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2 BRUNING AND LESCH
1. INTRODUCTION

1.A. The Compact Case. Let M be a compact oriented Riemannian
manifold of dimension m, E — M a hermitian vector bundle, and D a sym-
metric elliptic differential operator of order deZ, on C*® (E). The classical
results on existence, uniqueness, and regularity of solutions of D are among
the cornerstones of global analysis:

o Dis essentially self-adjoint in L*(E) with domain C* (E) (by slight
abuse of notation, we denote the closure of D by the same symbol);

(L1)
« Dis a Fredholm operator (of index 0), i.e. there are a bounded
operator J and compact operators K,, K;in L*(E) such that
bOo=1-K, QD=I1-K; (1.2)
« with respect to the Sobolev scale H (E') 1= 9((D*+ 174, s 20,
0 is of order —d and K, of order — (1.3)

The restriction to symmetric operators is not essential since we may
always consider a given elliptic operator together with its adjoint. But it is
a technical advantage for more refined questions like index theorems: We
bring in an isometric involution, &, on E which anticommutes with D on
C*(E) and hence produces a splitting

~ 0 b_ o 5 -
1)=<]3+ 0) on C®(E,)®CT(E_), (14)

with £, the + l-eigenbundle of @&. Then, by the well-known formula of
McKean—Singer we have

ind D, =tr[@e~P"], t>0. (1.5)

It is hence of great importance that (cf, e.g,, [17, Lemma 1.9.1])

« for any differential operator, P, of order p on C“(E},"we
asymptotic expansion

[P~ 1~ 04 Y a(D, P

Even though it took a lo
Atiyah-Singer Index Theorem [3.26
based on (1.4) and (1.5} {cf.
to be the most powerful tool for «
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that for the important class of twisted Dirac operators, with E=8®F,
S a spin bundle on M, this theorem reads

. ind JSJ,=f~ A1) A ch F. (1.7)
M

1.B. Compact Manifolds with Boundary. In this series of papers, we
want to present the extension of the main results quoted above ((1.1), (1.2),
(1.3), (1.6), (1.7)) to Dirac type operators on manifolds with boundary.

Though a good part of our results is more or less known, we obtain a
conceptually as well as technically transparent derivation of this theory,
with considerable simplifications and extensions in most cases. Moreover,
the functional analytic approach we have developed lends itself naturally to
substantial generalizations, e.g., to situations with non-compact bound-
aries. The basic inspiration for this approach is, of course, the beautiful
work of Atiyah et al. [2] which we generalize.

To explain our work in greater detail, we consider a compact hypersur-
face, N, in M which bounds an open subset, M, of M. We assume that N
is oriented as the boundary of M. We put E:=E M, D: =D} C®(M).
Then D is a first order elliptic differential operator on M, and symmetric
in L?(E) with domain C (E). Recall that D is an operator of Dirac type
[5, Definition 3.36; 17, Sect. 1.8.2] if D? has scalar principal symbol given
by the metric tensor, ie., D(&)*=|¢|? for each £e T*M. Note that this
class of operators is conmderably larger than the class of Dirac operators
associated to a Clifford connection (or twisted Dirac operators) [23,
Sect. IL5; 5, p. 119].

If D is of Dirac type then we obtain in a tubular neighbourhood, U, of
N in M a very simple separation of variables. In fact, U is isometric to
(—&o5 £0) X N with metric dx*@® ) gn(x), X € (—&o, &¢), x5 @ smooth family of
metrics on N, and with E,:=E | N we obtain the following result.

Lemvma 1.1. Let D be of Dirac type. As operator in L*(E} U) with
domain CE(E | U), D is unitarily equivalent to an operator of the form

Y (%+A(x)>+ V(x) ‘ (1.8)

in L*(( —&o, 8o), L2(Ey)) with domain C§ ((—&o, &), C*(Ex))-

Here, ye L(L*(Ey)) and A(x) is (the closure of) a symmetric elliptic
differential operator on Ey of first order; D(A(x))=:9 is independent
of x and A(x) depends smoothly on x € (—&o, &). Furthermore, Ve
C*((—&o, &), C*(End(Ey))).
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Moreover, the following relations hold.
Pr=-y P=-] (1.9a)
;@{@) 9 and yA(x) + A(x) y=0, x€(—&p, &) (1.9b)

If D is a Dirac operator associated to a Clifford connection, then A can be
cﬁasmmwchaway that V=0.

’ﬁm Iemma has been widely used for some time, especially in the
y t case (gy(x) =gx(0)) where it plays a prominent role in [2]. For
ﬁct metrics some care is needed to compute A(x) in each specific
g, [17, Sect. 3.10; 9, Sect. 51].

1l base our analysis on a thorough study of the operator equation

(1.3} with the structure properties (1.9); these propertzes will be assumed
throughout this paper. This approach is reasonable since the results we are
aiming at can be obtained from merging “interior analysis” (to be carried
out on M) with “boundary” analysis involving the operator (1.8).

Thz main difference between the analysis of D and D lies, of course,
in the fact that D is not essentially self-adjoint on Cg(E). Moreover, if
self-adjoint extensions of D exist, they may differ widely with respect to
existence, uniqueness, regularity, and heat trace expansions. It is, therefore,
our first task to characterize those self-adjoint extensions which behave
nicely with respect to existence, uniqueness, and regularity; this is the
purpose of the present paper.

1.C. Results for the Model Operator. Replacing in (1.8) L%(E,) by an
arbitrary Hilbert space, H, and C®(Ey) by the domain, H,, of a self-
adjoint operator 4 in H, we obtain the model operator

D=y<d%1€+A> in A :=L*R,, H) with domain CE (R, H,).
(1.10)

We will have to deal with variable coefficients but for the purpose of the
present introduction we will restrict to the constant coefficient case. Indeed;
for most of the problems dealt with in this paper operators with variable
coefficients merely appear as perturbations of (L.10); in view of the
Kato—Rellich Theorem. Furthermore, since ¥{x) is a bounded operator, it
can be ignored in the discussion of self-adjoint extensions of D.

On CP (R, , H;) we clearly have

(Df, 8)oe,— (/. Dg)or,= (f(O), 78(0)> & (L11)
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Now if D is symmetric on a subspace, 2°, of C3°(R_., H,) then it follows
from (1.11) that, with 7— P the orthogonal projection onto 9° in H, we
have

D Dp:= {feC3°([R+,Hl)|Pf(O)=O} (1.12a)
and
I—-P<y*Py. (1.12b)

Moreover, Dp o:=D [ Dp is a symmetric extension of D | 2°. If we assume
for a moment that H is of finite dimension then it is readily seen that Dp ,
is essentially self-adjoint in 4% if and only if

I— P=y*Py, ‘ (1.13)
Indeed, if D,,,, denotes (D [ CP((0, ), H,))* then
Q(Dmax)cHl,loc(R+aH): (114)

and (1.11) remains valid with D,,,, in place of D, for f, g€ D(D ).

An orthogonal projection, P, with (1.13) will be called y-symmetric; it is
easy to see that y-symmetric projections—and hence self-adjoint extensions
of D—exist if and only if

sign(iy [ ker 4) =0. (1.15)

As an illustration, note that iz does not admit self-adjoint extensions in
L*(R,).

Returning to the general case, we meet the essential difficulty that (1.14)
has no reasonable analogue. In particular, elements of 2(D,,.,) do not
admit H-valued restrictions to zero. To overcome this obstacle, we imitate
the Sobolev scales H (Ey) and H (E) and their interplay in our abstract
setting (which has some tradition in Analysis, cf, e.g., [26, Chap. XIII]).
H(Ey) is replaced by

H, :=H(4)

_ {@( |4]*), equipped with the graph norms for s > 0; (L16)

| a suitable dual of H_,(4), for s <0.

We also need

H, :=H00(A) = ﬂ H_‘.(A),

seR
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and

H_:=H_,(4):= ) H,(A4).
seR
Next we introduce, for neZ .,
#,:=H (R, A) 1= () He(Ry, H,_(4)), (1.17a)
k=0

where, for i, jeZ .,

H(R,, H(A4)):= {fe A, <%>lfe LR, , H/(4)), Oslgi}. (1.17b)

By interpolation, we then obtain a scale of Hilbert spaces, #, = #(R_. , 4),
seR, . Relations (1.17a), (1.17b) also make sense with R in place of R ;
in this way we obtain the scale #(R, 4). Generalizing the classical Trace
Theorem for Sobolev spaces, we have the following result about trace maps
which will allow the formulation of boundary conditions.

THeOREM 1.2. The map
rCe(R,, Hy)af~>f(0)eH,
extends by continuity to a map
re: A= Hy_yp, s>1/2,
and also to a map
¥ D(Dpax) = H_1pp-

Of course, the loss of regularity under the trace map requires the (con-
tinuous) extension of the boundary projections to the space H_,,. To deal
with this, we introduce operators of finite order on the Hilbert scale
(H,(A)),eg. Thus, a linear map, B: H,, - H, is an operator of order
pueR if for each se R there is a constant C(s) such that, for any xe H,,

IBx 7, < C(s) 1% 1, - (1.18)
In particular, B extends to an element of £(H,, H,_,) for all seR. The
totality of such operators forms the linear space Op*(4). Op~*(4):=
Nuer OP*(A4) is called the space of smoothing operators.

Thus we will have to require that the boundary projections are elements
of Op°(4). It follows easily from (1.18) that Op°(4) is a *-algebra but it
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is, in general, not spectrally invariant in the sense that Be Op°(4) and B
invertible in .#(H) implies B~' € Op°(4). To allow for a minimum of func-
tional constructions, we do need actually even more. We are forced to
restrict attention to certain subalgebras, ¥°(4) = Op®(4), satisfying the
following two conditions.

P°(4) is a =-subalgebra of Op°®(4) containing the smoothing
operators (1.19a) and with holomorphic functional calculus;

¥°(4) contains an orthogonal projection P, (4), satisfying
I-P, (4)= y*P  (4)y, P(o, oo)(A) <P, (4)< P[o, oo)(A)- (1.19b)

Recall that an algebra, of = #(H), has holomorphic functional calculus
if for Be &/ and f holomorphic in a neighbourhood of spec B (in £(H)) we
have f(B) € o/, where f(B) is defined by the Cauchy integral. Note also that
the existence of P, (A4) with (1.19b) is equivalent to (1.15) in the finite
dimensional case. In general, if 0 ¢ spec,, 4 then (1.15) is equivalent to the
existence of a spectral projection of A4 satisfying (1.19b).

Let us illustrate these conditions for the case where 4 is an elliptic dif-
ferential operator on C*(Ey) and N=0M as in Section 1.B. Then we have
H,(A)~ H,(Ey), and a natural choice of the algebra ¥°(4) is the algebra
of classical pseudodifferential operators on E, to be denoted by P& (Ey).
It follows from resuits of Seeley [31, Theorem 5] that YY(Ey) has
holomorphic functional calculus. Moreover, since 0 ¢ spec.,, 4, we have to
verify (1.15) to obtain a spectral projection, P, (4), of A4 fulfilling (1.19b);
but this is a consequence of the Cobordism Theorem. To see this, we split
H=: H_@®H_ according to the + i-eigenspaces of y. In view of (1.9),

A=<A0+ A0—>, (1.20)

and 4, is a Fredholm operator with index
ind 4, =dim ker 4 nker (y —i) —dim ker 4 nker (y+i). (1.21)

Now it is straightforward to check that there exists an orthogonal projec-
tion P, (A)eOp°(4) with the property (1.19b) if and only if

ind A, =0, (1.22)

and this follows from the Cobordism Theorem (cf. the discussion after
[12, Corollary 3.6]).

Again from Seeley’s work, we deduce that P, (4)e ¥Y(Ey) so (1.19a),
(1.19b) are satisfied in a natural way. :
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Now we are in the position to formulate our results for the model
operator. The main theorem of this article reads as follows.

TreoreM 1.3. Let H be a Hilbert space and A a self-adjoint operator in
H. Assume, moreover, that an algebra, W°(A) = Op°®(A), is given with the
properties (1.19a) and (1.19b).

Then D o with domain (1.12a) is essentially self-adjoint in L*(R ., H) for
any orthogonal projection P e P°(A) with the properties

y*Py=I—P (1.13)
and
(P, P (A)) is a Fredholm pair. (1.23)
The domain of the closure, Dp, of Dp ¢ is
P(Dp)={fe #(R,, 4) | P(0)=0}. (1.24)

Conversely, if A is discrete then the self-adjointness of D* | 9(Dp) implies
(1.13) and (1.23).

We note that the orthogonal projection P_(A)=I1—P_ (4)e ¥P°(4)
obviously does not satisfy (1.23). However, we will show in Proposi-
tion4.18 that Dp_(, is essentially self-adjoint with domain 2(Dp_(4,)
2{feH(R,, A) | Pf(0)=0} (cf. Proposition4.15 through 4.19 for a
detailed discussion of this phenomenon). Hence the “self-adjointness” in the
last statement of the Theorem cannot be replaced by “essentially self-
adjoint on Z,.”

The crucial notion of a Fredholm pair of projections is described in
Section 3; the proof of Theorem 1.3 takes up Sections 2 to 5; since we do
not see a direct way to prove it, we have to interpolate various notions of
“regularity” which accounts for the length of our presentation. At the end
of Section 5 we give the proof of Theorem 1.3 referring to the several inter-
mediate results.

We can view Theorem 1.3 as the analogue of (1.1) for the model
operator. Taking advantage of the self-adjointness of D, we can try to
satisfy (1.2} by setting

0 :=f AV dE(R), (1.25)
141 =1

where E(4) = Ep (4), 1€ R, denotes the spectral resolution of Dp.
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The regularity result in Theorem 4.13 together with the compactness
property expressed in Proposition 2.21 easily yields the following analogue
of (1.2} and (1.3).

THEOREM 1.4. We assume the situation of Theorem 1.3 and, in addition,
that A is discrete. For ¢ € Cy°(R) with ¢ =1 near 0 we put Q,:=¢Q. Then
Qy maps into 9(Dp) and there are compact operators, K, 4, in H# such that

DpQy=¢—K, 4  QyDp=¢—Kp,. (1.26)

Moreover, Q is of order —1 and K, 4 of order — oo with respect to the
Sobolev scale #,(R,, A), seR,.

1.D. Results for Manifolds with Boundary. 1t is not difficult to translate
Theorems 1.3 and 1.4 into statements on D and the Sobolev scales H,(E)
and H (E,), s€ R. We only need to make Lemma 1.1 somewhat more
explicit.

For this, we introduce, on U, the global coordinate

x(p):=dist(p, N), peU, (1.27)
and denote by
@: L*(E | U) - L*((—&o, &), L*(En)) (1.28)

the isometry implicit in Lemma 1.1. Then we have the properties

YDu=D((Yox)u), Ve C®(—eg, &), ucL*(EMU), (1.29a)
(6u)(0)=u [ N, ue C(E | U), (1.29b)
D((Yox) Hy(E)=yH(R, 4), YeCq(—&, &), seR, (1.29¢)

which allow us to localize near N and to transfer regularity.

To formulate the boundary conditions, we restrict attention to orthogonal
projections in L?(Ey) which are classical pseudodifferential operators; i.e.,
from now on we choose ¥°(4)=¥Y(Ey), as indicated above. In the
theory of boundary value problems for linear elliptic differential operators,
it was observed by Calderén [14] that a prominent role is played by an
idempotent, C* e Y9 (Ey), with the property that

C* (H,(Ey)) = N,(Ey)

:={ueH(Ey)|u=a[Nfor iic H,,(E) with Dii=0}
(1.30)
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for all se R;, C™ is called the Calderén projector (cf. [ 28, 307] a comprehen-
sive summary can be found in [ 19, Appendix]). One checks that

C*—P (A)e¥iEy (1.31)

which explains the importance of the Atiyah-Patodi-Singer boundary con-
dition. In order to obtain boundary conditions which define Fredholm
operators (as in (1.2), (1.3)), Seeley introduced the notion of “well-posed”
boundary condition [ 28] which we develop in Section 7 below. Combining
the results described so far with Theorem 7.2, we obtain the following
optimal version of Seeley’s result, as a consequence of our general theory.

THEOREM 1.5. Let M be a compact manifold with boundary as in Section
LB and let D be an operator of Dirac type (resp. a first order symmetric elliptic
differential operator of the form (1.8)) acting on sections of the hermitian
vector bundle E.

Let Pe W)(Ey) be an orthogonal projection in L*(Ey) satisfying (1.13).

Then Dp:=D*!Zp:={feH(EIM)|P(fIN)=0} is self-adjoint in
L*(E) if and only if P is well-posed in the sense of Seeley. This, in turn, is
equivalent to the fact that (P, P _(A)) is a Fredholm pair.

In this case there are a bounded operator, Q, and compact operators, K,,
K, in L*(E) such that Q maps into 9(Dp) and

DpQ=I-K, QDp=I—K,.

Moreover, with respect to the Sobolev scale H,(E), se R, Q is of order —1
and K, of order — 0.

The proof of this Theorem is presented at the end of Section 7.

LE. Further Results. Theorem 1.5 is the main application presented
here of the results in this paper but, by their abstract character, they apply
to more singular situations as well. This will be carried out in part III of
this series for covering spaces of compact manifolds with boundary.

Among the material presented here we still have to mention Section 6
where we deal with variable coefficients and also, in preparation for the
following parts, with the regularity theory of D2 Here the reader will find
the (fairly easy) arguments necessary to prove the results mentioned above
for variable coefficients (i.e., for the case where g,(x) is not constant near
x=0).

The other publications in this series will be devoted to the analogues of
the statements (1.6) and (1.7).

In part II, we will develop systematically the index theory of the operator
Y& + A(x)) (with suitable involutions) on finite or infinite intervals, with
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appropriate boundary conditions. Again, we will simplify and extend
various known results but also present some new theorems.

Part III will address index theorems on manifolds with boundary in full
generality, based on Theorem 1.5, and we will apply it to the “glueing” of
indices. Moreover, we use our techniques to give very simple proofs of
various results in index theory like the Cobordism Theorem, or the index
theorems of Callias and Ramachandran.

Part IV will derive the heat expansion for the operators described in
Theorem 1.5, using only the simple structure of the model operator. In this
context, variable coefficients present essential new difficulties. We will pay
special attention to the (spectrally defined) determinant of these operators
as a function on the Grassmannian of well-posed projections.

Some of the results of this and the forthcoming papers have been
announced in [11].

2. SOBOLEV SPACES AND OPERATOR ALGEBRAS ASSOCIATED
WITH SELF-ADJOINT OPERATORS

2.A. The Sobolev scale of an unbounded Operator. We consider a
Hilbert space, H. We fix a self-adjoint (unbounded) operator 4 in H and
introduce the dense subspace

Hy,:= () 2(14]°), (21
s=0

where 9 denotes the domain of an unbounded operator. For seR let
H,= H(A) be the completion of H,, with respect to the scalar product

$x ¥)o =T+ A% x, (I+ A7) p), (2.2)
such that Hy=H, H,=9(A), and we have embeddings iy st Hy < Hg of

norm at most 1, for s’ >s. Then (I+ A)** induces an isometry H, —» H,_,
for all 5, xR and we obtain a perfect pairing

H_ xH —C,

(%, )= Bo(x, y) := T+ 4*) ™" x, (I+ 4% y),,

(2.3)

with B.(x, y)=<x, y), for x, ye H,,. In particular

1B, (x, M <xl _s Iyl (2.4)
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If s 20 then |

H,=9(|4]°). (2.5)
The natural inclusion map H, < H, is compact if and only if 4 is discrete,
ie, if 4 has a compact resolvent in H. For se R, H, is a Hilbert space with

strong antidual H_,. H, becomes a Fréchet space under the seminorms
(” ’ ”n)neZs with dual Space H——oo = U.\'ER Hs'

DeFINITION 2.1. A linear map, T: H,, — H,, is called an operator of

order pe R, if T induces a continuous linear map from H, to H,_ > for all
s€ R, that is, if for any se R there is a constant C,(T') such that
ITxls_, < Co(T) lIxlls,  xeHg. (2.6)

T is called smoothing or of order — oo if it is of order u for all ueR. We
denote the set of all operators of order u by Op#(A4), — o0 <u < 0.

ProrosITION 2.2. (1) For TeOp#(A) let T* be the Hilbert space
adjoint of T considered as an (unbounded) operator in H with domain H .
Then H, < 9(T*) and T*:=T*H, is in Op*(A4). In particular, T* is
densely defined (resp. bounded if u <0). .

(2) Suppose that T, T" H, — H, are linear with

<T‘x’ y>=<x, Tty>’ x9yEHoo'
If T and T satisfy (2.6) for some 5;>0, jeZ , with lim,_, ,, s;= 00, then
both T and T* are in Op*(A).
(3) Let Te #(H,) with T(H))<H,_,, T*H)<H,_, for s>0 and
some fixed u<0. Then T'e Op*(A).

Proof. (1) We note first that (2.6) is equivalent to the estimate
KTx, p)I < C(T) Ixlls Illuees % yeHy,, seR (26)

This implies (1), with C(T*)=C,_(T).

(2) In (2), we have (2.6') for s;, jeZ,, by assumption on T, and
from the assumption on T* we derive (2.6") for —s;+y, je Z .. Hence the
assertion follows from complex interpolation.

(3) It follows from the Closed Graph Theorem that T and T™* map

H, continuously into H,_,, for s >0. Then (2) implies the assertion. ||
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Note that for any rapidly decreasing Borel function f R— R the
operator f(A) is smoothing. In particular, Py(4), the orthogonal projection
onto ker 4, is smoothing,

CoRrOLLARY 2.3. Op°(A) is a *-subalgebra of ¥(H,), the algebra of
bounded linear operators on H,,.
The smoothing operators Op~*(A) form a two-sided *-ideal in Op°(A4).

Proof. The product of operators of order 0 is an operator of order 0.
Thus Op®(4) is an algebra and by the previous Proposition it is a *-algebra.
The last statement is obvious. |

Lemma 2.4. Let TeOp*(A). If T(H,,) is finite-dimensional, then T is
smoothing.

Proof. Choose a basis (f;)¥_, for T(H_,) which is orthonormal in H.
We can write, for xe H,,,

N
Tx= ), Tdx) fi
i=1
with T;: H,, — C linear. It follows for se R that

I T2 () = IKTx, 3] SCo(T) Ixlls 1 fell s

But then T,(x)={x, e, for some e,;e H,. |

DeriNrrioN 2.5.  Slightly more generally, we call a family (H,)
(seR,) a scale of Hilbert spaces if

seR

(1) H,is a Hilbert space for each se R (seR.,),
(2) H, < H, embeds continuously for s<s',
(3) ifs<t, 0<@<1, then the complex interpolation space satisfies

[H,, H,]o= Ho¢+(1 —8)s»

(4) H,:= Nsew, H, is dense in H, for each .

In view of (2.3) the Sobolev scale of an unbounded self-adjoint operator
satisfies in addition

(5) the H,-scalar product restricted to H,, extends to an antidual
pairing between H, and H_, for all se R.

For the complex interpolation method we refer to [ 32, Sect. 4.2]. A scale
(H,)ser, satisfying (1)-(4) can be extended to a scale of Hilbert spaces
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parametrized over R by defining H_, to be the completion of H, with
respect to the norm

I<x, y>|

[xl| —si= sup ——, seR,.
yeH \{0} ”y”s *

This family will also satisfy (5). However, the scales of Sobolev spaces on
manifolds with boundary usually do not satisfy (5).

Thus, if A4 is a self-adjoint operator in the Hilbert space H, then
(H,(A)),cr is a scale of Hilbert spaces satisfying (5). The converse is
almost true: namely, if (H,),.g is a scale of Hilbert spaces satisfying (5),
then for each N>0 there exists a self-adjoint operator 4 in H, with
H,(A)=H, for |s|<N (cf. [25, Sect.1.2.1]). However, it is not clear
whether there exists such an A for all se R simultaneously. For example,
we will prove in Corollary 2.20 that (#(R,, 4))scr, satisfies (1)-(4),
hence it can be extended to a scale of Hilbert spaces parametrlzed over R.
However, we do not know of a self-adjoint operator B in L*(R ., H) such
that #(R ., A)=H(B) for all s>0.

The results of this section have obvious counterparts for a given scale of
Hilbert spaces (H,);cg. If the axiom (5) is not satisfied, duality arguments
are not possible and one has to restrict attention to s> 0.

A useful property of an algebra o = £(H) is its spectral invariance by
which we mean the assertion

Te o, Tinvertible in #(H) = T invertible in «. 2.7
A slightly stronger assumption is
o admits holomorphic functional calculus, (2.8)

by which we mean that for Te & and any function f, holomorphic in a
neighborhood of spec T, we have f(T)e /.

We proceed to show that Op®(4) is, in general, not spectrally invariant;
this will force us to restrict our attention to suitable subalgebras.

PROPOSITION 2.6. Let A be a discrete operator with eigenvalues |uo| <
lt1] <ol < -+ = 00. Assume that there exists a subsequence (Un)iez,

satisfying

0<).1< '__k—

P41

<A, <1 (2.9)

for some Ay, 4,.
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Then Op°(A) is not spectrally invariant in £(H,); ie., there exists an
operator T € Op®(A) which is invertible in Hy but with T ~' ¢ Op°(4).

Proof. Denote by (e,),. z, an orthonormal basis of H with Ade,=u,e,
Put for ¢=32 (&e,eH

= Z 4:"1c4-1e"k
k=0
K is in Op®(4) in view of (2.9). Furthermore, we have

1K sty s 1, = 1-

Hence for any 0 <1< 1 the operator I+ AK is invertible in H,.
Next consider &= ({,)nez, With

an{ U e

0 otherwise.

Inequality (2.9) implies & € H, for s < 5o <0 small enough. Since (I+ AK) &
=0 the operator (I+ AK) is not invertible in H, and thus (I+ 1K)~ '¢
Op°(4). |

Remark 2.7. (1) Gramsch [18, Ex. 6.2] gave the first example of a
discrete operator 4 such that Op®(4) is not spectrally invariant. Proposi-
tion 2.6 is a generalization of this.

(2) We conjecture that for discrete 4 the algebra Op°®(4) is never
spectrally invariant in $£(H,).!

(3) The condition (2.9) is fulfilled if
Hn~ Cn™

for some C, «>0. One just takes n;:=2*% Thus, if 4 is a self-adjoint
elliptic operator on a compact manifold then Op®(4) is not spectrally
invariant. :

2.B. Sobolev Spaces on R and R,_. Let

D=y<2‘i-+,4> (2.10)

as defined in (1.9), (1.10).

Since it will be necessary to distinguish between operators on the whole
line R and on the half line R, we denote by D the operator y(Z + 4) acting
on CP(R, H,) in L*(R, H). This is a symmetric operator in L*(R, H) with

! Note added in proof. The second named author has recently shown that this conjecture
is false.
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D?= —d?/dx?+ 4% Furthermore, we put D, := D[ CE(R%, H,,), R% :=
R, \{0}. D, is a symmetric operator in L*(R., H). If no confusion is
possible we will write D:=D ~

The unique self-adjoint extension of D will be the source of another
Sobolev scale which is crucial for our further study.

LemMMA 2.8. Al powers of D are essentially self-adjoint.

Proof. The assertion is easy to see for bounded 4. But D commutes
with the spectral projections of |4| so we can reduce the problem to this
case. |

By a slight abuse of notation, we identify D with its unique self-adjoint
extension. Next we define the Sobolev spaces

H (R, 4):=H, (D), seR. (2.11)

H(R, A) is a Hilbert space with norm
If12=] 10+ &+ a2 A1 (212)

where

JO=[ e dei=y_d

The following maps are continuous,

d
D,d , A: H(R, A) > H#_ (R, A), o13)

p, 1 AR, A) > H(R, 4),

where (Af)(x) 1= A(f(x)), (2/)(x) :=pf(x), f(x) :=f(—x).
Furthermore, we put #(R,, 4):={f R, | fe#(R, 4)}, seR, and
equip this space with the quotient Hilbert space structure, ie.,

£, = inf{|1F 1,1 IRy = f}. (2.14)

Clearly, there is a natural restriction map #(R, 4) — %”s(v R., A4)ofnorm 1.
(2.13) also holds with R, in place of R, except that maps H# (R, 4)
continuously into (R, 4).

We will prove in Corollary 2.20 below that the family (#(R.., 4))scr,
is a scale of Hilbert spaces hence, as noted after Definition 2.5, it can be
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extended to a scale of Hilbert spaces parametrized over R. We do not
claim, however, that (#(R, , 4)),.g is a scale of Hilbert spaces. Although
this is conceivable, the family (#(R, , 4)),cr Will certainly not satisfy
axiom (5). Hence, in the discussion of (R , 4) we will restrict ourselves
to the case s> 0. According to the remark after Definition 2.5 we could
extend (#(R ., 4)),s0 to a scale of Hilbert spaces satisfying (5). However,
we refrain from doing so for two reasons: first, this definition of Sobolev
spaces of negative order would differ from the usual definition on manifolds
with boundary [32, Sect.4.5] and, secondly, integration by parts shows
that the operator D would not be of order one for that scale. The spaces
H,(R ., A) for negative s will play no further role in the rest of the paper.

We note that for s> 0 we have an inclusion # (R, A) cL? (Re4y, Hy)
of norm less or equal 1. Indeed,

[ 17CoNs, dx=[ 1), de =] 1T+a27 o) a
R R R

<] 1+ er oy feora

=|Ifl2. (2.15)

Remark 2.9. The Sobolev spaces introduced above can be expressed in.
terms of standard Sobolev spaces. Namely, we put for a Hilbert space H

d J
Hu(Re H)i={f e PRy, ) ' (&) rer*®em.0< <}
= Hi(R4)) ®H, (2.16)

where ® denotes the Hilbert space tensor product. Then one infers from
(2.13) that for n 20

AR, 4)= () Hu(R, H,_,(4). @.17)

k=0

(cf. [27, p. 8]). Equation (2.17) is also true with R in place of R (this is
shown in Corollary 2.20 below), this fact, however, is less obvious.
Equation (2.17) can be improved using complex interpolation. We con-
sider Hilbert spaces E, F with self-adjoint operators B>71in E and C>1
in F. We put E' := 2(B), F':=2(C). Then B® C is a symmetric operator
on H,(B)® H,,(C)cE®F. This operator is essentially self-adjoint and
its unique self-adjoint extension will be denoted by B® C (cf. [10]). Since
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B> I we can define the gralph norm of B by ||x|| 5 := || Bx| z. If we define the
graph norms of C and B® C similarly we see that

PIBRC)=E'QF'. (2.18)

Furthermore, B® I and I&® C are commuting self-adjoint operators with
(B®(I® C)=B® C. Hence we have for any >0

(B® C)’=B°® C°. (2.19)
These considerations imply
[EQF,EQ®F 1,=9((B&®C)%)=2(B°® C%
= D(B)R D(C?) =[E, E'1,Q[F, F'ly. (220)

From the inequality 1(5°+ ¢*) <(b+c)*<2°(b°+¢°), for b, ¢, s 20, and
the Spectral Theorem we infer

[E,E1,QFNER[F,F'],=2(B'RI) IR C’)
=9(BRI+I®CY)
=[EQF,EQFNERF'], (221)

With these preparations we can prove:

PrOPOSITION 2.10. For s> 0 we have the identities

ﬂ H,(R(+), H, ,)= Hs(R(+)> Ho)n HO(R(+): H)), (2.22)

0tss

and
‘%’;(R’ A)=HS(R3 HO)mHO(R’ Hs)' (223)

Equation (2.23) is to be understood as an equality of Hilbert spaces; i.e., we
have norm estimates

CU S w2+ 1 1 rrycre, 22)
< 1 oeym, 4y < CULS N ez, 1) + 1S i, 22) (2.24)

for all fe #(R, A).
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Proof. 'We apply (2.18)(2.21) to the spaces H, (R, H,)=H(R,)
®H,. A consequence of (2.20) is the identity

[HS(RH)s H)), Hs’(R(+): H,)]e= Hypy —H)S(R(+): Hg (10 ) (2.25)

in particular
[LZ(R(-H’ Hs)a HS(R(+)a HO)]8=HBS(R(+)3 H(l —o)s)- (2-26)

This implies (2.22). In view of (2.17), (2.21), (2.26), and (2.22) we obtain
for 0<s<NeZ,

H(R, 4)=[L*(R, Ho), #y(R, A) 1w
=[L*(R, Hy), Hy(R, Ho) 0 Ho(R, Hy) 1w
= [L*(R, Ho), HW(R, Ho)1yw N [L*(R, Hy), Hy(R, Hy) 1w
=H (R, Hy) n Hy(R, H,). (2.27)

The first inequality in (2.24) follows from (2.15) and a similar calculation
for ||'”H,(R,Ho)- Since both norms ”'”H_,([R,HO)’ ||'||H,(R,Ho)+ ”'”HO(R,H,) are
Hilbert space norms on (R, 4), the first inequality in (2.24) implies the
second. ||

The same reasoning would work for R, in place of R if we knew that
(H(R,, A)),50 is a scale of Hilbert spaces; this fact is the content of
Corollary 2.20.

LemmA 2.11. Let f: Rxspec A —»C be a continuous function. Assume
that for fixed x € R the function f(x, -) is of polynomial growth.
(1) ForueH,, we have

J, 1 yuide<ul® sup | Ifte2)Pax. (228)

Aespec 4

(2) For ¢e C3°(IR; H,), the function x> f(x, A) ¢(x) is weakly
integrable over R and

IRCYrers

<lolfmm swp [ 1f(xA)Pdx. (229)

Aespec 4

By continuity, (1) extends to ue H and (2) extends to ¢ € L>(R, H).
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Proof. f(x, A) u is well-defined since f(x, -) is assumed to be of polyno-
mial growth.

(1) Let (E(4)),cg be the spectral resolution of 4. Then
[ 170 ayul? de= | Sl A) w, f(x, 4) ) d
R R
=] [ /e D dCE(G) u,uy dx

<lul* sup [ 1f0x ) dx.
R

Aespec 4

(2) For ue H,, we estimate with (1),
J. 176 4) (), wpl de< [ NoGo) | 1/, 4) wl
1/2
<10l [ 1A 4) i )

” 1/2
<lolnm o1 (s [ 1t D7ds)

Aespec A

which proves both the weak integrability and the estimate. |

TuEOREM 2.12 (Trace Theorem). (1) For s> 1/2 the restriction map
rCP(R, Hy)»Hy,  f£(0),

induces by continuity bounded linear operators r: #,(R, A) > H,_,andr, :
=”;([R+ H A) s Hs—l/2'

(2) Let s> —1/2. If f, (I+ A% 72 f' e #,(R, A), then we have the
estimate

1f O s—12 < CUS s+ T+ 4772 £7]]).

Proof. (1) For feCP(R, H,) we write f(0)= [ f(&) d¢ and estimate
with Lemma 2.11:
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2

1£(0)12_ /2 = “ J;R (I+ 422~ 14 f(f) dé

— ”J (I+A2)s/2—1/4 (62+I+A2)-S/2
R

2

X (E2+ T+ A% f(&) d¢

<sup [ (142 (141482~ & |12

A>0
=] a+eyas
This proves the assertion for #(R, 4). For #(R ., 4), it is an immediate

consequence of the definition of the quotient norm on #(R, 4).

(2) It suffices to prove this estimate for fe CP (R, H,). By (1) we
have

|If(0)||3—1/2 =[|(I+ 4%~ f(o)”%s+l)—-l/2
SC) [ I+ (14824 4H)
X (I+ &+ A% f(&)||2 d¢

=Cs) [ IU+E2+437 J(&)1P

+ C(s) JR 10T+ &2+ A% (14 4%) 72 Ef (&) )12 de
=&+ 1241712 1

The restriction map r is in fact surjective, more precisely:

PrOPOSITION 2.13. Let ueH, ,,, ¢ € H(R), and put T:=(I+ A*)*~.
Then the function

f(x):=o(xT) u

is in #,(R, A) and

||f”s< ”(o”s ”u”s—l/Z'
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In particular, if p(0)=1 we get a continuous right inverse to the restriction
map r by

e, (1)(x) 1= ¢o(xT) u.

Note that this result is valid without any restriction on s.

Proof. Assume first ¢ € #(R) and ueH,. Then fe #(R, H,) and
from the Spectral Theorem we see that

AE=T'¢(T Hu

With Lemma 2.11(1) we obtain
IF1 =] W&+ T2 T =T ) ul? &

<sup j (E24 22 A2~ |@(E/A) 2 E lul|>_ 1)

A>0"R
= ||(P||izs(ua) ||u||f__1/2.
Since #(R) is dense in H,(R) and H, in H,_,,, we reach the conclusion.

COROLLARY 2.14. Let s>1/2+k, keZ . Then the map
k k '
rO AR A @ Hy1pyy [ @ (DSN0),
j=0 j=0

is continuous and surjective. Moreover, there exists a continuous right inverse
€® to r'® with e® | @, H,, independent of s.

Proof. Clearly, by Theorem 2.12, r® exists and is continuous since
Dj: %(R+ H A) - ';ﬁ'——j(R+ ’ A)

is. It remains to construct e®.

We choose ¢ € C(R) with ¢ =1 near 0. Then in view of Proposition
2.13 we may choose e!” :=¢,,; this is independent of s> 1/2.

Inductively, we assume that we have constructed e®). Choose ¢ € C3° (R)
with

(p(j)(()):()’ Og.]sk’ ¢(k+1)(0)= 19
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and put for (Lo, v Ex41) € DFIS Ho1pp_j, s> 124k +1,

e(k+1)(€0’ sersy ék—i—l)
= (=p) T (T T 7571 €y — (D*H 1B (&, .oy £))(0))
+ e(k)(fo’ R ék)’

where T'=(I+ 4% as in Proposition 2.13. |

Lemma 2.15. (1) 2(D*)<{feLl*(R,, H)|f e L*(R,, H_,)}, and we
have a continuous restriction map r*: D(D*) - H_,,, f+s f(0).

(2) For f; € 2(D*), j=1, 2 we have

— (D% f) + (f1, Dfp) = limdp(ed +) 7 £1(0), (a4 +1) " £(0)).

If f,(0) e Hy), for some je {1,2} then

_(D*flsf2)+(flaD*f2)=B(—1)J+‘1/2(7f1(0)’ fz(o)) (2-30)
Proof. (1) For feP(D*) we have AfeL*(R,,H_,), hence f'€

L*(R,,H_;). We apply Theorem 2.12(2) with s=0 and obtain the
estimate

LA _ye < CCISN + 1T+ 4% 12 £7))
SCUSI+ 1T+ A2 2 D¥ ||+ [(I+ 4%) =2 pAf])
S CUSfI+ ID*f1).

(2) For fe2(D*) we put f,(x):=i(ed+i)~! f(x). Then we have
f:€D(D*)nL*(R,, H,) and f,eL*(R,, H). Moreover, f, —»f, D*f,=
(D*f)_. = D*f, as ¢ —» 0. Thus, integration by parts gives

—(D*, f2) + (f1, Do) =Em [(Dy,e f,0) = (1,05 D¥2, )]
=eli_{r:)<7f1,e(0), S2,.(0))

=lmdy(ed +0) 7" £1(0), (24 +1) 7" £,(0)).

To prove the last assertion we note that if f;(0) € Hy/, then lim,_,
i(ed+i)~" f,(0) =£;(0) in the H, p-topology and we reach the conclusion.
1
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A similar result holds for D* . This follows immediately from the identity

D*yf=—y(D% f)V. (231)

A consequence of the previous lemma is the following characterization of
the space #,(R .., 4).

ProposiTION 2.16.  Let f€ D((D%)"). Then fe #,(R ., A) if and only if
there exists a g € ((D*)*) with

(D7 gl0)=(D%, f)0), O0<j<n—1 (2.32)
Proof. If fe #,(R,, A) then there exists fe #,(R, 4) with fI R, =f

and one can take g:=f R_.
Conversely, assume that g e 2((D* )") satisfies (2.32). Put

S(x)s x=0,

g(x), x <0. (233)

) :={
For ¢e CP (R, Hy) we find using Lemma 2.15
|<.7, 5n¢>| = [K(DE)" £, ¢FR+>L2(IR+,H0)+ (DEY g, ¢ R_D rm_, 1yl
< Cf ”(P”LZ(R,HO),

thus fe 2((D")*) = #,(R, A) in view of Lemma 2.8. |

From these facts we get the following regularity result.

CoRrOLLARY 2.17 (1) For neZ . we have

(R, 4)

DjfEL2(R+,H),0<j<n,

s 2.34
(D{-f)(o)EHn—l/Z—jsOsjsn_l} ( )

={f:IR+ - H

(2) and

Hpii(Ry, A)={feL?R,, H)|Df e #,(R,, A), f(0)e H, 1}
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Proof. (1) The inclusion = follows from (2.13) and Corollary 2.14,
To prove the converse inclusion we pick f in the right hand side of (2.34)
and put

g(x) := e~V (f(0), (DF)(0), ..., (D"7I)(O))(x),  x<0.

Now the assertion follows from Proposition 2.16.
(2) This follows immediately from (1) by induction. [

ProposITION 2.18.  For a fixed integer N choose (a;)}_, such that
N
Y (=)a=1, [=0,1,..,N—1. (2.35)

For fe Cy ([0, o0), H,,) put

f(x), x20,

() —d N
(EZN): Y a4, f(—jx),  x<O.

j=1
Then E™ has a continuous extension to a map
H (R, Ho) nHo(R,, H) - #(R, 4),  for s<N-—1,

also denoted by E™,

Proof. The system (2.35) determines the a;, ..., ay uniquely.

Fix keZ,, k<N—1, and fe Hy(R,, Hy) n Hy(R, , H,). Then (2.35)
implies that the right and left derivatives of E®f coincide up to order k at
0. Hence E™ extends by continuity to a map

H (R, Ho) 0 Ho(R,,, Hy) - Hy (R, Hp) " Hy (R, Hy).

The assertion follows from complex interpolation and (2.23). |

Remark 2.19. The construction of the extension operator E™ used
here is standard by now (cf, e.g., [32, Sect. 4.4]). Seeley [29] refined the
construction of the sequence (g;) in (2.35) and showed that E® can indeed
be constructed in such a way that it is independent of N. Such an extension
operator extends C*-functions defined in a half space to C*-functions in
the whole space. As remarked by Seeley the method of construction of E®
can be traced back to work of L. Lichtenstein [24] and M. R. Hestenes
[20].
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CoroLLARY 2.20. (1) (H(R., A))scr, is a scale of Hilbert spaces:

(2) For seR, we have

.}?;(R_,_, A) =Hs(R+’ Ho) ﬁ}IO([R—M Hs) = n Ht(R+s Hs-—t)'

0<t<s

The norm estimates (2.24) hold with R, in place of R.
Thus, the operators EY) defined in Proposition 2.18 have unique con-
tinuous extensions

E™: (R, A) > #(R, 4), s<N—1,

satisfying (E™f)I R, = .

Proof. (1) Observe first that in view of (2.13) there is a continuous
inclusion map

H (R, A)cH (R, Ho) nHo(R,, Hy). (2.36)

Denote by R(f) :=fT R, the restriction map onto R . By definition we
have for s<t, 0e{0, 1]

Horr1—6)s(Ry, 4)
=R(%t+(l—9)s(R’ A))
=R([%(R’ A)a %(R: A)]H) c ['%’;(R+s A)’ %(R+a A)]G'

To prove the converse let N=¢+ 1 be an integer. Then, in view of (2.36)
and Proposition 2.18, for fe [#(R ., 4), #(R,, A)], we have EM(f) e
[A(R, 4), #(R, A)]g= Horrq -9 (R, 4) and thus f=REMf)e Hor4(1—0)s
(R, 4). This proves (1).

(2) It suffices to prove the converse inclusion of (2.36). Let fe
H(R,,H)nHy(R,,H). f N>s+1 is an integer then, as before, we
have E™f e #(R, 4) and thus f = R(EWf)e #(R, , A).

The norm estimates follow from the fact that two comparable Hilbert
space norms are equivalent and from the continuity of the inclusion
(236). 1

We denote by #?(H) the von Neumann—Schatten class of p-summable
operators in H. A linear map T: H — H from the Hilbert space H into the
Hilbert space A is in the class 7 if T*Te ¥??(H); this implies
TT* e P2 (H).
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ProposiTiON 221, If (A+i)~} is in £7(H) (compact), then for any
peCy(R) the map # (R, A) = L*(R, H), f> of, is of class £P+!
(compact).

Proof. W.lo.g we may assume supp@c(0,1). We consider the
operator o= —d>?/dx*+ 4% on

{feC>([0,11, H,)| f(0) = f(1)=0}.

Since (4 + i)' is compact, the operator 4 is discrete. By slight abuse of
notation let (e,)sespec4 be an orthonormal basis of H with Ae,=ae,.
Clearly, e, e H,,. Then

{\/ESin(nn')®ea}neN,aeA (237)

is an orthonormal basis of L?([0, 1], H). Furthermore,
7o(y/2 sin(nm) @ e,) = (n*n* +a?) /2 sin(nz.) @ e, (2.38)

Thus (2.37) is an orthonormal basis of eigenvectors of 7,. Hence 7, is
essentially self-adjoint and 7, is discrete. This implies that the map
PD(Ty) = L*([0, 1], H) is compact.

If (4+i)~'e #?(H) then

Y Y (14+n?r?4a?)-pR-12

n=1 aecspec 4

=]
<C ¥ [ @+e+1)y g
aespec 4 0

<C Y (@+1)"P< o,
aecspec 4

hence the map 2(7,) = L*([0, 1], H) is of class #»*Y72, Since the map
(R, A) S LXRH),  fiof,

factorizes through 2(7,) we conclude that #4(R.., 4) = L*(R, H), fi>
@f, is of class £#+V72 to0. Now the assertion follows from interpolation.

3. FREDHOLM PAIRS

3.A. Fredholm Pairs in a Hilbert Space. Let H be a Hilbert space. We
denote by #(H) the set of orthogonal projections on H.
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DernitioN 3.1, Let P, Qe #(H). The pair (P, Q) is called a Fredholm
pair if Q: im P —im Q is a Fredholm operator. The index of this operator
is denoted by ind(P, Q).

The pair (P, Q) will be called invertible if 0: im P —im Q is invertible.

We will see below that these definitions are symmetric in P and Q. The
notion of a Fredholm pair was introduced by Kato [22, IV 4.1]. Bojarski
[6] seems to be the first one who used this concept in the theory of elliptic
boundary value problems (cf. also Booss and Wojciechowski [7; 8,
Sect. 24]). Recently, the notion was systematically studied by Avron et al.
[41 who apparently were not aware of the earlier literature. The following
fact is proved by straightforward calculation [4, Sect.2]:

ProOPOSTION 3.2. Let P, Qe P(H). We put
X:=P—-0Q, Y:=I-P—-0, 31)
K:=2PQ—P—Q=—(2P—I) X=X(20-1). '

Then

(1) X?>4+Y>=1I, XY= —YX, and X* commutes with P and Q.
(2) KK*=K*K=X?, in particular, K is a normal operator. Moreover,

1Kl <|IP— @Il
(3) Z:=1I+K satisfies ZQ = PZ =PQ.

The following proposition gives a useful Fredholm criterion.

ProrosiTiON 3.3 [4, Proposition 3.1]. (P, Q) is a Fredholm pair if and
only if
+ 1 ¢spece (P — 0). (3.2)
In this case,
ker Onim P=ker (P—Q—1I),
imQnker P=ker(P—Q~+1),

(3.3)

in particular,
ind(P, Q) = dim ker (P — Q —I) — dim ker (P — Q + I). (34)

We see from (3.2) that, indeed, (P, Q) is a Fredholm pair if and only if
(Q, P) is.
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CoroLLARY 3.4. For P, Qe P(H) the following statements are equiv-
alent:

(1) IIP-Ql<l,
(2) +1¢spec(P—Q),
(3) (P, Q) is an invertible pair,

(4) KPQ)=P, r(PQ)=Q and PQ has closed range (where I and r
denote the left and right support, respectively).

Proof. The equivalence of (1) and (2) follows since P — Q is self-adjoint
and |P— Q| <1. The equivalence of (2) and (3) follows from Proposi-
tion 3.3 and the equivalence of (3) and (4) is well known. |

Since (1) is symmetric in P, Q this corollary implies that if (P, Q) is
invertible then (Q, P) is invertible, too.

Remark 3.5. We note for future reference that (P, Q) is Fredholm if
and only if the operator

T:=PQ+(I—P)I- Q) (3.5)
is a Fredholm operator. In this case
ker T'=ker T*=im Q nker P@ker Q nim P, (3.6)

hence (P, Q) is an invertible pair if and only if T is invertible. Note that
ind T is always zero.

We will now study deformations of Fredholm pairs.

LemMa 3.6. Let P, Qe #(H) with |P— Q| <1. Then Z,:=1+sK, 0<
s<1, with K from (3.1), is an invertible and normal operator, P,:=
Z,0Z;' e 2(H) and

P,=P, |P.—Q|<l, O0<s<l.

Proof. From Proposition 3.2 we infer that K is normal with |K|| <1,
hence Z, is normal and invertible. Furthermore, P, =ZQZ '=P.
Moreover,

Z}Z,=I+5(K+K*)+s*X? =T+ (s> —s) X* (3.7)
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commutes with P and Q. Since Z, is normal we have P, € Z(H). We thus
also have

P,=U,QU¢ (3.8)
with the unitary operator U,=Z (Z,Z*)™ 2
Since || Z,— Il < | K| <1 and since Z, is normal, the spectrum of U, is
contained in {zeC||z| =1, |arg z| <=/2—J} for some J > 0. Hence there
exists >0, 0 < g <1 such that for zespec U, we have
lz—el<gq.
Consequently,

1P,—Qll=I[U,—eL Q]I <g <l (39)

The last estimate uses the fact that for P e Z(H) and any bounded operator
Te #(H) we have the estimate

ICP, TH < 1T (3.10)
This follows immediately from
[P,T]=PT—TP=PI(I—P)—({—P)TP. (3.11)

The lemma is proved. ||

Next we consider an arbitrary Fredholm pair (P, Q), P, Qe #(H). We
put

P :=IPQ), O :=rPQ) (3.12)
P’I :=P'—P,, Qll — Q_ Q".

Note that P” is the orthogonal projection onto im P nker Q and Q" is the
orthogonal projection onto ker P nim Q.

Since PQ=P'Q' and since PQ has closed range we infer from
Corollary 3.4 that (P, Q') is an invertible pair, hence

|P—-Q'l <1 (3.13)
Furthermore, by construction

P<P, Q<0 (3.14)
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Let U,= U,(P, Q') be the family of unitaries constructed in the proof of
Lemma 3.6. Then

P =UQU}. (3.15)
Put
Q:=U}PU,=Q +U¥P'U,, (3.16)
and
P.:=UQU*  P.:=UQU*  0<s<l. (3.17)

Then one sees that |P,— 0|l <1, as in the proof Lemma 3.6, and since
Q— Q' is of finite rank, we see that (P,, @), 0<s<1, is a continuous
family of Fredholm pairs with

P,=0=0Q'+0", P,=P. (3.18)

Thus we have proved the following fact.

Lemva 3.7. Let (P, Q) € #(H) be a Fredholm pair. Then there is a con-
tinuous family of Fredholm pairs (P;, Q), 0<s<1, such that P,=P and
Py=Q= Q' + Q" with a finite rank projection 0" <(I— Q'). More precisely,
P.=U,QU¥ where U, is constructed from P', Q' as in the proof of
Lemma 3.6.

Consider the Fredholm pair (3, Q) constructed above. We have
dim(ker § nim Q) = dim(ker 0" nim Q")
=rank(Q") —rank(3"Q")

‘ ~ ~ (3.19)
dim(im Q nker Q) =dim(im Q" nker Q")
= rank(Q") — rank(0"Q"),
hence
ind(P, Q) =rank 0" —rank Q". (3.20)

If ind(P, @) =0 we can find a path of orthogonal projections of finite rank .
in the space (I — Q')(H) connecting Q" and Q”, and hence we can find a
path (P,, Q) of Fredholm pairs connecting (P, Q) with the pair (Q, Q).
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THEOREM 3.8. For fixed Q€ P(H) the connected components of
{PeP(H)|(P, Q) Fredholm}

are labeled by ind(P, Q).

More precisely, given P, P' € ?(H) such that the pairs (P, Q), (P', Q) are
Fredholm with the same index then there is a smooth family of unitary
operators U,, 0<t <1, such that

Uy=I UPU'=P,
(U,PU, Q) is Fredholm.

3.B. Fredholm Pairs of y-Symmetric Projections of Order 0. In the
discussion of self-adjoint extensions of D =p(£+ A) below we will need
projections P e #(H) which are y-symmetric in the sense that

yP=(I—P)7. (321)

In particular, we will require the existence of a specific projection with
(3.21):

Assumption 3.9. There is a spectral projection, P, (4), of 4 satisfying
(3.21) and, in addition,

Lo, w)(4) = P4 (4) 2 1 (0, ) (4)- (3.22)

We will write P, :=P_ (4) if no confusion is possible. Furthermore we
abbreviate

P_:=P_(A):=1—P_(4). (3.23)
In view of our basic structural assumptions we easily see the following fact.

PROPOSITION 3.10. A projection with (3.21) and (3.22) exists if and only
if the involution iy|ker A has signature 0 by which we mean that
ker(y+ i) nker A ~ker(y —i) N A. A unigue such projection exists if and
only if ker A =0.

Namely, if iy | ker 4 has signature 0 we may choose an isometry

U:ker(y +i)nker A > ker(y—i)n 4 (3.24)
and put
o ker A—ker 4, a:=<(2* g) (3.25)
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Then the orthogonal projection

I+
P (4,0) =10 up(4) D> (3.26)

satisfies Assumption 3.9 and it is clear that all such projections are in one—

one correspondence with unitaries U: ker(y -+ i) nker 4 - ker(y —i) n 4.
If iy has signature #0 on ker 4, we can often remedy this defect by

slightly extending H. Namely, w.lo.g. let ¥ be a Hilbert space with

ker(y+i)nker A ~(ker(y—i)n4)D V. (3.27)
If dim ker 4 < co then ¥V is finite-dimensional, too. We put
H:=HoV, A4A:=400, j:=y®i (3.28)

In view of (3.27) we have ker(j+ i) nker Z~z ker(7 — i) nker A. Hence
there exists a unitary operator a: ker 4 — ker 4 with o*>=1, 6§ = —07, and
thus the orthogonal projection

. I+
P, (d):=1, w)(A)@—z—a (3.29)

satisfies Assumption 3.9 with respect to A, 5.

DerFINITION 3.11. Let o = Op®(A4) be an operator algebra. We intro-
duce

: n _
?;(%):{Peg’(H)n&il(P’P+)lsaFred olmpa1rand}'

P is y-symmetric
Note that for Pe () we have y(P—P_)=(P . — P) 7, hence
ind(P, P, )=0. (3.30)

We want to derive the analogue of Theorem 3.8 for #(.«/). For this to
work we need an additional structural property of the algebra in question.
Thus from now on we consider algebras, ¥°(A4) = Op°(4), with the follow-
ing properties (cf. (1.19) in the Introduction):

PO(4) is a x-subalgebra of Op°(4) containing the smoothing
operators (3.31a) and with holomorphic functional calculus;

¥°(4) contains an orthogonal projection P, with the properties
stated (3.31b) in Assumption 3.9.
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Assuming (3.31a), in view of Proposition 3.10 property (3.31b) is
satisfied if we can find Ue ¥°(4) as in (3.24), since all finite spectral pro-
jections of 4 are smoothing,

Then the above construction goes through to yield the following result.

TueoREM 3.12. Z(¥°(A)) is path connected. More precisely, given P,
QeZ(¥°(A)) there is a path P, e P,(P°(A4)), 0<t<1, connecting P and
Q such that t+— P, is smooth for all H, -norms. P, can be chosen of the form
P,=U,P U where U,, for 0<t<1, is a smooth Sfamily of unitaries in
YO( A) satisfying

Up=1, Uy= U,
and
t> U, is smooth for all H -norms.

Proof. Let X=P-P,, Y=I-P—P,, K=2PP, —P—P, (cf
Proposition 3.2). Note the relations

YX=-Xy, yY=-1y

(3.32)
yK= Ky, X, Y, KeP°(A).
Furthermore, Z,= I+ sKe ¥°(A4) and commutes with y. Thus if [P—P_|
<1 then in view of Lemma 3.6 and (3.8)

P,=ZP,Z'=UP, U¥, U,=2Z/(2,Z%) V2 (3.33)

is the desired family of projections in #(%°(A4)) connecting P and P,
Here, we only used the spectral invariance of ¥°(4).

Next we consider a general P e 22(¥°(4)). To show that there is a path
from P to P, having the desired properties we repeat the construction
(3.12)~(3.18). The invariance under holomorphic functional calculus of
¥°(4) implies P" € ¥°(A4) and thus P’ e ¥°(A4). To see this note that P”
is the orthogonal projection onto im P ker P, =ker(P—P, —I) and
0¢ spece,, (P — P, —I) by Proposition 3.3. Thus P” is an analytic function
of P— P, —Ie ¥°(4). Analogously, we have P',, P", e ¥°(4).

However, since P'<P, it is y-symmetric only if P”=0, hence P'¢
Z(P°(4)) if P" #0. We next show that P’ + P”, e (¥°(4)).

P, is the orthogonal projection onto im P, nker P=ker(I—P )N
im(I— P), thus by symmetry

yP"y* = P" . (3.34)
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Since im P’ L im P’, P’ + P”, € ¥°(4) is an orthogonal projection and,
by (3.34), it is y-symmetric. Furthermore, by (3.13)

(P +PY)—P, | =P —P,]<], (3.35)

thus (P'+ P’ ,P,) is an invertible pair. Thus by the first part of this
proof, there is a path from P'+ P”, to P, in #(¥°(A4)) with the desired -
properties.

As similar argument as in the proof of Theorem 3.8 now shows that there
also is such a path from P'+ P” to P. |

4. REGULARITY FOR THE MODEL OPERATOR

In this section we study the operator D= D, and the associated bound-
ary value problems on R .
In view of (2.30) it is natural to consider, for an orthogonal projection

PeOp°(4), the operator D, given by
Q(DP):={ue%(R+,A)|Pu(0)=0}; @1)
Dp:=D*19(D,). '

Since P is of order zero and, by Lemma 2.15, #(0) € H_,, for ue 2(D*) we

have a natural extension of Dp (which we denote by Dp ..) given_by
D(Dp, max) := {ue D(D*) | Pu(0) =0}, 42)
DP,max:=D*r'9(DP,max)' .

We are mainly interested in those projections which render D, self-adjoint.
To characterize them, we prepare two results.

ProrosiTiON 4.1. (1) D, is symmetric if and only if I— P < yPy*.
(2) Let Py, P, be orthogonal projections in Op°(A). Then P, <P,
(Py # P,) implies Dp, = Dp (Dp, #Dp,).

Proof. (1) By Lemma 2.15, we have for u, ve 2(Dp)
(=Dpu, v)+ (4, Dpv) = {yu(0), v(0) .
Thus Dp is symmetric if and only if for all &, yeker(P H,,,)
e > =0,

the “only if” part following from Proposition 2.13. But this is easily seen to
be equivalent to 7— P < pPy*.
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(2) P,<P,implies Dp = Dp.If Py<P;, Py #P,, then we choose
Ee(Hy,\{0}) n(ker P,\ker P;). By Proposition2.13, we can find fe
H (R, A) with f(0)=¢. Then fe (D )\2(Dp). 1

We will show in Theorem 4.3 below that if (I— P) £ y*Py then Dp is not
self-adjoint.
We abbreviate for ae R

P_,:= 1(—c;o,a)(A); Psa = 1(——oo,a](A)’

(4.3)
P.,i=I-P_, Po,:=I-P_,.

LemMa 4.2, Let r*: 9(D*)— H_,, be the restriction map from Lemma
2.15. We have

r*(D(D*)) =P~ o(H_12) ® P <o(H1p), (44a)

in particular
r(D(Dp_ , max)) =P <o(Hyp) < Hypp. (4.4b)
Proof. We choose ye C¢°(R), =1 near 0, and put for fe2(Dp_, )
g(x) :==yx(x) e~ **f(0), x<0. (4.5)

Then ge P(D_)*, g(0)= f(0), so from Proposition2.16 we infer fe
# (R, A) and hence f(0) € H,;,. This proves r*(ioZ(DPw’m)) c Hyp.

To prove (4.4a) let feP(D*). Then by Lemma 2.15 we have f(0)e
H_,,,. Moreover, x> P .o f(x) lies in 2(Dp_, ) and hence by the first
part of the proof we have P ,f(0) € Hyp,.

Conversely, let € P o(Hyp), n€P <o(H,p) be given. By Proposition
2.13 there exists fe # (R, A) with f(0)=#. Since P ;¢ =0 we see that
(4.5), with & in place of £(0), defines, for x >0, a function g in 2(D*) with
g(0)=¢. Thus é+5=r*(f +g) and we reach the conclusion. [i

Now we present the main result of this section.

THEOREM 4.3. Let PeOp°(A4) be an orthogonal projection.
(1) DT’ZDV“‘(I—P)r,max-
(2) The following statements are equivalent:
(i) Dp=Dp max- (4.6a)
(i) (D(Dp max)) = Hip. (4.6b)
(i) IféeH_,,satisfies PE=0and P o€ H,y ),
then also £ e H . (4.6¢)
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Proof. (1) For feD(D,y-—pysmax) and gePD(Dp) we have by
Lemma 2.15(2)

—(D*, &)+ (f, D*g) = B12(7£(0), £(0))
= By, (Pyf(0), (I—P) £(0))=0, (47)

since the last written sesquilinear form vanishes identically on H,, X H,,
and extends to H_,;, x H,, by continuity. Hence D u;_p),, max = DF-

To prove D% < D,u;s_p)ymax We consider fe 2P(D}). Since D =D¥,
(4.7) gives for all ge Z(Dp)

0= B,,(2/(0), g(0)) = B2 ((I— P) y£(0), &(0)). (4.8)

By Corollary 2.14, this implies y*(I— P) yf(0) =0 and hence

fE @(Dy‘(I—P) Ps max)'

(2) (i)=>(ii). This follows immediately from the definition of Dp
and the Trace Theorem 2.12.

(ii=(i). In view of Corollary 2.17(1), (ii) implies that D(D p max)
c # (R, , 4) and thus (i).

(ii=(iii). Let éeH_yp, PE=0, P_olecH,;. Then, in view of
Lemma 4.2, &er*(2(D*)); hence there exists fe 2(D*) with f(0)=¢.
Since P& =0 we have f € D(Dp, na,) and thus = f(0) e Hyp.

(iti) = (ii). If f€D(Dp mas) then, again by Lemma 4.2, we have
f(0)eH_,p,, and P _of(0) e H,,; since Pf(0)=0, (iii) implies f(0) € H,,.

|

Theorem 4.3 motivates the following terminology.

DEFINITION 4.4. P is called regular (with respect to D), if one of the
equivalent conditions (4.6) is fulfilled.

Inductively, we call P n-regular (with respect to D) for n>2, if P is
(n— 1)-regular and

D(D}) < #,(R., A).

Note that, for a regular projection, the restriction map r*: 2(Dp) > Hy),
is continuous.
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Remark 45. One should note that n-regularity is a relative notion, ie.,
in view of (4.6¢) it depends on P, . More precisely, we should therefore
refer to the n-regular pair (P, P ). However, since 4 is fixed once and for
all we avoid this notion for simplicity. Referring to the pair (P, P ) cannot
be avoided, however, in the case of “Fredholmness” (Definition 3.1) and
“ellipticity” (Definition 4.9). The reason is that the pair (P, P, ) can be
Fredholm (resp. elliptic) without P having this property.

We note two consequences of Theorem 4.3.
COROLLARY 4.6. Let PeOp°(A) be an orthogonal projection. Then Dp

is self-adjoint if and only if P is regular and y-symmetric (in the sense of
(3.21)).

COROLLARY 4.7. Let PeOp°(A) be an orthogonal projection. Then
P :={ueCg([0, 00), Hy) | Pu(0) =0}

is a core for Dp.

Proof. For the moment we put T:=Dp[ 9. Certainly, we have Dc
T<Dp and thus D} c T* = D* We will show T* < DE= D1 pyy, maxs
then T* = D% and hence T=T**=D*%=Dp.

For fe 9(T*) and ge 2(T) we find as in the previous proof

Bi2(7£(0), g(0)) =0.

Since ker y*(I—P)ynH, is dense in kery*(/—P)y this implies
y*(I—P) 1(0) =0 and thus £ € D(Der_py , mee) = 2(D3)- |

We add a few comments on why the equivalent conditions of
Theorem 4.3 should be referred to as “regularity.”
Consider the equation

D*f =g (49)

with £, g e L*(R,., H). In general, (4.9) does not imply fe # (R, , 4), but
Theorem 4.3 tells us that

D*f=g5 f;gELz(R+5H):
PA0)=0 |

(4.10)

implies fe# (R, ) if and only if P is regular. n-regularity can be
characterized similarly:
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PROPOSITION 4.8. An orthogonal projection PeOp°(A) is n-regular if
and only if the relations

D*f=g€3ﬁc(R+,A), fELZ(R+5H)3
Pf(0)=0,

(4.11)

imply fe #, (R, 4), forkeZ ,0<k<n—1

Proof. Let P be a n-regular projection and consider the relations (4.11)
for some k. Put

fi:=f—e**D(0, (DF)O), .. (D)(0)),

where e®*+1 is defined in Corollary 2.14.

f, is well-defined since Df € #,(R, , 4). By construction, f; € 2(D3+),
which is contained in #.,,(R., 4) since P is n-regular. But since
(Df)0)eHyy 1oy 1< j<k, we have e®*1(0, (Df)(0), ... (D¥)(0)) e
H1(R,, A) hence fe #,1(R,, 4). _

Conversely, if (4.11) implies fes  (R,,4), 0<I<n—1, then
obviously 2(D%) = #, (R, , 4), 1<k <n, and hence P is n-regular. [

Of considerable importance are those projections which are n-regular for
allneZ,.

DerINITION 4.9. Let PeOp®(4) be an orthogonal projection. The pair
(P, P ) is called elliptic if P is n-regular for allneZ, .

In Proposition 5.3 we will express ellipticity completely in terms of the
orthogonal projections P, P such that it could equally well be defined for
any pair (P, Q) of orthogonal projections in 0p°(4).

Now consider an orthogonal projection P e Op®(A4) such that (P, P, ) is
elliptic. Can ke Z . in Proposition 4.8 be replaced by any nonnegative real
number? We are going to show that if D is self-adjoint, then this is indeed
true and follows from complex interpolation. But since we will need the
argument again below we state the result in the more general framework
of scales of Hilbert spaces:

DermNiTION 4.10.  Let (Hy)sem,, be a scale of Hilbert spaces and let
BeOp*:= Op"((H,)SE[RH)). B is called regular at 5,20 if

ue Hy, Bue H,, or BueH, =ueH, ,,. (4.12)
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If the scale is parametrized over R and satisfies axiom (5) (cf. Defini-
tion 2.5), then B is called elliptic if for all se R we have

ueH_,, BueH, or BueH;=ueH,,,. (4.13)

For the definition of B see Proposition 2.2(1).

ProposITION 4.11. Let (H,),.r be a scale of Hilbert spaces satisfying
axiom (5). Let Be Op* for some u>1 and assume that B is self-adjoint as
an operator in Hy. Then the following statements are equivalent:

(i) Bis regular at allne”? ., '
(i) (B—i)~'eOp™
(ili) B is elliptic.

If we have only u>0 then (ii) and (iii) are still equivalent.

Remark 4.12. (1) If one and hence all of the three equivalent condi-
tions are fulfilled, then we infer in particular that the domain of B,
considered as a self-adjoint operator in H,, is H,,.

(2) Let BeOp*, p>0, be symmetric, ie., {Bu, v) ={u, Bv) for u,
ve H,. If B is regular at 0, then B: H, — H, is a self-adjoint operator in
H,. Since H, is dense in H;, B} H,, is essentially self-adjoint.

(3) If H,=H,(A) then the operators 4 and |4]% «>0, are elliptic.
This follows from the previous proposition and the fact that for se R the
operators

(I+141%) 2 (A~ D)7 T+ 4P,
(I+14)%) 2 (J4]* 1)~ (T + |4))*
are bounded in H,. The latter follows from the Spectral Theorem.

Proof. (iii)=>(i). This is clear.
(i)=>(ii). LetveH,, neZ,. Then u:=(B+i)~'ve H, and thus

Bu=U—T—quH0.

Since x> 1, the regularity at 0 implies u € H, and iterating this argument
shows v+ iue H,. Then (i) implies u € H,H_”

We have proved that (B+i)~" maps H, into H,,, for all neZ . Now
(ii) follows from Proposition 2.2.

(ii) = (iii). We note first that (B+i)~"' maps H_,, bijectively onto
H_, with inverse B+ i Namely, since B is self-adjoint, (B+i}(B% i)~ nh
Ho—ld and (B+i)~! (B+ i) H,=id,. Since H,, = H; = Hyand (B +i)*!
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leaves H,, invariant, we have (B+i)*'(BFi)¥'|H,=idy_ and by
duality these identities also hold for H_..
Let ueH_, and v:=Bue H . We have ue H, for some e R and

u= (B'_i)—l v— i(B_ i)_l uEHmin(s’ t)+[l’
from (ii). Iterating this argument we find ue H,,. |

Now assume that D, is self-adjoint. Then the previous result does not
apply directly to D, since D is not an operator of order 1 with respect to
the scale (# (R, 4));cr,: the problem is that Dp is not defined on
#, (R, A). However, the proof of the previous result shows that the
following slight modification of Proposition 4.11 is true.

PrROPOSITION 4.11".  Let (H,);cn, be a scale of Hilbert spaces and let
BeOp*, u>1. Let B be a selfad]omt operator in H, with B} 9(B)=B.
Then the following statements are equivalent:

(i) ForallneZ.:ucPB), BucH,=>uecH,,,,
(i) (B—i)~'eOp™,
(iii) for all seR,: ucP(B), Bue H,=ueH,,,.

In view of (2.13), D may be considered as an operator of order 1 with
respect to the scale of Hilbert spaces (#(R., 4));er,- Then Proposi-

tion4.11" applies to Dp. Summing up we have proved the following
regularity theorem.

THEOREM 4.13 (Regularity Theorem). Let PeOp°(A4) be a y-symmetric
orthogonal projection. The pair (P, P ) is elliptic if and only if for all se R
the relations

D¥f=ge #(R,,4), [feL*(R,,H),
Pf(0)=0,
imply fe # ., (R, 4).

(4.14)

Proof. The “if” part follows from Proposition 4.8. For the “only if”
part it remains to note that D is self-adjoint, in view of Corollary 4.6.
Hence the previous discussion applies. [

The Regularity Theorem allows to improve Corollary 2.17(2).

ProPOSITION 4.14. For all s >0 we have

H 1 (Ry, A)={feL*(R,, H) | Df e #(R,, A), (0) e H,yy1p}.  (415)
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Proof. Let f be in the right hand side of (4.15). Then by Proposi-
tion 2.13 we choose ge # (R, , A) with g(0)= f(0) and put f, :=f—g.
Then Df, e #,(R_, 4), Pf1(0)=0 and hence by the Regularity Theorem
we have f, e #,, (R, , 4) and thus fe# (R, 4). |

This argument relies on the existence of at least one elliptic pair (P, P ).
In Proposition 5.1 below we will see that the pair (P, P, ) indeed is
elliptic.

Let P e Op#(4) be an orthogonal projection such that D, is self-adjoint.
Then 2(D3)< #,(R,, A) already implies that P is n-regular. Namely,
from complex interpolation we infer for 0 <k <n

@(DIIC’) = [%(R+s A), g(D;)]k/n < [‘%(R+: A)s %(R*_, A)]k/n
=#(R, , A). (4.16)
Corollary 4.6 asserts that Dp is self-adjoint if and only if P is regular and
y-symmetric. By Theorem 4.3(2), Dp .= Dp is also self-adjoint in this
case. We now want to show that Dp .., may be self-adjoint also for
non-regular y-symmetric projections. We do not treat the description of

self-adjoint extensions in full generality, we have singled out only the most
tractable class of projections.

ProPOSITION 4.15. Let PeOp°®(A) be a y-symmetric orthogonal projec-
tion. If there is C> 0 such that for ee (0, 1)

|(I = PYI+6°4%) " Pl i, <, (4.17)

then Dp .., is self-adjoint.

Proof. In view of Theorem 4.3(1), Dp max is a closed operator with
Dp pax ®Dp=D3¥ ... Hence we need to show that Dp ., is symmetric.
Let f, g € D(Dp, max)- Then using Lemma 2.15 we find

_(DP,ma.xf; g)+ (f; DP,maxg)

=lim B_,,((I+ &?4%) =" y(I- P) £(0), (1 P) g(0))

=lim B_,,((— P)(I+¢°4%) ~1 Pyf(0), g(0)).

In H, the family (I+&24%)~! converges to I strongly, as &— 0. Since
(I+24%)~! commutes with |4| we also have lim,_ o(I+&24%)"!=1
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strongly in H,, for each seR. In particular, for {e H,, we have
lim, , o(I— P)(I+&*4%)~' PE=0 in H,;,. Hence

(I—P)I+&4*) ' Pe ¥(H_,;, Hy)p)

converges to 0 as ¢— 0, pointwise on a dense subset of H_,,. Conse-
quently, the uniform norm bound implies the strong convergence, and
Dp oy is symmetric. ||

We note some criteria for (I— P)(I+&°4%)~' Pe L(H_,;, H,;;) to be
bounded. First, boundedness is obvious if P and 42 commute. More
generally, we have

Lemma 4.16.  If the commutator [ P, A*] is in Op*(A), then (4.17) holds
and hence Dp ., is self-adjoint.

Proof. Using the identity
(I—PYT+&*4>) "' P=c>(I— P)(I+&%4%) "1 [P, A2 ]I+ &%4%) 7},
we estimate

I(I—P)(I+&*4%) ™1 P”H_l/z-»Hl/z
SNI= Pl & ILP, AXVA+ 6240 M, o,
<M =Pl i, 1P, A2 2y,
x & [(I+£°4%) M r_ ey,

<C |

If we restrict to P e 2(¥°(4)), with #°(4) an algebra satisfying (3.31),
then [P, 4%2] e Op*(4) is implied by the following condition prominent in
Alain Connes’ Noncommutative Differential Geometry:

(H, |A|, P°(A)) forms a special triple. (4.18)

Indeed, from [|4], B] bounded for Be ¥°(4), we deduce [|4|,B]e
Op°(4) as in [15, Lemma 1], wherefrom we easily derive [P, 4*]e
Op!(4). (4.18) will also be important in deriving the heat asymptotics in
part IV of this work. This is plausible from the fact that for 4 a classical
pseudo differential operator with scalar principal symbol on a compact
manifold, the algebra of classical pseudodifferential operators of order 0
satisfies (4.18).
We record the result.
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ProrosITION 4.17. If (H, |A|, Y°(A)) is a spectral triple, then Dp ., is
self-adjoint for any Pe Z(¥°(A)).

Finally, we discuss the existence of non-regular P e Op°®(4).

PROPOSITION 4.18. Dp  pmay is self-adjoint; but if A is unbounded, then
P _ is not regular.

Proof. Since [P_, A*] =0, the self-adjointness of Dp ., follows from
Lemma 4.16.

Since A4 is unbounded and anticommutes with y the projection P ,(4)
is of oo rank. Hence we can find u= P, ,ue H\H,;,. Then the function

f(x):=e*y

is in D(Dp  max) but f(0)¢H,p; in view of (4.6b), P_ cannot be
regular. |

More generally, we can prove:

PrROPOSITION 4.19. Let A be unbounded. If P is regular and [P, Al e
Op°(A), then I— P is not regular. However, in this case D;_p ., is self-
adjoint.

Proof. Let fe2(D*). Since [P, 41€O0p°(4) one checks that Pf,
(I—P) fe 2(D*). Hence Pfe D(D;_p max)s (I—P) f€ D(Dp max). f I—P
were regular we would get 2(D*)c (R, 4). In view of the Trace
Theorem 2.12 this contradicts (4.4).

The self-adjointness of D;_p . follows from Lemma4.16 since
[P,A*]=[P,A] A+ A[P, A1eOp'(4). 1

5. CRITERIA FOR REGULARITY

We now study more closely the notion of n-regularity established in
Definition 4.4.

ProrosiTiON 5.1. P, is n-regular for all neZ , or, in other words, the
pair (P, P.) is elliptic.

Proof. For n=1 this follows from Lemma 4.2.
Inductively, we assume that P, is n-regular. Let fe .@(D"“) then
Dp, fe2(Dp )c #,(R,, A) and consequently

(D5 N0V eH, 1p_y, 1<j<n+1 (5.1)
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In view of Corollary 2.17 it remains to prove that f(0)e H, . ,. Since
fe9(Dy )c;’f(R+,A) we already have f(0)eH,_,,. In view of
Corollary 2.14 we may choose h:=e"*D(0, (Df)(0), .., (Df)(0))e
Hpn+1(R, 4) and put fy :=f—h.

As in (4.5) we put g(x) :=x(x) e **f,(0), x<0. Then ge Z((D*)**")
and (D7 g)(0)=(Df,)(0), 0<j<n Hence Proposition2.16 implies
fie#, (R, 4) and thus fe #, ., (R, 4). 1

Now we are ready to state the analogue of Theorem 4.3 for n-regular
projections:

PROPOSITION 5.2. Let PeOp°(A4) be an orthogonal projection. The
Jfollowing statements are equivalent:

(i) P is n-regular.
(ii) r(-f)(g(Dk-'-l )= (‘B;=0Hk—j+l/2: 0<k<n—1

P, max

(ili) For 1<k < n the following holds:
iffeH_l/z ande=0, P_éEHk_l/z, then éEHk—l/Z' (5.2)

Proof. The equivalence of (i) and (ii) follows from Corollary 2.17.

(ii) = (iii). We proceed by induction on n. For n=1 the assertion
follows from Theorem 4.3.

Let P be n-regular. It remains to check the case k=n in (5.2). Consider
EeH_y,, PE=0, P_¢eH, ;. The induction hypothesis implies
¢eH, ,,. In view of Corollary2.14 choose g: i=e""N(P_E0,..,0)€
JZ,(R+, A) and put

f(x):==x(x) e P, {4+ P_g(x).

Then fe 2((D¥)") and hence by the n-regularity of P, Df =D, and we
have fe # (R, 4), {=f(0)e H,_yp.

(iii) = (i). Again we proceed by induction on n. For n=1 the asser-
tion follows from Theorem 4.3.

Assume (5.2) for 1<k <n By the induction hypothesis P is (n—1)-
regular, so for feP(D%) we have Dfe (D V)< A, _ 1(R+,A) Put
fi:=P_f, then Dfy=P Dfes#,_,(R,,A), P, f,(0)=0. In view of
Proposition 5.1 and Proposition 4.8 we find P_ f(0) = f,(0) e H,,_,,. Thus
(5.2) implies f(0)eH,_,, and hence from Corollary2.17 we infer
fe (R, 4). 1

Next we clarify the relation between the notion “ellipticity” and “elliptic
pair” (Definitions 4.9 and 4.10).
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ProposSITION 5.3.  Let P e Op®(A) be a y-symmetric orthogonal projection.

(1) P is n-regular if and only if the operator K:=(I+ 4%
TT*(I+ A*)Y*, where T=PP,_+(I—P)P_ (c¢f. (3.5)), is regular at 0,
1, .., n—1 in the sense of Definition 4.10. In particular, the pair (P, P ) is
elliptic if and only if K is elliptic.

(2) The pair (P, P..) is elliptic if and only if for all s R the following
holds: :

If¢éeH_and PE=0,P_¢eH,, thenle H,. (5.3)

Proof. We remark first that (5.2) and (5.3) are, in fact, symmetric in P
and P_. Namely, (5.3) is clearly a consequence of

teH_,, PécH, and P_C¢eH,imply é€Hynyy (5.3)

But applying (5.3) to # :=¢& — P¢ shows that (5.3') also follows from (5.3),
so both statements are equivalent; a similar reasoning works for (5.2).

By the y-symmetry of P and P, (5.2) resp. (5.3) also hold with I—P
and P in place of P and P_.

With these preparations we prove (1): Let K be regular at 0, .., n—1.
In view of Proposition 5.2(iii), we consider {e H_;, with P{=0 and
P_¢eH,_y, for some 1<k<n We put n:=(I+ A%)~V4 ¢ e Hy and find

Kn=(I+A4)"*(I—P)P_¢cH,_,.

Since K is regular at k— 1 we conclude ne H, and thus (e H,_qp.
Conversely, let P be n-regular and consider & € H, with K& € H; for some
0<k<n—1. K¢ H, implies in view of Remark 4.12

PP Py, (I-P)P_(I—P)neHy, 1p, n:=I+4%"¢
We invoke the n-regularity of P and infer from
P(P, Py)e Hyi1ps P_(P, Pp)=0

that P, Pye Hy .. Proceeding in this way we arrive at PneH 5.
Analogously one derives (I—P)ne Hy, 1y, hence ne Hy .y and finally
EeHy.,,. Hence K is n-regular. ’

Thus the first assertion of (1) is proved. The second assertion of (1) as
well as (2) follow from the first one and Proposition 4.11. 1l

From now on we will use the axioms (3.31) on the algebra PO(A).

TeEOREM 5.4. Let Pe W°(A) be a y-symmetric orthogonal projection. If
the pair (P, P ) is Fredholm, then it is elliptic.
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Proof. Assume first that (P, P ) is an invertible pair. Then
T=PP,+(I-P)P_ec¥°(4)

is invertible (by Remark 3.5 and Corollary 3.4). By axiom (3.31b) we then
have T~ 'e ¥°(4). Now let e H_,, P_£=0, Pfe H,. Then

E=T 'T¢=T PP (=T 'PécH,. (5.4)

If Pe P(WP°(A)) is arbitrary, then we write P=P'+ P" as in (3.12). The
proof of Theorem 3.12 shows that P’ + P, € P(P°(A)); by (3.35) the pair
(P'+ P, P.) is invertible. By the first part of this proof, (P'+ P,P,)
also is an elliptic pair. By Lemma 2.4 the finite rank operators P" and P",
are smoothing, hence (P'+ P".)&=PEé+ (P —P"){eH, and as before
we see that fe H,. |

If A is a discrete operator, one can get a better result. First we state the
abstract elliptic regularity theorem for scales of Hilbert spaces:

PROPOSITION 5.5. Let (H,),cr be a scale of Hilbert spaces such that Jor
§'>s the embedding H', < H, is compact. Let T € Op”* =0p*((H)ser)s
u>0. Assume that T is regular at 0. Then

(1) For 0<s<uy, T extends to a Fredholm operator H, » H;_, with
index independent of s.

(2) Let S be the generalized inverse of T defined by STE=E for
Eeker T+, and S&:=0 for ¢eim T+, where L is taken in H,. Then S
extends by continuity to a bounded linear operator H, > H,, ,, —H<S< 0.

If, in addition, T is elliptic then S is a parametrix in the sense that
I-TS,I—STeOp~=,

and for all se R, T extends to a Fredholm operator H, — H,_,.

Proof. We first consider T as an unbounded operator in Hy; then T is
a closed operator with domain H,. To see this let (x,),en ©Hy be a
sequence such that x, »x, Tx, —»¢ in H,. Since TeOp* we have the
equality Tx=¢ in H_,, and the regularity of T at 0 implies xe H,,.

By the same argument, T induces a closed operator with domain H,,
which is the adjoint, T*, of T: H, — H,.

By assumption, H, < H, is compact. Since the domains of T and T*
are both compactly embedded, T and T'* are Fredholm operators
H, - H,. By duality, T and T* induce Fredholm operators Ho — H_,
hence, by complex interpolation, from H, - H,_,, 0<s<u.
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By definition, the generalized inverse S maps H, — H, and its adjoint,
S*, is a generalized inverse of 7*. By duality and complex interpolation,
again, S and S* induce continuous maps S, §*: H, - H,,,, —u<s<0.

The operators I— ST, I—TS are orthogonal projections in H, with
(I—ST)H,)=ker TcH,, (I-TS)(H,)=ker T*c H,. Since I-TS, I—-ST
are orthogonal projections, by duality, they map H_, — H, and hence
H_, - H,. This proves that ker T'T H, is independent of s for 0 <s<p.

If T is elliptic then the finite rank operators I— 7S and I— ST map
Hy, - H_, and Lemma 2.4 implies I — TS, I—-STeOp~—=. |

Now we can state the main result of this section:

THEOREM 5.6. Let A be discrete. For a y-symmetric orthogonal projec-
tion P e P°(A) the following statements are equivalent:
(i) P is regular.
(i) (P, P.) is an elliptic pair.
(i) (P, P.) is a Fredholm pair.

Proof. (i)=-(iil). Let P be a regular projection. By Proposition 5.3,
this is equivalent to the fact that K:=(I+ A%)Y* TT*(I+ A*)"4, with
T=PP,_+(I—P)P_, is regular at 0. From Proposition 5.5 we infer that
K is Fredholm H (A4)— H,_ ,(4), 0<s<1. Hence TT* is Fredholm
H, - H, —1<s<1, in particular, (P, P.) is a Fredholm pair.

(iii) = (ii). This follows from Theorem 5.4.
(ii) =>(i). This follows from Theorem 4.3 and the definition of ellip-
ticity. |}

We note that the implications “(i) = (iii)” and “(ii) = (i)” remain valid if
we assume only that P is a y-symmetric orthogonal projection in Op°®(4).

ExampLE 5.7. In [12, Sect. 3] we described a special class of orthogonal
projections defining generalized Atiyah-Patodi-Singer boundary value
problems. We now discuss these projections in some detail:

Let P be a y-symmetric orthogonal projection. Assume that

[P, |4]]1=0, (55)
PAP=o|A| P for some o> —1. (5.6)

Equation (5.5) implies that Pe Op°(4).

PROPOSITION 5.8. Let P be a y-symmetric orthogonal projection satisfy-
ing (5.5) and (5.6). Then the following assertions hold:
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(1) The pair (P, P.) is elliptic.

(2) If dimker A<oo then (P, P.) is a Fredholm pair. If ker A=0
then (P, P ) is an invertible pair.

Proof. For 4> 0 consider the operator
P, :=1(l4]+2) 7' (4 +|4]). (5.7)

P, converges to P o(A4) strongly, as 4 —0+. In view of (5.5), (5.6) we
have

1
PP,P = (|4]+ 1)~ [A|—;—°£P

l+a
= (Poo(4)+Psold)) ——P (58)
strongly, as 4 — 0+ . Hence
1+a
PP o(4) P=(P <o(4)+Pso(4)) P, (59)
and consequently we infer that
PP+P=1—_—;—OCP+R, (5.10)
where
1+« e
R=P(P,—P_o(A))P— Py PcOp~>(4). (5.11)

By construction, if dim ker 4 < oo, then R is of finite rank and if ker 4 =0
then R=0. For T:=PP_ +(I—P)P_ we find

TT* =1—;’—°‘1+R+ yRy*. (5.12)

Since R is smoothing, TT* and thus the pair (P, P_) is elliptic, in view of
Proposition 5.3. If dim ker 4 < oo then TT* and thus (P, P ) is Fredholm.
Finally, if ker 4 =0 then TT* and hence (P, P ) is invertible. [I
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PROPOSITION 5.9. Let PeOp°(A) be a y-symmetric orthogonal projec-
tion.

(1) If I-P)YP,_(I—P)eOp—*(A) for some £>0, then the pair
(P, P,) is elliptic.

(2) Let Py e Op°(A) be another y-symmetric orthogonal projection. If
(P, P.) is elliptic and (P — P,) e Op—°(A) for some ¢>0, then (P,, P) is
also elliptic.

Proof. (1) Let xeH,, for some s, R, Px=0, P_xe H,. We have
0=Px=PP_ _x+ PP_x,
thus PP x= —PP_xe H,. This implies
P x=PP x+(I-P)P (I-P)x
= —~PP_x+(I—P) P (I—P)x€ Huins, s;+0)

Iterating this procedure we conclude x e H,.
(2) LetxeH,, Pyx=0, P_xeH,. Then

Px=(P—Py)xeH,

hence xe H,,
argument. ||

in(s, s,+2)- Again, we reach the conclusion by iterating this

Now we can present the

Proof of Theorem 1.3. In this proof D, denotes the operator defined in
(4.1), ie, 2(Dp)={ueH(R,, )| Pu(0)=0}, and we put Dp,:=
Dyl %p:={feCP(R,, H,)| Pf(0)=0}. Note that the Dp in the formula-
tion of Theorem 1.3 is the Dp 4 in the present notation.

By Corollary 4.7, 9, is a core for Dp and hence D, is the closure of
Dy . Furthermore, in view of (1.13) and Theorem4.3(1) we have
D} =Dp sy From (1.23) and Theorem 5.4 we infer that P is a regular
projection and hence in view of the three equivalent characterizations of
regularity in Theorem 4.3(2) we have Dp=Dp ... =D3. This proves the
first part of Theorem 1.3.

To prove the second part we assume that A is discrete and that Djp
is self-adjoint on {fe (R, A)|Pf(0)=0}. Hence P is regular by
Theorem 4.3. Then (1.23) is a consequence of Theorem 5.6 (1.13) follows
from Corollary 4.6. |
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6. VARIABLE COEFFICIENTS AND
SECOND ORDER OPERATORS

We now study the model operator (1.10) with variable coefficients. In
most applications we will need the following results only in a small
neighborhood of x =0. Therefore, we may assume that the operator has
constant coefficients at infinity. More precisely, we consider the differential
operator

D= y<%+A(x)>

d
=1y <3;C+Ao>+xw41(x)
=: Do+ xpd,(x), (6.1)

where (1.9) now holds with A(x) in place of 4, for all x, and we assume
in addition that

A(x) e Op'(4,) is self-adjoint with domain H(4,) and elliptic
with respect to the scale (H.(4o))ser> (6.2a)

for all se R, the map
R> x> (I+A42)° A(x)(I+ A2) 71277 e Z(Hy(4,)) | (6.2b)
is smooth,
A;(x)=0 for |x|=R>0. (6.2¢)
Note that, from (1.9)
y4,(x)+A4,(x)y=0, for all x. (6.2d)
Assumption (6.2a) implies that
H, (A(x))=H,/(A,) for x,5eR (6.3)
and (6.2b) implies
AN(x)eOp'(4,), for jeZ,. (6.4)

We abbreviate H,:= H,(4,). As in the constant coefficient case we are
interested in D as an unbounded operator in L*(R, H) with domain
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Cy((0, 00), H,); the corresponding operator in L?(R, H) with domain
C2(R, H,,) will be denoted by D. Then D, D are symmetric operators in
the respective Hilbert spaces. We have

2

D?= —% + A(x)? — 4'(x). (6.5)

Our analysis of the constant coefficient case applies to Dy in (6.1). In par-
ticular, D, is essentially self-adjoint on C® (R, H,,) = L*(R, H). Its closure
has domain (R, 4;) and will also be denoted by D,. Moreover,
H (R, Ao) = D(D).

We first state the analogue of Lemma 2.15.

LemMma 6.1. (1) 2(D*)c{feL*(R,,H)|f eLl*(R,,H_,)} and we
have a continuous restriction map r: D(D*)— H_,,, fi— f(0).

(2) For f, g D(D*) we have

— (D%, g)+(f, D*g) = lim (y(Ledo + 1)1 £(0), (edo+1) ™" £(0)).

If 1(0) or g(0) lies in H,;, then

—(D*f, 8)+ (f; D*g) = Bx1,2(yf(0), g(0)). (6.6)

Proof. The proof is almost identical to the proof of Lemma 2.15. We
only have to note that for f € 2(D*) the family

fu(x) :=i(eA(x)+1) " f(x)
satisfies the relations f, € L*(R .., H), lim, ¢ f,= f,

felx)= —e(ed(x) +1) 7' A'(x) £, +i(ed(x) +i) 7 f'(x) e L*(R,, H),

and D*f, has uniformly bounded norm. Thus D*f, — D*f as shown by the
next lemma. J

The last proof used the following simple but useful lemma, which allows
to describe a core of an unbounded operator in terms of weak convergence.

LemMA 6.2. Let D be a closed operator in a Hilbert space #.

(1) Let fes# and (f,) = D(D) be a sequence such that (f,) converges
weakly to f € # and (Df,,) has uniformly bounded norm in #. Then f € 2(D)
and Df,, — Df.
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(2) Let & =D(D) be a linear subspace such that for every fe (D)
there is a sequence (f,) = & with f,, = f and (Df,) bounded. Then & is a core
for D.

Proof. (1) For every ge D(D*) we have

(Df, &)= (f»» D*8) 73, (f, D*g), (6.7)

ie., the bounded sequence (Df,) converges weakly on a dense subspace and
hence is weakly convergent. Let A be the weak limit of (Df,). Then in view
of (6.7) we have (h, g) = (f, D*g) for all geP(D*), thus fe2(D) and
Df=h.

(2) To prove that & is a core for D we have to show that if g€ 2(D)
with 0=(g, f)+(Dg, Df) for all fe& then g=0. Given such a g we
choose (f,,) = & with f,, — g and Df,, — Dg, using (1). Then

(& g)+(Dg, Dg)= lim {(g f») + (Dg, Df,)} =0. |

As in the constant coefficient case we want to find boundary conditions
defining self-adjoint extensions of D. Our main tool will be (a variant of)
the Kato—Rellich Theorem so we need to estimate relative bounds.

LemMMA 6.3. Let B(x), x€R, be a family of operators of order 1 satisfy-
ing (6.2b). Then for ¢>0 and neZ  there exists C(e, n, B) such that for
fe, (R, Ay) we have the estimate

IBf |, < cn(sup max(|B(x) T~ sy, 1T"Bx) T~ =" iary) + )

xeR
X [ fllse,,,+ Cle 1, B) |Lf |l -
Here, c, is a universal constant depending only on n and T :=(I+ A"

Proof. 1In this proof, c, and C(-) denote generic constants depending on
their respective arguments.
For fe # (R, A,) we have

I8 1%, = | 1BGx) f(2)l 3 dx

<sup [1B(X) T~ Iy | 1TFC0) I, d

xeR

=sup [|B(x) T—IHZ.Q’(HO) “TfHZ.#O(R, 4g)° (6.8)

xeR
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Using this estimate and Proposition 2.10 we find

@yrm

J

S T BOFI e,
0 i=0

J

1B e, <0 3
j=0

#y

18

<ec,
J

n

<¢, ), X sup | T*~/B®(x) Tj_n_l“.z’(Ho)

Jj=0 i=0 xeR
3 S/ A P

where in the last inequality we have used (6.8) with 7" ~/B®T/~" in place
of B and T"~’fU~" in place of £ We treat the summands with i=0 and
i#0 separately. Summands with i=0 are estimated using the following
inequality which follows from complex interpolation:

| T"~/B(x) Tj_"_lng(Ho)
< max(|B(x) T—lnz(yo)a | T"B(x) T_n~1||s’(Ho))- (6.92)

For i>0 we estimate in view of Proposition 2.10 and (2.13)

||T"+l_‘{f(j—i)“9f’o Scn |If(j_i)“.??’,,+1_;
Scn ”f””n-fl—i

<elflse,,,+ C&n) 1f 12, (6.9b)

The last inequality follows from i>0, the fact that #(R, A)=H, (D)
(2.11), and the Spectral Theorem. The lemma is proved. [}

Next we note a variant of the Kato—Rellich Theorem.
PROPOSITION 6.4. Let S be a self-adjoint operator in the Hilbert space H

and let ReOp'(S) be a symmetric operator. Assume that for fixed Ne Z
and &€ H_(S) we have the estimates

IREN sy < b 1SN mysy + € €1 s (6.10a)
IRE Hy_(S) <b |5¢] Hy_(S) +c Hf”Ho(S), (6.10b)

with b<1 and ¢ >0.
Then the operator S+ R is self-adjoint with domain H,(S) and regular at
0<k<N-1
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Proof. The estimates (6.10) show that for 0 <& < 1—b thereisa 4,>0
such that for 1 =1,

IR(S —i2) M| gysy Sb+e<l. (6.11)

A priori, (6.11) holds for s=0 and s=N—1, but by complex interpolation
it holds for 0 <s<N— 1. Thus the resolvent

(S+R—id)~1=(S—id)~! § (—1)" (R(S—id)~h)"  (6.12)

n=0

converges in L(H,(S), Hy41(S)), 0<s<N-1 As in the proof of the
implication “(i) = (ii)” of Proposition 4.11 we now conclude that S+ R is
regular at 0<s<N—1. Of course, the self-adjointness of S+ R with
domain H,(S) also follows from (6.12) (as in the proof of the Kato-Rellich
Theorem). ||

Now we can prove the main result of this section, the generalization of
the Regularity Theorem 4.13 to variable coefficients.

THEOREM 6.5 (Regularity Theorem). Assume (6.1)—(6.2).

(1) The operator D is elliptic with_respect to the scale of Hilbert
spaces (# (R, Ao))sew. In particular, D is essentially self-adjoint and
D(D) = #4 (R, o).

(2) Let PeOp°(A) be a y-symmetric orthogonal projection.

(i) The pair (P, P.) is elliptic if and only if for all seR, the
relations

D¥f=ge#(R,,4), [feLl*(R,,H),
Pf(0)=0,

(6.13)

imply f € #,,1(R., A). In other words, in this case the operator D p defined
by

Dp:=D* DDy p)={feH (R, 40) | Pf(0)=0}
fulfills the equivalent conditions (i)-(iii) of Proposition 4.11'. In particular,

Dy is self-adjoint.

(i) P is regular if and only if the operator D, defined in (i) is self-
adjoint.
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Proof. (1) By Proposition4.11 and Remark 4.12(2), it suffices to
prove the regularity at all neZ, . Fix x, € R and write

A(x) = A(xq) + (x —xo) A1 (X0, X).

From (6.2b) we infer 4, (x,, x) € Op'(4,) and in view of (6.2a) we have
H(A(x,)) = H,(A,) and Op*(A4(x,)) =O0p*(4,) for all 5, ueR.

In view of Lemma 6.3 we may choose ¢, Y € C3(R) with ¢ =1 in a
neighborhood of x, and ¢ =1 in a neighborhood of supp ¢ such that for
the operator

B 1= (x—x,) Y(x) y4;(x0, X)

we have, for a fixed n,

1B e, <B I se,,, + Cn) [.fllo

(460 1]

< bc,

. +C'(n) 1 fllos (6.14)
and

IBflo <B 1.f 12, + C(0) 1f 1o

(G460 £

with 5 so small that b:=5b max(cy, ¢,) <1. Hence B(x) is (& A(x,))-

bounded with relative bound b <1 for both the 5 and the 5#,-norm.
Now consider f e # (R, 4,) with Df= ge #,(R, 4,). By Lemma 2.8 and

Proposition 6.4 the operator '

< bey

T C'(0) £ llos (6.15)

~ d
Bxo) =1 (et Ao+ (x5 Y0) (s, ) ) (616)
is self-adjoint with domain H,(4,) and regular at all 0<s<n.

Assume that we already know that f € 5#(R, 4,). Then

D(x0)* (@f) = D*(of ) = y9'f + 9D*f € Hningr, (6.17)

and consequently @f € Fzninen, 1+ 1(R, 4o)-

Since x, was arbitrary we have proved f € #unem, 1) +1, 100 (R, 4o)-

To prove that f € #pinm, +1(R, 4p) We choose a cut-off function g e
CP(R) with ¢ | [ —R, R]1=1. Then ¢f € #pinen, +1(R, 4p) and in view of
(6.2¢) we have (1 — @) fe D(D2*1) =, (R, 4,). (1) is proved.
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(21) We assume that (P, P ) is elliptic and fix an integer » >0. By
the Regularity Theorem4.13, the operator Do, p, with D, from (6.1),
induces a closed operator in #(R,, 4,) with domain Z(Dg p) N
#.1(R,, 4;). Hence, for fe D(Dg p) N #,1(R,, 4p) there is an
estimate

1f e, w49 S Do, o.f | s, , 4y + 1/ I 2w 40))

<c ”Do,pfux,,(m,,qo)"'%||f||;e’,,+,(R+,Ao)+ cip 1 fllo>  (6.18)

thus

1f o2, , (., 49 < Do, pf 2w, 49+ 1S ll0)- (6.19)

In view of Lemma 6.3 we can thus choose cut-off functions ¢, near 0
as in the first part of this proof (cf. (6.14), (6.15)) such that xy(x) yA4,(x)
is D, p-bounded with relative bound b<l, simultaneously for the
H (R, , Ay) and the #, (R, 45)-norm.

Proposition 6.4 does not apply directly with R=xy(x)y4,(x) and
S=D, p since we do not necessarily have ReOp'(D,, p). However, an
inspection of the proof of Proposition 6.4 shows that

50,1’ =Dy p+ xpP(x) 41(x)

is self-adjoint with domain (R, 4,) and for 0<z<n the following
holds (cf. Proposition 4.11' versus Proposition 4.11):

fe@(ﬁ;}‘,l,), 5({1’].6 H(R,, Ao) =>feH#1(Ry, Ay).

Now consider f satisfying (6.13). Assume we already know f e #(R ., 4o).
As in (6.17) we conclude @f € #uin(n, 1y+1(R 4, 4o). Using part (1) of the
theorem we infer from

D*(1—9) f= —yo'f + (1 — ¢) D¥f € Honiois, o (R, 4o)

that also (1 — @) f'€ Huin(s, p+1(R4, Ao)-

Conversely, assume that (6.13) implies fe ., (R, 4o). Then we
reverse the roles of Dp and Dy p; ie., (6.13) implies that Dp induces a
closed operator in (R, , 4,) with domain D(Dg p) N, 11 (R, Ayg)-
Hence, the estimates (6.18) and (6.19) hold with D in place of Do, p. Then
we choose cut-off functions @, ¥ as before such that xyy(x) 4,(x) is
Dp-bounded with relative bound b < 1, simultaneously for the Hy(R ., Ay)
and the #,(R ., , Ao)-norm; as before >0 is some fixed integer.
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Then we see again that the operator
Dy, y:=Dp—xpy(x) A;(x) = Do, p+ x(1 —¥(x)) y4: (%)
satisfies
fed(D%,), Db yfe #(R,, d)=feH#,1(Ry, 40)  (620)
for 0 <t<n. Next consider fe L>(R, , H) with
D§f=geH(R,, 4, FPf0)=0.
From part (1) we infer f'& # , 1,100((0, ©0), 4o) and from

D} yof =y9'f + 9D} ,f
=y0'f + D¢ fe H(R ., 4o), (6.21)

we infer, in view of (6.20), that ¢f € #ne, +1(R.4, 4e) and hence
S € Hrningn, 5y +1(R45 4o)-
Since # is arbitrary we have proved that the operator D, p satisfies (4.14)
and hence from Theorem 4.13 we conclude that the pair (P, P ) is elliptic.
Specializing this proof to s =0 immediately implies (2ii). The theorem is
proved. 1 s

Remark 6.6. An alternative proof of the first part of this theorem could
have been given by means of an operator valued pseudodifferential calculus
as in [ 13, Sect.2]. '

The regularity at 0 or 1 of D resp. D can be obtained under weaker
assumptions. We record the results and leave the details to the reader.

THEOREM 6.7. If we replace (6.2a), (6.2b) by
A(x) e Op*(4,) and x — A(x)(I+ A3) "2 is continuous,

then the following hold.

_ @ D is essentially self-adjoint and .@(1_3) = #,(R, Ao); in particular,
D is regular at 0.

(2) Let PeOp°®(4,) be a regular y-symmetric orthogonal projection.
Then D is self-adjoint on

D(Dp):= DDy p)={fe H (R, 4) | Pf(0)=0}.
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THEOREM 6.8. If we replace (6.2a), (6.2b) by
A(x), A'(x) € Op' (4,) and x > A(x)(I+ A3) ™ is in C' (R, Z(H,)),

then the following hold.

_ D? is essentially self-adjoint and D(D?) = #(R, Ay). In particular,
D is regular at 0 and 1.

(2) Let PeOp®(4,) be a 2-regular y-symmetric orthogonal projection.
Then

D(D%)= DD ;) ={f e #(R., 4o) | Pf(0) =0, P(Df)(0) =0}.

7. WELL-POSED BOUNDARY VALUE PROBLEMS

In this section we consider the situation described in Section 1.B. We
assume that A is a symmetric elliptic differential operator of first order act-
ing on C®(Ey), and that y is a bundle endomorphism such that (1.9)
holds. Then D in (1.10) is an elliptic differential operator on the cylinder
M=R, xN. Also, the axioms (3.31) are satisfied with Po(A4)=P%(EIN).
For & e T*N) denote by N (&) the space spanned by eigenvectors of A(¢)
with positive and negative eigenvalues, respectively, where A(&) denotes the
leading symbol.

According to Seeley [28, Definition VI.3], a classical pseudodifferential
operator P of order 0 on C®(Ey) is called well-posed if

(i) P: H,(Ey)— H,(Ey) has closed range for each seR;
(ii) for each £e T*N\{0} the principal symbol P(&) maps N, (&)
injectively onto the range of P(&).
P can always be replaced by an orthogonal projection with the same null
space [28, Lemma V1.3], hence defining the same boundary condition. Our

aim is to give a functional analytic characterization of well-posedness for
orthogonal projections. '

ProposiTioN 7.1. Let P and Q be orthogonal projections in L*(Ey)
which are classical pseudodifferential operators of order 0 on C*(Ey), and
denote by P, O their principal symbols. Then (P, Q) is a Fredholm pair if and
only if for each &€ TEM\{0}

O(é): Tm P(¢) » Im O(¢) (7.1)

is an isomorphism.
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Proof. Assume that (P, Q) is Fredholm. Then, by Proposition 3.3,
P— Q+1 is Fredholm and hence also elliptic (cf, e.g., [21, Chap. 19.5]).
Thus for £ e T*N\{0} the endomorphisms

P& -0 +1 (72)

are invertible. Now we apply Corollary 3.4 to see that the map (7.1) is
invertible.

Conversely, if (7.1) is invertible then (P(&), O(¢)) is a finite-dimensional
Fredholm pair and the maps in (7.2) are invertible in view of (3.3), hence
P—Q+1 is elliptic. Invoking again Proposition 3.2, we conclude that
(P, @) is Fredholm. }J

Condition (i) above is automatic for a pseudodifferential idempotent.
Hence, applying this proposition to the pair (P, P ) immediately gives

THEOREM 7.2. Let P be a classical pseudodifferential operator of order 0
which is an orthogonal projection. Then P is well posed if and only if (P, P )
is a Fredholm pair.

Finally, we give the

Proof of Theorem 1.5. We use the notation of Section 1.D. By
(1.27)~(1.29) and Lemma 1.1 we have

d B
®DP* =y <E+ A(x)> + V(x).

We choose a function ¢ € C°(—&y, &), 0<y¥ <1, with ¢ =1 near 0 such
that the operator

AY(x) =Y(x) A(x) + (1 = (x)) 4o (7.3)

is elliptic for all x > 0, which is certainly the case if the support of  is small
enough. Then we introduce the operator

D,,,:=y<—;;+A¢(x)> (74)

and note that D, satisfies (6.1) and (6.2). We will prove the following
Claim. The operator Dj is self-adjoint if and only if the operator
Dp =D} {fe (R, 4,) | Pf(0) =0} is self-adjoint.

Theorem 1.5 is an immediate consequence of the Claim:
Since the algebra WY (Ey) satisfies the assumptions (1.19) (cf. the discus-
sion before Theorem 1.3) and since the elliptic operator A4, is discrete we
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infer from Theorem 5.6 that the Fredholmness of the pair (P, P ) is equiv-
alent to the ellipticity of the pair (P, P.) resp. to the regularity of P.

From the Regularity Theorem 6.5(2ii) we thus know that Dp , is self-
adjoint if and only if the pair (P, P ) is Fredholm. In view of Theorem 7.2
this, in turn, is equivalent to the fact that P is well-posed in the sense of
Seeley. Again, from the Regularity Theorem 6.5 and Theorem 1.4 we see
that the operators Q, K,, K; are obtained by patching together an interior
parametrix of D and the analogue of (1.25) for Dp ,,.

It remains to prove the claim.

First, we note that the operator ¥(x) is bounded and hence adding or
subtracting V(x) does not affect the domain of an operator.

Choose a cut-off function yeCy(—e&p, &) such that y=1 in a
neighborhood of supp y. Assume first that D, is self-adjoint and let fe
9(D%,,). By the same calculation as in (6.21) one shows yfe 2(D% ),
hence by construction we have ®*(xf) € 2(D}) = 2(Dp). Thus, by (1.29),
we have xf € D(Dp ). The proof of the converse is similar. The Claim and
hence the theorem are proved. [
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