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Abstract We establish an anomaly formula for Ray—Singer metrics defined by a Hermitian metric
on a flat vector bundle over a4 Riemannian manifold with boundary. We do not assume that
the Hermitian metric on the flat vector bundle is flat, nor that the Riemannian metric has
product structure near the boundary. To cite this article: J. Briining, X. Ma, C. R. Acad.
Sci. Paris, Ser. I 335 (2002) 603-608.
© 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Formules d’anomalie pour les métriques de Ray—Singer sur les
variétés a bord

Résumé On annonce une formule d’anomalie pour les métriques de Ray—Singer d’un fibré plat F sur
une variété a bord X . On ne suppose ni que la métrique sur F est plate, ni que la métrique
sur X a une structure produit prés du bord. Pour citer cet article : J. Briining, X. Ma, C. R.
Acad. Sci. Paris, Ser. I 335 (2002) 603—608.
© 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Version francaise abrégée

Soit X une variété compacte & bord Y. Soit (F, VF) un fibré vectoriel complexe plat sur X. Soit g7
une métrique riemannienne sur 7X, soit 47 une métrique hermitienne sur F.

Soit H*(X, F) = @’;’zo HP?(X, F) la cohomologie de de Rham absolue de X 2 coefficients dans F. La
métrique de Ray—Singer sur la droite complexe det H*(X, F) = ®Z’=0 (det HP (X, F))=D7 est le produit
de la métrique L2 standard sur det H*(X, F) et de la torsion analytique de Ray-Singer [14].

Dans cette Note, on annonce une formule d’anomalie pour les métriques de Ray—Singer, qui généralise
le résultat correspondant pour les variétés sans bord [2, Théoreme 0.1]. On ne suppose ni que la métrique
sur F est plate, et ni que la métrique sur X a une structure produit prés du bord.

Dans notre formule, la contribution du bord est obtenue & partir de la solution fondamentale d’un
probleme modele sur R”~! x R, avec condition de bord.

Les résultats annoncés dans cette Note sont démontrés dans [5].
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0. Introduction

Let X be a m-dimensional compact smooth manifold with boundary 3X = ¥, and let F be a flat complex
vector bundle over X, with flat connection V¥ . We denote by H*(X, F) = .69’;:0 H?(X, F) the de Rham
cohomology of X with coefficients in ¥ with absolute boundary conditions. If E is a finite dimensional
vector space, let det E := A™*E, and denote by (det E)~! := det E* the dual line. The complex line
detH*(X, F) = ®'Zf=0 (det HP (X, F))D7 is the determinant of the cohomology of F.

Choose a Hermitian metric, #¥, on F and a smooth Riemannian metric, gTX, on TX. By Hodge-de
Rham theory, the de Rham cohomology H* (X, F) is canonically isomorphic to the kernel of the associated
Laplacian. Hence the chosen metrics induce a canonical L2-metric, h¥ "XF ) on H *(X, F). Then the
Ray-Singer metric, || - Ilgg He(x,F)> O det H*(X, F) is defined as the product of the metric induced on
det H*(X, F) by h *(X.F) with the Ray-Singer analytic torsion [14], see also Definition 1.2.

If Y =@ and h¥ is flat, || - lldReSt H(X.F) does not depend on g7%. The Cheeger—Miiller theorem [6,12]
tells us that, in this case, the Ray—Singer metric can be identified with the Reidemeister metric, which is
a topological invariant of the flat bundle F. Miiller [13] extended his result to the case where m = dim X
is odd and only the metric induced on det F' is required to be flat. Bismut and Zhang [2] generalized this
discussion to arbitrary flat vector bundles with arbitrary metrics and showed that in even dimension, the
independence ceases to hold. There are also various extensions to the equivariant case, cf. [9,10,3].

Now consider X with Y # @. This case was studied in [9] and [10] under the assumption that hF is flat
and that g7 is product near the boundary. Dai and Fang [8] were the first to study this problem with flat £ ¥
but without assuming a product structure for g7 % near Y, by methods completely different from ours.

In this Note, we announce an anomaly formula for Ray-Singer metrics in the general case, allowing
arbitrary Riemannian metrics on X and arbitrary Hermitian metrics on F. Our method also leads to a local
Gauss—Bonnet—Chern theorem [7] for manifolds with boundary. The full details of our results are given
in [5].

1. Analytic torsion for manifolds with boundary

Denote by Q(X, F) := @;’zo QP(X,F) .= ?=0 C®(X,AP(T*X) ® F) the space of smooth diffe-
rential forms on X with values in F. The flat connection extends naturally to a differential, d F onQ (X, F).
The metrics gTX , k¥ induce a Hermitian metric (Y arxer on A(T*X) ® F. Let duy be the Riemannian
volume element on (T X, g7%). Let o(T X) be the orientation bundle of T X, which is a flat real line bundle
on X [4, p. 88]; then we can view dvy as a section of A™(7T*X) ® o(T X). We define the Hermitian product
on Q(X, F) by (0,0") := [y{0,0")aqr*x)oF dvx, for 0,0’ € Q(X, F). The Hilbert space obtained by
completion is denoted by L2(X, F).

We consider d¥ as an unbounded operator in L2(X, F) with domain €20(X, F) := {o € Q(X, F);
suppo N'Y = @}. The adjoint operator d7* is also defined on Qo(X, F), andso is D :=dF +dF*. .

Next we define self-adjoint extensions of D by elliptic boundary conditions. We use the metric on X to
identify the normal bundle Ny, x to ¥ in X with the orthogonal complement of T'Y in 7X|Y. Denote by
en the inward pointing unit normal vector field along Y. Then we put, with i (.) interior multiplication,

QL(X,F):={0c € QP(X, F); i(en)o = i(en)(dFa) =0on Y},

m )
D, := D|Qq(X, F) := DI QE(X, F), HP(X, F):=ker D, N QP (X, F).

: 20

The operator D, is essentially self-adjoint and we denote its closure also by D,. By the de Rham~Hodge
theorem for manifolds with boundary, HY (X, F) is canonically isomorphic to HP(X, F). We denote by
RH*(XF) the 1.2-metric induced on H*(X, F) by this isomorphism, and by | Igezt Hex, ) the corresponding
metric on det H*(X, F).
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Let P, be the orthogonal projection in L%(X, F) onto H3 (X, F) with PdL :=1— P,, and let N be the
number operator on A(T*X) ® F, which is multiplication by p on A?(T*X) ® F. Let exp(—th) be the
heat semi-group of DZ.

DErINITION 1.1.— For s € C with Re(s) > %dim X, set
o0 im T N3] ) = S0P ()4
— 55 Jo s [N exp(—¢D2) ] & )
By Theorem 2.1, Gf extends meromorphically to C, and 0 is a regular value.

DEFINITION 1.2.—~ The Ray-Singer analytic torsion of X with coefficients in F is defined by
T, (X, hF):= exp{% gg (0)}, and the Ray-Singer metric on the line det H*(X, F) is defined by

RS F L?
I Ndet o, 7y = Ta (X BT ) |- e mrocx, Fy- 3
2. Anomaly formulas for analytic torsion

The objects which follow will be defined more precisely in Section 3.

Using the notation in Section 3 to the metrics g/ X = g7*, we denote by R7X, RTX|y, § the
corresponding forms defined in (11), (12). Then the following result generalizes [2, Theorem 7.10] to
manifolds with boundary.

THEOREM 2.1.— Whent — 0, foranyk € N,

k
Tr, [Nexp(—tzDg)] = Z ajtj + O(tk+1), and @)
j=—1 ‘

k(F)//Bxili/\“iex 1 orx
a_1—rT —€ (4 ——
! x] &2 P2

Byml - Sk 1 ¥

m
= —x(X, F).
ao 2X( )

Let || - |lget 7 be the metric on the line bundle det F induced by 2%
Let (gg X hF ) and (ng X hF ) be two couples of metrics on 7 X and F. We will use the subscripts 0 1
to distinguish the correspondlng objects. Let VTX (j =0, 1) be the Levi-Civita connection on (T X, g7 j Xy

and put O(F, hf) := Tr[(hF)_IVthf], this is a closed 1-form which vanishes if the metric || - [laet#,1
is flat, cf. [2, p. 63]. Let E(TX, V; XY be the relative Euler form of (TX, gg Xy defined by (17), let

E(TX,VEX, vTX) be the secondary relative Euler class defined by (18), and let B(VI*) (j=0,1) be
the m — 1—form on Y defined before (15). In (16), we define also the integral on X of a form in the relative
complex Q(X, Y, o(TX)).

Now we can present our main result which generalizes [2, Theorem 0.1] to manifolds with boundary.

THEOREM 2.2.— Let (g0 rXx hg ), (ngX hF ) be two couples of metrics on TX and F. Then
I ”detH'(X )l > I~ Nldet 1 TX
lo <—> =(—1)'”/lo < ) E(TX,Vi¥)
” ”detH'(X F), 0 X ” ”dCtF,O
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+/ E(TX, VX, vI%)o(F,nT) +1k(F) [/B(VITX)—/B(VOTX)] (6)
X Y Y

Outline of the proof. — We can guess the first two terms in the right-hand side of (6) by comparing with
[2, Theorem 0.1], but the third term is more mysteﬁous.
Lets € R — (g7 X, hl') be a smooth family of metrics on T X, F. Let #, be the Hodge operator associated
to the metrics gsT X Let D be the operator D attached to the metrics (ng , hf ). Let || - HdRest H*(X,F).s be the
corresponding Ray—Singer metric on det H*(X, F) and denote by exp(—th, ) the heat semi-group of DS2

with boundary condition (1). Then as t — 0, for any k € N, there is an asymptotic expansion

s _19hF k .
o (1 52+ () 1-3Si> exp(~1D2.)| = 3 Myt 4O, ™
j=—m
Moreover,
0 2
o5 02 (I lag e cx,p).s)” = Mos- ; @®)

Egs. (7), (8) generalize [2, Theorem 4.14] to manifolds with boundary, they generalize also [6,
Theorem 3.27], [14, Theorem 7.3] to general metrics on F.

To prove Theorem 2.2, we need to calculate the asymptotic expansion of (7) when ¢t — 0. By using the
local index technique in [2, §4(h)], we get the local contribution of (6) in the interior of X. To get the local
contribution of (6) from the boundary, we use three ideas. First, we rescale the Clifford variables along Y,
secondly, we use a special trivialization of the vector bundles involved adapted to the boundary situation, in
order to get a manageable limiting boundary value problem (this special trivalization has already been used
in [1, 8§13 (d), (e)], in a different context). Third, we introduce two extra Grassmann variables and a strange

rescaling. O

3. Secondary classes for manifolds with boundary

In this section, we use the formalism of Berezin integrals to express certain characteristic classes which
naturally arise in our anomaly formula (6).

For Z;-graded algebras A, B with identity we introduce the Z,-graded tensor product A®B and define
A:= ARI, and B:=1 ®B. Also, we write A := ®. Let E and V be finite dimensional real vector spaces of
dimension # and /, respectively. Assume that E is Euclidean and oriented, with oriented orthonormal basis
{e;}}_; and dual basis {e! }_,- Then the Berezin integral [2, §3(a)], [11] is the linear map

B ——— ~
/ TAVEAAE* — AVF, a A B cpaBle,...,e), )

where the normalizing constant is given by cp := (—1)"®+D/2z /2 More generally, for any Euclidean
vector space E with orientation line o(FE), the Berezin integral maps AV* A AE* into AV* ® o(E).

We now consider a smooth family of metrics, {gSTX }ser, on T X. We denote by gSTY the induced metrics
on TY and by VI, VIY the Levi-Civita connections on (T'X, gl X), (T'Y, g'¥), with curvatures RT X
and RSTY. Introduce the deformation space X x R, with projections g : X xR -~ Rand rx : X x R —» X,
and canonical embedding j : ¥ x R <> X x R. The vertical bundle of the fibration 7 (resp. ¥ x R — R)
will be denoted by TX (resp. TY); clearly, TX =n3TX and TY = (nx o j)*TY. The bundle T X is
naturally equipped with a metric, g%, which coincides with gSTX over X x {s}. Moreover, following [2,
(4.50), (4.51)], there is a natural metric connection VT¥ on TX defined by

1 -1
VI¥ =73 vI* 1ds A (La/as + 5(gZ’X) Ea/asgsTX> (10)
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with curvature RT*. We also denote by VTY the connection on T defined as in (10) by gST Y and

denote RTY its curvature. Following [2, §3(e)], we view RT¥ asa section of AT X xR) A A@)
and write, with {e;}}2; an orthonormal basis of (T X, gTX ) and {é! }7-; the corresponding dual basis of
T*X,

. 1 PO
R = 2 Sy chum{ons RT¥er) ok n el ()

Near the boundary, we only consider orthonormal frames with the property that e, (y, s) = ey is the
inward pointing unit normal vector at y € ¥ with respect to the metric gTX Now let {ey}1gagm—1 bea
local orthonormal frame for T, such that {ey}1<o<m—1U {em} is an orthonormal frame for T X|(Y x R).
WesetonY xR,

| — 1 ~
S:EVTXemza z (VgTaXem,eg>e°‘/\eﬂ,
1<, f<m—1 . 12)

RTX|Y=% 3" (ew, iR % ep)e® neb, RTy:% S ey, RTVes)e? néb.
1< pm—1 1<y 3<m—1

We will denote by [ Bx f BY the Berezin integrals acting on A(T*X) A Aﬁ"*\X), AT*Y) A Aﬁ*\Y). We
now put

B B
e(TX,VTX)z/ Xexp<—%1é”>, . e(Ty,va)=/ Yexp<—%RT3’>. (13)

Then e(T X, VT ¥) is an o(T X)-valued closed m-form on X x R, and e(TY, V1Y) is a closed m — 1-form
on Y x R with values in the the orientation line bundle o (TY) of TY.
Lety(TX, vTx ) be the Mathai—Quillen current on T X defined in [2, Def. 3.6] (¢f [11]).On ¥ x R, set

e (Y xR, VI¥) i= iy (T X, VTY),
d By S k
VTX / " / exp( (RT¥|¥) + 52> Z 21“((1?/2)+ 5 (14)

The form e, (Y x R, VI'¥) is an o(TY)-valued m — 1-formon ¥ x R. If m is odd, then e(TX,VI¥)y=0
and, since RTY = RT¥|Y — 282, we obtain e5(¥ x R, VI¥) = %e(Ty, vy,

For j = 0,1, denote by e(TX,VI¥) (resp. e(TY, VJ.TY), er(Y, V] %), B(VJ-TX)) the restrictions of
e(TX,VTX) (resp. e(TY, VIYY, ep(¥ x R, VI¥), B(VT¥)) 10 X x {j} (resp. Y x {j}), obviously, they
depend only on the metric ng MY =0, e(TX, VOT Xy represents the Euler class e(T'X) of (T X, gg 29)
in Chern-Weil theory. Hence x (X, F) := Z’Z,L:O(—l)p dim HP (X, F), the Euler characteristic of X with
coefficients in F, is given in the case ¥ = 0 by the Gauss—Bonnet-Chern theorem [7], x (X, F) =
1k(F) [y e(TX).If Y # @, then by the Gauss—Bonnet-Chern theorem [7],

x (X, F)=rk(F)/ e(TX, VOTX)+(—1)'”-1rk(F)/eb(Y, vix). (15)
X Y

In [5], we give a new derivation of (15) by establishing the corresponding local index theorem by using heat
kernel methods.

Put QP (X, Y, o(T X)) = QP (X, o(TX)) ®QP~ (Y, o(T X)) and define, for (o1, 02) € QP (X, Y, o(T X)),
d(o1,02) = (do1, j*o1 — doy), where we still denote by j : ¥ <> X the canonical embedding. Then the
complex (22(X,Y,0(TX)),d) calculates the relative cohomology H*(X, Y, o(T X)), cf. [4, p. 78]. For
(01,02) € Q(X, Y, 0(T X)), 03 € 2(X), we denote, cf. [4, p. 86],
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/(0'1,(72)/\0’3 :=/01AU3—/02A0’3 ©(16)
X X Y

this induces the Poincaré duality H*(X, Y, o(T X)) x H*(X,R) = R.For j =0, 1,
E(TX, V%)= (e(TX,V]¥), e (Y, V] X)) 17)

is closed in Q(X,Y, 0(T X)) and defines the relative Euler class of TX, i.e. E(TX, V]TX) e H*(X,Y,

o(T X)) does not depend on the choice of ngX.
In the following, if B;, B are two forms on a manifold Z depending on s € R, then we write

[B1+ds A Bo)™ := Ba.
We now define the secondary classes which appear in our final formula (6):

‘DEFINITION 3.1.- Set

1 1
z(TX,vTX):/ ds[e(T X, VT¥)]%, é;,(TX,vTX):/ ds[es(¥ x R, VI¥)]%.
0 0
(18)
E(TX, VX, vIX) = (5(TX,VT¥), & (T X, VI¥)). '

If Y is empty, then E is the usual Chern—Simons class associated with the Euler class.

THEOREM 3.2.— Modulo exact forms in the complex (Q(X, Y, o(T X)), d), E(TX, vIX, vI¥y does
not depend on the choice of the path gSTX from gg X to ngX . Moreover,

dE(TX,V{X,v[*) = E(TX,VI*) - E(TX,V{¥). (19)

Tt is obvious from Theorem 3.2 that E (TX, VOT X VIT Xy defines the secondary relative Euler class of T X
in the spirit of Chern—Simons theory.
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