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ABSTRACT. We estimate the eigenvalues of connection Laplacians in terms of
the non-triviality of the holonomy.

INTRODUCTION

Let Sp = R/LZ be a circle of length L and X be the oriented unit vector field
on S = 5. Up to equivalence, there is exactly one Hermitian line bundle, £, over
S. For a given complex number z of modulus 1, there is, again up to equivalence,
exactly one Hermitian connection, V¥, on E with holonomy z around S.

The Laplace operator A = (VF)*VF is essentially self-adjoint as an operator
in L?(E) with domain C?(E). The spectrum of its closure is discrete and consists
of the eigenvalues

4mr?
2
where we write z = exp(2mip). The corresponding eigenspaces are spanned by
the functions exp(2mi(p+ k)x/L). We see that, for z # 1, the spectrum does not
contain 0, and that we can estimate the smallest eigenvalue in terms of L and z.

The aim of this paper is a correponding estimate for Hermitian vector bundles
over closed Riemannian manifolds in higher dimensions. The results of this paper
are of importance in [BBC], but seem to be also of independent interest.

Let M be a closed Riemannian manifold of dimension n > 2. Let —(n—1)k <0
be a lower bound for the Ricci curvature of M, i.e. Ricys > —(n—1)k, and let D be
an upper bound for the diameter of M, diam M < D. Let E — M be a Hermitian
vector bundle over M and V¥ be a Hermitian connection on E. The kernel of
the associated connection Laplacian A = (VF)*V¥ consists of globally parallel
sections of E. The estimates we obtain are in terms of quantitave measures for
the non-existence of parallel sections, that is, in terms of the holonomy of E.

Assume first that V¥ is flat and that the holonomy of V¥ is irreducible (and
nontrivial). Recall that for each point x € M, the fundamental group m (M, x)
of M at x admits a short basis, that is, a generating set represented by loops
of length at most 2diam M, see [Gr]. Hence for each point € M, there is a

(p+k)? kel
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constant «(z) > 0 such that for all v € E, there is a smooth unit speed loop
c:[0,1] = M at x of length | < 2diam M with holonomy H, satisfying

[He(v) — v = afz)]v].

There is also a constant e(x) > 0 such that a loop at z has length > 2 diam M +
g(x) unless it is homotopic to a loop at z of length < 2diam M. It follows that
for any point y € M of distance < £/4 to x, the homotopy classes of loops
of length < 2diam M at y are represented by concatenated curves of the form
c;yl * C * Cgy, Where ¢, denotes a fixed minimal geodesic from z to y and c is
a loop at z of length < 2diam M. Since V¥ is flat, parallel translation along
loops only depends on their homotopy classes. It follows that for each point y
sufficiently close to z, there is a loop ¢ of length < 2diam M at y which has the
same non-trivial holonomy as the loop ¢,y * ¢ * c;yl at x. In particular, we can
choose the constants «(z) such that they have uniform positive lower bounds
locally. By the compactness of M, there is a uniform constant o > 0 such that,
for all z € M and v € E,, there is a smooth unit speed loop ¢ : [0,{] — M at x
of length | < 2diam M with holonomy H, satisfying

(1) |He(v) —v| > alvl.
Our first estimate is as follows.

THEOREM 1. Suppose that V¥ is flat and that the holonomy of V¥ satisfies (1).
Then, for each eigenvalue A of A¥,

a
_ 1 >
VX exp (cov/A+ (n— 1)k diam M) > 5 diam M

with a constant ¢y = co(n,\/kD). In particular,

\/XZmin{ ! ¢ . <—COMdiamM—l>}.

co diam M’ 2 diam M P

In the general case, i.e. if V¥ is not necessarily flat, we measure the holonomy
in the following way: For each point x € M and unit vector v € E,, let 3(v) be
the supremum of the ratios |H.(v) — v|/L(c), where the supremum is taken over
all non-constant loops ¢ starting at x, L(c) denotes the length of ¢, and H, the
holonomy along c. Set

(2) f:=inf{B(v) |v e E,|v] = 1}.

Note that by the definition of the constant « in (1), we have § > «/2 diam M.
Our second estimate is as follows.

THEOREM 2. There are positive constants a = a(n) and ¢; = c¢1(n,/kD) such
that, for each eigenvalue \ of A¥,

VA exp (civ/ A+ (n— 1)k +n2r +n2r2/3% diam M) >

e I
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where r s a uniform bound for the pointwise operator norm of RE. In particular,

cpdiam M’ a

VA > min{; éexp (—cl\/(n— 1)k + n?r +n?r?/p2 diam M — 1)}

The constants a, ¢y, and ¢; in Theorems 1 and 2 can be determined explicitly.
Except for the factor 1/a, Theorem 2 implies Theorem 1. On the other hand, the
proof of Theorem 1 is more elementary than the one of Theorem 2 and exposes
the main ideas more clearly. Moreover, the constant cg is better than the constant
c1, that is, ¢y < ¢;.

Our basic analytic and geometric tools are a Sobolev inequality of Gallot [Gal, a
suitable Bochner formula, and Moser iteration . There are quite a few applications
of Moser iteration to geometry, see for example [Li], [Gal, [LR], and [ACGR]. In
the proof of Theorem 1 we only need a standard version of it and refer the
reader to the literature. In the proof of Theorem 2, however, we need a non-
trivial extension of the iteration technique which does not seem to appear in the
literature. We therefore give a complete argument for this more general kind of
iteration.

If part of the holonomy is trivial, then the corresponding space of parallel
sections determines a subbundle E’ of E. The above results then apply to the
orthogonal complement E” of E’ in E. On the other hand, suppose o0 = ) ¢;0;
is a section in E’, where the sections o; are parallel. Then APo = " (A¢;)o,
where A is the Laplace operator on functions of M, and hence the usual eigenvalue
estimates for A as for example in [LY] or [Zh] apply.

Proor orF THEOREM 1

Let M be a closed Riemannian manifold of dimension n and volume V. Denote
by || - ||, the LP-norm with respect to the normalized Riemannian measure of M.
Let —(n— 1)k < 0 be a lower bound for the Ricci curvature of M and D be an
upper bound for the diameter of M. We will use the following Sobolev inequality.

LEMMA 3 (Gallot [Gal]). There is a positive constant ¢ = c(n,/kD) such that,
for all p € [1, =] and all smooth functions f on M,

2c
2—p
Here the function ¢ can be chosen to be equal to

Hf”ff”p <[ fllz + diam M ||df ||z

RV 1 o "
(3) c(n,d) = {c_i/o (56("’1” cosht + — sinht) dt}

with d = \/kD, compare [Ga].

Let V and A be the Levi-Civita connection and the Laplace operator on func-
tions of M, respectively. Let F© — M be a Hermitian vector bundle with a
Hermitian connection V¥. Let A be the associated connection Laplacian.
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Applying a standard version of Moser iteration we obtain the following esti-
mate, using the procedure given for example in [GT, Theorem 8.15] (see also page
215 in [GT]).

LEMMA 4. Let 0 € L*(M, F) be a smooth section. Assume that (pointwise)
(Afo,0) < N?|of?

for some constant A > 0. Let p € (1,2) N [1, -25]. Then

lollee < ¢ loll
with ¢ = exp(c(n,/kD)d"(p)A diam M) and c(n,/kD) as in Lemma 3.

Recall that 3 > a/2diam M and that r = || RF||, = 0 under the assumptions
of Theorem 1. Hence the following result implies Theorem 1.

THEOREM 5. Suppose that VERY = 0. Then, for each eigenvalue \ of AF,
VA exp (cov/A+ (n— 1)k + 2n%r diam M) > 33
with ¢y = ¢o(n, kD).

Proof. Let o be a nonzero section of E with AP = \o. Let x € M and choose
B < (. Then there is a unit speed loop ¢ : [0,]] — M at x, of length [, with
holonomy H, : E, — E, satisfying

|He(o(2)) = o(x)| > B'lo(x)].
Let Fi,...,Fy :[0,]] = E be a parallel orthonormal frame along ¢. Express oo c

as a linear combination of this frame, 0 oc = Y ¢'F;. By the assumption on the
holonomy, we have

Flio(z)| = FUH(0)] < |6(1) — $(0)] < / o] di

l
< / |(VEo)oc|dt <1||VE0| .
0

Since we use the normalized volume element for our norms, this gives
(4) Bllolls < Bllofle < [VF0|o.

On the other hand, V¥o is a one-form with values in F, that is, a section of
the bundle F = AY(T*M) ® E. This bundle inherits a connection, V¥ from
the Levi-Civita connection V of M and the connection V¥ of E. In terms of a
local orthonormal frame Xi,...,X,, of M and a further local vector field Z, the
corresponding Bochner formula is

(5) (A"VF0)(2) =
VH(AFo) = Vi 0 — 2> R¥(X,, Z)VEo - (VK R")(X;, Z)o,
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see e.g. Lemma 3.3.1 of [LR]. In particular, since AP = Ao and VFRF =0,
(6) (AF(VP0),VPo) < (A + (n— 1)k +2n°r)|VEa |,

where we are somewhat generous in the estimate of the curvature term. Now
IVEa|ly = VA||o]|2 since APo = Ao. Applying Lemma 4 with p = (n +1)/n to
the section VEo of F, we obtain the asserted inequality. U

PROOF OF THEOREM 2

We cannot apply the previous argument directly to prove Theorem 2. The
reason is that, in general, the Bochner formula (5) only gives the estimate

(7) (VPo,A"VFo) < (A + (n— 1Dk +n’r)|Via|
= ((VERP) (X, X))o + R¥(X;, X;)VR,0,VE o).

2

Note that we distribute the terms arising from 2y R”(X;, Z)V% o in (5) to both
terms on the right hand side in (7). Now (7) involves ¢ on the right hand side,
hence the standard Moser iteration procedure does not work.

We let f. := /|VEo|?2 + 2. By the Kato inequality and (7), we have the

pointwise estimate

fAf: <Re(VFo, ATVFa) < (A + (n— 1)k +n’r) 2
— > {(VXE®)(X:, X))o + R*(X;, X;)V¥,0, V5 0).

,J
Let kK > 1. Then

ldfEl12 = K*(f27 e, 270 dfz)

k2 2k—1 k2 2k—1
2k < fea f > = 2]{,‘—1<Af€’f€ >2
k2

< g1 (A (= D wn) 113

k2 -
-5 | TR RR G X)), T ) 2
1,J
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where it is understood that we choose, for each point x € M, an orthonormal
frame X, ..., X, with (Vx,Xj)(xz) = 0. Asin [LR], the divergence theorem gives

— [ VR RE X X)), VE o) 2
M4
B / > (RF(Xi, X))o, VR VK o) f2
M=

+2(k - 1) /M fPh=3 Z df.(X;)(R®(Xi, X;)0, VX 0).
27]
Now R(X;, X;) = —R(X}, X;); therefore, with the above choice of frames,

> (RA(X:, X))o VR VE o) = 5 Z|REXZ,X al’.

12

Hence
= [ (TR RECX X)), T o)
M
n?r? 2 £2k—2 _ 2k—2
< o2 f22 4 2k = D | ol f22
M M
_ -1 _
< Tl [ e ol [
M M
But
2k(k k—1 k
<
ol [ g ar

k(k—1)\> _
kQ 2.2 2 2k—2
5 [ 1ate e (=) el [ 5

and ([0l < (V20 / < .o/ . hence
2k 1 2(k—1)%\ n*r? B
418 < gy (A o= Dt (5 250 ) S Y A

2k 2 2k—1

1 2(k—1)2\ n2? B
2 2 2 k—112
<2k (A +(n— Dk +n’r+ (5 T 1>2) 7 [ |

Set L* :=2(A+ (n — 1)k + n*r 4+ nr?/B%). Since k > 1,
lafels < LR35 < LRSI 5
Using Lemma 3 with p = (n 4 2)/(n + 1), we get

1 fellzeg = 1£2ll2g < Ifl5k + CLEI felloo L fo 157
< (1+ CLE)| fellool fell3
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where ¢ :=p/(2—p) = (n+2)/n and C := (2n+2)c(n, v/kD) diam M /n. Letting
e — 0, we obtain

IVP0lakg < (14 CLE) [V o |[1LFV ol "
We iterate this inequality with k = ¢’, 7 € N. Setting p; := 1 — 1/¢", we get

IV E0 gt < (1+C’Lq VIV E | |V E |

2qﬂ

(L+CLg)" P O et |

:Q

1

~.

<.l

<L (1 +cLa) ™ |vZalior=»|w 2],
i=1
where we use, for the latter inequality, that 0 < p; < 1 and that 2? <z if z > 1
and 0 < p < 1. The limit
= sz'
i=1

exists and satisfies 0 < ¢ < 1. Moreover, using the inequality
1+CLg" < (1+CL)¢

we obtain

H (1+ CLqi)l/qi < (14 CL)EZ V. X/ < g (n)eb™CL
=1

with a;(n) = ¢==179" and b(n) = 2%, 1/¢'. We conclude that
IV¥0lloe < az(n) exp (b(n)CL/e(n))[VEo |2
with as(n) = a;(n)/¢™. We also have
IVE0llsy < V50" - [V Fo D/
< [[VEally" " [ E a2,
where we recall that ¢ = (n + 2)/n. Hence finally
IV¥ 0o < a(n) exp ((n+2)b(n)CL/(ne(n)) V5,

with a(n) = ay(n)™ /™. The rest of the argument is as before.
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