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THE ASYMPTOTIC FORM OF THE LOWER LANDAU BANDS IN A
STRONG MAGNETIC FIELD

J. Briining,* S. Yu. Dobrokhotov,! and K. V. Pankrashkin?

The asymptotic form of the bottom part of the spectrum of the two-dimensional magnetic Schrédinger
operator with a periodic potential in a strong magnetic field is studied in the semiclassical approximation.
Avérégjng methods permit reducing the corresponding classical problem to a one-dimensional problem on
the torus; we thus show the “almost integrability” of the original problem. Using elementary corollaries
from the topological theory of Hamiltonian systems, we classify the almost invariant manifolds of the
classical Hamiltonian. The manifolds corresponding to the bottom part of the spectrum are closed or
nonclosed curves and points. Their geometric and topological characteristics determine the asymptotic
form of parts of the spectrum (spectral series). We construct this asymptotic form using the methods
of the semiclassical approximation with complex phases. We discuss the relation of the asymptotic form
obtained to the magneto-Bloch conditions and asymptotics of the band spectrum.
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1. Introduction

The motion of a charged quantum particle in a uniform magnetic and periodic electric field is descrlbed '
by the Hamiltonian Hp ., [1],

2
fIB,w = 1 (—ihv — @) + w(2y, 22),

2m

acting in L%(R2), z = (21, 22), where A(2) = (—Bz,0) is the vector potential of the magnetic field (we
use the so-called Landau gauge), B is the strength of the magnetic field, and w is the electric potential.
The function w is periodic with respect to some lattice I' spanned by two linearly independent vectors

= (l11,112) and lo = (la1,l22). Because B B,w is invariant under gauge transformations, we assume,
without loss of generality, that l;3 = 0. Also, without loss of generality, we assume that B > 0. Introducing
the new coor,dinatequ: = 2mz/Lg, where Lo = l1; is the so-called characteristic size of the lattice, we can
rewrite the Hamiltonian as ' '

Hp, = H

(e.BL())2 oo = 1
T An2me? H, T2

9 2 1 ;) 2‘ .
...Zhém_l + ;1;2) + 5 <-—Zha—$2> + E'U($1;$2)?

*Institut fiir Mathematik, Humboldt-Universitit zu Berlin, Berlin, Germany, e-mail: bruening@mathematik.hu-berlin.de.

TInstitute for Problems in Mechanics, RAS, Moscow, Russia, e-mail: dobr@ipmnet.ru. )

Institut fiir Mathematik, Humboldt-Universitit zu Berlin, Berlin, Germany; Institute for Problems in Mechanics, RAS,
Moscow, Russia, e-mail: const@mathematik.hu-berlin.de.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 131 No. 2, pp. 304-331, May, 2002. Orlgmal‘
article submitted January 14, 2002.

704 0040-5779/02/1312-0704$27.00 © 2002 Plenum Publishing Corporation




where

r\® w [h

— 2 - . —a - =

= (2n) (Lo) ’ € hﬁwc’ bt mw,’
_leB| _ _ 1 Loz

we =", W = max|w/|, » v(z) = >

(Iar is the magnetic length and w, is the cyclotron frequency). The spectra of H Bw and H are related by

(eBLo)

a(ﬁIB,‘w)— (2 c)gm (H)

‘We study the asymptotic behavior of the spectrum of H B,w under the assumption that the parameters h and
¢ are small. The smallness of 4 means that the magnetic length is small compared with the characteristic
~ size of the lattice. Under this condition, ¢ is small if the potential energy W of the lattice confinement
is small relative to the cyclotron energy or comparable to it. Such a situation is realized in superlattices
and in arrays of quantum dots and antidots [2]. This assumption about the smallness of the parameters A -
and ¢ is essential; some other possible situations leading to different results were considered, for example,
in (35, | |
The function v is assumed to be real-analytic in R? and periodic with respect to the two linearly
independent vectors a1 = (2m/Lo)li and ag = (2n/Lo)ls, i-e., a1 = (2m,0) and a2 = (az1, a22), 22 # 0.
It is well known [1} that for v = 0, the spectrum of H consists of infinitely degenerate eigenvalues
(Landau levels) E,, = (u+ 1/2)h, where p € Z;y = NU {0} is the level index. The appearance of the
- potential v leads to a “broadening” of these levels into sets, which are called Landau bands. It is also
known that if the number i = azz/h (the flux of the magnetic field) is rational, then the spectrum of H ‘
has a band structure and does not contain a singular component [6].
Based on the fundamental principle of correspondence between classical and quantum mechamcs one
can expect that the asymptotic properties of the operator H for small h can be described in terms of the
corresponding classical dynamic system given in this case by the classical Hamiltonian H,

~
K

1
H(p,z,e) = (p1 + x2)2 —p2 + ev(zy, T2).

For problems with a discrete spectrum, such a relation has long been known. More precisely, knowing
some family of invariant manifolds of the classical Hamiltonian allows describing the asymptot‘ic behavior
of the spectrum of the corresponding quantum Hamiltonian near the corresponding energy levels using the
Bohr—Sommerfeld quantization rules [7].

Such an approach cannot be applied directly to the operator H because, first, as mentloned above, -
its spectrum is not discrete (moreover, the semiclassical approximation is rarely used in problems with a -
continuous spectrurn) and, second, the Hamiltonian system for H is nonintegrable, and we cannot obtain
the desired invariant manifolds explicitly. .

The presence of the small parameter ¢ allows at least avoiding the second of these dlfﬁcultles In the
new canonical variables P, Q, M1, and Vs, the Hamiltonian H becomes

’ 1
H =H(T1,D1,Y2,€) + e /°G(P, Q, Y1, M0,8), Th= 5(732 + 9%

~CJ/e

(see Sec. 2), and the corresponding Hamiltonian system is reduced modulo e to a system with one

degree of freedom on a torus and is hence “almost integrable.” The Hamiltonian H is a Morse function on
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Fig. 1. Global description of the spectrum.

this torus for almost all fixed Z;. The trajectories of the obtained Hamiltonian system are classified using
the Reeb graph [8] for H, and the points of each edge of the Reeb graph are parameterized by the variable
T (see Secs. 3 and 4) such that H is a function of only Z; and Zp. As 7; runs through its domain, the
moving Reeb graph forms a surface (the “Reeb surface”), and this surface gives a global classification of
‘the classical motion [9], [10], while the “quantization” of this surface (i.e., the choice of a discrete subset
of the values of the variables 7 and T) leads to the general description of the asymptotic behavior of
the spectrum. In this case, we have a picture similar to that shown in Fig. 1 (see [10] for more detail).
This figure shows the projection of the “Reeb surface” on the plane (F,Z;). The section of this surface by
the plane 7; = const coincides with the Reeb graph of the function H. The variable Z; takes the values
(1/2 + wh, p € Zy, I > a > 0 as h — 0. The variable T, takes the values (1/2 4+ v)h, v € Z, for the end
edges and all possible values for the interior edges. The unions of the values of H at all these points gives
the asymptotic behavior of the spectrum (see Sec. 5). - ' '

In the present paper, we concentrate our attention on the lower Landau bands (i.e., on those with
" indices p = O(1), in contrast to the higher Landau bands with indices g = O(1/h); the corresponding
domain is emphasized in Fig. 1). We have some reasons for such attention. Studying the lower Landau
bands in the context of our problem leads to a semiclassical asymptotic behavior with complex phases in
contrast to the “classical” method of the real canonical operator used in [9], [10] (we explain the difference
‘below). Moreover, as is shown below, the lower Landau bands admit an asymptotic description by simpler
formulas (see Sec. 5). Formally, these formulas can be obtained from the corresponding formulas for the
high-energy part of the spectrum by passing to the limit Z; — 0, but the corresponding formulas for
asymptotic eigenfuﬂétions are different. Studying the lower Landau bands also plays an important role in
investigating semiconductor structures [11].

Using the formulas for asymptotic eigenvalues and eigenfunctions (with respect to h and ¢), by analogy
with the so-called Lifshits-Gelfand—Zak representation [12] (see formula (22) below), we can construct
asymptotic eigenfunctions satisfying the magnetic Bloch conditions [13], [14] in the case of a rational flux.
Such an approach gives the asymptotic behavior of the band spectrum of the operator H on a heuristic
level (Sec. 6). A
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2. Averaging the classical Hamiltonian

2.1. The averaged Hamiltonian. We introduce new canonical variables, the generalized momenta"
I, y1 (or P, 1) and the generalized positions 1, y2 {or @, y2), as follows:

PL=-Y2, ~ P2=-Q, T1=Q+uy, z2 = P +ys,

Q =/ 211 sin<p1, P= \/2[1 Cos y.

In these coordinates, the Hamiltonian H becomes

ey

‘ L
H=1I +ev (v 211 sinpy +y1,v/2I1 cospy +y2) = 5(P2 + Q%) +ev(Q +y1, P+ y2).

The variables P, @ (or Ii, ¢1) correspond to the cyélotron motion around a guiding center described by -
the variables yq, y2 [15], [16].

The idea of averaging methods is to remove the phase ¢, from the expression for H, at least with
some discrepancy. For the Hamiltonian under consideration, such a procedure was previously performed,
for example, in [16], but usually in other variables. Using the variables P, @, and y makes the formulas
significantly simpler. ‘

. Generally speaking, the classical averaging methods are usually applied in the domain I; > & > 0 (i.e.,
in the domain of analyticity). Nevertheless, for the problem under consideration, a neighborhood of the
boundary I; = 0 is particular interesting. A rigorous averaging procedure for such problems has appeared
only recently [17].

Proposition 1. For any k > 0, there exists gg > 0 such that for I; < k, there exists a canonical
change of variables,

P=P+EU1(P7Q7y1;y2,E)7 Q=Q+5U2(,P; Q7y1;y2)5)1

(2)
: y1=y1+5U3(Pa Q’y1’y2’€)7 y2=y2+EU4(P7gyyl7y21€)1
for which the Hamiltonian becomes
H =H(T1,01,V2,6) + € °G(P, Q, V1, s,¢), ®)
where )
H(T1,Y,€) = Tr + eJo(v/—2T1 By )o(V) + O(e?) ' (4)

for 0 < € < gg. Here, Jy is the zeroth-order Bessel function, Uy 234 and G are real-analytic functions of P,
Q, and Y1 5, Iy = (P%+ Q%)/2, H is a real-analytic function of I; and Y 2, |G| + |VyG| < G, C and G are
positive constants, and all the functions Uy 3.4, H, and G are periodic with respect to Y with the periods
a1 and as. .

The complete proof can be found in [17]; it uses the method in [18]. Here, we describe only the
averaging procedure without estimating.

2.2. The averaging procedure. The required change of variables is constructed as a compogi-
tion of subsequently determined transformations (P™,Q™,y™) — (P™+1 QM+l ¢m+l) m = 0,1,2,...,
(P°,Q° %) = (P,Q,y), using the so-called generating function S™ [19]. We assume that at the mth step,
the Hamiltonian H has the form

H(P,Q,y,e) = H™(I",y™,€) + ™+ g™ (P™, Q™ y™,€),
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where _
= (P + @),
We set '

2w .
gm(I,y,E)z/' gm(m cos<p,\/2_Isingo,y,s)d<p '
Jo. T :

" . and

(P.Qe) =g (5P + Pwne ) - (o)

We introduce the function

@
o™(P,Q,y,¢) = -;-(/ qr I cosw,\/Q_Isim/),y,s) dip +
0 .
@ )
+/ §™ (V2I costp, V2I sintp,y,€) dw) P=+/3T cos, (5)
K Q=V2I sinp '

and define the generating function

S™(P,Q,y,¢) = PQ + y1y2 + ™6™ (P, Q, y, ).

Solving the system

as™ 5™ om m
Pm = —B-Q—.(Pm-Fl)QmayT-‘_l:ygq:E)) mel'l = B_P(P +17Qm7y1 +1’y;n76)’
6
- OS™ o5™ ©
Y = 5 —

o9 (P Q™ yT gl e),  yptl= oo S (P™LQ™ 7 ufe)

with respect to P+, Qm+1 and y™+!, for sufficiently small €, we obtain a canonical change of variables
of form (2) that reduces the Hamiltonian H to the form

H(P, Q, v, E) — Hm+1 (IIn+1, ym—%-l, E) + 5m+2gm+1 (Pm-!-l, Qm+1’ ym+1’ E),

where v
HMH(ITH, g™ ) = BRI, g ) 4 g (I g )

Fine estimates [17], similar to those in [18], show that such a procedure indeed gives the necessary expo-
nentially small discrepancy for € € (0, &g), €0 > 0. “

We must emphasize that the analyticity of the Hamiltonian obtained and of the corresponding change
of variables is ensured by the special form of (5).

’ 2.3. The averaging with an accuracy of O(&?). For clarity, we average with an accuracy of O(e?),
i.e., we reduce the Hamiltonian to the form

H= —I:I-(Il;y,s) +e%g(P,Q,V,¢)- |

by a change of variables of form (2). Obviously, this corresponds to the first step of the procedure described
above. The averaged Hamiltonian is given by the expression

H(T1,0,6) =T + V(T ), ' G
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" where S o
VTL,Y) = & / V2T sing + Y1, v/2T; cosp + Ia) dpv(Y). (8)

Relation (8) can also be rewritten as V(Z1,Y) = Jo (V—2T:Ay )v(y) Estimate (4) is now obvious. The
properties of the Bessel functions imply the estimate

V(T Y) = o) + -;—IlAv(Ji) +0(I2) for Ty — 0.

The corresponding change of variables is defined by (6), where

(P™,Q™ ™) = (PQy),.  (P™L,Q™ g™ = (P,Q,9)

and
. 1 @
S™(P,Quur) = PQ+ yusn + e [ 5(VET cost, VAT sinis ) +
0 .
@ .
+/ #(V2I costp, V2I sing,y) d¢> P/ cos o, (9)
® . Q=v2Tsin¢g .
with

ﬁ(P’Qay) =V (%(PZ +Q2)ay) - v(Q+y1,P+?Jz)~

2.4. The Hamiltonian system for the averaged Hamiltonian. Obviously, the Hamiltonian -

system for H is integrable, and its invariant manifolds can be described as

Ti = const > 0,
y=y(Il,T,€), TGR)

where Y(Z;, 7,€) are solutions of the system

ay .
pr JVyH(T1,Y,¢€), J

3. Almost invariant trajectories .

As follows from the above, the classical energy of the system admits the estimate

H=1; +0().

To study the bottom part of the spectrum, we set Z; = 0. The corresponding invariant manifolds are given
as

S P=0, Q0=0, Y=Yr¢), ' ' (11)

where Y0(r,¢) = ,))(0,11', ¢) (see (10)) are curves and points. Substituting (11) in (2) and (1), we obtain a

family of curves and points in the original space (p, x).
We introduce a useful definition.
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Definition 1. A curve v!(e) = {p = P(t,e),x = X(t,¢),t € R} is called an almost invariant curve
of the Hamiltonian H(p,z,€) with an accuracy of O(e~%/¢) if H|,1() = const mod O(e~¢/¢) and the
function (P(t,€), X (t,€)) satisfies the Hamiltonian system for H uniformly in ¢ € R with an accuracy of
O(e‘c/ ). :

Proposition 2. Let Y(0,7,¢) be a nonconstant solution of system (10) for Z; = 0. Then the curves
given by (11), (2), and (1) are almost invariant curves of the Hamiltonian H with an accuracy of O(e~¢/¢).

We now describe the rest points of H. We first note that if X = (X7, X2) is a critical point of the
function v, then (~X3,0, X1, X3) is a rest point of the Hamiltonian system for H.

We now consider the constant solutions of system (10) for Z; = 0. The corresponding trajectories in
the phase space Rf,,z are points. If ¥%(g) is such a point, then we at least have -

OH

) OH
OH|  _ . ~cle oH
| =0,

= O(e_C/E).‘
50(e) 9 | o)

We assume that v is a Morse function (this means that all its critical points are nondegenerate). Then
we can show that all these points 7°(¢) lie in a O(e~¢/%) neighborhood of the set of the rest points of the
Hamiltonian H described above; we therefore consider only these “exact” rest points.

‘4. Classification of the trajectories

In this section, we classify the almost invariant curves constructed in the preceding section. We fix

T1 > 0. Because of the periodicity of H relative to )/, system (10) can be considered as a Hamiltonian system
on ’che torus T? = R%/(a1, az). Such an approach immediately gives a classification of its trajectories [8], [20].

Proposﬂnon 3. Hamiltonian system (10) on thé torus T? can have trajectones of the fo]lowmg types:

1. the critical points of the function H,

2. contractible (homotopic to a point) smooth closed curves on T2,

3. noncontractible (nonhomotopic to a point) smooth closed curves on T?, and
4. separatrices. ‘

Obviously, there is a correspondence between the trajectories of the system on the torus and those in
the plane ]R%,: contractible curves on the torus correspond to closed curves in the plane, and noncontractible
curves on the torus correspond to nonclosed trajectories in ]R%,. Each trajectory lies in some level set of the
function H. _ . _

Because all the trajectories on the plane have périodic preimages on the torus, for each trajectory Y,
there is a two-dimensional vector d()) = (d;, d2) with coprime integer components d; and dp such that

Vr+T)=Y(r)+d-aq, _ (12) -

where d -.a = dya; + dz2az and T is the period of the corresponding trajectory on the torus (see Fig: 2).
For closed trajectories, we obviously have d = 0. The vector d is called the drift vector (cf. [3]). The ratio
dy/dg is called the rotation number (8]. It is easy to see that only two nonzero drift vectors with opposite
directions can exist for a given 7. '
A visual classification of the trajectories on the torus can be given using the Reeb graph of the function
‘H. The Reeb graph is constructed as follows. Each connected component of any level set H = E corresponds
to a vertex of the graph. As E runs through [min #, max H], we obtain edges whose combination forms the
‘whole graph. Examples of the construction of the Reeb graph are shown in Figs. 3 and 4.
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0

Fig. 4. The level curves and the Reeb graph of the function Acoszy + Bcosza + C cos(z1 + z2).

Remark. The function M can be considered as a function on any torus Til,nz = R?/(n1a1,n202),

which leads to a Reeb graph with a more complicated structure. We discuss this case later.

Each point of the Reeb graph corresponds to a trajectory of the Hamiltonian H on the torus and to
a set of trajectories in the plane. It useful to parameterize the points of the Reeb graph using the action
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a,

Fig. 5. Numbering of closed trajectories.

a;

TFig. 6. Numbering of nonclosed trajectories.
variable T, (see [8]):
Yo(Zy,0,6)(d-a)1 (d-a)i(d-a)s
om 4 ’

where Y(Z1, 7, €) is the corresponding trajectory on the plane, T is the period of the corresponding trajectory
on the torus, and d is the corresponding drift vector. ’ )

1 po+T » -
() = 5—7;/ y1(f1,T,8)dy2(I1,T,6) -

The variable Z; admits a simple geometrical interpretation that is well known for closed trajectories
in the plane (see, e.g., [8], [19]): 27Z2 is the oriented area of the domain bounded by the trajectory (see
Fig. 2). The interpretation for nonclosed trajectories is different. Let Y(Zy,7,€) be such an nonclosed curve
with the drift vector d, and let Ly be the straight line given by Ly = {7d - a,7.€ R}. We fix some points
Y(Z1,0,¢) and Y(Z1,0 + T,¢) and project them on Ly. Then 277, is the oriented area of the obtained
curvilinear trapezium (see Fig. 2). It is easy to see that the definition of 7, for nonclosed curves depends on
their concrete representation (i.e., on a parallel transport in the plane). Nevertheless, 7, is defined uniquely
up to (|di| + |dz|)ag2, and this arbitrariness in the choice is inessential in what follows. On each edge of -
the Reeb graph, the Hamiltonian H is a function of 7y and Zy: H = H(Z1,Zz,¢€).

It is obvious that if Y is a solution of the Hamiltonian system for H, then the function Y + m - a,
where m = (my, mg) € Z? and m - @ = mya; + maag, is also a solution of the same system. We introduce-
a numbering in the set of all such solutions and the corresponding trajectories on the plane R2. Closed
trajectories and points are numbered by the multi-index I = (I3,15) € Z? as follows. We fix some solution
Y and assign the index (0,0) to it. Then the trajectory with index ! is given as Y +1 - a (see Fig. 5). In
addition, we assume that the family of Y depends on Z, continuously. This numbering cannot be used for
nonclosed trajectories because of equality (12). Let f = (f1, f2) € Z? be a vector adjoint to d, i.e., let -
d1f1 + daf2 = 1 (obviously, the choice of the vector f is rather arbitrary). We now number the nonclosed
trajectories as follows. We fix 2 certain trajectory Y with the index 0, then the trajectory with the index
k € Z is given by the relation Y — k(Jf) - a (see Fig. 6). We also assume that the family of )V depends on

' T, continuously.
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We return to the rest points and the almost invariant curves constructed in the preceding section.
Their numbering is inherited from the numbering of the trajectories of the Hamiltonian H. If the closed
curve 3¢ (point 13) is given by :

pr2=Pla(r),  m2=X]5(7), , (13)

then the curve 4/ (point 7?) with the index I = (I1,l2) € Z? is given by

p=P(r)=(-a), p=P), z2=X,")+1 ah2

If the nonclosed curve v3° is given by (13), then the corresponding curve v;° with the index k € Z is given
by '

p1=P7) + (k(Jf)-a), pp=F(r), mz= X22(1) = (k(J£) - a) ,-
5. Spectral series |

5.1. Heuristic considerations. There is a very attractive idea to find asymptotic formulas for the
lower Landau bands as the limit of the corresponding formulas for the higher parts of the spectrum [9]. We
describe them for clarity. For simplicity, we omit some details that are not important at the moment.

We quantize the action 73, ' '

1 1
Il=I{L=(§+/J/)h, MNO<E>, /AGZ+,

and choose the subset of the trajectories of the Hamiltonian H(Z¥, -) satisfying the condition

1 .
Izz 5—_—(5‘!‘1/)]7,, veo.
The set of the points H(Z,Z%,¢€) for closed trajectories and of the points H(Z},Zz,¢€) for nonclosed ones
gives the asymptotic behavior of the uth Landau band with an accuracy of O(h?) + O(e=%/¢).

Strictly speaking, these considerations are valid only for the higher parts of the spectrum of H. Nev-
ertheless, as we see below, the corresponding asymptotic eigenvalues for the lower Landau bands are

B = H(0,T3,€) + e (0,0, )T + O(R?) (14)
1

where 7, is quantized in the same way. It is easy to see that (14) is the Taylor expansion of the formulas
for the higher bands at the point Z; = 0, i.e., we have a “uniform passage” in the formulas for asymptotic
eigenvalues. ' : '

We. note that the corresponding formulas for asymptotic eigenfunctions do not admit such a passage

to the limit and to justify formulas (14), we must use the methods of the semiclassical approximation with

complex phases (these methods are also known as the complex WKB method or the Maslov complex germ
theory). A description of this method can be found in {21]; some explicit formulas are also given in [22]-[24].

We fix some positive numbers K and L. In the remaining parts of this section, the properties of the
asymptotic eigenvalues and asymptotic eigenfunctions of the operator I?T are described with an accuracy of
O(hF) + O(e¥). More detailed formulas are contained in Appendices A and B. ‘
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5.2. Spectral series corresponding to points. The procedure of assigning spectral series to the
rest points of the classical Hamiltonian is known as the oscillatory approximation method; this procedure is
a particular case of the Maslov complex canonical operator. Only the points corresponding to the extremum
points of the potential v can be used for such an assignment.

The oscillatory approximation gives the expression

0o _ 1 oH 2_
Ep,=H|, +h( 3T ., +h i

for asymptotic eigenvalues of the operator H. We justify this formula in Appendix A.

+ O(h2)7 v = 0(1) € Zy.,

"To each of these asymptotic eigenvalues, we assign a set of asymptotic eigenfunctions 1/),0’” ¥ also defined
by the oscillatory approximation method and satisfying the conditions
“1/) ’“’V||L2(R2) >c¢>0forh—0,
“(H u)wz e “Lz(Rz) = O(h ): and .
3. 0¥ have compact supports and are localized near the projections of the corresponding points
(P, X1) on the plane R2, i.e., limp_q """ (2,¢,h) = 0 for all z # X;.
A more detailed construction of these functions is given in Appendices A and B. We only note now that all
the functions ¢, %4 can be expressed through the single function ¢° #¥ by the formula

YR (2,6, h) = YOHY (@ — 1 - a, €, h)e~1amlame/h 15
] o

We now use the well-known inequality

- m)f]

dist(E, a(A)) < T

(16)

which holds for any self-adjoint operator A acting in an arbitrary Hilbert space (see, e.g., [7]) This g1ves
the estimate

dist(E uu,a(ﬁ)) = O(hL).’

5.3. Spectral series corresponding to almost invariant closed curves. We let T'°(g, h) denote
the set of curves 7} ¢ satisfying the quantization condition

T = 5=(u+%>h, veZ ar<|w|<azash—0. (17)

Proposition 4. For each v/° in T'°(g, h), there is a set of functions P *(x,T5 e, h) € L2(R2) and
numbers (asymptotic eigenvalues) :

1 dH
le(v = = AT
By (T3, e,h) =H| g+ h (2 “‘) 1 | e

+O0(h?), pe€Zy, p=0(Q), leZ?, (17a)

deﬁn,ed by the complex canonical operator method and satisfying the conditions
“(H EIC)wllc,u”L‘z(Rz) = O(hL) + O(EK) and
”‘/’lc”“m(mz) >e¢>0ash— 0.
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The functions 1/)[1 %" have compact supports and are asymptotically localized near the projections meYLC of
the corresponding curves 7} on the plane R2, i.e., limp—o %, %" (2,Z¥,€, h) = 0 for all z ¢ m,7}°.

Proposition 4 follows immediately from the definition and the properties of the canonical operator. We
show how to obtain formula (17a) for asymptotic eigenvalues in Appendix A.
As in the preceding subsection, we obtain the estimate -

dist(EL(Z3, e, h);0(H)) = O(hL) + O(K).
Another useful fact, which follows from the definition of the canonical operator and is used in what

follows, is that all the functions 9 **(x, Tz, &, h) can be expressed through 9,"*(x, 7%, £, h) by the formulas

U (2,25, 6, h) = ho™H (@ — 1 0, T3, &, )eiomtm /M, (18)
5.4. Spectral series corresponding to almost invariant nonclosed curves. We now consider

the set T'°(¢) of almost invariant nonclosed curves of H.
Proposition 5. For any curve ~1° € T1(¢), there is a set of functions d),lco”‘ (z,Z2,¢, h) and numbers

(asymptotic eigenvalues)

o
8Ty

+0(h’2)’ “GZ—H “:0(1)7

7o

o 1
Bl (e, ) = Hlge 41 (5 )

defined by the complex canonical operator method and satisfﬁng the conditions
o] 1o, —_
1. ||(H‘— Eb Y #”m(nd) = O(h%) + O(X),
2. ¥4l 2y = ¢>0ash — 0, and
3. Y2 (x + d- a,Ts, 6, h) = @ Te=(da)2z1-(da) (da)2/D/hyplob ( Ty ¢ h).

Here, d is the drift vector of the corresponding trajectory, and

Iy = {ﬁ(d-a) +7J(d-a):m €[-1,1], 2 € (—oo,’-l-oo)},

Property 3 means that ¢;>* do not belong to L2(R?) and we cannot use inequality (16) directly. We
act-as follows. » '

) Proposition 6. Let a number E}Lf’ and a function 1/1;0’“ satisfy properties 1-3. Then
dist(EL, o(H)) = O(hL) + O(¥).
Proof. For brevity, we set ¥ = 1,[:,?’ # and E = E}j’. We introduce new coordinates y;, ya:

U1 o ,8 $1 « d.a
= , Where = .
(y) (—ﬁ a)() (za) dal’

In these coordinates, U satisfies the condition

i

o+ o) = exp{ 1 (207 = (0 @hatons — ) + 5(d- ah(d-0) ) | W),
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and the operator H has the form

- 1 82 52 . b} )
H= - os+ =) ~i = _ 32
‘ 2" (311% * 6‘?1%) h{(Bys + ee) (aayl ﬂayz) *

1 R
+ '2'(,3y1 + o2)? + ew(y1, y2),

where w(y1,y2) = v(oyr — Byz, Byr + ayz).
’ ‘We set A

. .
S(y1,92) = 5(—oByt + By + 26°y132)

and introduce the operator U = ¢*/2. This operator is unitary, and the spectra of the operators H and
H = U~1HU therefore coincide. We note that s

1 L | AN
§<_Zh +y2> +§(—’Lha—y2) +5w(y11y2)'.

We also note that the function & = U~10 = ¢~%5/"U gatisfies the condition

_FI:

B(y1 + |d- af, y2) = ¥ T2/PD(yy, ). _ : (19)

We set II = {(yl,yz) t=ld-al <y < Id-a]} and 11, = {(yl,yz) —|d-alm <y < |d-a]m}.
We choose a smooth function e(z), 0 < le|] < 1, such that e(z) = 0 for z ¢ (—2|d- al,2|d - a|) and
e(z) =1 for z.€ (—|d- al,|d- al), and we introduce a constant c; such that |e] + le'| + €’ € e1. We set

em(u1,38) = ey /m).
We note that ||fllg = vm|fl L2(fty holds for any function f satisfying condition (19), in particular,

for the function ¢ = (H — E)®.
We now have the system of equalities and inequalities

Vi dist(o(H), E) |12l 2y < dist(o(F), E)llem <

< I(H ~ E)(em®)|l =

= €m¢— Aemq) h2VeV<I>—zhx2aem <
6(1)1
h? 9 de
< llemsl + 5 1Aen®l + 121Vev8] + hlos 2 a] <

h, 01\/_
<eav2 ”45”1,2(1'1) + 3 ”‘I’HLz(n) +

h Clﬁ hcl\/ﬁ :
+ m “Vq)“z,z(ﬁ) + _n‘;""‘”xfi)“p(ﬁ)-

We take the first and the last expression in this system, divide them by 4/m, and let m tend to co. We
then obtain : ' .

dist(a(fI),E) nq)“m(ﬁ) < “(FI - E)q)”];z(ﬁ)'-
Because |]<I>[]L2(ﬁ) >c>0ash— 0, we obtain
dist(¢(H), E) = O(hY) + O(X).
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Fig. 7. Structure of the semiclassical asymptotic form for the lower Landau bands.

As in the finite motion cases, all the functions 1/),?’“ have locally compact supports and are localized
near the projections of the corresponding trajectories on the plane RZ%. They can all be expressed through
the single function ¥i”* as

GRH () = Y3 (2 + h(I 1) - a)ethomar/h, 20)

5.5. General structure of the spectrum. The procedure for constructing asymptotic eigenvalues
described above leads to selecting a discrete subset of points on each edge of the Reeb graph corresponding
to finite motion and to including all the edges corresponding to infinite motion as a whole in the spectrum.
E.°(Z¥), and E°(I;).

Definition 2. For a fixed y € Z,, the union 3, of the values Eg’,,,
the semiclassical asymptotic form of the pth Landau band.

We therefore have sets of the numbers Egy,,,

E,°(T%), and E.°(T,) is called

As follows from the preceding, the semiclassical asymptotic form of a Landau band has the following
structure. We consider the Reeb graph of the function H(Z¥, -) for a fixed u. We quantize the variable 7,
on the edges corresponding to finite motion by rule (17), i.e., we assume that all these values are admissible.
‘We note that although this formula holds for all y, its justification is realized by different methods. Namely,
" the oscillatory approximation method (see Sec. 5.2) is used for g = O(1) and the method of the complex
germ for closed curves (see Proposition 4) is used for o = O(1/h). On the edges corresponding to infinite
motion, the variable 7, is not quantized, and all the values are admissible (this is justified by the method of
" the complex germ for nonclosed curves; see Proposition 5). The set of values of H(Z{', Z2,€) now coincides

at all admissible points with the semiclassical asymptotic form of the yth Landau band with an accuracy of -

. O(h?). This semiclassical asymptotic form is thus determined by the Reeb graph of the function H(Z#, ).
We note that because h is small, the structure of all these graphs coincides with the structure of the Reeb
graph of the function H(O, - ). The semiclassical asymptof,ic forms therefore have the same structure up to
O(h?) (see Fig. 7). .

Strictly speaking, we can only prove that there are points of the spectrum of H in a (O(R*) + O(5))
neighborhood of X,. Nevertheless, this seems the most complete result that can be obtained using the
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above asymptotic methods, which are based on the simplest additive (with respect to the parameter h)
asymptotic approximation; this asymptotic approximation does not take the tunneling effects into account.
It is important to emphasize that the above considerations are valid for both rational and irrational values
of the magnetic field flux.

6. The band structure of the spectrum‘: Heuristic considerations

6.1. The Bloch conditions. The number 7 = agz/h has the meaning of the number of the flux
quanta of the magnetic field through an elementary cell (and is sometimes called flux). It is well known
that if the number 7 is rational, n = N/M, where N and M are coprime integers, then the spectrum of
H has the band structure. It is convenient to parameterize the points in a band by the quasimomentum
q=(q1,q2) € [0,1/M) x [0,1), E = En(q,¢,h), where n is the index of the corresponding band. For each
band, there is also a set of Bloch functions Vi, (x, g,€,h), = 0, M — 1. For a fixed g, these functions are
the generalized eigenfunctions of H corresponding to the spectral value E,(q,&,h). They also satisfy the
following (magneto-Bloch) conditions:

Vi (z +a1,q,¢,h) = W, (x,q,¢, h)e 2mH{a=m), i=0,M—1,

‘I’%(x +azg,q, Eyh) = \II-Z;H (:E: q,¢, h)e—in(z1+a21/2)’ .7 = 07 M - 2’ (21)

\1/71"\/1'—1(‘,1’, +.a2,4,¢, h) = ‘1’2(33, q; &, h)e—in(z1+az1/2)—-27riqz -

Using the asymptotic eigenfunctions constructed in Sec. 5, we try to construct a family of functions
satisfying (21). Our further considerations depend on the structure of the Reeb graph of H, and we restrict
ourselves to the simplest case where H(0, -) is a minimal Morse function, ie., where H(O, -) has one
minimum and one maximum in the unit cell. The corresponding graph is shown in Fig. 3.

6.2. Finite motion. We first consider the Reeb graph edges corresponding to the finite classical
motion. By analogy with the so-called Lifshits—Gelfand-Zak representation, we seek the functions satisfying
the Bloch conditions in the form

‘I,j(xa q,€, h) = Z Cz](% h)¢l($7 g, h’)v . ’ (22)

lez?

where 1/)l‘ denotes ™" (z, &, h) or ¥, % (z, ¥, €, h).

- Proposition 7. For each u and v, there are M? Iinearly independent functions of form (22) forming
M sets satisfying (21). The function U%7 (the jth member of the sth set) can be given by the coefficients
C;"(q) of the form ‘

~l v
%7]22(121} jfl2+j—3+nM=07n€Z’

exp {—2m'(q111 + gon) + 2winl j —

0131,,].12 (g,h) = ‘ (23)

0 otherwise.

Proof. For simplicity, we omit the dependence of all the functions on h and &. We use relations (15)
and (18). We then obtain '

W= 3" O, @ — hay — laag)eo2lm /b,
(tla)ez?
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Because the asymptotic supports of ¢; do not intersect, Bloch conditions (21) immediately imply

Cl1+1 la (q) l1 l2 (q)e—Zm'.(ql—jn), ji=0M —-vl,
ol l2+1 = Cff,emtman/2, i=0,M-2, _ (24)

—inagi /2—2nig:
Cifi = Cp e tmen i

We see that all the numbers C’f 1, are defined through the numbers Co 0» 4 = 0, M — 1, which can be
chosen arbitrarily. Therefore, there are at most M? linearly mdependent solutions. If we set C'0 0 = 0sj,
s = 0, M — 1, for the sth solution, then we obtain formulas (23). We show that all these solutions are
indeed linearly independent. For this, it suffices to prove the linear independence of M? vectors

A% = (O o= $d =0, M~ 1.
The Gram matrix of this system of vectors G(s, j,),(s,ja) = (A°7* | A%2:72) can be easily calculated:
G _ | M ifs; =s; and j; = ja,
(o141 )1 (52:92) = 0 otherwise. :

Because this matrix is nondegenerate, the linear independence is proved.

Proposition 7 shows that for each quantization point E , or E.°(ZY), there are M exponentially small
spectral zones contained in some neighborhood of it that is exponentially small (with respect to k). Our

approximation cannot give a rigorous justification; this requires applying other, finer methods based on ,

multiplicative asymptotic approximations and taking the tunneling effects into account. Nevertheless, it
seems possible to give some additional arguments. ) ‘

If we enlarge the elementary cell by the rule a; — May, then we obtain the integer flux case, and
only one Bloch function exists for each band. On each level set of H corresponding to finite motion, there
are M connected components, i.e., the corresponding Reeb graph has M end edges on each side, and for
each of these edges, we can use the above considerations to construct some functions satisfying the Bloch
conditions. Obviously, all these functions are linearly independent. In the well-known problems (such
as the double-well problem, for example), a similar situation actually corresponds to the existence of M
asymptotic eigenvalues with an exponentially small distance between them.

It also follows from (24) that on the space of constructed asymptotic eigenfunctions, a representation of

the magnetic translation group for the flux N/M is realized. It is well known that irreducible representations
of this group are M-dimensional [13] and a small variation of the parameters splits the eigenvalue into M
numbers {6]. :

It is interesting to consider the representation of the magnetic translation group reahzed by (24) in the
context of the so-called Langbein duality [25], [26]. On one hand, it is a subrepresentation of the standard
represehtation of this group, which dictates splitting the Landau band into N magnetic subbands [6] (see
below). On the other hand, it is analogous to the representation of the magnetic translation group in a
discrete space [27], where its decomposition into irreducible representations dictates splitting the band into
M magnetic minibands.

6.3. Infinite motion. We now try to construct functions satisfying the Bloch conditions and cor-

‘responding to the infinite-motion edges of the Reeb graph. Each level set of H consists of two families-

.of nonclosed trajectories whose drift vectors have opposite directions. These vectors are denoted by =d.
The corresponding asymptotic eigenfunctions are. denoted by ¢1°’“’i(ac T#,e,h). We use the explicit de-
pendence of the corresponding action variable Z':t on the index k, i.e., the actlons corresponding to the
trajectories with the index k are .7:2 + kags.
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To simplify the calculations, we assume that d = (1,0) (if this is not the case, we can rotate the coor-
" dinates by a gauge transformation; in fact, we already applied this procedure in the proof of Proposition 6).
Then the corresponding adjoint vectors are +f = (1, 0).

It follows from condition 3 (see Proposition 5)-and (20) that the functions 1/)1"’“ ’i(m,l'g,e, h) satisfy
the conditions

lo,p,, (m+ ahl-z + kazz,E h) 10 NI ((L‘ I:I: + k‘a22,6 h)e:l:2m(l'2 +ka22)/2

(25)

b’ ot (g 4 az,I2 + kagz, €, h) = Yr34F (2, T + kagg, &, h)e~i1mrtinkaa
We omit the dependence on p and again seek the functions satisfying the Bloch conditions in the form
Uit(z,q,e,h) = Y CL* (g, h)¢"* (2, T5 + kam, , h). (26)
keZ ‘
Proposition 8. The functions U5* given by (26) satisfy the Bloch conditions only if
TE=Fh n }
;=7 (Q1+_~M)._ v | (27)
The coeflicients in (26) can be chosen as

ok
Ck

exp {:i:in (k|k —-1|F @) az1 + 27rinq2} fork+j=nM, n€Z, (28)

0 : otherwise.

Proof. We substitute (26) and (25) in (21) Because the asymptotic supports of ¢ do not intersect,

we obtain the relations ] . :

C’” (g, h)e:(:27rz(l'2 +kazz)/h _ C’J’ (g, h)e—zm(ql—m) j=0M-—1,
:L-_ (q h)‘e—inxlztin(krpl)am — Cj+1,i(q h)e—in(w1+a21/2) j= '0",'M'_ =32,

Ck:pll :i:(q h)e—mm1:l:zn(kq:1)a21 = CO :t(q h) —zn(z1+a21/2) 21rzq2

The first relation implies
IF + kagz = h{m* F g1 £1(j - 1)),
and we obtain (27). In addition, we have the conditions for the coefficients C'i’i
C,g:il) mod M, :l:(q, h) - O_J(q)Cz:,:l: (q’ h)e:l:’iaal(k:i:l)/z,

j=0M-1, keZ, oo,.m20@)=1,  om-1(g) = .

All these coefficients are uniquely determined by C’g’i, and we therefore have at most M families of functions
5% determined by Cg?* = §,;. The coefficients C*’ are then determined by formulas (28) with j
replaced with j — s. It is easy to see that the equalities \Ilgi}g 223 % = ¥J hold for any s and j. This
means that the sets ¥4, j = 0, M — 1, can be obtained from each other by renumbering. We therefore have

only one set of functions satisfying the Bloch conditions.
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Fig. 8. Heuristic dispersion relations.
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Fig. 9. True dispersion relation (conjecture).

The dependence of Iét -on ¢ implies some relations between energy and quasimomenta (the heuristic
dispersion relations): ‘

E =,Ei(q1,h> = H(O,Izj:(ql‘, h))

e dependence on g is absent up to +0(e™)). At certain “critical” points g7, we have g1, n) =
the d d is ab: O(RE)+0(K)). A in “critical” poi 1 have Et (g}, h

E~(q%,h) (see Fig. 8). We think that in certain neighborhoods of these points, which are exponentially
small with respect to h, there are gaps and these gaps are also exponentially small with respect to h. More

precisely, we can expect that near “critical” points, there are points from different bands, and the asymptotic .

approximations of the corresponding Bloch functions are described by a nontrivial linear superposition of
the functions ¥9+*, In this case, the true dispersion relations have the form shown in Fig. 9. ‘A rigorous
proof of these facts must be based on the study of tunneling effects (cf. [20]). ’

We can verify that all the coefficients C,Z’i are nonzero for d # (1,0). We can also expect that the
dispersion relations E(g, h) are functions of some linear combination ¢; and g2 with some accuracy.

6.4. Conclusions. Based on the above heuristic considerations, we give a general description of the
asymptotic form of the band spectrum.
We have different asymptotic forms for the spectrum of H on different edges of the Reeb graph. In
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the simplest case, we have exponentially small bands on the edges corresponding to finite motion. These
bands are grouped into M-tuples (M is the denominator of the flux), and the distances between the bands
of the same group are also exponentially small. These groups are separated by gaps of length O(gh). On
the edges corresponding to infinite motion, we have bands of length O(eh) separated by exponentially small

gaps. We note that our approximation does not give any asymptotic form of the spectrum near the energy
' levels corresponding to separatrices; special methods must be used here also.

Returning to the operator H B,w, We obtain bands that are exponentially émall with respect to B and
gaps of length of the order 1/B on the edges corresponding to finite motion, as well as gaps that are
exponentially small with respect to B and bands of length of the order 1 /B on the edges corresponding to
infinite motion. We note that the diameter D, of the semiclassical asymptotlcs of the pth Landau band
for the operator H has the form

D, =maxH(Z{, -) —Omin'H(I{”, -) = e(max v — minv)

with an accuracy of O(h?). Taking the relation between ¢ and B, as well as between H and H B,w, into
account (see the introduction), we reach the following important conclusion: the order of the leading term of
the diameter in the semiclassical asymptotic form of the Landau band of the operator B B,w is independent
of B.

Each Landau band is then split into approximately N subbands (N is the numerator of the flux). To
verify this, we need only count the quantization points on all edges with their degeneracy taken into account.
As the value of the flux n approaches an irrational value, both of the numbers N and M vary irregularly;
a picture similar to the Hofstadter butterfly appears [28]. From the above formulas for the asymptotic
eigenfunctions satisfying the Bloch conditions, it is also easy to see that each of them is localized (under a
suitable choice of coordinates) in strips of elementary cells separated by M—1 “empty” strips. The number
M becomes infinitely large as the value of the flux tends to an irrational value, and this probably means
that in the limit, each of these functions is localized in a neighborhood of a single strip.

If the Reeb graph has a more complicated structure, then the corresponding asymptotic form of the
band spectrum becomes more complicated, too. In particular, some tunneling effects between the edges
corresponding to finite and infinite motion can arise. Problems with different Reeb graphs need a separate
study.

Appendix A: Justification of formulas for asymptotic eigenvalues

A.1. Asymptotic eigenvalues corresponding to points. We give the following definition.

Definition 3. A rest point 'y of the Hamlltoman H is said to be stable in the linear approximation

if the matrix
H,, - _Ha:p —iizz
Hyp Hpe

is diagonalizable and has a purely imaginary spectrum.

(29)

’YO
We let (-|-) denote the bilinear product in C2,

((w1,w2)|(21, 22)) = w121 + waze, wi2,212 €C,

and let [-|-] denote the induced skew-linear product in C%,
[, 2?27 = )~ @), w2 e e
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‘The stability of a point v° is equivalent to the existence of a two-dlmensmnal complex plane rin C*
satisfying the conditions

»

1. for any vectors X', N’ € r, we have [N|\'] =0,
2. for any nonzero vector A € r, we have [A | A)/(24) > 0, and
. H'rCr.

Such a plane is a particular case of the Maslov complex germ.
Let 1 and 8, be eigenvalues of H” such that the corresponding elgenvectors lie in 7. The oscillatory
apprommatlon then gives the formula '

1 .
E), =H|po+pB <u+ )h+,6'2( §)h+0(h2) (30)
for asymptotic eigenvalues of the operator H [21].

We now return to the matrix H”. The following simple fact holds.

Proposition 9. Let a be an eigenvector of the matrix H" with the eigenvalue o, let (p,%) be new
canonical variables in which the Hamiltonian H has the form H(p,%), and let

Then the vector 8(p,z)/d(p, %)a is an eigenvector of H"" with the same eigenvalue a.

We set = (P, 1) and Z = (@, V,). We then obtain the matrix of the second derivatives

0 0 —w 0
i 0 —Hiz 0 —Ha + O(G_C/Ej w= [2:4 = 8°H
w 0 0 0 -7 L1 |0’ 7 0050

0 Huu 0  Hig

The eigenvalues of H" with an accuracy of O(e=°/#) can be found explicitly: they are iﬁi': = +iw and
i,82 = +i4/det(H;;). Constructing the complex germ, we see that we should have 81 = w and fp = /62
in (30), where the sign +/— corresponds to the minimum/maximum of v. It is also easy to show that

+./det(H;;) = OH/OI, in this case.

A.2. Asymptotic eigenvalues corresponding to curves. According to the canonical operator .

method, each point (P(r,¢), X (7, £)) of a curve 7! (¢) is assigned a two-dimensional complex plane r(7,&) C

C* spanned by the vectors a;(7,&) = (w(r,€),2(1,€)) = (Pr, X,) and az(7,e) = (W(r,€), Z(r,e)}, W, Z € .

C?, satisfying the conditions
1. [ai]az] =0, '
2. [az | 32}/(26) > 0,
3. the vector as is invariant under the linearized Hamiltonian system
. -H -
£=H"¢, where H" = wo
Hpyp Hps

| (31)

'71
4. the vector as is an eigenvector of the monodromy operator of system (31).
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Such a family of planes is called the Maslov complex germ over the curve 1. The existence of the complex
germ guarantees that the absolute value of the eigenvalue o of the monodromy operator corresponding to
-ap is equal to one. We write this value as o = €¥T, We then have the formula

1
E=H|11 +h(#+§>ﬂ

for asymptotic eigenvalues [22]-[24] (we refer to [24] for answering the question why we prefer 8 to other
numbers B+ 27n/T; this is a question of normalization).

It is difficult to find the eigenvalues of the monodromy operator directly, and we therefore proceed
as follows. Let (f,Z) be new canonical variables in which the Hamiltonian H has the form H(5,%). We
consider the linear system ' - ’

o e —Hz; —Hss
n=H"y, where H' = < S ) (32)
Hyp  Hpz /|, '

Proposition 10 (see [23]). The linear transformation ¢ = 8(p,x)/8(p,&)n transforms system (31)
into system (32) and preserves the skew-linear product of any two solutions.

Setting = (P, 1) and & = (Q, k), we obtain

0 0 —w 0

- 0 —Hie 0 —Ha OH H

0" = O(e=C/¢ , =, His = e |,
w 0 0 0 + (e ) Y=o, U Y 9Y:0Y; i

0 Hi1 0 Hiz

* Because the matrix 8(p,z)/8(P, V1, Q,V2) is periodic, the monodromy operators corresponding to sys-
tems (31) and (32) have equal eigenvalues. The monodromy matrix of system (32) has the eigenvalues

er™T and the twice degenerate eigenvalue 1 (with an accuracy of O(e~¢/¢)). Returning to the original

coordinates (p, x), we see that the eigenvalue corresponding to the vector ag is ™7,

Appendix B: Formulas for spectral series with an accuracy of O(e?)

B.1. Almost invariant manifolds. In this appendix, we construct spectral series for the lower
Landau bands with an accuracy of O(g?). For this, we must first reduce the Hamiltonian H to form (7)
with change of variables (1). Obviously, it suffices to construct this change only for Z; = 0. By simple
calculations, we obtain H(0,Y,¢) = ev(Y) from (7) and (8), and we can find the desired change of variables

— 9 0 — e 9v o =
P“‘ €a$2(y )) Q— eaml(y ): y"yv

from (6) and (9). The construction of almost invariant curves and rest points is now obvious. Let Y° denote
a solution of the Hamiltonian system for v:

W B DR B
dr EBmz(y ), dr _saa:l(y ):

We can verify that the curves and the points given by

. ov ) t ov ov
— 0 —_ a2 ()0 — 0 0 - 0 0
P11 = y27 D2 = 891:1 (y )) T1 —yl 66171 (y )7 Xy = y2 Eamz(y )

are almost invariant manifolds of the Hamiltonian H with an accuracy of O(e?). Moreover, the points
induced by the rest points of v are actually exact invariant points of H.
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B.2. Spectral series corresponding to points. In accordance with the oscillatory approximation
method, only the local extremums of v can be used to construct spectral series. Let J° be a nondegenerate
local extremum of the function v. The corresponding (zero—dlmensmnal) invariant manifolds are given by
the formulas

=(p=P,e=X)= (-~ (1-a)2,0, 07 + (- a)1, )3 + (L a)a).

The formulas for the asymptotic eigenvalues are

ng =ev+h [(1 + %sAv) (/H— %) + (e@) (V-I- %)} + O(he?), | (33)

where

, v |
(vij) = <W)” L M,V—O(l),

the sign + / — corresponds to the minimum/maximum point of v, and a,ll the functlons are calcula.ted at the
point J°.
The basis of a complex germ is given by the vectors a; and azy,

0 —v1g & 34/ det(vi;)

wy i Weo+4 0 ‘
a1 = = . |+0(), = = |+ 0(e),
21 -1 » 22+ Va2
1 vi2 F i\/ det(vij)
where the sign +/— corresponds to the minimum/maximum point of v. We also introduce the matrices

—v12 + i\/dét(vij) ) + 0(5)

0
B* = (wy,wos) = ( i
% 0

-1 V92
1T vg F i\/det(vij)

1- vi2 F det(vij) — V12 :l:\/det(’l)ij) + tv19 +0()
—Usg F \/det(vij) — V12 :i:\/det(vij) + V19 —1v2g

| ot = (21, 224) = < ) +0(e),

Q:t: — B:I:(C:t)—l —
and the creation operators
b= [(wl |2~ X) — (= | i - B>]

. 1 [ [ ., 0
a1+ = ﬁ‘[(wzi |z — Xi) ~ <Z2:|: I —zh% - P,>] .
We also set
. 1
SiF(z) = (Pllz — Xi) + -2-(93 - Xi|Q*(z - X))

The asymptotic eigenfunction corresponding to the asymptotic eigenvalue E° £ in some neighborhood of
X can now be given by the formula

v 1 .. . v igE
PpEE (z) = ﬁ(al,l)“(az,zi) 'S @)k,
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B.3. Spectral series corresponding to curves. Let a curve y! = (P(7,¢), X (€)) be given by the
equations ' '

Pl(T’E) =*y2?(7-78.)7 Pz(’l',&)=6§l%(yo(7',€)),

Xi(t,€) = y?(T, ) — 5%(3)0(7—1 5))7 Xa(r,€) = yg(ﬂ €)— 5%(3)0(7': 5))7

where )° is either a closed trajectory of (10) satisfying quantization condition (17) or any nonclosed
trajectory of (10). It follows from the preceding that we can easily obtain the formula

1
E=Hla+w (u+ 5) h+O(h?), w=1+ -;-aAvivl

for asymptotic eigenvalues. : '
‘We now describe the scheme for constructing the corresponding asymptotic eigenfunctions. The basis
of the corresponding complex germ consists of the vectors a1(7) and aa(7):

-)2(7) | 0\
wi(m)\ 1 0 (w(D\ L, i
ay(r) = (zl(*r) ) == y{)('r) + Ofe), az(t) = (zg('r) ) =e » + Ofe).
Y9(7) 1
We introduce the matrices '
. : ) Y
B(T, s) = (w1(r,€), wa(7,€)) = é ( yzéT’ ) iae(z‘”) + O(g), -

W(r,e) —iee™T

V3(r,€) getwT

C(T’E) = (Zl(T,E),ZQ(T,E)) = é ( ) +0(5)’

Y0 1 —i 0 0\ -
Q(r,€) = B(r,e)C (r, ) = W(ﬂf;i;;)g(ﬂ 5 (_i 1) + (0 Z) +0(e).

In a certain tubular neighborhood (') of the projection of the curve ' on the z plane, the equation

(X(r)|z — X (1)) = 0 is uniquely solvable (up to T for closed curves) with respect to 7. We let T(z,8)

denote this solution and introduce the creation operators

a(z,e,h) = \_}_ﬁ {<w2|m - X(r,€)) — <22 ' —?h% - P('r,a)>}

T=7(x,8)

and the phase

S(z,e) = { /OT P(r,e)X(r,€) dr + (P(r,8)|z - X(r,e))+ |

r=7(z,&)

+ 3= X0, 91Qne) o - X(re)
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In a neighborhood of ('), the asymptotic eigenfunction corresponding to the asymptotic eigenvalue E
can now be written as '

P(z,€,h) = (a(z, &, b)) eS@e/,
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