
ON THE SPECTRAL THEORY OF SURFACES WITH CUSPSWERNER BALLMANN AND JOCHEN BR�UNINGAbstra
t. We are interested in the spe
tral properties of Dira
 operators onnon
ompa
t surfa
es. Under the assumption that 1) the ends of the givensurfa
e M are 
usps as in the 
ase of �nite area surfa
es of negative 
urvatureand 2) the geometry of the Dira
 bundle in question is 
losely related tothe geometry of M we investigate the essential spe
trum of the 
orrespondingDira
 operator D and dis
uss its Fredholm index.Introdu
tionLet M be a non
ompa
t surfa
e with a 
omplete Riemannian metri
. Assumethat M has �nitely many ends and that ea
h end U of M is a 
usp. By this wemean that U is di�eomorphi
 to S � (0;1), where S = R=Z is the 
ir
le, themetri
 on U is of the form f 2ds2 + dt2and has �nite area, and the Gauss 
urvature K satis�es�b2 � K = �2t f=f � �a2on U , where a; b are some appropriate positive 
onstants. These assumptionsimply that M is 
onformally equivalent to a 
losed surfa
e �M with �nitely manypoints deleted.The most important examples are 
omplete surfa
es with �nite area and glob-ally pin
hed negative Gauss 
urvature. For that 
lass to be in
luded in our dis-
ussion, we have to be somewhat modest in the regularity assumption sin
e thenthe above di�eomorphism need only be C2, 
f. [Eb℄, [HIH℄. More pre
isely, weassume that f is C1 and that the se
ond partial derivative of f in the t{dire
tionexists and is 
ontinuous. When ne
essary we label the ends by an index k.Let E be a graded Dira
 bundle over M in the sense of Gromov and Lawson,see [LM℄. That is, E is a bundle of left modules over the Cli�ord bundle ClMof M with 
ompatible Hermitian metri
 and 
onne
tion together with a parallel�eld � of unitary involutions whi
h anti
ommutes with Cli�ord multipli
ationby ve
tor �elds. These data determine a Dira
 operator D and a de
ompositionDate: September 16, 1999.1991 Mathemati
s Subje
t Classi�
ation. 53C20.Key words and phrases. Dira
 operator, geometri
 bundle, essential spe
trum, index.Both authors were partially supported by SFB256 (U Bonn) and SFB288 (HU Berlin).1



2 WERNER BALLMANN AND JOCHEN BR�UNINGE = E+�E� into the eigenspa
es of � with eigenvalue �1. We are interested inthe spe
tral properties ofD as an unbounded and essentially self{adjoint operatorin the spa
e L2(M;E) of square integrable se
tions of E.There is no reason to expe
t 
lose relations between the geometry ofM and thespe
tral properties of D if the underlying Dira
 bundle is not 
losely related tothe geometry ofM . To establish su
h a relation we propose the following notion.We say that a ve
tor bundle E over M with Hermitian metri
 and 
onne
tionis geometri
 if there is a parallel twoform S with values in the bundle of skewHermitian endomorphisms of E su
h that the 
urvature R of E satis�esR(X; Y )u = KS(X; Y )ufor all ve
tor �elds X; Y ofM and se
tions u of E. The 
lass of geometri
 bundlesover M admits all the standard operations on ve
tor bundles and 
ontains all 
atbundles and all bundles whi
h are asso
iated to the Riemannian stru
ture or aspin stru
ture of M .Now let E be a �xed graded Dira
 bundle over M and assume that E is geo-metri
. Then for any lo
al orthonormal frame X; Y of TM , C := �XY S(X; Y )is a parallel �eld of Hermitian endomorphisms of E independent of the 
hoi
e ofX and Y and hen
e is globally de�ned. We haveXY �R(X; Y )u = KCufor any se
tion u of E. Now the �eld � of involutions of E is parallel andanti
ommutes with Cli�ord multipli
ation by ve
tor �elds, hen
e C(E�) � E�.We set C� = CjE� : E� ! E� :Let U = S � (0;1) be an end of M . Let T = �t and X = f�1�s and orientU by this frame; if M is oriented, then we asume that the orientations of U andM 
oin
ide. The oriented orthonormal frame T;X is a se
tion of the SO(2){prin
ipal bundle SO(U) of oriented orthonormal frames on U and determines atrivialization SO(U) = U�SO(2). Let fSO(U) = U�R ! U�SO(2) be the 
or-responding lift, where we map r 2 R to the 
ounter
lo
kwise rotation by the angle2�r. Then fSO(U) is an R{prin
ipal bundle over U and any bundle asso
iated tofSO(U) via a unitary representation of R 
omes with a Hermitian metri
 and 
on-ne
tion. Now for 
 2 R and w 2 C with jwj = 1 we let L(
; w) be the 
omplex linebundle asso
iated to fSO(U) via the unitary representation exp(2�i
r) of fSO(2),and with atlas given by the holonomy requirement [s + 1; t; 0; u℄ = [s; t; 0; wu℄along the 
ir
les S � ftg. Note that L(1; 1) is the tangent bundle of U with itsnatural 
omplex stru
ture determined by the 
hosen orientation.The 
omplex area element !C = iTX de�nes a parallel �eld of unitary involu-tions of E over U whi
h 
ommutes with � and C. We setE�(
; ") = fu 2 E�jU j Cu = 
u ; !C u = "ug ;



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 3where 
 2 R and " 2 f+1;�1g. We will show that E+(
; ") is isomorphi
 toan orthogonal sum of line bundles L(�"
; w), and we denote by m(
; "; w) thenumber of times L(�"
; w) o

urs in this sum. The spe
tral 
hara
teristi
s whi
hwe investigate in this paper are given in terms of C+ and the integers m(
; "; w).All data asso
iated to an end U = Uk will be indexed by k if ne
essary.Suppose E = ClM is the Cli�ord bundle over M with the even{odd de
ompo-sition. Then E+jU = E+(0; 1)�E+(0;�1), m(0; "; 1) = 1 and m(0; "; w) = 0 forw 6= 1. If M is oriented and E is the spinor bundle asso
iated to the 
orrespond-ing spin
 stru
ture, then E+jU = E+(0; 1), m(0; 1; 1) = 1 and m(0; 1; w) = 0for w 6= 1. If E is a spinor bundle asso
iated to a spin stru
ture of M , thenE+jU = E+(1=2; 1). If the spin stru
ture is the restri
tion of a spin stru
ture ofthe 
losed surfa
e �M , then m(1=2; 1;�1) = 1 and m(1=2; 1; w) = 0 for w 6= �1.We �rst analyze the essential spe
trum spe
eD of D whi
h is lo
alized on theends ofM by the de
omposition prin
iple. Re
all that D is Fredholm if and onlyif 0 =2 spe
eD.0.1. Theorem. 1) If mk(
; "; 1) = 0 for all k; 
; ", then spe
eD = ;.2) If mk(1=2; "; 1) = 0 for all k and ", then D is Fredholm.3) If mk(1=2; "; 1) 6= 0 and the dire
tional derivative X(K) is uniformly boundedon Uk for some k, then spe
eD = R.Note that the assumption on X(K) in the third assertion holds if the end iswarped, that is, if f does not depend on s.Set D+ = DjL2(M;E+) \ C1(M;E+). In the 
ase when D is Fredholm, wealso determine the index of D+ expli
itly.0.2. Theorem. Let m = rankE+ and suppose that mk(1=2; "; 1) = 0 for all kand ". ThenindD+ = (m=2� trC+)�(M) + 12Xk;
;" sign(1=2� 
)mk(
; "; 1)� 12 Xk;
;";w " �(w)mk(
; "; w) ;where �(1) = 0 and �(exp(2�i�)) = 1� 2� for 0 < � < 1.We emphasize that in our theorems, we do not need assumptions on derivativesof the 
urvature or, respe
tively, assumptions on the asymptoti
 behaviour ofthird or higher derivatives of the metri
. Spe
ial 
ases of the above theoremswere obtained in [DX℄, [St℄, [Br℄, and [B�a℄.In the 
ase when E is the Cli�ord bundle with the even{odd de
omposition,then D+ is 
alled the Gauss{Bonnet operator. We getindD+ = �(M) + #fendsg = �( �M) :



4 WERNER BALLMANN AND JOCHEN BR�UNINGWhenM is oriented and E is the spinor bundles asso
iated to the spin
 stru
tureof M , then D+ is 
alled the Riemann{Ro
h operator. In this 
aseindD+ = ��(M) + #fendsg�=2 = �( �M)=2 :When M is oriented and E is the spinor bundle asso
iated to a a spin stru
turewhi
h extends to a spin stru
ture on �M , then indD+ = 0.Re
all that M is 
onformally equivalent to a 
losed surfa
e �M with �nitelymany points deleted. Hen
e the Riemannian metri
 on M is 
onformally equiva-lent to a Riemannian metri
 with 
ylindri
al ends. The latter were dis
ussed inthe work of Atiyah, Patodi and Singer [APS℄, and therefore it is interesting toknow whether the dimension of the spa
eH2(M;E) of square integrable harmoni
se
tions of E is a 
onformal invariant. Now it is a rather straightforward 
onse-quen
e of our des
ription of geometri
 bundles in the text that dimH2(M;E+(1))and dimH2(M;E�(0)) are 
onformally invariant, whereE�(
) = fu 2 E� j Cu = 
ug ;but in other 
ases 
onformal invarian
e may fail. Using the the 
onformal invari-an
e of dimH2(M;E�(0)) the Gauss{Bonnet and Riemann{Ro
h formulas aboveare easy 
onsequen
es of the results in [APS℄, but also follow easily by a dire
targument for surfa
es with 
ylindri
al ends as in Se
tion 4 of [APS℄.The plan of the paper is as follows. In Se
tion 1 we dis
uss the geometryof the ends in more detail. In Se
tion 2 we 
hara
terize geometri
 bundles anddetermine their stru
ture over the ends ofM . In Se
tion 3 we introdu
e operatorswhi
h model the Dira
 operator along the ends. In Se
tion 4 we prove our mainanalyti
al lemmas. In Se
tion 5 we investigate the essential spe
trum and proveTheorem 0.1. In Se
tion 6 we 
ompute the index formula from Theorem 0.2.The �rst author would like to thank the Department of Mathemati
s at theUniversity of Pennsylvania for its hospitality during the spring of 1999, whena large part of the present work was 
ompleted. We would also like to thankCharles Epstein for helpful dis
ussions.



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 51. The EndsBy assumption ea
h end U is di�eomorphi
 to S � (0;1), where S = R=Zis the 
ir
le, and the metri
 is of the form f 2ds2 + dt2, where f = f(s; t) is
ontinuously di�erentiable with respe
t to s and twi
e 
ontinuously di�erentiablewith respe
t to t. We re
all that we assume that the area of U is �nite. We havef 00+Kf = 0, where the Gauss 
urvature K = K(s; t) is 
ontinuous and boundedby �b2 � K � �a2 < 0 for appropriate positive 
onstants a; b. Here and belowthe prime 0 denotes di�erentiation with respe
t to the variable t.The 
urves 
s(:) = (s; :) are unit speed geodesi
s. The 
ir
les St = S � ftg areperpendi
ular to the geodesi
s 
s. The length and geodesi
 
urvature of St aregiven by �f(t) = Z 10 f(s; t)ds(1.1)and �(s; t) = �f 0(s; t)=f(s; t) ;(1.2)respe
tively. Re
all that � satis�es the Ri

ati equation�0 = �2 +K :(1.3)By the assumption on �nite area f is the stable solution of the Ja
obi equation.Hen
e f(s; 0) exp(�bt) � f(s; t) � f(s; 0) exp(�at) ;a � �(s; t) � b :(1.4)We also introdu
e the averaged geodesi
 
urvature��(t) = 1�f(t) Z 10 �(s; t)f(s; t)ds :(1.5)By (1.2), ��(t) = � �f 0(t)= �f(t) :(1.6)Furthermore, �f(0) exp(�bt) � �f(t) � �f(0) exp(�at) ;a � ��(t) � b :(1.7)Later it will be important to 
onsider the ar
 length along St,r(s; t) = 1�f(t) Z s0 f(s; t)ds :(1.8)Then r(0; t) = 0 and r(1; t) = 1 :(1.9)



6 WERNER BALLMANN AND JOCHEN BR�UNINGLet r be the Levi{Civita 
onne
tion and de�ne the orthonormal frame T;X asin the introdu
tion. This frame is parallel in the T{dire
tion and we haverXT = ��X and rXX = �T :(1.10)Denote by var�t the varian
e of � on St,var�t = 1�f(t) ZS(�(s; t)� ��(t))2f(s; t)ds :(1.11)The following lemma is well known, 
ompare &7 in [Ho℄, and gives a suÆ
ient
riterion for the eventual vanishing of the varian
e of �.1.12. Lemma. If the metri
 on U is C3 and X(K) is uniformly bounded, thenlimt!1 var �t = 0 :



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 72. The BundlesWe �x an end U = S � (0;1) of M and let SO(U) be the SO(2){prin
ipalbundle of oriented orthonormal frames over U . Our preferred frame F = (T;X)is a global se
tion of SO(U) and determines a trivializationU � SO(2)! SO(U) ; (s; t; A) 7! F (s; t)A ;and a lift fSO(U) := U � R ���!id�� U � SO(2) = SO(U)of SO(U) to an R{prin
ipal bundle over U , where �(r) is 
ounter
lo
kwise rota-tion by the angle 2�r.The tangent bundle with its natural parallel 
omplex stru
ture | 
ounter-
lo
kwise rotation by a right angle | is the 
omplex line bundle asso
iated tothe representation exp(2�ir) of R on C .The se
tion ~F (s; t) = (s; t; 0) is a lift of the frame F = F (s; t) and determineslifts ~T = ~F�T of T and ~X = ~F�X of X along the image of ~F . In terms of ~T and~X, the 
onne
tion form ! and 
urvature form 
 of the Levi-Civita 
onne
tionare given by !( ~T ) = 0 ; !( ~X) = ��i and 
( ~T ; ~X) = �Ki :Fix 
 2 R and w 2 C with jwj = 1. Let L(
; w) be the 
omplex line bundle asso-
iated to fSO(U) via the representation exp(2�i
r) of R on C with an atlas givenby the holonomy relation [s+ 1; t; 0; u℄ = [s; t; 0; wu℄. Sin
e the representation ofR is unitary, L(
; w) has a natural Hermitian metri
. Furthermore, ! determinesa unitary 
onne
tion on L(
; w). It is easy to see that L(
; w) is a geometri
bundle; we prove a more pre
ise statement in the lemma below. We also haveL(
; w)
 L(
0; w0) = L(
+ 
0; ww0) :(2.1)2.2. Lemma. The line bundle L(
; w) has a se
tion � of norm 1 su
h that�(s+ 1; t) = w�(s; t) ; rT� = 0 ; rX� = ��i
� ; R(T;X)� = �Ki
� :Proof. In the standard notation for bundles asso
iated to prin
ipal bundles let� = �(s; t) = [s; t; 0; 1℄. Then � has norm 1 and the asserted holonomy. Nowunder the representation exp(2�i
r), the 
onne
tion form ! and 
urvature form
 are multiplied by 
. Hen
e � also satis�es the remaining equations.We now des
ribe the stru
ture of geometri
 bundles over U . A similar des
rip-tion is also valid over all of M . However, for ease of presentation we sti
k togeometri
 bundles over U .2.3. Lemma. Let E be a geometri
 bundle over U . Then E is isomorphi
 to anorthogonal sum of line bundles L(
; w).



8 WERNER BALLMANN AND JOCHEN BR�UNINGProof. For 
 2 R let E(
) = fu 2 E j Cu = 
ug. Then E is the dire
t sum ofthe parallel and pairwise perpendi
ular subbundles E(
). Hen
e we may assumethat E = E(
) for some �xed 
.Let t > 0 and �;	 be se
tions of EjSt solvingrX� = ��i
� ; rX	 = ��i
	 :Then Xh�;	i = hrX�;	i+ h�;rX	i= h��i
�;	i + h�;��i
	i = 0 :Now extend � by parallel translation in the T -dire
tion and re
all that [T;X℄ =�X, see (1.10). We getrT (rX�) = r[T;X℄� +R(T;X)� = ��2i
��Ki
� :Using (1.3) we also haverT (��i
�) = ��0i
� = �(�2 +K)i
� :Hen
e rX� and ��i
� solve the same di�erential equation. Hen
e rX� =��i
� on all of U .We 
on
lude that there is an orthonormal frame �1; : : : ;�m of E, where m =rankE, su
h that rT�j = 0 and rX�j = ��i
�j for all j. It follows that theholonomy H = (hij), de�ned by�j(s+ 1; t) =X hij�i(s; t) ;is independent of (s; t) and unitary. Now an appropriate unitary 
hange of framewith 
onstant 
oeÆ
ients diagonalizes H.We now turn to geometri
 Dira
 bundles. Fix 
 2 R, " 2 f�1;+1g and w 2 Cwith jwj = 1. Let L(
; "; w) = L(�"
; w)� L("(1� 
); w) :Viewing the Cli�ord bundle as the bundle asso
iated to fSO(U) via the repre-sentation exp(2�ir) on ClR2 , we des
ribe Cli�ord multipli
ation on L(
; "; w) bythe following representation of ClR2 on C 2 = C � C ,�0 �11 0 � ; � 0 "i"i 0� ; ��"i 00 "i� :Here the matri
es des
ribe Cli�ord multipli
ation by e1; e2; e1e2 2 ClR2 respe
-tively. Furthermore, let � = "!C , where !C = iTX is the 
omplex area element.It is easy to see that L(
; "; w) is a graded Dira
 bundle with L+(
; "; w) =L(�"
; w) and L�(
; "; w) = L("(1� 
); w). Moreover, it is immediate thatL(
; "; w)
 L(
0; w0) = L(
� "
0; "; ww0) :(2.4)



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 92.5. Lemma. There are se
tions �+ of L+(
; "; w) and �� of L�(
; "; w) of norm1 su
h that��(s+ 1; t) = w��(s; t) ; T�� = ��� ; X�� = "i�� ;rT�� = 0 ; XrX�+ = ��
�� ; XrX�� = �(1� 
)�+ ;TXR(T;X)�+ = K
�+ ; TXR(T;X)�� = K(1� 
)�� :Proof. Let �+ be a se
tion of L(�"
; w) as in Lemma 2.2 and set �� = T�+.It is immediate from the de�nition of Cli�ord multipli
ation that these se
tionshave the asserted properties.We now des
ribe the stru
ture of graded geometri
 Dira
 bundles over U . As inthe 
ase of geometri
 bundles, there is a similar des
ription for graded geometri
Dira
 bundles over all of M .2.6. Lemma. Let E be a graded geometri
 Dira
 bundle over U with involution�. Then E is isomorphi
 to an orthogonal sum of bundles L(
; "; w).It is 
lear that the numbers m(
; "; w) from the introdu
tion are equal to thenumber of times that the bundles L(
; "; w) o

ur in the de
omposition of E overU in Lemma 2.6.Proof of Lemma 2.6. As in the introdu
tion, let TXR(T;X) = KC. We haveC(v � u) = v � (1� C)u ;for any v 2 TM and u 2 E with the same foot point 1. Note that E+ and E�are invariant under R and Cli�ord multipli
ation by TX, hen
e C(E�) � E�.The 
omplex area element !C = iTX 
ommutes with the involution � of Eand C and hen
e E� is the dire
t sum of the pairwise perpendi
ular and parallelsubbundles E�(
; ") = fu 2 E� j C(u) = 
u; !C u = "ug ;where 
 2 R and " 2 f+1;�1g. Hen
e E is the dire
t sum of the pairwiseperpendi
ular and parallel graded Dira
 subbundlesE(
; ") = E+(
; ")� E�(1� 
;�") :Hen
e we may assume E = E(
; "). But then by Lemma 2.3, E+ is isomorphi
to the orthogonal sum of line bundles L(�"
; w). It follows easily that E isisomorphi
 to the orthogonal sum of the 
orresponding graded Dira
 bundlesL(
; "; w).2.7. Examples. 1) The Cli�ord bundle ClU together with the even{odd de-
omposition is equal to L(0; 1; 1)� L(0;�1; 1).2) The 
hosen orientation determines a spin
 stru
ture on U . The 
orrespond-ing spinor bundle is equal to L(0; 1; 1).1For this 
on
lusion we need that K(s; t) 6= 0 for some (s; t) 2 U .



10 WERNER BALLMANN AND JOCHEN BR�UNING3) There are two spin stru
tures on U . The trivial spin stru
ture is fSO(U)=2Z.The spinor bundle asso
iated to the trivial spin stru
ture is L(1=2; 1; 1).The 
orresponden
e (s; t) $ exp(�(t + is)) identi�es U with the unit ball Bwith midpoint removed. The restri
tion of the unique spin stru
ture of B toU is 
alled the nontrivial spin stru
ture. The spinor bundle asso
iated to thenontrivial spin stru
ture of U is equal to L(1=2; 1;�1).It follows from the above des
ription of spinor bundles and (2.4) that we 
anfa
tor graded geometri
 Dira
 bundles with involution � = !C by spinor bundles,L(
; 1; w) = L(1=2; 1;�1)
 L(1=2� 
;�w) :(2.8)



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 113. The Model OperatorsLemma 2.6 implies that the properties of the Dira
 operator on a graded Dira
bundle E over an end U = S � (0;1) are determined by the properties of theDira
 operators on the bundles L(
; "; w).For t > 0 writeC1(St)w = fu 2 C1([0; 1℄� ftg) j u(1; t) = u(0; t)=wg :For an interval I � (0;1) write 
orrespondinglyC1(S � I)w = fu 2 C1([0; 1℄� I) j u(1; t) = u(0; t)=wg :We let C10 (S�I)w be the subspa
e of u 2 C1(S�I)w whi
h have 
ompa
t supportin [0; 1℄� I.We now transform the Dira
 operators on the bundles L(
; "; w) to operatorswhi
h are 
onvenient for our purposes. De�ne matri
es
 = �0 �11 0 � and � = �1 00 �1� :(3.1)Then the map 	 : C10�S � (0;1)�w 
 C 2 ! C10 (U; L(
; "; w)) ;u = (u+; u�) 7! u+�+ + u��� ;transforms the Dira
 operator to the model operatorD1 := 	�1D	 = 
�(�t � �=2) + ("iX + �(1=2� 
))��= 
�(�t � �=2) + A+ �B� ;(3.2)where A = A(t) = �A+(t) 00 �A+(t)� = �"iX 00 �"iX�(3.3)and B = (1=2� 
)�1 00 �1� = �1=2� 
 00 
� 1=2� :(3.4)The operator D1 depends on the Riemannian metri
 on U = Uk and on theparameters 
, " and w.We re
all that the area element on U is fdsdt. For t > 0 and fun
tionsu; v 2 C1(St)w 
 C 2 we let(u; v)t = ZShu(s; t); v(s; t)if(s; t)ds ;(3.5)



12 WERNER BALLMANN AND JOCHEN BR�UNINGwhere h: ; :i denotes the inner produ
t in C 2 . For an interval I � (0;1) andfun
tions u; v 2 C1(S � I)w 
 C 2 we let(u; v)I = ZI(u; v)tdt = ZI ZShu(s; t); v(s; t)if(s; t)dsdt ;(3.6)denote the L2{inner produ
t of u and v. We use analogous notation for the
orresponding norms. Note that 	 extends to a unitary map	 : L2�(S � (0;1); fdsdt�
 C 2 ! L2(U; L(
; "; w)) :We now turn to the family of operators A = A(t) from (3.2) whi
h splits intooperators A+(t) = "iX and A�(t) = �"iX a

ording to (3.3). We re
all thatthe length of St is �f(t) and that X has norm one. Hen
e we have the followinglemma.3.7. Proposition. The operator iX is essentially self{adjoint as an operator inL2(St) with domain C1(St)w. Its spe
trum is dis
rete and 
onsists of the eigen-values �2�(�+ k)= �f(t) ; k 2 Z ;where we write w = exp(2�i�). The 
orresponding eigenspa
es are spanned bythe fun
tions exp(2�i(�+k)r= �f(t)), where r = r(s; t) denotes ar
 length along Stas in (1.8).We note that 0 is in the spe
trum of A(t) if and only if w = 1 and that the nonzeroeigenvalues grow like 1= �f(t) ! 1. Both these observations will be importantbelow.We let P0 = P0(t) be the orthogonal proje
tion onto the kernel of A(t). Ifw 6= 1, then P0 = 0 and if w = 1, thenP0u(s; t) = �u(t) = 1�f(t) ZS u(s; t)f(s; t)ds :(3.8)Note that �u is 
ontinuously di�erentiable if u is and thatsupp �u � ft j supp u \ St 6= ;g :(3.9)In the 
ase w = 1 we will also 
onsider the following symmetri
 model operatorD10 := P0D1P0 = 
�(�t � ��=2) + ��(1=2� 
)�� ;(3.10)with domain C10(0;1)
C 2 in L2�(0;1); �fdt�
C 2 . Here we identify fun
tions inC10(0;1)
 C 2 with fun
tions on S � (0;1) whi
h do not depend on s, 
ompare(3.8). Note that the substitution ~u = p �fu de�nes a unitary equivalen
e ofL2�(0;1); �fdt�
 C 2 and L2�(0;1); dt�
 C 2 and transforms D10 into the Dira
system 
��t + ��(1=2� 
)��(3.11)with domain C10(0;1)
 C 2 .



ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS 134. The WeaponsWe �x an end U = S�(0;1) and 
onsider a model operatorD1 as in (3.2). Were
all that the area element on U is fdsdt. The following lemma is now immediatefrom the de�nition of the L2{inner produ
t (3.6) and partial integration.4.1. Lemma. Let I = [t0; t1℄ � (0;1) and assume that u; v 2 C1(S � I)w 
 C 2 .Then (�tu; v)I = (u;��tv + �v)I + f(u; v)t1 � (u; v)t0g :In parti
ular, 
(�t � �=2) is symmetri
 on C10�S � (0;1)�w 
 C 2 .Now P0 is self{adjoint, see (3.8). Hen
e the following formulas are immediatefrom Lemma 4.1.4.2. Lemma. On C1�S � (0;1)�w 
 C 2 we haveP0�tP0 = �tP0 and P0�P0 = ��P0 :Therefore we also get(1� P0)�tP0 = 0 ; (1� P0)�P0 = (�� ��)P0 ;P0�t(1� P0) = P0(�� ��) ; P0�(1� P0) = P0(�� ��) :Our �rst weapon is the following lemma.4.3. Lemma. On C1�S � (0;1)�w 
 C 2 we haveP0D1P0 = 
�(�t � ��=2) + ��B�P0 ;(1� P0)D1P0 = 
(�� ��)(B � 1=2)P0 ;P0D1(1� P0) = 
P0(�� ��)(B + 1=2)(1� P0) :Proof. By de�nition, AP0 = P0A = 0. Furthermore, [P0; 
℄ = [P0; � ℄ = 0 andB
 + 
B = 0. The formulas are now immediate from Lemma 4.2.By P>(t) and P<(t) we denote the spe
tral proje
tion in L2(St)w 
 C 2 
orre-sponding to the eigenvalues of A(t) whi
h are > 0 and < 0, respe
tively. Thefollowing lemma is our se
ond weapon.4.4. Lemma. Let I = [t0; t1℄ � (0;1) be a 
ompa
t interval and suppose u 2C1(S � I)w 
 C 2 satis�es P>(t0)ut0 = 0 and P<(t1)ut1 = 0. ThenkAukI � kD1ukI + C1 kukI ;where C1 = bmax(j
j; j1� 
j).Proof. By approximation we may assume that u is C2. Now by (1.10), [�t; X℄ =�X. Therefore �tAu = A�tu+ �Au and hen
e, by Lemma 4.1,(�tu;Au)I = (u;�A�tu)I + f(u;Au)t1 � (u;Au)t0g :



14 WERNER BALLMANN AND JOCHEN BR�UNINGNow A is symmetri
. Therefore our assumption on u implies2Re(�tu;Au)I = f(u;Au)t1 � (u;Au)t0g � 0 :Hen
e kD1ukIkAukI � Re(D1u; 
Au)I= Re(�tu;Au)I + kAuk2I +Re(�(B � 1=2)u;Au)I� kAuk2I � bmax(j
j; j1� 
j)kukIkAukI :Re
all that P0 = 0 if w 6= 1. We assume now that w = 1. Then for u =(u+; u�) 2 C10�S � (0;1)�
 C 2 we have P0u = (�u+; �u�), where �u� is de�ned asin (3.8). We set P+0 u = (�u+; 0) and P�0 u = (0; �u�) so that P0 = P+0 + P�0 . Nowour third and last weapon reads as follows.4.5. Lemma. Assume w = 1 and 
 6= 1=2. Let I = [t0; t1℄ � (0;1) be a 
ompa
tinterval and suppose u 2 C1(S � I)
 C 2 satis�esP�0 (t0)ut0 = 0 ; P+0 (t1)ut1 = 0 if 1=2 < 
 ;P+0 (t0)ut0 = 0 ; P�0 (t1)ut1 = 0 if 1=2 > 
 :Then aj1=2� 
j kP0ukI � kP0D1ukI + C2 k(1� P0)ukI ;where C2 = bj1=2� 
j+ (b� a)=2.Proof. We set ~� = sign(1=2�
) � , with � from (3.1). Now we have P0A = AP0 = 0by the de�nition of P0. Hen
e(P0D1u; 
~�P0u)I = ((�t � �=2)P0u; ~�P0u)I + ((�t � �=2)(1� P0)u; ~�P0u)I+ (�BP0u; ~�P0u)I + (�B(1� P0)u; ~�P0u)I :Next we estimate the four terms on the right hand side. By Lemma 4.1, the �rstterm is ((�t � �=2)P0u; ~�P0u)I = �(P0u; (�t � �=2)~�P0u)I+ (P0u; ~�P0u)t1 � (P0u; ~�P0u)t0 :By our assumption(P0u; ~�P0u)t1 � (P0u; ~�P0u)t0 = �k�u�kt1 + k�u+kt0 if 1=2 < 
 ;k�u+kt1 + k�u�kt0 if 1=2 > 
 ;so the above 
omputation givesRe((�t � �=2)P0u; ~�P0u)I � 0 :
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ond term 
an be estimated as follows,j((�t � �=2)(1� P0)u; ~�P0u)I j = j(P0�� ��2 (1� P0)u; ~�P0u)I j� b� a2 k(1� P0)ukIkP0ukI :Re
all that B = (1=2� 
)� . Hen
e the absolute value of the fourth term 
an beestimated byj(�B(1� P0)u; ~�P0u)I j � bj1=2� 
jk(1� P0)ukIkP0ukI :The 
ru
ial estimate involves the third term, but this is immediate from thede�nition of B and ~� :(�BP0u; ~�P0u)I � aj1=2� 
jkP0uk2I :We 
on
lude thatkP0D1ukIkP0ukI �aj1=2� 
jkP0uk2I � (bj1=2� 
j+ (b� a)=2)k(1� P0)ukIkP0ukI :This �nishes the proof of the lemma.



16 WERNER BALLMANN AND JOCHEN BR�UNING5. The Essential Spe
trumSin
eM is 
omplete, the Dira
 operatorD with domain C10(M;E) is essentiallyself{adjoint in L2(M;E), see [LM, p.117℄. We denote by �D the 
losure of D andre
all that the spe
trum spe
 �D of �D is 
ontained in R.5.1. Definition. A real number � belongs to the dis
rete spe
trum spe
d �D of�D if � is an eigenvalue of �nite multipli
ity of �D and an isolated point of spe
 �D.The 
omplement spe
e �D = spe
 �Dn spe
d �D is 
alled the essential spe
trum of �D.In parti
ular, �D is Fredholm if and only if 0 =2 spe
e �D. An easy 
onsequen
e ofWeyl's Criterion and the Relli
h Lemma, the so{
alled De
omposition Prin
iple,says that spe
e �D does not depend on 
ompa
t parts of M , see below.We say that a sequen
e (un) in C10 (M;E) is a spe
ial Weyl sequen
e (for E) iflimn!1 kunk = 1 and supp un !1 as n!1 :(5.2)Now the following well known 
hara
terization of spe
e �D by spe
ial Weyl se-quen
es is a version of the De
omposition Prin
iple.5.3. Lemma. � 2 spe
e �D if and only if there is a spe
ial Weyl sequen
e (un)with limn!1 k(D � �)unk = 0 :5.4. Corollary. Assume that there is a 
ompa
t subset K of M and a 
onstant
K > 0 su
h that kDuk � 
Kkuk for all u 2 C10(MnK;E). Thenspe
e �D \ (�
K ; 
K) = ; :It is 
onvenient to introdu
e the following notation. Let ~E be a Hermitianve
tor bundle over a 
omplete Riemannian manifold ~M with 
ompa
t boundary.Let ~D be a symmetri
 �rst order di�erential operator on C10( ~M; ~E). Setspe
1 ~D = f� 2 R jthere is a spe
ial Weyl sequen
e (un)for ~E with limn!1 k( ~D � �)unk = 0g :(5.5)Then spe
e �D = spe
1D by Lemma 5.3, but, in general, (5.5) ignores possi-ble 
ontributions from the boundary. The following result is now obvious fromLemma 2.6.5.6. Lemma. We have spe
e �D = [ spe
1D1, where the union is over all k; 
; ",and w with mk(
; "; w) > 0.It remains to dis
uss spe
1D1. In the 
ase w = 1, the model operator D10from (3.10) 
omes into play.5.7. Theorem. Fix an end U and 
onstants 
; ", and w. Then we have:1) If w 6= 1 then spe
1D1 = ;.2) If w = 1 and � 2 spe
1D1 then j�j � aj1=2� 
j. Furthermore,spe
1D1 � spe
1D10 with equality if lim supvar(�t) = 0.
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1D1 and (un) be a spe
ial Weyl sequen
e for D1 with(D1 � �)un ! 0. Now for any N > 0 there is a 
onstant t0 > 0 su
h thatthe nonzero eigenvalues of A(t) are of absolute value � N for all t � t0. Hen
e(1� P0)un ! 0, by Lemma 4.4. This 
ompletes the proof of the �rst assertion.Assume now that w = 1. By what we just said we have (1�P0)un ! 0, hen
ekP0unk ! 1 and therefore, by Lemma 4.5,lim inft!1 kD1unk � lim inft!1 kP0D1unk � aj1=2� 
j :This establishes the inequality in the se
ond assertion. Furthermore, by Lemma 4.3,P0(D1 � �)(1� P0)un = 
P0(�� ��)(B + 1=2)(1� P0)un ! 0 :Therefore (P0D1P0 � �)P0un = P0(D1 � �)P0un ! 0 :But then (P0un) is a spe
ial Weyl sequen
e with (D10 � �)P0un ! 0. Hen
e �is in spe
1D10, hen
e spe
1D1 � spe
1D10.Suppose now that w = 1 and lim supt!1 var(�t) = 0. Let � 2 spe
1D10 and(un) be a spe
ial Weyl sequen
e for D10 with (D10��)un ! 0. Then un = P0unand hen
e (D1 � �)un = (D1 � �)P0un= P0(D1 � �)P0un + (1� P0)(D1 � �)P0un= (D10 � �)P0un + 
(�� ��)(B � 1=2)P0un ;by Lemma 4.3. Now by assumption, the �rst term on the right hand side tendsto zero as n tends to in�nity. The se
ond term tends to zero sin
e kP0unk isuniformly bounded, supp un ! 1, and lim supt!1 var(�t) = 0. Hen
e � is inspe
1D1, hen
e spe
1D1 = spe
1D10.We re
all that �D is Fredholm if and only if 0 =2 spe
e �D.5.8. Corollary. If mk(1=2; "; 1) = 0 for all k and ", then �D is Fredholm. Onthe other hand, if for some k and " we have mk(1=2; "; 1) > 0 and var(�t) ! 0as t!1, then spe
e �D = R.Theorem 5.7 and Corollary 5.8 imply Theorem 0.1 from the introdu
tion.



18 WERNER BALLMANN AND JOCHEN BR�UNING6. The IndexWe are all set for the dis
ussion of the index of D+. As usual, the ends of M
ome with an index k. For ea
h end U = Uk, we also enumerate the line bundlesL(
; "; w) whi
h o

ur in the de
omposition of EjU by an additional index j,Lkj = L(
kj; "kj; wkj), where 1 � j � m = dimE+. These indi
es will also beused for other obje
ts atta
hed to Lkj if ne
essary.Throughout this se
tion we assume that mk(1=2; "; 1) = 0 for all k. In otherwords, we assume that wkj 6= 1 whenever 
kj = 1=2. Then the Dira
 operator �Dis Fredholm, by Theorem 0.1 or Corollary 5.8 respe
tively.Consider an end U = Uk = S � (0;1) and setUt = Uk;t = S � (t;1) ; St = Sk;t = S � ftg :(6.1)Furthermore set Vt = [kUk;t ; Mt =M n Vt :(6.2)Then Mt is a 
ompa
t surfa
e with smooth boundary �Mt, 
onsisting of thepairwise disjoint 
ir
les Sk;t. We let �Uk;t and �Vt denote the 
losures of Uk;t andVt, respe
tively.Our aim is to redu
e the 
omputation of the index of D+ to a boundary valueproblem on Mt, where t > 0 is suÆ
iently large.By an ellipti
 boundary value problem we mean a pseudodi�erential boundary
ondition whi
h is well{posed in the sense of Seeley [Se℄.6.3. Lemma. Let t > 0. Then any self{adjoint extension of D over Mt or �Vt,de�ned by an ellipti
 boundary value problem at �Mt is Fredholm.Proof. In Theorem 4.1 of [BL℄ Br�uning and Les
h 
hara
terize ellipti
 bound-ary value problems in terms of orthogonal proje
tions and show that they areFredholm. This implies the result for Mt.The lo
al analysis used for the result just mentioned implies a `de
ompositionprin
iple' for self{adjoint extensions ofD over �Vt, hen
e the se
ond assertion sin
e�D is Fredholm, by Corollary 5.8.We 
hoose t0 >> 0 and introdu
e boundary 
onditions at t0. To that end wewrite a se
tion u over Uk asu =Xj �u+kj�+kj + u�kj��kj� ;(6.4)where �+kj;��kj is a frame of Lkj as in Lemma 2.5. We re
all that Pkj;>(t0)and Pkj;<(t0) denote the spe
tral proje
tions in L2(Sk;t0)wkj 
 C 2 
orrespondingto the eigenvalues of Akj(t0) whi
h are > 0 and < 0, respe
tively. Sin
e Akjde
omposes into two operators a

ording to the de
omposition u = (u+; u�), wehave a 
orresponding de
omposition Pkj;> = P+kj;>+P�kj;> and similarly for Pkj;<.
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all the orthogonal proje
tion Pkj;0(t0) onto the kernel of Akj(t0) inL2(Sk;t0)wkj 
 C 2 and the de
omposition Pkj;0 = P+kj;0 + P�kj;0 as in Lemma 4.5.In their dis
ussion of the index problem for Dira
 operators on 
ompa
t man-ifolds with boundary, Atiyah, Patodi and Singer used the proje
tionsPkj;APS = Pkj;< + P+kj;0(6.5)on the 
omponent Skt0 of �Mt0 , assuming in addition that the metri
 is a produ
tnear the boundary, i.e., f(s; t) = �f(t0) for s 2 [0; 1℄ and t near t0, see [APS℄. Inour dis
ussion we need a variation of this. We setPkj(t0) = �Pkj;<(t0) + P+kj;0(t0) if 1=2 < 
 ;Pkj;<(t0) + P�kj;0(t0) if 1=2 > 
 :(6.6)The identity 
Pkj(t0) = (1� Pkj(t0))
(6.7)where 
 is as in (3.1), implies that D with ea
h of the following two domainsDint = fu 2 C1(Mt0 ; E) j Pkj(t0)(ukjjSk;t0) = 0 for all k; j gDext = fu 2 C10 ( �Vt0 ; E) j (1� Pkj(t0))(ukjjSk;t0) = 0 for all k; j gis symmetri
. We denote the 
orresponding operators by Dint and Dext, respe
-tively. Then the boundary 
onditions are ellipti
. To see this, we invoke again[BL, Theorem 4.1℄. This requires a lo
alization in the standard form used in [BL,(4.2)℄: the map u 7! (ft0=ft)1=2utransforms Dkj into the operatorDkj = 
(�t + ~A(t)) ;(6.8)on the Hilbert spa
e L2(�S � (0;1); ft0dsdt�. Here~A(t0) = A(t0) + �(t0)B =: ~A = � ~A+ 00 � ~A+� :Next we need to determine a proje
tion P+( ~A) with the properties listed in (3.10)of [BL℄, and we have to show that (P+( ~A); P (t0)) forms a Fredholm pair. Now itis 
lear that the proje
tionP+( ~A) = �P�0( ~A+) 00 P<0( ~A+)�of Atiyah, Singer and Patodi is an admissible 
hoi
e. Sin
e B is bounded andP (t0) di�ers by a �nite rank proje
tion from the analogous proje
tion P+(A(t0)),the Fredholm property follows from standard perturbation theory. It follows alsofrom Theorem 4.1 in [BL℄ (with an obvious modi�
tion for Dext) that both Dintand Dext are essentially self{adjoint. By Lemma 6.3, they are both Fredholm.



20 WERNER BALLMANN AND JOCHEN BR�UNINGThe boundary proje
tions respe
t the de
omposition E = E+ �E�, hen
e wehave the subdomains D+int and D+ext and the 
orresponding restri
tionsD+int : D+int ! L2(Mt0 ; E�) ;D+ext : D+ext ! L2( �Vt0 ; E�) :The proof of our index formula below rests on the following result.6.9. Theorem (Br�uning{Les
h, [BL℄). indD+ = indD+int + indD+ext.The proof of this formula 
onsists in showing that the transmission 
onditionat �Mt0 for se
tions in H1(M;E+) 
an be deformed into the above boundary
onditions in the de�nition of Dint and Dext without a�e
ting the index. Theimportant point is that the interior boundary 
ondition above is independent ofthe exterior one, so that they 
an be handled separately. Another importantfeature of our 
hoi
e of boundary 
ondition is that the exterior 
ontribution tothe index 
an be 
omputed expli
itly: it is zero if t0 is suÆ
iently large.6.10. Lemma. For t0 suÆ
iently large, kerDext = 0. In parti
ular, indD+ext = 0.Proof. It suÆ
es to 
onsider the (self{adjoint) 
losure of the operator Dkj;1 =:Dkj on Dkj;ext, that is, on C10�S � [t0;1)�wkj 
 C 2 with the boundary 
ondition(1� Pkj(t0)). Let C3 > 0 be a lower bound for the absolute value of the nonzeroeigenvalues of the operator Akj(1). Then C3 �f(1)= �f(t0) is a lower bound for thenonzero eigenvalues of Akj(t) for all t � t0, by Proposition 3.7, hen
e for anyu 2 C10�[t0;1)�wkj 
 C 2 satisfying the boundary 
ondition we haveC3 �f(1)�f(t0)k(1� P0)uk[t0;1) � kAuk[t0;1)� C4�kDkjuk[t0;1) + k(1� P0)uk[t0;1)� ;by Lemmas 4.4 and 4.5, where C4 is a 
onstant independent of k, j, and t0. Sin
eDkj;ext is dense in the domain of the 
losure of Dkj, the above inequality andthe inequality in Lemma 4.5 persist to hold in that domain. On the other hand,�f(t)! 0 as t!1 so C3 �f(1) > C4 �f(t0)if t0 is suÆ
iently large. Thus if u 2 kerDkj, then (1 � P0)u = 0 and so, byLemma 4.5, also u = 0.We now 
ome to the proof of the asserted index formula. By Theorem 6.9 andLemma 6.10 we have indD+ = indD+int ;(6.11)and hen
e it remains to 
ompute indD+int. Now in the standard versions of theindex theorem for manifolds with boundary, it is assumed that near the boundary
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t. To arrive at su
h a situation, we deform the givenmetri
 in a small neighborhood of t0 by repla
ing f withf� = (1� �)f + �(� �f(t0) + (1� �)f) ; � 2 [0; 1℄ ;(6.12)where � is a suitable 
ut{o� fun
tion near t0. Using the representation (6.8), wesee that the family D�int is graph 
ontinuous on Dint, hen
e has 
onstant index.Hen
e we 
an, and will, assume from now on that near the boundary, the metri
of Mt0 is a produ
t. Thus we are �nally in the situation 
onsidered in [APS℄,ex
ept for a variation in the boundary 
ondition. This is taken 
are of by a resultof Agranovi
h-Dynin, see Theorem 23.1 in [BW℄ or Theorem 4.2 in [BL℄.6.13. Theorem. Denote by !ind the index form of D. ThenindD+int = ZMt0 !ind � 12Xk;j dimkerA+kj(t0) + 12Xk;j �kj(t0)+Xk;j ind(P+kj(t0) : imP+APS(t0)! imP+kj(t0)) ;where �kj(t0) denotes the �{invariant of A+kj(t0) and where PAPS denotes theAtiyah{Singer{Patodi spe
tral proje
tion.It remains to explain and evaluate the di�erent terms on the right hand sideof this formula.We start with the index form !ind. We 
ould 
ompute !ind by using the lo
alstru
ture of graded geometri
 Dira
 bundles as in Se
tion 2. However, there isalso the following way: By the Lo
al Index Theorem, we have!ind(p) = limt!0 trE[!C e�tD2(p; p)℄ ;hen
e the 
omputation of !ind is a lo
al problem. Therefore we may 
onsider anopen 
ontra
tible subset W � M , for whi
h we 
hoose an orientation. If M isoriented, we assume that the orientations of W and M 
oin
ide. The �eld C isparallel, hen
e the subbundles E� split over W as a dire
t sum of the pairwiseorthogonal and parallel subbundlesE�(
; ") = fu 2 E� j Cu = 
u ; !C u = "ug ;where 
 2 R and " 2 f�1;+1g. Now the subbundlesE(
; ") = E+(
; ")� E�(1� 
;�") :are graded Dira
 subbundles of E, hen
e we may assume that E = E(
; "). Wedis
uss the 
ase " = +1 �rst. ThenE+ = fu 2 E j !C u = ug :Let � be the spinor bundle asso
iated to the spin stru
ture of W . Then we haveE = �
 F with F = HomCli�(�; E) ;



22 WERNER BALLMANN AND JOCHEN BR�UNINGwhere HomCli�(�; E) is the bundle of homomorphisms from � to E whi
h arelinear over Cli�ord multipli
ation, a parallel subbundle of Hom(�; E) with the
anoni
al 
onne
tion. Now the 
urvature endomorphism C� on �� is multipli-
ation by K=2. By our assumption on E, the 
urvature endomorphism CE onE� is multipli
ation by K
 and K(1 � 
), respe
tively. It follows easily thatfor any oriented orthonormal frame X; Y of W , RF (X; Y ) is multipli
ation byKi(
� 1=2). Hen
e!ind = 12� (1=2� 
) dimF KdA = 12� (1=2� 
) dimE+KdA ;by the formula for the index form of twisted Dira
 operators as explained in[APS℄.In the 
ase where " = �1 we reverse the roles of E+ and E�, then we are ba
kin the previous 
ase but !ind 
hanges sign. We get�!ind = 12� (1=2� (1� 
)) dimE�KdA = � 12� (1=2� 
) dimE+KdA :In 
on
lusion, !ind = 12��m=2� tr(C+)	KdA ;and this gives the �rst term of the 
laimed index formula.Now the se
ond term in the index formula 6.13 is obviously equal to �1=2 times#f(k; j) j wkj = 1g. Furthermore, note that for ea
h pair (k; j) the proje
tionP+kj : imP+APS ! imP+kj is surje
tive, by (6.5) and (6.6). It has trivial kernel ifwkj 6= 1 or if wkj = 1 and 
kj > 1=2. The kernel is of dimension 1 if wkj = 1 and
kj < 1=2. This gives the se
ond term of the 
laimed index formula.If wkj = 1, then the spe
trum of A+kj(t0) is symmetri
 about 0 and hen
e�kj(t0) = 0 in this 
ase. If wkj 6= 1, we write wkj = exp(2�i�) with 0 < � = �kj <1. Then if "kj = 1, we get from Proposition 3.7�kj(s) = ���s �Xk�1f(k + �)�s � (k � �)�sg :If "kj = �1, we get the 
orresponding negative of the right hand side. Nowlims!0Xk�1f(k + �)�s � (k � �)�sg = �2� :This 
on
ludes the proof of Theorem 0.2.6.14. Remark. The proof of Theorem 0.2 gives a somewhat more general result.We only need to assume that the given graded Dira
 bundle E is geometri
 alongthe ends of M . Then the same index formula holds, ex
ept that the �rst termon the right hand side has to be repla
ed by the integral over the 
orrespondingindex form.
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