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A semiclassical method is suggested for the description of the energy spectrum of a two-dimensional magnetic
Bloch electron in a periodic potential not necessarily smaller than the cyclotron energy. With this method, each
Landau band is described as a spectrum of the appropriate one-dimensional Harper-type operator and repre-
sents a series of minibands, with the near-edge minibands being flat within the exponential accuracy. It is shown
that, irrespective of the potential shape, all these minibands do not contribute to the quantized Hall conductivity.
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In the standard theories of integer quantum Hall
effect, each filled Landau level makes a contribution of
quantum e2/h to the Hall conductivity [1], so that, as the
Fermi level rises, the Hall conductivity monotonically
increases with the e2/h jumps that were discovered
experimentally by K. von Klitzing. In a weak periodic
potential V, each Landau level spreads into a band with
a width no greater than 2max |V |; each band, in turn, is
split into magnetic subbands. If the number of mag-
netic-flux quanta Φ0 = hc/|e | of the magnetic flux Φ
through the unit cell of the periodic potential V is ratio-
nal and can be represented as a noncancelable fraction
Φ/Φ0 = N/M, each of the Landau bands splits into N
subbands [2]. As a result, the “flux–energy” diagram
for the spectrum of Landau periodic operator assumes
a complex fractal structure that was predicted by Azbel
and constructed numerically in the approximation of
Harper equation [3] (Hofstadter’s butterfly). From the
well-known gauge arguments of R. Laughlin, it follows
that each subband has an integer number of conductiv-
ity quanta, which changes in a rather irregular way
upon the transition from one subband to the other and
obeys a certain Diophantine equation [1] (this number
exactly equals the Chern number for the corresponding
vector bundle of the Bloch magnetic functions [4]).
Therefore, in the presence of a periodic potential in the
fields where Φ/Φ0 is on the order of unity, the depen-
dence of Hall conductivity on the Fermi energy
becomes nonmonotonic and, generally, exhibits irregu-
lar jumps, again with the magnitudes being multiples of
e2/h. These jumps have recently been observed by
K. von Klitzing et al. in [5] (in full agreement with the
predictions of theory [1]) in measuring the magnetore-
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sistance of a two-dimensional electron gas in a square
superlattice with a ~100-nm unit cell. It should be noted
that the idea of that experiment was suggested as early
as in [3].

Inasmach as V in [5] was .0.6 meV, the superposi-
tion or partial overlap of the Landau bands did not need
to be taken into account in that work. However, this
effect cannot be neglected for the larger potential V. As
was shown numerically in [6], if V becomes compara-
ble to the cyclotron energy "ωc, the Landau bands over-
lap and are even rearranged upon further increase in V.
It is significant that, after the crossover, the Chern num-
ber for several lower-lying bands is zero; i.e., these
bands do not contribute to the Hall conductivity [6]. A
more detailed numerical analysis of the influence of the
overlap between the Landau bands on the Hall resistiv-
ity was carried out in [7]. It should be taken into
account that the flux–energy diagram for a periodic
Landau operator is different from the ideal self-similar
Hofstadter butterfly [8]. The subband Hall conductivity
is also affected by the form of the potential curve, in
particular, by the presence or absence of the center of
inversion [9].

In this work, we propose a semiclassical approach to
the Landau bands that is independent of the potential
shape and the band overlap. Only two parameters are
assumed to be small: εB = (lM/L)2, where lM is the mag-
netic length and L is the characteristic size of the lattice
period of potential V, and the value of the parameter
εV = εBmax |V |/"ωc. The ratio max |V |/"ωc should not
necessarily be small, so that our approach also applies
to the regime of Landau band rearrangement [6]. In the
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typical situations, the estimates for the parameters εB

and εV are as follows: if B . 10 T then lM . 10 nm; for
the periodical quantum-dot or quantum-antidot arrays,
L . 100–500 nm. Hence, εB ~ 10–3; for the electron
effective mass in GaAs m = 0.067me, one gets "ωc .
15 meV. For this reason, one has εV & εB for V & 15 meV.
Within this approach, we demonstrate that, irrespective
of the form of the potential curve, all minibands lying
at the wings of Landau levels (and not only the lowest
lying subbands) make no contribution to the Hall con-
ductivity. Thus, when describing the influence of the
overlap of Landau bands on the quantization of Hall
conductivity, one should take into account only the
overlap between rather narrow central regions of the
smeared Landau levels.

The Hamiltonian of a Bloch magnetic electron in the
Landau gauge has the form

where the potential V has a lattice with periods and the
basis a1 = (L, 0) and a2. In the dimensionless coordi-

nates X = x/L and potential v  = V/max |V |,  is written

as  = mL2 , where

Here,  = –iεB∂/∂Xj.

The perturbation theory with respect to the small
parameter εV can provide only crude information;
moreover, it requires additional assumptions about the
relationship between εB and εV , because the parameter
εB is small. Nevertheless, the smallness of εB allows the
fine structure of Landau levels to be described semi-
classically.

Since the classical trajectories in the (X1, X2) plane

for the unperturbed Hamiltonian ((P1 + X2)2 + ) are

cyclotron orbits with radii  centered at (y1, y2), one
can pass on to the new canonical variables, namely, to
the generalized momenta I, y1 (or p, y1) and generalized
positions ϕ, y2 (or q, y2), according to the formulas

(ϕ is the orbital angular coordinate). In these variables,
the corresponding classical Hamiltonian H0 is

Ĥ
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After angular averaging of H0, the drift of the center
of the cyclotron orbit is described by the averaged
Hamiltonian

(J0 is the zero-order Bessel function). One can also
show that there is a canonical variable change (p', q', y') =
(p, q, y) + O(εV) such that

but the estimate of the residue  in this formula
does not suffice to describe the H0 fine structure. How-
ever, it was shown in [10], that this procedure can be
iterated up to the canonical change of the variables (P,
Q, Y) = (p, q, y) + O(εV), to bring the H0 Hamiltonian to

the form H0(p, q, y; εV) = *0 (P2 + Q2), Y1, Y2; εV  +

O( ), with the right-hand side periodic in the vari-
able Yj and with a positive constant C.

The quantization of *0 brings about the  opera-
tor, whose semiclassical spectrum coincides with that

of  and  to an accuracy of O((εB + εV)ν) for an

arbitrary ν. Since the operators  = –iεB∂/∂Q and  =

Q commute with  = –iεB∂/∂Y2 and  = Y2,  com-
mutes with the Hamiltonian of harmonic oscillator

(  + ). Therefore, the eigenfunctions Ψ of the

operator  can be sought in the form Ψ(Q, Y2) =
ψn(Q)ϕn(Y2), where ψn are the oscillator functions for
the En = (n + 1/2)εB level (n = 0, 1, 2, …) and ϕn satisfy
the equation

(1)

Here,  are found from the classical Hamiltonian

*n(Y1, Y2) = *0(En, Y1, Y2, εV) by the quantization  =
–iεB∂/∂Y2 (these operators are conventionally called the

Harper-type operators). Since mL2 εB = "ωc, En is
exactly the nth Landau level. Hence, the spectrum of oper-

ator  describes the spreading of the nth Landau level
into band under the action of the periodic potential V.
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Ŷ1 Ŷ2 *̂
0

1
2
--- P̂

2
Q̂

2

*̂
0

*̂nϕn Eϕn.=

*̂n

Ŷ1
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Therefore, each Landau band in our approach is
described by Eq. (1), and the initial spectral problem
reduces to the family of one-dimensional spectral prob-
lems, allowing the problem to be integrated.

Let us now use the analysis of Harper operators

[11]. At the edges of the spectrum of operator , there
are minibands with widths exponentially small in the
parameter εB. The corresponding Bloch magnetic

eigenfunctions of the operator  for the rational flux
Φ/Φ0 are constructed in [10]. Namely, by denoting
Φ/Φ0 = N/M and enlarging the lattice Λ (i.e., going to
the lattice with basis Ma1 and a2 [4]), one has the fol-
lowing semiclassical eigenfunctions in the X coordi-
nates satisfying the magneto-Bloch periodic conditions
with the quasimomentum k:

(2)

where L1 = (1, 0) and L2 = (L21, L22) are the periods of
the normalized potential v  and ψ is a certain localized

function quasimode of the  operator [12]. From
Eq. (2) it directly follows that the vector bundle of the
Bloch magnetic functions for the exponentially narrow
miniband is trivial and, therefore, has the zero Chern
class. According to the standard theory of the Hall
quantum effect [1], this means that the Hall conductiv-
ity for this miniband is zero. Thus, after the Fermi level
crosses the minibands, the quantized Hall conductivity
at the Landau level wings does not change. As to the
minibands in the middle of Landau bands, the corre-
sponding contribution to the Hall conductivity requires
additional calculations, which can conveniently be per-
formed using the Usov formulas [13]. The calculations
of this type depend on the particular form of the poten-
tial V and have been carried out, e.g., in [9]. The sim-
plest examples indicate that the dependence on the
Fermi level is nonmonotonic, in accordance with [1].

In summary, a semiclassical approach is proposed to
reduce the description of the Bloch magnetic electron
spectrum to a series of one-dimensional problems. With
this approach, each Landau band (smeared Landau
level) coincides with the spectrum of some one-dimen-
sional Harper-type operator obtained by the quantiza-
tion of a classical Hamiltonian on the torus for a given
level. At the wings of Landau bands, there are exponen-
tially narrow minibands, and the vector bundle of the
corresponding semiclassical Block magnetic functions
has the zero Chern class. Therefore, these minibands do
not contribute to the quantized Hall conductivity, and
they can be neglected when considering the influence
of overlap of Landau bands on the Hall quantization
pattern. It is significant that the method described in

*̂n

Ĥ
0

Ψ X k,( ) e
2πi k1l1 k2l2–( ) iNl2L21/2–

l1 l2 Z∈,
∑=

× ψ X Ml1L1– l2L2–( )e
iNl2 X1–

,

Ĥ

this work applies when the lattice potential V is compa-
rable to the cyclotron energy; if |V | ! "ωc, our results
agree with [14]. Interestingly, the structure of layering
of the Bloch magnetic functions for the exponentially
narrow (i.e., flat, to the exponentially small field correc-
tions) minibands is the same as for the layering of the
fermion eigenfunctions for a lattice in the presence of a
magnetic field [15].
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