣∂
2Hi
∂J2

∣∣∣∣ <
∣∣∣∣∂
2H0
∂J2

∣∣∣∣+ ε

∣∣∣∣∂
2ḡ0
∂J2

∣∣∣∣+ ε

i∑
j=1

∣∣∣∣∂
2ḡj
∂J2

∣∣∣∣.

From the original conditions we can obtain |∂2H0/∂J2| < m1 and |∂2ḡ0/∂J2| < k4 , where the
{mi} are positive constants and are independent of the step i . For |∂2ḡj/∂J2| , we use Cauchy
estimates for the analytic functions [4]:

∣∣∣∣∂
2ḡi
∂J2

∣∣∣∣ < Mi
Kε

,

i∑
j=1

∣∣∣∣∂
2ḡj
∂J2

∣∣∣∣ <
i∑
j=1

k1ε

2j−1
1

Kε
<

2k1
K

.

MATHEMATICAL NOTES Vol. 70 No. 5 2001
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As a result, we obtain ∣∣∣∣∂
2Hi
∂J2

∣∣∣∣ < m1 + k4ε+
2k1
K

ε < k5. (24)

For ∂gi/∂J , from (22) we obtain the estimates

∣∣∣∣∂gi∂J
∣∣∣∣ =
∣∣∣∣ ∂ρ∂J
∣∣∣∣
∣∣∣∣∂gi∂ρ
∣∣∣∣ < 1

ρ

(∣∣∣∣∂gi∂P

∣∣∣∣+
∣∣∣∣∂gi∂q
∣∣∣∣
)
<

1

ρ
2Mi ,

where ρ2 = J .
Then the integral in (23) can be estimated as follows:

∣∣∣∣ 1

∂Hi/∂J
(
1

2

∫ ϕ
0

∂g̃(ψ, J)

∂J
dψ +

1

2

∫ ϕ
π

∂g̃(ψ, J)

∂J
dψ

)∣∣∣∣ < m2

(
4πMi
ρ

)
<
m3Mi
ρ

.

Further, the expression (23) can be estimated as

∣∣∣∣∂S
1

∂J

∣∣∣∣ <
(
k5 +

m3
ρ

)
Mi.

We have obtained estimates for ∂S1/∂ϕ and ∂S1/∂J and can now obtain estimates for ∂S1/∂q
and ∂S1/∂P :

∣∣∣∣∂S
1

∂P

∣∣∣∣ =
∣∣∣∣ ∂J∂P

∂S1

∂J
+
∂ϕ

∂P

∂S1

∂ϕ

∣∣∣∣ < ρ

(
k5 +

m3
ρ

)
Mi +

∣∣∣∣ q

q2 + P 2

∣∣∣∣|gi|
< (ρk5 +m3)Mi +

∣∣∣∣ q

q2 + P 2

∣∣∣∣
∣∣∣∣∂gi∂q q +

∂gi
∂P

P

∣∣∣∣
< (ρk5 +m3)Mi + 2Mi < m4Mi. (25)

Estimates for ∂S1/∂q are obtained in a similar way:

∣∣∣∣∂S
1

∂q

∣∣∣∣ < m5Mi ; (26)

The derivatives ∂S1/∂y1 and ∂S1/∂z2 can easily be estimated by differentiating gi in the defini-
tion of the solution for S: ∣∣∣∣∂S

1

∂y1

∣∣∣∣ < m6Mi ,

∣∣∣∣∂S
1

∂z2

∣∣∣∣ < m7Mi. (27)

Define k6 = max(m4 , m5 , m6 , m7) . The function gi+1 we can defined as follows:

|gi+1| =
∣∣∣∣ ε2
(
∂2Hi
∂P 2

)
θ

(
∂S1

∂q

)2
− ε

2

(
∂2Hi
∂q2

)
θ

(
∂S1

∂P

)2
+

(
∂Hi
∂z2

)
θ

∂S1

∂y1
−
(
∂Hi
∂y1

)
θ

∂S1

∂z2

+ ε

(
∂gi
∂P

)
θ

∂S1

∂q
− ε
(
∂ḡi
∂q

)
θ

∂S1

∂P
+ ε

(
∂gi
∂z2

)
θ

∂S1

∂y1
− ε
(
∂ḡi
∂y1

)
θ

∂S1

∂z2

∣∣∣∣,

where ( )θ denotes the derivative at the midpoint. Then gi+1 can be estimated using (22), (24)–
(27):

|gi+1| <
∣∣∣∣2εk5k6M

2
i

2
+ 2ε

(
k4 +

2k1
K

)
Mi + 4εk6M

2
i

∣∣∣∣ < k7Miε.
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Using Cauchy estimates [4], we obtain estimates for ∇gi+1:

|∇gi+1| <
∣∣∣∣4εk5k6M

2
i

2Kε
+ 2ε

(
k4 +

2k1
K

)
Mi
Kε

+ 8εk6
M2
i

Kε

∣∣∣∣ < k8Mi

(
ε+

1

K

)
.

Choosing K sufficiently large and ε sufficiently small, we obtain k7ε < 1/4 and k8(ε+1/K) < 1/4.
In that case

|gi+1|+ |∇gi+1| < Mi
2

=Mi+1

and the other inductive inequalities in (22) are valid for i = r+1. Thus we can make the required
changes of variables with the chosen K and ε as long as Dr is not empty. After the substitutions
we have r = (δ/(4Kε)) > k9/ε , obtaining

|gr|+ |∇gr| < k1ε

2r−1
< c2 exp

(
− 1

c1ε

)
,

and inequalities (4) are also satisfied.
The theorem is now proved.

5. ADDENDUM

When this paper was prepared for publication, at the conference dedicated to the 100th an-
niversary of I. G. Petrovskii we came across similar results obtained in parallel by V. Gelfreich and
L. Lerman [6].
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