
ON THE SPECTRAL THEORY OF SURFACES WITH CUSPSWERNER BALLMANN AND JOCHEN BR�UNINGAbstrat. We are interested in the spetral properties of Dira operators onnonompat surfaes. Under the assumption that 1) the ends of the givensurfae M are usps as in the ase of �nite area surfaes of negative urvatureand 2) the geometry of the Dira bundle in question is losely related tothe geometry of M we investigate the essential spetrum of the orrespondingDira operator D and disuss its Fredholm index.IntrodutionLet M be a nonompat surfae with a omplete Riemannian metri. Assumethat M has �nitely many ends and that eah end U of M is a usp. By this wemean that U is di�eomorphi to S � (0;1), where S = R=Z is the irle, themetri on U is of the form f 2ds2 + dt2and has �nite area, and the Gauss urvature K satis�es�b2 � K = �2t f=f � �a2on U , where a; b are some appropriate positive onstants. These assumptionsimply that M is onformally equivalent to a losed surfae �M with �nitely manypoints deleted.The most important examples are omplete surfaes with �nite area and glob-ally pinhed negative Gauss urvature. For that lass to be inluded in our dis-ussion, we have to be somewhat modest in the regularity assumption sine thenthe above di�eomorphism need only be C2, f. [Eb℄, [HIH℄. More preisely, weassume that f is C1 and that the seond partial derivative of f in the t{diretionexists and is ontinuous. When neessary we label the ends by an index k.Let E be a graded Dira bundle over M in the sense of Gromov and Lawson,see [LM℄. That is, E is a bundle of left modules over the Cli�ord bundle ClMof M with ompatible Hermitian metri and onnetion together with a parallel�eld � of unitary involutions whih antiommutes with Cli�ord multipliationby vetor �elds. These data determine a Dira operator D and a deompositionDate: September 16, 1999.1991 Mathematis Subjet Classi�ation. 53C20.Key words and phrases. Dira operator, geometri bundle, essential spetrum, index.Both authors were partially supported by SFB256 (U Bonn) and SFB288 (HU Berlin).1



2 WERNER BALLMANN AND JOCHEN BR�UNINGE = E+�E� into the eigenspaes of � with eigenvalue �1. We are interested inthe spetral properties ofD as an unbounded and essentially self{adjoint operatorin the spae L2(M;E) of square integrable setions of E.There is no reason to expet lose relations between the geometry ofM and thespetral properties of D if the underlying Dira bundle is not losely related tothe geometry ofM . To establish suh a relation we propose the following notion.We say that a vetor bundle E over M with Hermitian metri and onnetionis geometri if there is a parallel twoform S with values in the bundle of skewHermitian endomorphisms of E suh that the urvature R of E satis�esR(X; Y )u = KS(X; Y )ufor all vetor �elds X; Y ofM and setions u of E. The lass of geometri bundlesover M admits all the standard operations on vetor bundles and ontains all atbundles and all bundles whih are assoiated to the Riemannian struture or aspin struture of M .Now let E be a �xed graded Dira bundle over M and assume that E is geo-metri. Then for any loal orthonormal frame X; Y of TM , C := �XY S(X; Y )is a parallel �eld of Hermitian endomorphisms of E independent of the hoie ofX and Y and hene is globally de�ned. We haveXY �R(X; Y )u = KCufor any setion u of E. Now the �eld � of involutions of E is parallel andantiommutes with Cli�ord multipliation by vetor �elds, hene C(E�) � E�.We set C� = CjE� : E� ! E� :Let U = S � (0;1) be an end of M . Let T = �t and X = f�1�s and orientU by this frame; if M is oriented, then we asume that the orientations of U andM oinide. The oriented orthonormal frame T;X is a setion of the SO(2){prinipal bundle SO(U) of oriented orthonormal frames on U and determines atrivialization SO(U) = U�SO(2). Let fSO(U) = U�R ! U�SO(2) be the or-responding lift, where we map r 2 R to the ounterlokwise rotation by the angle2�r. Then fSO(U) is an R{prinipal bundle over U and any bundle assoiated tofSO(U) via a unitary representation of R omes with a Hermitian metri and on-netion. Now for  2 R and w 2 C with jwj = 1 we let L(; w) be the omplex linebundle assoiated to fSO(U) via the unitary representation exp(2�ir) of fSO(2),and with atlas given by the holonomy requirement [s + 1; t; 0; u℄ = [s; t; 0; wu℄along the irles S � ftg. Note that L(1; 1) is the tangent bundle of U with itsnatural omplex struture determined by the hosen orientation.The omplex area element !C = iTX de�nes a parallel �eld of unitary involu-tions of E over U whih ommutes with � and C. We setE�(; ") = fu 2 E�jU j Cu = u ; !C u = "ug ;



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 3where  2 R and " 2 f+1;�1g. We will show that E+(; ") is isomorphi toan orthogonal sum of line bundles L(�"; w), and we denote by m(; "; w) thenumber of times L(�"; w) ours in this sum. The spetral harateristis whihwe investigate in this paper are given in terms of C+ and the integers m(; "; w).All data assoiated to an end U = Uk will be indexed by k if neessary.Suppose E = ClM is the Cli�ord bundle over M with the even{odd deompo-sition. Then E+jU = E+(0; 1)�E+(0;�1), m(0; "; 1) = 1 and m(0; "; w) = 0 forw 6= 1. If M is oriented and E is the spinor bundle assoiated to the orrespond-ing spin struture, then E+jU = E+(0; 1), m(0; 1; 1) = 1 and m(0; 1; w) = 0for w 6= 1. If E is a spinor bundle assoiated to a spin struture of M , thenE+jU = E+(1=2; 1). If the spin struture is the restrition of a spin struture ofthe losed surfae �M , then m(1=2; 1;�1) = 1 and m(1=2; 1; w) = 0 for w 6= �1.We �rst analyze the essential spetrum speeD of D whih is loalized on theends ofM by the deomposition priniple. Reall that D is Fredholm if and onlyif 0 =2 speeD.0.1. Theorem. 1) If mk(; "; 1) = 0 for all k; ; ", then speeD = ;.2) If mk(1=2; "; 1) = 0 for all k and ", then D is Fredholm.3) If mk(1=2; "; 1) 6= 0 and the diretional derivative X(K) is uniformly boundedon Uk for some k, then speeD = R.Note that the assumption on X(K) in the third assertion holds if the end iswarped, that is, if f does not depend on s.Set D+ = DjL2(M;E+) \ C1(M;E+). In the ase when D is Fredholm, wealso determine the index of D+ expliitly.0.2. Theorem. Let m = rankE+ and suppose that mk(1=2; "; 1) = 0 for all kand ". ThenindD+ = (m=2� trC+)�(M) + 12Xk;;" sign(1=2� )mk(; "; 1)� 12 Xk;;";w " �(w)mk(; "; w) ;where �(1) = 0 and �(exp(2�i�)) = 1� 2� for 0 < � < 1.We emphasize that in our theorems, we do not need assumptions on derivativesof the urvature or, respetively, assumptions on the asymptoti behaviour ofthird or higher derivatives of the metri. Speial ases of the above theoremswere obtained in [DX℄, [St℄, [Br℄, and [B�a℄.In the ase when E is the Cli�ord bundle with the even{odd deomposition,then D+ is alled the Gauss{Bonnet operator. We getindD+ = �(M) + #fendsg = �( �M) :



4 WERNER BALLMANN AND JOCHEN BR�UNINGWhenM is oriented and E is the spinor bundles assoiated to the spin strutureof M , then D+ is alled the Riemann{Roh operator. In this aseindD+ = ��(M) + #fendsg�=2 = �( �M)=2 :When M is oriented and E is the spinor bundle assoiated to a a spin struturewhih extends to a spin struture on �M , then indD+ = 0.Reall that M is onformally equivalent to a losed surfae �M with �nitelymany points deleted. Hene the Riemannian metri on M is onformally equiva-lent to a Riemannian metri with ylindrial ends. The latter were disussed inthe work of Atiyah, Patodi and Singer [APS℄, and therefore it is interesting toknow whether the dimension of the spaeH2(M;E) of square integrable harmonisetions of E is a onformal invariant. Now it is a rather straightforward onse-quene of our desription of geometri bundles in the text that dimH2(M;E+(1))and dimH2(M;E�(0)) are onformally invariant, whereE�() = fu 2 E� j Cu = ug ;but in other ases onformal invariane may fail. Using the the onformal invari-ane of dimH2(M;E�(0)) the Gauss{Bonnet and Riemann{Roh formulas aboveare easy onsequenes of the results in [APS℄, but also follow easily by a diretargument for surfaes with ylindrial ends as in Setion 4 of [APS℄.The plan of the paper is as follows. In Setion 1 we disuss the geometryof the ends in more detail. In Setion 2 we haraterize geometri bundles anddetermine their struture over the ends ofM . In Setion 3 we introdue operatorswhih model the Dira operator along the ends. In Setion 4 we prove our mainanalytial lemmas. In Setion 5 we investigate the essential spetrum and proveTheorem 0.1. In Setion 6 we ompute the index formula from Theorem 0.2.The �rst author would like to thank the Department of Mathematis at theUniversity of Pennsylvania for its hospitality during the spring of 1999, whena large part of the present work was ompleted. We would also like to thankCharles Epstein for helpful disussions.



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 51. The EndsBy assumption eah end U is di�eomorphi to S � (0;1), where S = R=Zis the irle, and the metri is of the form f 2ds2 + dt2, where f = f(s; t) isontinuously di�erentiable with respet to s and twie ontinuously di�erentiablewith respet to t. We reall that we assume that the area of U is �nite. We havef 00+Kf = 0, where the Gauss urvature K = K(s; t) is ontinuous and boundedby �b2 � K � �a2 < 0 for appropriate positive onstants a; b. Here and belowthe prime 0 denotes di�erentiation with respet to the variable t.The urves s(:) = (s; :) are unit speed geodesis. The irles St = S � ftg areperpendiular to the geodesis s. The length and geodesi urvature of St aregiven by �f(t) = Z 10 f(s; t)ds(1.1)and �(s; t) = �f 0(s; t)=f(s; t) ;(1.2)respetively. Reall that � satis�es the Riati equation�0 = �2 +K :(1.3)By the assumption on �nite area f is the stable solution of the Jaobi equation.Hene f(s; 0) exp(�bt) � f(s; t) � f(s; 0) exp(�at) ;a � �(s; t) � b :(1.4)We also introdue the averaged geodesi urvature��(t) = 1�f(t) Z 10 �(s; t)f(s; t)ds :(1.5)By (1.2), ��(t) = � �f 0(t)= �f(t) :(1.6)Furthermore, �f(0) exp(�bt) � �f(t) � �f(0) exp(�at) ;a � ��(t) � b :(1.7)Later it will be important to onsider the ar length along St,r(s; t) = 1�f(t) Z s0 f(s; t)ds :(1.8)Then r(0; t) = 0 and r(1; t) = 1 :(1.9)



6 WERNER BALLMANN AND JOCHEN BR�UNINGLet r be the Levi{Civita onnetion and de�ne the orthonormal frame T;X asin the introdution. This frame is parallel in the T{diretion and we haverXT = ��X and rXX = �T :(1.10)Denote by var�t the variane of � on St,var�t = 1�f(t) ZS(�(s; t)� ��(t))2f(s; t)ds :(1.11)The following lemma is well known, ompare &7 in [Ho℄, and gives a suÆientriterion for the eventual vanishing of the variane of �.1.12. Lemma. If the metri on U is C3 and X(K) is uniformly bounded, thenlimt!1 var �t = 0 :



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 72. The BundlesWe �x an end U = S � (0;1) of M and let SO(U) be the SO(2){prinipalbundle of oriented orthonormal frames over U . Our preferred frame F = (T;X)is a global setion of SO(U) and determines a trivializationU � SO(2)! SO(U) ; (s; t; A) 7! F (s; t)A ;and a lift fSO(U) := U � R ���!id�� U � SO(2) = SO(U)of SO(U) to an R{prinipal bundle over U , where �(r) is ounterlokwise rota-tion by the angle 2�r.The tangent bundle with its natural parallel omplex struture | ounter-lokwise rotation by a right angle | is the omplex line bundle assoiated tothe representation exp(2�ir) of R on C .The setion ~F (s; t) = (s; t; 0) is a lift of the frame F = F (s; t) and determineslifts ~T = ~F�T of T and ~X = ~F�X of X along the image of ~F . In terms of ~T and~X, the onnetion form ! and urvature form 
 of the Levi-Civita onnetionare given by !( ~T ) = 0 ; !( ~X) = ��i and 
( ~T ; ~X) = �Ki :Fix  2 R and w 2 C with jwj = 1. Let L(; w) be the omplex line bundle asso-iated to fSO(U) via the representation exp(2�ir) of R on C with an atlas givenby the holonomy relation [s+ 1; t; 0; u℄ = [s; t; 0; wu℄. Sine the representation ofR is unitary, L(; w) has a natural Hermitian metri. Furthermore, ! determinesa unitary onnetion on L(; w). It is easy to see that L(; w) is a geometribundle; we prove a more preise statement in the lemma below. We also haveL(; w)
 L(0; w0) = L(+ 0; ww0) :(2.1)2.2. Lemma. The line bundle L(; w) has a setion � of norm 1 suh that�(s+ 1; t) = w�(s; t) ; rT� = 0 ; rX� = ��i� ; R(T;X)� = �Ki� :Proof. In the standard notation for bundles assoiated to prinipal bundles let� = �(s; t) = [s; t; 0; 1℄. Then � has norm 1 and the asserted holonomy. Nowunder the representation exp(2�ir), the onnetion form ! and urvature form
 are multiplied by . Hene � also satis�es the remaining equations.We now desribe the struture of geometri bundles over U . A similar desrip-tion is also valid over all of M . However, for ease of presentation we stik togeometri bundles over U .2.3. Lemma. Let E be a geometri bundle over U . Then E is isomorphi to anorthogonal sum of line bundles L(; w).



8 WERNER BALLMANN AND JOCHEN BR�UNINGProof. For  2 R let E() = fu 2 E j Cu = ug. Then E is the diret sum ofthe parallel and pairwise perpendiular subbundles E(). Hene we may assumethat E = E() for some �xed .Let t > 0 and �;	 be setions of EjSt solvingrX� = ��i� ; rX	 = ��i	 :Then Xh�;	i = hrX�;	i+ h�;rX	i= h��i�;	i + h�;��i	i = 0 :Now extend � by parallel translation in the T -diretion and reall that [T;X℄ =�X, see (1.10). We getrT (rX�) = r[T;X℄� +R(T;X)� = ��2i��Ki� :Using (1.3) we also haverT (��i�) = ��0i� = �(�2 +K)i� :Hene rX� and ��i� solve the same di�erential equation. Hene rX� =��i� on all of U .We onlude that there is an orthonormal frame �1; : : : ;�m of E, where m =rankE, suh that rT�j = 0 and rX�j = ��i�j for all j. It follows that theholonomy H = (hij), de�ned by�j(s+ 1; t) =X hij�i(s; t) ;is independent of (s; t) and unitary. Now an appropriate unitary hange of framewith onstant oeÆients diagonalizes H.We now turn to geometri Dira bundles. Fix  2 R, " 2 f�1;+1g and w 2 Cwith jwj = 1. Let L(; "; w) = L(�"; w)� L("(1� ); w) :Viewing the Cli�ord bundle as the bundle assoiated to fSO(U) via the repre-sentation exp(2�ir) on ClR2 , we desribe Cli�ord multipliation on L(; "; w) bythe following representation of ClR2 on C 2 = C � C ,�0 �11 0 � ; � 0 "i"i 0� ; ��"i 00 "i� :Here the matries desribe Cli�ord multipliation by e1; e2; e1e2 2 ClR2 respe-tively. Furthermore, let � = "!C , where !C = iTX is the omplex area element.It is easy to see that L(; "; w) is a graded Dira bundle with L+(; "; w) =L(�"; w) and L�(; "; w) = L("(1� ); w). Moreover, it is immediate thatL(; "; w)
 L(0; w0) = L(� "0; "; ww0) :(2.4)



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 92.5. Lemma. There are setions �+ of L+(; "; w) and �� of L�(; "; w) of norm1 suh that��(s+ 1; t) = w��(s; t) ; T�� = ��� ; X�� = "i�� ;rT�� = 0 ; XrX�+ = ���� ; XrX�� = �(1� )�+ ;TXR(T;X)�+ = K�+ ; TXR(T;X)�� = K(1� )�� :Proof. Let �+ be a setion of L(�"; w) as in Lemma 2.2 and set �� = T�+.It is immediate from the de�nition of Cli�ord multipliation that these setionshave the asserted properties.We now desribe the struture of graded geometri Dira bundles over U . As inthe ase of geometri bundles, there is a similar desription for graded geometriDira bundles over all of M .2.6. Lemma. Let E be a graded geometri Dira bundle over U with involution�. Then E is isomorphi to an orthogonal sum of bundles L(; "; w).It is lear that the numbers m(; "; w) from the introdution are equal to thenumber of times that the bundles L(; "; w) our in the deomposition of E overU in Lemma 2.6.Proof of Lemma 2.6. As in the introdution, let TXR(T;X) = KC. We haveC(v � u) = v � (1� C)u ;for any v 2 TM and u 2 E with the same foot point 1. Note that E+ and E�are invariant under R and Cli�ord multipliation by TX, hene C(E�) � E�.The omplex area element !C = iTX ommutes with the involution � of Eand C and hene E� is the diret sum of the pairwise perpendiular and parallelsubbundles E�(; ") = fu 2 E� j C(u) = u; !C u = "ug ;where  2 R and " 2 f+1;�1g. Hene E is the diret sum of the pairwiseperpendiular and parallel graded Dira subbundlesE(; ") = E+(; ")� E�(1� ;�") :Hene we may assume E = E(; "). But then by Lemma 2.3, E+ is isomorphito the orthogonal sum of line bundles L(�"; w). It follows easily that E isisomorphi to the orthogonal sum of the orresponding graded Dira bundlesL(; "; w).2.7. Examples. 1) The Cli�ord bundle ClU together with the even{odd de-omposition is equal to L(0; 1; 1)� L(0;�1; 1).2) The hosen orientation determines a spin struture on U . The orrespond-ing spinor bundle is equal to L(0; 1; 1).1For this onlusion we need that K(s; t) 6= 0 for some (s; t) 2 U .



10 WERNER BALLMANN AND JOCHEN BR�UNING3) There are two spin strutures on U . The trivial spin struture is fSO(U)=2Z.The spinor bundle assoiated to the trivial spin struture is L(1=2; 1; 1).The orrespondene (s; t) $ exp(�(t + is)) identi�es U with the unit ball Bwith midpoint removed. The restrition of the unique spin struture of B toU is alled the nontrivial spin struture. The spinor bundle assoiated to thenontrivial spin struture of U is equal to L(1=2; 1;�1).It follows from the above desription of spinor bundles and (2.4) that we anfator graded geometri Dira bundles with involution � = !C by spinor bundles,L(; 1; w) = L(1=2; 1;�1)
 L(1=2� ;�w) :(2.8)



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 113. The Model OperatorsLemma 2.6 implies that the properties of the Dira operator on a graded Dirabundle E over an end U = S � (0;1) are determined by the properties of theDira operators on the bundles L(; "; w).For t > 0 writeC1(St)w = fu 2 C1([0; 1℄� ftg) j u(1; t) = u(0; t)=wg :For an interval I � (0;1) write orrespondinglyC1(S � I)w = fu 2 C1([0; 1℄� I) j u(1; t) = u(0; t)=wg :We let C10 (S�I)w be the subspae of u 2 C1(S�I)w whih have ompat supportin [0; 1℄� I.We now transform the Dira operators on the bundles L(; "; w) to operatorswhih are onvenient for our purposes. De�ne matries = �0 �11 0 � and � = �1 00 �1� :(3.1)Then the map 	 : C10�S � (0;1)�w 
 C 2 ! C10 (U; L(; "; w)) ;u = (u+; u�) 7! u+�+ + u��� ;transforms the Dira operator to the model operatorD1 := 	�1D	 = �(�t � �=2) + ("iX + �(1=2� ))��= �(�t � �=2) + A+ �B� ;(3.2)where A = A(t) = �A+(t) 00 �A+(t)� = �"iX 00 �"iX�(3.3)and B = (1=2� )�1 00 �1� = �1=2�  00 � 1=2� :(3.4)The operator D1 depends on the Riemannian metri on U = Uk and on theparameters , " and w.We reall that the area element on U is fdsdt. For t > 0 and funtionsu; v 2 C1(St)w 
 C 2 we let(u; v)t = ZShu(s; t); v(s; t)if(s; t)ds ;(3.5)



12 WERNER BALLMANN AND JOCHEN BR�UNINGwhere h: ; :i denotes the inner produt in C 2 . For an interval I � (0;1) andfuntions u; v 2 C1(S � I)w 
 C 2 we let(u; v)I = ZI(u; v)tdt = ZI ZShu(s; t); v(s; t)if(s; t)dsdt ;(3.6)denote the L2{inner produt of u and v. We use analogous notation for theorresponding norms. Note that 	 extends to a unitary map	 : L2�(S � (0;1); fdsdt�
 C 2 ! L2(U; L(; "; w)) :We now turn to the family of operators A = A(t) from (3.2) whih splits intooperators A+(t) = "iX and A�(t) = �"iX aording to (3.3). We reall thatthe length of St is �f(t) and that X has norm one. Hene we have the followinglemma.3.7. Proposition. The operator iX is essentially self{adjoint as an operator inL2(St) with domain C1(St)w. Its spetrum is disrete and onsists of the eigen-values �2�(�+ k)= �f(t) ; k 2 Z ;where we write w = exp(2�i�). The orresponding eigenspaes are spanned bythe funtions exp(2�i(�+k)r= �f(t)), where r = r(s; t) denotes ar length along Stas in (1.8).We note that 0 is in the spetrum of A(t) if and only if w = 1 and that the nonzeroeigenvalues grow like 1= �f(t) ! 1. Both these observations will be importantbelow.We let P0 = P0(t) be the orthogonal projetion onto the kernel of A(t). Ifw 6= 1, then P0 = 0 and if w = 1, thenP0u(s; t) = �u(t) = 1�f(t) ZS u(s; t)f(s; t)ds :(3.8)Note that �u is ontinuously di�erentiable if u is and thatsupp �u � ft j supp u \ St 6= ;g :(3.9)In the ase w = 1 we will also onsider the following symmetri model operatorD10 := P0D1P0 = �(�t � ��=2) + ��(1=2� )�� ;(3.10)with domain C10(0;1)
C 2 in L2�(0;1); �fdt�
C 2 . Here we identify funtions inC10(0;1)
 C 2 with funtions on S � (0;1) whih do not depend on s, ompare(3.8). Note that the substitution ~u = p �fu de�nes a unitary equivalene ofL2�(0;1); �fdt�
 C 2 and L2�(0;1); dt�
 C 2 and transforms D10 into the Dirasystem ��t + ��(1=2� )��(3.11)with domain C10(0;1)
 C 2 .



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 134. The WeaponsWe �x an end U = S�(0;1) and onsider a model operatorD1 as in (3.2). Wereall that the area element on U is fdsdt. The following lemma is now immediatefrom the de�nition of the L2{inner produt (3.6) and partial integration.4.1. Lemma. Let I = [t0; t1℄ � (0;1) and assume that u; v 2 C1(S � I)w 
 C 2 .Then (�tu; v)I = (u;��tv + �v)I + f(u; v)t1 � (u; v)t0g :In partiular, (�t � �=2) is symmetri on C10�S � (0;1)�w 
 C 2 .Now P0 is self{adjoint, see (3.8). Hene the following formulas are immediatefrom Lemma 4.1.4.2. Lemma. On C1�S � (0;1)�w 
 C 2 we haveP0�tP0 = �tP0 and P0�P0 = ��P0 :Therefore we also get(1� P0)�tP0 = 0 ; (1� P0)�P0 = (�� ��)P0 ;P0�t(1� P0) = P0(�� ��) ; P0�(1� P0) = P0(�� ��) :Our �rst weapon is the following lemma.4.3. Lemma. On C1�S � (0;1)�w 
 C 2 we haveP0D1P0 = �(�t � ��=2) + ��B�P0 ;(1� P0)D1P0 = (�� ��)(B � 1=2)P0 ;P0D1(1� P0) = P0(�� ��)(B + 1=2)(1� P0) :Proof. By de�nition, AP0 = P0A = 0. Furthermore, [P0; ℄ = [P0; � ℄ = 0 andB + B = 0. The formulas are now immediate from Lemma 4.2.By P>(t) and P<(t) we denote the spetral projetion in L2(St)w 
 C 2 orre-sponding to the eigenvalues of A(t) whih are > 0 and < 0, respetively. Thefollowing lemma is our seond weapon.4.4. Lemma. Let I = [t0; t1℄ � (0;1) be a ompat interval and suppose u 2C1(S � I)w 
 C 2 satis�es P>(t0)ut0 = 0 and P<(t1)ut1 = 0. ThenkAukI � kD1ukI + C1 kukI ;where C1 = bmax(jj; j1� j).Proof. By approximation we may assume that u is C2. Now by (1.10), [�t; X℄ =�X. Therefore �tAu = A�tu+ �Au and hene, by Lemma 4.1,(�tu;Au)I = (u;�A�tu)I + f(u;Au)t1 � (u;Au)t0g :



14 WERNER BALLMANN AND JOCHEN BR�UNINGNow A is symmetri. Therefore our assumption on u implies2Re(�tu;Au)I = f(u;Au)t1 � (u;Au)t0g � 0 :Hene kD1ukIkAukI � Re(D1u; Au)I= Re(�tu;Au)I + kAuk2I +Re(�(B � 1=2)u;Au)I� kAuk2I � bmax(jj; j1� j)kukIkAukI :Reall that P0 = 0 if w 6= 1. We assume now that w = 1. Then for u =(u+; u�) 2 C10�S � (0;1)�
 C 2 we have P0u = (�u+; �u�), where �u� is de�ned asin (3.8). We set P+0 u = (�u+; 0) and P�0 u = (0; �u�) so that P0 = P+0 + P�0 . Nowour third and last weapon reads as follows.4.5. Lemma. Assume w = 1 and  6= 1=2. Let I = [t0; t1℄ � (0;1) be a ompatinterval and suppose u 2 C1(S � I)
 C 2 satis�esP�0 (t0)ut0 = 0 ; P+0 (t1)ut1 = 0 if 1=2 <  ;P+0 (t0)ut0 = 0 ; P�0 (t1)ut1 = 0 if 1=2 >  :Then aj1=2� j kP0ukI � kP0D1ukI + C2 k(1� P0)ukI ;where C2 = bj1=2� j+ (b� a)=2.Proof. We set ~� = sign(1=2�) � , with � from (3.1). Now we have P0A = AP0 = 0by the de�nition of P0. Hene(P0D1u; ~�P0u)I = ((�t � �=2)P0u; ~�P0u)I + ((�t � �=2)(1� P0)u; ~�P0u)I+ (�BP0u; ~�P0u)I + (�B(1� P0)u; ~�P0u)I :Next we estimate the four terms on the right hand side. By Lemma 4.1, the �rstterm is ((�t � �=2)P0u; ~�P0u)I = �(P0u; (�t � �=2)~�P0u)I+ (P0u; ~�P0u)t1 � (P0u; ~�P0u)t0 :By our assumption(P0u; ~�P0u)t1 � (P0u; ~�P0u)t0 = �k�u�kt1 + k�u+kt0 if 1=2 <  ;k�u+kt1 + k�u�kt0 if 1=2 >  ;so the above omputation givesRe((�t � �=2)P0u; ~�P0u)I � 0 :



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 15By Lemma 4.2, the seond term an be estimated as follows,j((�t � �=2)(1� P0)u; ~�P0u)I j = j(P0�� ��2 (1� P0)u; ~�P0u)I j� b� a2 k(1� P0)ukIkP0ukI :Reall that B = (1=2� )� . Hene the absolute value of the fourth term an beestimated byj(�B(1� P0)u; ~�P0u)I j � bj1=2� jk(1� P0)ukIkP0ukI :The ruial estimate involves the third term, but this is immediate from thede�nition of B and ~� :(�BP0u; ~�P0u)I � aj1=2� jkP0uk2I :We onlude thatkP0D1ukIkP0ukI �aj1=2� jkP0uk2I � (bj1=2� j+ (b� a)=2)k(1� P0)ukIkP0ukI :This �nishes the proof of the lemma.



16 WERNER BALLMANN AND JOCHEN BR�UNING5. The Essential SpetrumSineM is omplete, the Dira operatorD with domain C10(M;E) is essentiallyself{adjoint in L2(M;E), see [LM, p.117℄. We denote by �D the losure of D andreall that the spetrum spe �D of �D is ontained in R.5.1. Definition. A real number � belongs to the disrete spetrum sped �D of�D if � is an eigenvalue of �nite multipliity of �D and an isolated point of spe �D.The omplement spee �D = spe �Dn sped �D is alled the essential spetrum of �D.In partiular, �D is Fredholm if and only if 0 =2 spee �D. An easy onsequene ofWeyl's Criterion and the Rellih Lemma, the so{alled Deomposition Priniple,says that spee �D does not depend on ompat parts of M , see below.We say that a sequene (un) in C10 (M;E) is a speial Weyl sequene (for E) iflimn!1 kunk = 1 and supp un !1 as n!1 :(5.2)Now the following well known haraterization of spee �D by speial Weyl se-quenes is a version of the Deomposition Priniple.5.3. Lemma. � 2 spee �D if and only if there is a speial Weyl sequene (un)with limn!1 k(D � �)unk = 0 :5.4. Corollary. Assume that there is a ompat subset K of M and a onstantK > 0 suh that kDuk � Kkuk for all u 2 C10(MnK;E). Thenspee �D \ (�K ; K) = ; :It is onvenient to introdue the following notation. Let ~E be a Hermitianvetor bundle over a omplete Riemannian manifold ~M with ompat boundary.Let ~D be a symmetri �rst order di�erential operator on C10( ~M; ~E). Setspe1 ~D = f� 2 R jthere is a speial Weyl sequene (un)for ~E with limn!1 k( ~D � �)unk = 0g :(5.5)Then spee �D = spe1D by Lemma 5.3, but, in general, (5.5) ignores possi-ble ontributions from the boundary. The following result is now obvious fromLemma 2.6.5.6. Lemma. We have spee �D = [ spe1D1, where the union is over all k; ; ",and w with mk(; "; w) > 0.It remains to disuss spe1D1. In the ase w = 1, the model operator D10from (3.10) omes into play.5.7. Theorem. Fix an end U and onstants ; ", and w. Then we have:1) If w 6= 1 then spe1D1 = ;.2) If w = 1 and � 2 spe1D1 then j�j � aj1=2� j. Furthermore,spe1D1 � spe1D10 with equality if lim supvar(�t) = 0.



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 17Proof. Let � 2 spe1D1 and (un) be a speial Weyl sequene for D1 with(D1 � �)un ! 0. Now for any N > 0 there is a onstant t0 > 0 suh thatthe nonzero eigenvalues of A(t) are of absolute value � N for all t � t0. Hene(1� P0)un ! 0, by Lemma 4.4. This ompletes the proof of the �rst assertion.Assume now that w = 1. By what we just said we have (1�P0)un ! 0, henekP0unk ! 1 and therefore, by Lemma 4.5,lim inft!1 kD1unk � lim inft!1 kP0D1unk � aj1=2� j :This establishes the inequality in the seond assertion. Furthermore, by Lemma 4.3,P0(D1 � �)(1� P0)un = P0(�� ��)(B + 1=2)(1� P0)un ! 0 :Therefore (P0D1P0 � �)P0un = P0(D1 � �)P0un ! 0 :But then (P0un) is a speial Weyl sequene with (D10 � �)P0un ! 0. Hene �is in spe1D10, hene spe1D1 � spe1D10.Suppose now that w = 1 and lim supt!1 var(�t) = 0. Let � 2 spe1D10 and(un) be a speial Weyl sequene for D10 with (D10��)un ! 0. Then un = P0unand hene (D1 � �)un = (D1 � �)P0un= P0(D1 � �)P0un + (1� P0)(D1 � �)P0un= (D10 � �)P0un + (�� ��)(B � 1=2)P0un ;by Lemma 4.3. Now by assumption, the �rst term on the right hand side tendsto zero as n tends to in�nity. The seond term tends to zero sine kP0unk isuniformly bounded, supp un ! 1, and lim supt!1 var(�t) = 0. Hene � is inspe1D1, hene spe1D1 = spe1D10.We reall that �D is Fredholm if and only if 0 =2 spee �D.5.8. Corollary. If mk(1=2; "; 1) = 0 for all k and ", then �D is Fredholm. Onthe other hand, if for some k and " we have mk(1=2; "; 1) > 0 and var(�t) ! 0as t!1, then spee �D = R.Theorem 5.7 and Corollary 5.8 imply Theorem 0.1 from the introdution.



18 WERNER BALLMANN AND JOCHEN BR�UNING6. The IndexWe are all set for the disussion of the index of D+. As usual, the ends of Mome with an index k. For eah end U = Uk, we also enumerate the line bundlesL(; "; w) whih our in the deomposition of EjU by an additional index j,Lkj = L(kj; "kj; wkj), where 1 � j � m = dimE+. These indies will also beused for other objets attahed to Lkj if neessary.Throughout this setion we assume that mk(1=2; "; 1) = 0 for all k. In otherwords, we assume that wkj 6= 1 whenever kj = 1=2. Then the Dira operator �Dis Fredholm, by Theorem 0.1 or Corollary 5.8 respetively.Consider an end U = Uk = S � (0;1) and setUt = Uk;t = S � (t;1) ; St = Sk;t = S � ftg :(6.1)Furthermore set Vt = [kUk;t ; Mt =M n Vt :(6.2)Then Mt is a ompat surfae with smooth boundary �Mt, onsisting of thepairwise disjoint irles Sk;t. We let �Uk;t and �Vt denote the losures of Uk;t andVt, respetively.Our aim is to redue the omputation of the index of D+ to a boundary valueproblem on Mt, where t > 0 is suÆiently large.By an ellipti boundary value problem we mean a pseudodi�erential boundaryondition whih is well{posed in the sense of Seeley [Se℄.6.3. Lemma. Let t > 0. Then any self{adjoint extension of D over Mt or �Vt,de�ned by an ellipti boundary value problem at �Mt is Fredholm.Proof. In Theorem 4.1 of [BL℄ Br�uning and Lesh haraterize ellipti bound-ary value problems in terms of orthogonal projetions and show that they areFredholm. This implies the result for Mt.The loal analysis used for the result just mentioned implies a `deompositionpriniple' for self{adjoint extensions ofD over �Vt, hene the seond assertion sine�D is Fredholm, by Corollary 5.8.We hoose t0 >> 0 and introdue boundary onditions at t0. To that end wewrite a setion u over Uk asu =Xj �u+kj�+kj + u�kj��kj� ;(6.4)where �+kj;��kj is a frame of Lkj as in Lemma 2.5. We reall that Pkj;>(t0)and Pkj;<(t0) denote the spetral projetions in L2(Sk;t0)wkj 
 C 2 orrespondingto the eigenvalues of Akj(t0) whih are > 0 and < 0, respetively. Sine Akjdeomposes into two operators aording to the deomposition u = (u+; u�), wehave a orresponding deomposition Pkj;> = P+kj;>+P�kj;> and similarly for Pkj;<.



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 19We also reall the orthogonal projetion Pkj;0(t0) onto the kernel of Akj(t0) inL2(Sk;t0)wkj 
 C 2 and the deomposition Pkj;0 = P+kj;0 + P�kj;0 as in Lemma 4.5.In their disussion of the index problem for Dira operators on ompat man-ifolds with boundary, Atiyah, Patodi and Singer used the projetionsPkj;APS = Pkj;< + P+kj;0(6.5)on the omponent Skt0 of �Mt0 , assuming in addition that the metri is a produtnear the boundary, i.e., f(s; t) = �f(t0) for s 2 [0; 1℄ and t near t0, see [APS℄. Inour disussion we need a variation of this. We setPkj(t0) = �Pkj;<(t0) + P+kj;0(t0) if 1=2 <  ;Pkj;<(t0) + P�kj;0(t0) if 1=2 >  :(6.6)The identity Pkj(t0) = (1� Pkj(t0))(6.7)where  is as in (3.1), implies that D with eah of the following two domainsDint = fu 2 C1(Mt0 ; E) j Pkj(t0)(ukjjSk;t0) = 0 for all k; j gDext = fu 2 C10 ( �Vt0 ; E) j (1� Pkj(t0))(ukjjSk;t0) = 0 for all k; j gis symmetri. We denote the orresponding operators by Dint and Dext, respe-tively. Then the boundary onditions are ellipti. To see this, we invoke again[BL, Theorem 4.1℄. This requires a loalization in the standard form used in [BL,(4.2)℄: the map u 7! (ft0=ft)1=2utransforms Dkj into the operatorDkj = (�t + ~A(t)) ;(6.8)on the Hilbert spae L2(�S � (0;1); ft0dsdt�. Here~A(t0) = A(t0) + �(t0)B =: ~A = � ~A+ 00 � ~A+� :Next we need to determine a projetion P+( ~A) with the properties listed in (3.10)of [BL℄, and we have to show that (P+( ~A); P (t0)) forms a Fredholm pair. Now itis lear that the projetionP+( ~A) = �P�0( ~A+) 00 P<0( ~A+)�of Atiyah, Singer and Patodi is an admissible hoie. Sine B is bounded andP (t0) di�ers by a �nite rank projetion from the analogous projetion P+(A(t0)),the Fredholm property follows from standard perturbation theory. It follows alsofrom Theorem 4.1 in [BL℄ (with an obvious modi�tion for Dext) that both Dintand Dext are essentially self{adjoint. By Lemma 6.3, they are both Fredholm.



20 WERNER BALLMANN AND JOCHEN BR�UNINGThe boundary projetions respet the deomposition E = E+ �E�, hene wehave the subdomains D+int and D+ext and the orresponding restritionsD+int : D+int ! L2(Mt0 ; E�) ;D+ext : D+ext ! L2( �Vt0 ; E�) :The proof of our index formula below rests on the following result.6.9. Theorem (Br�uning{Lesh, [BL℄). indD+ = indD+int + indD+ext.The proof of this formula onsists in showing that the transmission onditionat �Mt0 for setions in H1(M;E+) an be deformed into the above boundaryonditions in the de�nition of Dint and Dext without a�eting the index. Theimportant point is that the interior boundary ondition above is independent ofthe exterior one, so that they an be handled separately. Another importantfeature of our hoie of boundary ondition is that the exterior ontribution tothe index an be omputed expliitly: it is zero if t0 is suÆiently large.6.10. Lemma. For t0 suÆiently large, kerDext = 0. In partiular, indD+ext = 0.Proof. It suÆes to onsider the (self{adjoint) losure of the operator Dkj;1 =:Dkj on Dkj;ext, that is, on C10�S � [t0;1)�wkj 
 C 2 with the boundary ondition(1� Pkj(t0)). Let C3 > 0 be a lower bound for the absolute value of the nonzeroeigenvalues of the operator Akj(1). Then C3 �f(1)= �f(t0) is a lower bound for thenonzero eigenvalues of Akj(t) for all t � t0, by Proposition 3.7, hene for anyu 2 C10�[t0;1)�wkj 
 C 2 satisfying the boundary ondition we haveC3 �f(1)�f(t0)k(1� P0)uk[t0;1) � kAuk[t0;1)� C4�kDkjuk[t0;1) + k(1� P0)uk[t0;1)� ;by Lemmas 4.4 and 4.5, where C4 is a onstant independent of k, j, and t0. SineDkj;ext is dense in the domain of the losure of Dkj, the above inequality andthe inequality in Lemma 4.5 persist to hold in that domain. On the other hand,�f(t)! 0 as t!1 so C3 �f(1) > C4 �f(t0)if t0 is suÆiently large. Thus if u 2 kerDkj, then (1 � P0)u = 0 and so, byLemma 4.5, also u = 0.We now ome to the proof of the asserted index formula. By Theorem 6.9 andLemma 6.10 we have indD+ = indD+int ;(6.11)and hene it remains to ompute indD+int. Now in the standard versions of theindex theorem for manifolds with boundary, it is assumed that near the boundary



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 21the manifold is a produt. To arrive at suh a situation, we deform the givenmetri in a small neighborhood of t0 by replaing f withf� = (1� �)f + �(� �f(t0) + (1� �)f) ; � 2 [0; 1℄ ;(6.12)where � is a suitable ut{o� funtion near t0. Using the representation (6.8), wesee that the family D�int is graph ontinuous on Dint, hene has onstant index.Hene we an, and will, assume from now on that near the boundary, the metriof Mt0 is a produt. Thus we are �nally in the situation onsidered in [APS℄,exept for a variation in the boundary ondition. This is taken are of by a resultof Agranovih-Dynin, see Theorem 23.1 in [BW℄ or Theorem 4.2 in [BL℄.6.13. Theorem. Denote by !ind the index form of D. ThenindD+int = ZMt0 !ind � 12Xk;j dimkerA+kj(t0) + 12Xk;j �kj(t0)+Xk;j ind(P+kj(t0) : imP+APS(t0)! imP+kj(t0)) ;where �kj(t0) denotes the �{invariant of A+kj(t0) and where PAPS denotes theAtiyah{Singer{Patodi spetral projetion.It remains to explain and evaluate the di�erent terms on the right hand sideof this formula.We start with the index form !ind. We ould ompute !ind by using the loalstruture of graded geometri Dira bundles as in Setion 2. However, there isalso the following way: By the Loal Index Theorem, we have!ind(p) = limt!0 trE[!C e�tD2(p; p)℄ ;hene the omputation of !ind is a loal problem. Therefore we may onsider anopen ontratible subset W � M , for whih we hoose an orientation. If M isoriented, we assume that the orientations of W and M oinide. The �eld C isparallel, hene the subbundles E� split over W as a diret sum of the pairwiseorthogonal and parallel subbundlesE�(; ") = fu 2 E� j Cu = u ; !C u = "ug ;where  2 R and " 2 f�1;+1g. Now the subbundlesE(; ") = E+(; ")� E�(1� ;�") :are graded Dira subbundles of E, hene we may assume that E = E(; "). Wedisuss the ase " = +1 �rst. ThenE+ = fu 2 E j !C u = ug :Let � be the spinor bundle assoiated to the spin struture of W . Then we haveE = �
 F with F = HomCli�(�; E) ;



22 WERNER BALLMANN AND JOCHEN BR�UNINGwhere HomCli�(�; E) is the bundle of homomorphisms from � to E whih arelinear over Cli�ord multipliation, a parallel subbundle of Hom(�; E) with theanonial onnetion. Now the urvature endomorphism C� on �� is multipli-ation by K=2. By our assumption on E, the urvature endomorphism CE onE� is multipliation by K and K(1 � ), respetively. It follows easily thatfor any oriented orthonormal frame X; Y of W , RF (X; Y ) is multipliation byKi(� 1=2). Hene!ind = 12� (1=2� ) dimF KdA = 12� (1=2� ) dimE+KdA ;by the formula for the index form of twisted Dira operators as explained in[APS℄.In the ase where " = �1 we reverse the roles of E+ and E�, then we are bakin the previous ase but !ind hanges sign. We get�!ind = 12� (1=2� (1� )) dimE�KdA = � 12� (1=2� ) dimE+KdA :In onlusion, !ind = 12��m=2� tr(C+)	KdA ;and this gives the �rst term of the laimed index formula.Now the seond term in the index formula 6.13 is obviously equal to �1=2 times#f(k; j) j wkj = 1g. Furthermore, note that for eah pair (k; j) the projetionP+kj : imP+APS ! imP+kj is surjetive, by (6.5) and (6.6). It has trivial kernel ifwkj 6= 1 or if wkj = 1 and kj > 1=2. The kernel is of dimension 1 if wkj = 1 andkj < 1=2. This gives the seond term of the laimed index formula.If wkj = 1, then the spetrum of A+kj(t0) is symmetri about 0 and hene�kj(t0) = 0 in this ase. If wkj 6= 1, we write wkj = exp(2�i�) with 0 < � = �kj <1. Then if "kj = 1, we get from Proposition 3.7�kj(s) = ���s �Xk�1f(k + �)�s � (k � �)�sg :If "kj = �1, we get the orresponding negative of the right hand side. Nowlims!0Xk�1f(k + �)�s � (k � �)�sg = �2� :This onludes the proof of Theorem 0.2.6.14. Remark. The proof of Theorem 0.2 gives a somewhat more general result.We only need to assume that the given graded Dira bundle E is geometri alongthe ends of M . Then the same index formula holds, exept that the �rst termon the right hand side has to be replaed by the integral over the orrespondingindex form.
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