ON THE SPECTRAL THEORY OF SURFACES WITH CUSPS
WERNER BALLMANN AND JOCHEN BRUNING

ABSTRACT. We are interested in the spectral properties of Dirac operators on
noncompact surfaces. Under the assumption that 1) the ends of the given
surface M are cusps as in the case of finite area surfaces of negative curvature
and 2) the geometry of the Dirac bundle in question is closely related to
the geometry of M we investigate the essential spectrum of the corresponding
Dirac operator D and discuss its Fredholm index.

INTRODUCTION

Let M be a noncompact surface with a complete Riemannian metric. Assume
that M has finitely many ends and that each end U of M is a cusp. By this we
mean that U is diffeomorphic to S x (0,00), where S = R/Z is the circle, the
metric on U is of the form

fds* + dt?
and has finite area, and the Gauss curvature K satisfies
—V <K =0/f/f<-d’

on U, where a,b are some appropriate positive constants. These assumptions
imply that M is conformally equivalent to a closed surface M with finitely many
points deleted.

The most important examples are complete surfaces with finite area and glob-
ally pinched negative Gauss curvature. For that class to be included in our dis-
cussion, we have to be somewhat modest in the regularity assumption since then
the above diffeomorphism need only be C?, c¢f. [Eb], [HIH]. More precisely, we
assume that f is C' and that the second partial derivative of f in the ¢—direction
exists and is continuous. When necessary we label the ends by an index k.

Let E be a graded Dirac bundle over M in the sense of Gromov and Lawson,
see [LM]. That is, F' is a bundle of left modules over the Clifford bundle Cl1 M
of M with compatible Hermitian metric and connection together with a parallel
field a of unitary involutions which anticommutes with Clifford multiplication
by vector fields. These data determine a Dirac operator D and a decomposition
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E = ET @ E~ into the eigenspaces of o with eigenvalue +1. We are interested in
the spectral properties of D as an unbounded and essentially self-adjoint operator
in the space L?(M, E) of square integrable sections of E.

There is no reason to expect close relations between the geometry of M and the
spectral properties of D if the underlying Dirac bundle is not closely related to
the geometry of M. To establish such a relation we propose the following notion.
We say that a vector bundle F over M with Hermitian metric and connection
is geometric if there is a parallel twoform S with values in the bundle of skew
Hermitian endomorphisms of E such that the curvature R of E satisfies

R(X,Y)u=KS(X,Y)u

for all vector fields X, Y of M and sections u of E. The class of geometric bundles
over M admits all the standard operations on vector bundles and contains all flat
bundles and all bundles which are associated to the Riemannian structure or a
spin structure of M.

Now let E be a fixed graded Dirac bundle over M and assume that E is geo-
metric. Then for any local orthonormal frame X,Y of TM, C := —XYS(X,Y)
is a parallel field of Hermitian endomorphisms of F independent of the choice of
X and Y and hence is globally defined. We have

XY R(X,Y)u=KCu
for any section u of E. Now the field o of involutions of E is parallel and

anticommutes with Clifford multiplication by vector fields, hence C(E*) C E=.
We set

C*=C|E*:E* - E*.

Let U = S x (0,00) be an end of M. Let T = 9, and X = f !0, and orient
U by this frame; if M is oriented, then we asume that the orientations of U and
M coincide. The oriented orthonormal frame T, X is a section of the SO(2)-
principal bundle SO(U) of oriented orthonormal frames on U and determines a
trivialization SO(U) = U x SO(2). Let SO(U) = U xR — U x SO(2) be the cor-
responding lift, where we map r € R to the counterclockwise rotation by the angle
27r. Then SO(U) is an R—principal bundle over U and any bundle associated to
SO(U) via a unitary representation of R comes with a Hermitian metric and con-
nection. Now for ¢ € R and w € C with |w| =1 we let L(¢, w) be the complex line
bundle associated to SO(U) via the unitary representation exp(2micr) of SO(2),
and with atlas given by the holonomy requirement [s + 1,¢,0,u] = [s,t,0, wu]
along the circles S x {t}. Note that L(1,1) is the tangent bundle of U with its
natural complex structure determined by the chosen orientation.

The complex area element we = #T'X defines a parallel field of unitary involu-
tions of E over U which commutes with o and C'. We set

E*(c,e) ={u € E*|U | Cu = cu,wcu = cu},
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where ¢ € R and ¢ € {+1,—1}. We will show that E*(c,¢) is isomorphic to
an orthogonal sum of line bundles L(—&c, w), and we denote by m(c, e, w) the
number of times L(—¢¢, w) occurs in this sum. The spectral characteristics which
we investigate in this paper are given in terms of C* and the integers m(c, e, w).
All data associated to an end U = U, will be indexed by k if necessary.

Suppose E = Cl M is the Clifford bundle over M with the even—odd decompo-
sition. Then E*|U = E*(0,1)® E*(0,—1), m(0,e,1) = 1 and m(0,&,w) = 0 for
w # 1. If M is oriented and E is the spinor bundle associated to the correspond-
ing spin® structure, then E*|U = E*(0,1), m(0,1,1) = 1 and m(0,1,w) = 0
for w # 1. If E is a spinor bundle associated to a spin structure of M, then
E*|U = E*(1/2,1). If the spin structure is the restriction of a spin structure of
the closed surface M, then m(1/2,1,—1) =1 and m(1/2,1,w) = 0 for w # —1.

We first analyze the essential spectrum spec, D of D which is localized on the
ends of M by the decomposition principle. Recall that D is Fredholm if and only
if 0 ¢ spec, D.

0.1. THEOREM. 1) If my(c,e,1) =0 for all k,c,e, then spec, D = ).

2) If m(1/2,e,1) =0 for all k and e, then D is Fredholm.

3) If mi(1/2,¢,1) # 0 and the directional derivative X (K) is uniformly bounded
on Uy for some k, then spec, D = R.

Note that the assumption on X (K) in the third assertion holds if the end is
warped, that is, if f does not depend on s.

Set D = D|L*(M,E") N C'(M,E"). In the case when D is Fredholm, we
also determine the index of DT explicitly.

0.2. THEOREM. Let m = rank E™ and suppose that my(1/2,¢,1) = 0 for all k
and . Then

ind DY = (m/2 —tr C") x(M) + % Zsign(l/Q — ¢) my(c,e,1)
k,c,e

—% Z en(w) my(e, e, w),

k,c.ew
where (1) = 0 and n(exp(27wip)) =1 —2p for 0 < p < 1.

We emphasize that in our theorems, we do not need assumptions on derivatives
of the curvature or, respectively, assumptions on the asymptotic behaviour of
third or higher derivatives of the metric. Special cases of the above theorems
were obtained in [DX], [St], [Br], and [B4).

In the case when F is the Clifford bundle with the even—odd decomposition,
then D7 is called the Gauss—Bonnet operator. We get

ind DY = (M) + #{ends} = x(M).
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When M is oriented and F is the spinor bundles associated to the spin® structure
of M, then D™ is called the Riemann—Roch operator. In this case

ind D* = (x(M) + #{ends})/2 = x(M)/2.

When M is oriented and F is the spinor bundle associated to a a spin structure
which extends to a spin structure on M, then ind D+ = 0.

Recall that A is conformally equivalent to a closed surface M with finitely
many points deleted. Hence the Riemannian metric on M is conformally equiva-
lent to a Riemannian metric with cylindrical ends. The latter were discussed in
the work of Atiyah, Patodi and Singer [APS], and therefore it is interesting to
know whether the dimension of the space H?(M, E) of square integrable harmonic
sections of E is a conformal invariant. Now it is a rather straightforward conse-
quence of our description of geometric bundles in the text that dim H?(M, E*(1))
and dim H?(M, E~(0)) are conformally invariant, where

E*(c)={ue E* | Cu=cu},

but in other cases conformal invariance may fail. Using the the conformal invari-
ance of dim #?(M, E~(0)) the Gauss-Bonnet and Riemann-Roch formulas above
are easy consequences of the results in [APS], but also follow easily by a direct
argument for surfaces with cylindrical ends as in Section 4 of [APS].

The plan of the paper is as follows. In Section 1 we discuss the geometry
of the ends in more detail. In Section 2 we characterize geometric bundles and
determine their structure over the ends of M. In Section 3 we introduce operators
which model the Dirac operator along the ends. In Section 4 we prove our main
analytical lemmas. In Section 5 we investigate the essential spectrum and prove
Theorem 0.1. In Section 6 we compute the index formula from Theorem 0.2.

The first author would like to thank the Department of Mathematics at the
University of Pennsylvania for its hospitality during the spring of 1999, when
a large part of the present work was completed. We would also like to thank
Charles Epstein for helpful discussions.
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1. THE ENDS

By assumption each end U is diffeomorphic to S x (0,00), where S = R/Z
is the circle, and the metric is of the form f2ds? + dt?, where f = f(s,t) is
continuously differentiable with respect to s and twice continuously differentiable
with respect to t. We recall that we assume that the area of U is finite. We have
"+ K f =0, where the Gauss curvature K = K (s,t) is continuous and bounded
by —b?> < K < —a® < 0 for appropriate positive constants a,b. Here and below
the prime ' denotes differentiation with respect to the variable ¢.

The curves c¢(.) = (s,.) are unit speed geodesics. The circles S; = S x {t} are
perpendicular to the geodes1cs cs. The length and geodesic curvature of S; are
given by

(L1) F(t) = / £ (s 1)ds

and

(1.2) k(s,t) = —f'(s,t)/f(s,1),
respectively. Recall that k satisfies the Riccati equation
(1.3) K=k +K.

By the assumption on finite area f is the stable solution of the Jacobi equation.
Hence

(1.4) f(s,0) exp(— )i Fs.t) < f(s,0) exp(—at),

K(s,t) <.

We also introduce the averaged geodesic curvature

K = L 1 K(s S S
(1.5) R(t) = f(t)/o (s,t)f(s,t)ds.
By (1.2),
(1.6) R(t) = —f'(t)/f(t).
Furthermore,
F(0)exp(=bt) < f(t) < f(0) exp(—at),
(1.7) 0 < R(t) <b.

Later it will be important to consider the arc length along S;,

1 S
(1.8) r(s.1) = %/0 F(5.1)ds

Then
(1.9) r(0,t) =0 and r(1,¢)=1.
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Let V be the Levi—Civita connection and define the orthonormal frame 7T, X as
in the introduction. This frame is parallel in the T—direction and we have

(110) VxT =—xkX and V)(X =kT.

Denote by var k; the variance of Kk on Sy,
1
(1.11) vark, = —— /(H(s,t) ()2 f (s, 1)ds
f(t) Js

The following lemma is well known, compare &7 in [Hol, and gives a sufficient
criterion for the eventual vanishing of the variance of «.

1.12. LEMMA. If the metric on U is C® and X (K) is uniformly bounded, then

lim vark; = 0.
— 00
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2. THE BUNDLES

We fix an end U = S x (0,00) of M and let SO(U) be the SO(2)-principal
bundle of oriented orthonormal frames over U. Our preferred frame F' = (T, X)
is a global section of SO(U) and determines a trivialization

U x SO(2) — SO(U) , (s.t, A) — F(s,1)A,
and a lift
SOU) :=U xR —— U x 50(2) = SO(U)
1d X7

of SO(U) to an R-principal bundle over U, where 7(r) is counterclockwise rota-
tion by the angle 27r.

The tangent bundle with its natural parallel complex structure — counter-
clockwise rotation by a right angle — is the complex line bundle associated to
the representation exp(27ir) of R on C.

The section F(s,t) = (s,t,0) is a lift of the frame F' = F(s,t) and determines
lifts T = F*T of T and X = F*X of X along the image of F. In terms of T and
X, the connection form w and curvature form Q of the Levi-Civita connection

are given by

w(T)=0, wX)=-ki and QT,X)=—-Ki.
Fix ¢ € R and w € C with |w| = 1. Let L(c¢, w) be the complex line bundle asso-
ciated to SO(U) via the representation exp(2micr) of R on C with an atlas given
by the holonomy relation [s + 1,¢,0, u] = [s,,0, wu]. Since the representation of
R is unitary, L(c, w) has a natural Hermitian metric. Furthermore, w determines

a unitary connection on L(c,w). It is easy to see that L(c,w) is a geometric
bundle; we prove a more precise statement in the lemma below. We also have

(2.1) L(c,w)® L(c,w") = L(c+ ¢, ww') .

2.2. LEMMA. The line bundle L(c,w) has a section ® of norm 1 such that

(s +1,t) =wd(s,t), Vi@ =0, Vy®=—rick, R(T,X)®=—Kicd.

Proof. In the standard notation for bundles associated to principal bundles let
® = &(s,t) = [s,£,0,1]. Then ® has norm 1 and the asserted holonomy. Now
under the representation exp(27icr), the connection form w and curvature form
) are multiplied by ¢. Hence ® also satisfies the remaining equations. O

We now describe the structure of geometric bundles over U. A similar descrip-
tion is also valid over all of M. However, for ease of presentation we stick to
geometric bundles over U.

2.3. LEMMA. Let E be a geometric bundle over U. Then E is isomorphic to an
orthogonal sum of line bundles L(c,w).
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Proof. For ¢ € Rlet E(c) = {u € E | Cu = cu}. Then E is the direct sum of
the parallel and pairwise perpendicular subbundles E(c). Hence we may assume
that £ = E(c) for some fixed c.

Let t > 0 and ®, ¥ be sections of E|S; solving

Vx® = —kicd, VxVU = —kicV.

Then

X(B,T) = (Vy®,T) + (3, VD)

= (—kic®, ¥) + (P, —kic¥) = 0.
Now extend ® by parallel translation in the T-direction and recall that [T, X| =
kX, see (1.10). We get
Vr(Vx®) = Virx® + R(T, X)® = —r%ic® — Kic®.

Using (1.3) we also have

Vr(—kic®) = —K'ic® = — (k% + K)ic®.

Hence Vx® and —kic® solve the same differential equation. Hence Vx® =
—kic® on all of U.

We conclude that there is an orthonormal frame ®¢,... ,®,, of E, where m =
rank E/, such that V;y®; = 0 and Vx®; = —kic®; for all j. It follows that the
holonomy H = (h;;), defined by

i(s+1,t) = thcb (s,t)

is independent of (s, ) and unitary. Now an appropriate unitary change of frame
with constant coefficients diagonalizes H. O

We now turn to geometric Dirac bundles. Fix c € R, ¢ € {—1,+1} and w € C
with |w| = 1. Let
L(c,e,w) = L(—ec,w) @ L(e(1 — ¢),w) .
Viewing the Clifford bundle as the bundle associated to %(U) via the repre-

sentation exp(2mir) on CIR?, we describe Clifford multiplication on L(c, e, w) by
the following representation of CIR? on C? = C @ C,

0 -1 0 e —e1 0
1 0)7 \ee 0)7 0 ei)”’

Here the matrices describe Clifford multiplication by e, e, e1e9 € CIR? respec-
tively. Furthermore, let o = cw¢, where we = ¢T'X is the complex area element.
It is easy to see that L(c,e,w) is a graded Dirac bundle with L*(c,e,w) =
L(—ec,w) and L™ (¢,e,w) = L(¢(1 — ¢),w). Moreover, it is immediate that

(2.4) Lc,e,w)® L(,w") = L(c — e, e, ww') .
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2.5. LEMMA. There are sections ®* of LT (c,e,w) and ®~ of L™ (c,&,w) of norm
1 such that
(s + 1,t) = wd (s, ), T =437, X+ =cidT,
Vidt =0, XVy®" = —ked™, XVx® =4x(l—c)d,
TXR(T, X)®+ = Kedt, TXR(T,X)d = K(1 - ¢)d~.

Proof. Let ®* be a section of L(—ec,w) as in Lemma 2.2 and set &~ = TP,
It is immediate from the definition of Clifford multiplication that these sections
have the asserted properties. O

We now describe the structure of graded geometric Dirac bundles over U. As in
the case of geometric bundles, there is a similar description for graded geometric
Dirac bundles over all of M.

2.6. LEMMA. Let E be a graded geometric Dirac bundle over U with involution
a. Then E is isomorphic to an orthogonal sum of bundles L(c, e, w).

It is clear that the numbers m(c,e,w) from the introduction are equal to the
number of times that the bundles L(c, e, w) occur in the decomposition of E over
U in Lemma 2.6.

Proof of Lemma 2.6. As in the introduction, let TX R(T, X) = KC. We have
Clo-u)=v-(1-C)u,

for any v € TM and u € E with the same foot point '. Note that E* and E~
are invariant under R and Clifford multiplication by TX, hence C(E*) C E*.
The complex area element wc = i7T'X commutes with the involution a of F

and C' and hence E7 is the direct sum of the pairwise perpendicular and parallel
subbundles

E*(c,e) = {u € E* | C(u) = cu, weu = cu},
where ¢ € R and ¢ € {+1,—1}. Hence E is the direct sum of the pairwise
perpendicular and parallel graded Dirac subbundles
E(c,e) =E*(c,e) DE (1 —¢,—¢).

Hence we may assume E = F(c,£). But then by Lemma 2.3, E* is isomorphic
to the orthogonal sum of line bundles L(—ec,w). It follows easily that E is

isomorphic to the orthogonal sum of the corresponding graded Dirac bundles
L(c,e,w). O

2.7. ExampLES. 1) The Clifford bundle C1U together with the even-odd de-
composition is equal to L(0,1,1) & L(0,—1,1).

2) The chosen orientation determines a spin® structure on U. The correspond-
ing spinor bundle is equal to L(0,1,1).

'For this conclusion we need that K(s,t) # 0 for some (s,t) € U.
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3) There are two spin structures on U. The trivial spin structure is SO(U)/2Z.
The spinor bundle associated to the trivial spin structure is L(1/2,1,1).

The correspondence (s,t) <> exp(—(t + is)) identifies U with the unit ball B
with midpoint removed. The restriction of the unique spin structure of B to
U is called the nontrivial spin structure. The spinor bundle associated to the
nontrivial spin structure of U is equal to L(1/2,1,—1).

It follows from the above description of spinor bundles and (2.4) that we can
factor graded geometric Dirac bundles with involution o« = w¢ by spinor bundles,

(2.8) L(c,1,w)=L(1/2,1,£1) ® L(1/2 — ¢, +w) .
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3. THE MODEL OPERATORS

Lemma 2.6 implies that the properties of the Dirac operator on a graded Dirac
bundle E over an end U = S x (0,00) are determined by the properties of the
Dirac operators on the bundles L(c, £, w).

For t > 0 write

C'Y(S))w = {u e C'([0,1] x {t}) | u(1,t) = u(0,t)/w} .
For an interval I C (0, 00) write correspondingly
C'Y S x 1)y ={uecC'([0,1] x I) | u(1,t) = u(0,t)/w} .

We let Cj (S xI),, be the subspace of u € C''(S x I),, which have compact support
in [0,1] x I.

We now transform the Dirac operators on the bundles L(c, e, w) to operators
which are convenient for our purposes. Define matrices

(3.1) v = (? _01> and 7= (é _01> :

Then the map
U Cp (S x (0, oo))w ® C* — Cy(U, L(c,e,w)),
uw=(utu") = utdt +u"d,
transforms the Dirac operator to the model operator

Do :=U7'DU =~((8, — k/2) + (6iX + £(1/2 — ¢))7)

(3.2) = (0, — K/2) + A+ KB),

where

(3.3) A=At) = <A+o(t> _ A(l(t)> = <€ioX —502'X>
and

(3.4) B=(1/2-c¢ (é _01> = <1/20_ ’ 6_01/2> '

The operator D, depends on the Riemannian metric on U = U, and on the
parameters ¢, € and w.

We recall that the area element on U is fdsdt. For ¢ > 0 and functions
u,v € C'(Sy)y ® C* we let

(3.5) (1, v), = /S(u(s,t), o(s, 1)) f (s, £)ds
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where (.,.) denotes the inner product in C*. For an interval I C (0,00) and
functions u,v € C'(S x I),, ® C* we let

(3.6) (u,v);:/I(u,v)tdt:/I/S<u(s,t),v(s,t))f(s,t)dsdt,

denote the L?-inner product of u and v. We use analogous notation for the
corresponding norms. Note that ¥ extends to a unitary map

Wi L*((S x (0,00); fdsdt) ® C* — L*(U, L(c, £, w)) .

We now turn to the family of operators A = A(t) from (3.2) which splits into
operators A*(t) = €iX and A~ (t) = —eiX according to (3.3). We recall that
the length of S; is f(¢) and that X has norm one. Hence we have the following
lemma.

3.7. PROPOSITION. The operator iX 1is essentially self-adjoint as an operator in
L2(S;) with domain C'(S}),. Its spectrum is discrete and consists of the eigen-
values

=2m(p+k)/f(t). ke,

where we write w = exp(2mip). The corresponding eigenspaces are spanned by
the functions exp(2mi(p+k)r/f(t)), where r = r(s,t) denotes arc length along S
as in (1.8).

We note that 0 is in the spectrum of A(t) if and only if w = 1 and that the nonzero
eigenvalues grow like 1/f(t) — co. Both these observations will be important
below.

We let Py = Py(t) be the orthogonal projection onto the kernel of A(t). If
w # 1, then Py = 0 and if w = 1, then

1
(3.8) Pous, #) = a(t) = —— / u(s, 1) f (s, 1)ds
f() Js
Note that u is continuously differentiable if u is and that
(3.9) supp @ C {t | suppun S; # (0} .
In the case w = 1 we will also consider the following symmetric model operator
(3.10) Doy = PoyDoc Py = v((0, — K/2) + K(1/2 — o)T) ,

with domain C§(0, 00) ® C? in L?((0, o00), fdt) @ C*. Here we identify functions in
C3(0,00) ® C? with functions on S x (0, 0c) which do not depend on s, compare

(3.8). Note that the substitution 4 = V/fu defines a unitary equivalence of
L2((0,00), fdt) ® C* and L?((0, 00),dt) ® C* and transforms Doy into the Dirac
system

(3.11) v(0, + R(1/2 — o))
with domain C}(0, 00) ® C?.
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4. THE WEAPONS

We fix an end U = Sx (0, 00) and consider a model operator D, as in (3.2). We
recall that the area element on U is fdsdt. The following lemma is now immediate
from the definition of the L?~inner product (3.6) and partial integration.

4.1. LEMMA. Let I = [tg,t;] C (0,00) and assume that u,v € C*(S x I),, ® C2.
Then

(Opu, v)r = (u, =0 + kv)1 + {(u,v)y, — (u,v)4,} -
In particular, (0, — /2) is symmetric on C}(S x (0, oo))w ® C2.

Now P, is self-adjoint, see (3.8). Hence the following formulas are immediate
from Lemma 4.1.

4.2. LEMMA. On C'(S x (0,00)) ® C* we have
Pyo,Py = 0;Py, and PyxPy=FkPF,.
Therefore we also get
(1—-Py)oPy =0, (1-P)cPy=(k—Fk)F,
Py0y(1 — Py) = Py(k — ), Pyk(l — Py) = Py(k — R) .
Our first weapon is the following lemma.
4.3. LEMMA. On C'(S x (0,00)) ® C* we have
PyDoo Py = v((8; — k/2) + RB) Py,
(1 = Po) Do Py = (k= E)(B — 1/2) Py,
PyDoo(1 = By) = vPo(k — E)(B +1/2)(1 = ).

Proof. By definition, APy = PyA = 0. Furthermore, [Py, 7y] = [Py, 7] = 0 and
By + vB = 0. The formulas are now immediate from Lemma 4.2. O

By P.(t) and P.(t) we denote the spectral projection in L?(S;),, ® C? corre-
sponding to the eigenvalues of A(t) which are > 0 and < 0, respectively. The
following lemma is our second weapon.

4.4. LEMMA. Let I = [ty,t;] C (0,00) be a compact interval and suppose u €
CY(S x I), ® C* satisfies Ps(tg)uy, = 0 and P (t1)uy, = 0. Then

[Aullr < [ Docul[r + Cy [lullr,
where Cy = bmax(|c|, |1 — ¢|).

Proof. By approximation we may assume that u is C?. Now by (1.10), [0;, X] =
kX. Therefore 0;Au = Ad;u + kAu and hence, by Lemma 4.1,

(Oyu, Au); = (u, —Adwu); + {(u, Au)y, — (u, Au)y,}
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Now A is symmetric. Therefore our assumption on u implies
2Re(0yu, Au); = {(u, Au)y, — (u, Au)y b > 0.
Hence
[ Docullr[|Aully = Re(Doou, yAu);
= Re(du, Au); + || Aul|7 + Re(k(B — 1/2)u, Au);
> || Aull7 — bmax(le], [1 = e])l[ull 7] Aull;
O

Recall that Py, = 0 if w # 1. We assume now that w = 1. Then for u =
(u™,u”) € C§ (S x (0,00)) ® C* we have Pou = (u*,u”), where u* is defined as
in (3.8). We set Py'u = (u*,0) and Pyu = (0,4 ) so that Py = P;" + Py . Now
our third and last weapon reads as follows.

4.5. LEMMA. Assume w =1 and ¢ # 1/2. Let I = [ty, t;] C (0,00) be a compact
interval and suppose u € C'(S x I) ® C? satisfies

Py (to)ug, = 0, Py (t)uy, =0 if1/2 < ¢,
Py (to)ug, = 0, By (t)ug, =0 if 1/2 > c.
Then
al1/2 = c[ || Poullr < [|PoDoculls + C2 [[(1 = Fo)ullr
where Cy = b|1/2 — ¢/ + (b—a)/2.

Proof. We set 7 = sign(1/2—c¢) 7, with 7 from (3.1). Now we have PyA = APy, =0
by the definition of P,. Hence

(P()Docu,’}/’fpou)] = ((at - I{/2)POU,7~'POU)] + ((at - H/Q)(l - Po)u,%Pgu)]
+ (kBPyu, 7TPyu); + (kB(1 — Py)u, TPyu); .

Next we estimate the four terms on the right hand side. By Lemma 4.1, the first
term is

((0y — Kk/2)Pyu, TPyu); = —(Pou, (0y — k/2)TPyu)
+ (Pou, %Pou)tl — (Pou, %Pou)to .
By our assumption

[y + lat ]l i 1/2 < ¢,

(Pou,f'Pou)tl — (Pou,f'Pou)to = {||u+||t1 4 ||a*||t0 if 1/2 >c,

so the above computation gives

Re((@t - K,/Q)Pou,%Pou)] Z 0.
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By Lemma 4.2, the second term can be estimated as follows,
K—K

|((0y — k/2)(1 — Py)u, 7Pyu);| = |(Py (1= Po)u, TPyu);]|

< b—a ||

-2
Recall that B = (1/2 — ¢)7. Hence the absolute value of the fourth term can be
estimated by

(kB(1 = Po)u, TPou) 1| < b|1/2 = ¢[[|(1 = Po)ul|s]| Poul|; -

The crucial estimate involves the third term, but this is immediate from the
definition of B and 7:

(kBPyu,7Pyu)r > all1/2 — c\||P0u||§

(1 — Po)ull || Poul|7 -

We conclude that
| Po Doo[| 1| Poul|r =
al1/2 — c|[|[Poull7 = (0[1/2 = ¢| + (b — ) /2)[|(1 — Po)ull[| Poul; -
This finishes the proof of the lemma. O
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5. THE ESSENTIAL SPECTRUM

Since M is complete, the Dirac operator D with domain C (M, E) is essentially
self-adjoint in L*(M, E), see [LM, p.117]. We denote by D the closure of D and
recall that the spectrum spec D of D is contained in R.

5.1. DEFINITION. A real number A belongs to the discrete spectrum specy D of
D if A is an eigenvalue of finite multiplicity of D and an isolated point of spec D.
The complement spec, D = spec D\ spec, D is called the essential spectrum of D.

In particular, D is Fredholm if and only if 0 ¢ spec, D. An easy consequence of
Weyl’s Criterion and the Rellich Lemma, the so—called Decomposition Principle,
says that spec, D does not depend on compact parts of M, see below.

We say that a sequence (u,) in C}(M, E) is a special Weyl sequence (for E) if

(5.2) lim ||u,||=1 and suppu, —» o0 asn— co.
n—oo

Now the following well known characterization of spec, D by special Weyl se-
quences is a version of the Decomposition Principle.

5.3. LEMMA. A € spec, D if and only if there is a special Weyl sequence (u,,)
with
Tim [(D = Aun|| = 0.

5.4. COROLLARY. Assume that there is a compact subset K of M and a constant
cx > 0 such that ||Dul| > cxllu|| for allu € Cj(M\K, E). Then

spec, DN (—ck,cx) = 0.

It is convenient to introduce the following notation. Let E be a Hermitian
vector bundle over a complete Riemannian manifold M with compact boundary.
Let D be a symmetric first order differential operator on C} (M, E). Set

spec,, D = {\ € R |there is a special Weyl sequence (uy,)

(5.5) _ .
for E with lim,, . ||(D — Nu,|| = 0}.

Then spec, D = spec,, D by Lemma 5.3, but, in general, (5.5) ignores possi-
ble contributions from the boundary. The following result is now obvious from
Lemma 2.6.

5.6. LEMMA. We have spec, D = Uspec,, Do, where the union is over all k, c, e,
and w with my(c,e, w) > 0.

It remains to discuss spec,, D. In the case w = 1, the model operator Duy
from (3.10) comes into play.

5.7. THEOREM. Fixz an end U and constants c,c, and w. Then we have:
1) If w # 1 then spec,, Do = 0.

2) If w=1 and X € spec,, Do, then |\ > a|1/2 — ¢|. Furthermore,
specy, Do C specy, Doy with equality if lim sup var(x;) = 0.
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Proof. Let A € spec,, Do and (u,) be a special Weyl sequence for D, with
(D — Nu, — 0. Now for any N > 0 there is a constant ¢, > 0 such that
the nonzero eigenvalues of A(t) are of absolute value > N for all ¢ > ty. Hence
(1 — Py)u, — 0, by Lemma 4.4. This completes the proof of the first assertion.

Assume now that w = 1. By what we just said we have (1 — Py)u, — 0, hence
|| Poun|| — 1 and therefore, by Lemma 4.5,

lim inf || Dog i, || > lim inf || PyDoouy || > al1/2 — ¢].
t—oc t—o00

This establishes the inequality in the second assertion. Furthermore, by Lemma 4.3,
Py(Dy — AN)(1 — Py)up, = yPo(k — R)(B+1/2)(1 — Py)u, — 0.
Therefore
(pODOOPO — )\)Pg’l,l,n = PU(DOO — )\)Poun — 0.
But then (Pyu,) is a special Weyl sequence with (Do — A)Pyu,, — 0. Hence A
is in spec., Dy, hence spec Dy, C spec., Dyy.
Suppose now that w = 1 and lim sup,_, ., var(x;) = 0. Let A € spec., Duoo and

(u,) be a special Weyl sequence for Dyyq with (Do — A)u, — 0. Then u,, = Pyuy,
and hence

(Doo — Nty = (Do — ) Pyt
= Py(Doe — A) Py, + (1 — Py) (Do — A) Pouy,
= (Dgoo — A) Pouy, + y(k — B) (B — 1/2) Pyuy, ,
by Lemma 4.3. Now by assumption, the first term on the right hand side tends
to zero as n tends to infinity. The second term tends to zero since || Pyuy,l is

uniformly bounded, suppu, — oo, and limsup,_,. var(x;) = 0. Hence \ is in
spec., D, hence spec Dy, = spec., Dyp. O

We recall that D is Fredholm if and only if 0 ¢ spec, D.

5.8. COROLLARY. If my(1/2,2,1) = 0 for all k and ¢, then D is Fredholm. On
the other hand, if for some k and ¢ we have my(1/2,¢,1) > 0 and var(k;) — 0
as t — oo, then spec, D = R.

Theorem 5.7 and Corollary 5.8 imply Theorem 0.1 from the introduction.
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6. THE INDEX

We are all set for the discussion of the index of D*. As usual, the ends of M
come with an index k. For each end U = Uy, we also enumerate the line bundles
L(c,e,w) which occur in the decomposition of E|U by an additional index j,
Li; = L(cgj, €xj, wij), where 1 < j < m = dim E*. These indices will also be
used for other objects attached to Ly; if necessary.

Throughout this section we assume that my(1/2,¢,1) = 0 for all k. In other
words, we assume that wy; # 1 whenever ¢z; = 1/2. Then the Dirac operator D
is Fredholm, by Theorem 0.1 or Corollary 5.8 respectively.

Consider an end U = Uy = S x (0,00) and set

(61) Ut:Uk’t:SX (t, OO), St:Sk’t:SX {t}
Furthermore set
(6.2) Vi=UpUpy, My=M\V,.

Then M, is a compact surface with smooth boundary dM;, consisting of the
pairwise disjoint circles Si ;. We let Uk,t and V; denote the closures of Uk, and
V;, respectively.

Our aim is to reduce the computation of the index of D* to a boundary value
problem on M;, where ¢ > 0 is sufficiently large.

By an elliptic boundary value problem we mean a pseudodifferential boundary
condition which is well-posed in the sense of Seeley [Se].

6.3. LEMMA. Let t > 0. Then any self-adjoint extension of D over M, or Vj,
defined by an elliptic boundary value problem at OM; is Fredholm.

Proof. In Theorem 4.1 of [BL] Briining and Lesch characterize elliptic bound-
ary value problems in terms of orthogonal projections and show that they are
Fredholm. This implies the result for M,.

The local analysis used for the result just mentioned implies a ‘decomposition
principle’ for self-adjoint extensions of D over V;, hence the second assertion since
D is Fredholm, by Corollary 5.8. O

We choose t; >> 0 and introduce boundary conditions at ¢5. To that end we
write a section u over U} as

_ + &+ - B
(6.4) u = Z(uqu)kj + uqu)kj) ;
J
where @E,@;j is a frame of Ly; as in Lemma 2.5. We recall that P;-(to)
and Py <(to) denote the spectral projections in L?(Sk ¢ )w,, ® C* corresponding
to the eigenvalues of Ay;(ty) which are > 0 and < 0, respectively. Since Ay,
decomposes into two operators according to the decomposition u = (u™,u™), we

. o . _ + — . .
have a corresponding decomposition Py~ = P’ + P . and similarly for Py; <.
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We also recall the orthogonal projection Pyjo(to) onto the kernel of Ay;(ty) in
L*(Skt0)uwy; ® € and the decomposition Pyjo = P o+ P as in Lemma 4.5.

In their discussion of the index problem for Dirac operators on compact man-
ifolds with boundary, Atiyah, Patodi and Singer used the projections

(6.5) Prjaps = Prj< + Py

on the component S, of 9M,,, assuming in addition that the metric is a product

near the boundary, i.e., f(s,t) = f(ty) for s € [0,1] and ¢ near ¢y, see [APS]. In
our discussion we need a variation of this. We set

Pk<(t[]) +P+ (to) if 1/2 <c
6.6 Pj(to) =4 p” O ’
(6:6) tto) = { ) ke s
The identity

(6.7) VPyj(to) = (1 = Pr;(to))y

where v is as in (3.1), implies that D with each of the following two domains
Din = {u € C'(My,, E) | Pyj(to)(up;|Sk,) = 0 for all k, j }
Dext = {U € C(%(‘?tgj E) | (1 — ij(to))(ukj\Sk’to) =0 fOI‘ all k,] }
is symmetric. We denote the corresponding operators by Diy and Dey, respec-
tively. Then the boundary conditions are elliptic. To see this, we invoke again

[BL, Theorem 4.1]. This requires a localization in the standard form used in [BL,
(4.2)]: the map

w = (fio) )"
transforms Dy; into the operator
(6.8) Dyj = (0, + A(t)),

on the Hilbert space L*((S x (0, 00), fy,dsdt). Here

- i (AL 0
A(to) = A(to) + K/(t[))B = A= < + ~ ) .
0 —A,
Next we need to determine a projection lf’Jr(fl) with the properties listed in (3.10)
of [BL], and we have to show that (P, (A), P(ty)) forms a Fredholm pair. Now it

is clear that the projection

P = ("5, )

of Atiyah, Singer and Patodi is an admissible choice. Since B is bounded and
P(ty) differs by a finite rank projection from the analogous projection Py (A(ty)),
the Fredholm property follows from standard perturbation theory. It follows also
from Theorem 4.1 in [BL] (with an obvious modifiction for D) that both Djy
and Dy are essentially self-adjoint. By Lemma 6.3, they are both Fredholm.
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The boundary projections respect the decomposition E = E* & E~, hence we

have the subdomains D;", and D, and the corresponding restrictions

D D — L*(M,,,E™),

int int
D, : Dt — L2(Vt0, E7).

The proof of our index formula below rests on the following result.

6.9. THEOREM (BRUNING-LEScH, [BL]). ind D = ind D;, + ind D

int ext *

The proof of this formula consists in showing that the transmission condition
at OM,, for sections in H'(M,E*) can be deformed into the above boundary
conditions in the definition of Dj,; and D.y without affecting the index. The
important point is that the interior boundary condition above is independent of
the exterior one, so that they can be handled separately. Another important
feature of our choice of boundary condition is that the exterior contribution to
the index can be computed explicitly: it is zero if ¢ is sufficiently large.

6.10. LEMMA. Fortq sufficiently large, ker Doy = 0. In particular, ind D}, = 0.

Proof. 1t suffices to consider the (self-adjoint) closure of the operator Dy o =:
Dy on Dyjext, that is, on Cj (S X [to, oo))wk. ® C? with the boundary condition
J
(1 — Pyj(to)). Let C3 > 0 be a lower bound for the absolute value of the nonzero
eigenvalues of the operator Ay;(1). Then C5f(1)/f(ty) is a lower bound for the
nonzero eigenvalues of Ay;(t) for all ¢ > ¢y, by Proposition 3.7, hence for any
u € C§ ([to, oo))wk. ® C? satisfying the boundary condition we have
J
f(1)
Cs5= 1-P, ) < |4 -
3f(t0)||( o)t ito.00) < 1 AU][f1g,00)

< Ca(IIDkjullto.00) + [1(1 = Po)ulltg,00))

by Lemmas 4.4 and 4.5, where C} is a constant independent of k, j, and ty. Since
Dyjext i1s dense in the domain of the closure of Dy;, the above inequality and
the inequality in Lemma 4.5 persist to hold in that domain. On the other hand,
f(t) = 0ast— oo so

Csf(1) > Cuf(to)

if to is sufficiently large. Thus if u € ker Dy;, then (1 — Py)u = 0 and so, by
Lemma 4.5, also u = 0. O

We now come to the proof of the asserted index formula. By Theorem 6.9 and
Lemma 6.10 we have

(6.11) ind D = ind D;}

nt

and hence it remains to compute ind D;,. Now in the standard versions of the

index theorem for manifolds with boundary, it is assumed that near the boundary
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the manifold is a product. To arrive at such a situation, we deform the given
metric in a small neighborhood of ¢4 by replacing f with

(6.12) ff=0-a)f+alofte) +(1—¢)f), ac]|0,1],

where ¢ is a suitable cut—off function near ¢y. Using the representation (6.8), we
see that the family D2, is graph continuous on Dj,, hence has constant index.
Hence we can, and will, assume from now on that near the boundary, the metric
of M, is a product. Thus we are finally in the situation considered in [APS],
except for a variation in the boundary condition. This is taken care of by a result

of Agranovich-Dynin, see Theorem 23.1 in [BW] or Theorem 4.2 in [BL].
6.13. THEOREM. Denote by wing the index form of D. Then

: 1 _ 1
ind D}, = / Wind = 3 Zdlm ker A (t0) + 5 Z K (to)
MtO k,] k:]
+) " ind(P(to) : im Pipg(te) = im P (to)) |
k.j
where ng;(to) denotes the n-invariant of AJ;(t)) and where Paps denotes the
Atiyah—Singer—Patodi spectral projection.

It remains to explain and evaluate the different terms on the right hand side
of this formula.

We start with the index form wj,q. We could compute wi,q by using the local
structure of graded geometric Dirac bundles as in Section 2. However, there is
also the following way: By the Local Index Theorem, we have

tD2(

wind(p) = 15% trE [w(Cei p:p)] )

hence the computation of wi,q is a local problem. Therefore we may consider an
open contractible subset W C M, for which we choose an orientation. If M is
oriented, we assume that the orientations of W and M coincide. The field C' is
parallel, hence the subbundles E* split over W as a direct sum of the pairwise
orthogonal and parallel subbundles

E*(c,e) ={u € E* | Cu= cu, weu = cu},
where ¢ € R and € € {—1,+1}. Now the subbundles
E(c,e) =E(c,e) ® E~(1 — ¢, —¢) .

are graded Dirac subbundles of E, hence we may assume that E = E(c,¢). We
discuss the case ¢ = 41 first. Then

Et={u€ F|wcu=u}.
Let X be the spinor bundle associated to the spin structure of W. Then we have
E=Y®F with F=Homcyg(X,E),
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where Homcy;(2, £) is the bundle of homomorphisms from ¥ to E which are
linear over Clifford multiplication, a parallel subbundle of Hom(X, E) with the
canonical connection. Now the curvature endomorphism Cys on ©* is multipli-
cation by K/2. By our assumption on E, the curvature endomorphism Cg on
E?* is multiplication by K¢ and K(1 — c), respectively. It follows easily that
for any oriented orthonormal frame X,V of W, Rp(X,Y) is multiplication by
Ki(c—1/2). Hence
L 1/2— ) dim B*KdA,
27
by the formula for the index form of twisted Dirac operators as explained in
[APS].

In the case where e = —1 we reverse the roles of ET and E~, then we are back
in the previous case but wi,q changes sign. We get

1
Wing = —(1/2 — ¢)dim F KdA =
2m

i = 2i(1/2 _(1=¢)dim B KdA = —2i(1/2 _ o) dim EVKdA.
m s
In conclusion,
1
Wind = 2—{m/2 —tr(CT)}KdA,
s

and this gives the first term of the claimed index formula.

Now the second term in the index formula 6.13 is obviously equal to —1/2 times
#{(k,j) | wg; = 1}. Furthermore, note that for each pair (k,j) the projection
P 1 im Pipg — im P is surjective, by (6.5) and (6.6). It has trivial kernel if
wy; # 1 or if wg; = 1 and ¢;; > 1/2. The kernel is of dimension 1 if wy; = 1 and
cxj < 1/2. This gives the second term of the claimed index formula.

If wg; = 1, then the spectrum of A;(t) is symmetric about 0 and hence
nk;(to) = 0 in this case. If wy; # 1, we write wy; = exp(2mip) with 0 < p = py; <
1. Then if ¢;; = 1, we get from Proposition 3.7

M(s) = —p* =Y {(k+p) " = (k=p)"}.
k>1
If ex; = —1, we get the corresponding negative of the right hand side. Now
lim > ((k+9)* = (k= p) "} = =2,
k>1

This concludes the proof of Theorem 0.2.

6.14. REMARK. The proof of Theorem 0.2 gives a somewhat more general result.
We only need to assume that the given graded Dirac bundle E is geometric along
the ends of M. Then the same index formula holds, except that the first term

on the right hand side has to be replaced by the integral over the corresponding
index form.
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