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Abstract
We study a free quantum motion on periodically structured manifolds composed
of elementary two-dimensional ‘cells’ connected either by linear segments or
through points where the two cells touch. The general theory is illustrated
with numerous examples in which the elementary components are spherical
surfaces arranged into chains in a straight or zigzag way, or two-dimensional
square lattice ‘carpets’. We show that the spectra of such systems have an
infinite number of gaps and that the latter dominate the spectrum at high
energies.

PACS numbers: 03.65.Nk, 02.30.Sa, 02.30.Tb, 02.40.St

1. Introduction

The spectral behaviour of periodic systems is of great importance. Having typically a band
structure, such spectra differ by the number and structure of gaps. For usual Schrödinger
operators the number of gaps is generically infinite in the one-dimensional situation and finite
in higher dimensions. Moreover, the gap widths decrease as the energy tends to infinity, the
rate of decay being tied to the regularity of the potential.

In the case of a singular periodic interaction the gaps may not close. A canonical example
is the Kronig–Penney (KP) model, i.e. a chain of δ-potentials where the gaps are asymptotically
constant [AGH]. Even more singular couplings such as generalized point interactions may
exhibit gaps which grow at the same rate as the bands [EGr], or even grow while the band
widths are asymptotically constant. A typical example of such a behaviour is a modification
of the KP model with a chain of the so-called δ′-interactions [AGH]. This behaviour is
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not restricted to one dimension; similar results can be derived, e.g., for lattice graphs with
appropriate boundary conditions coupling the wavefunctions at the vertices [Ex, EGa].

Large gaps have interesting physical consequences. For instance, the corresponding
Wannier–Stark problem in which we add a linear background potential to a periodic chain
of δ′-interactions has counterintuitive properties: the absolutely continuous spectrum of the
corresponding Hamiltonian is empty [AEL], and in fact, the spectrum is known to be the
pure point for ‘most values’ of the potential slope [ADE]. These results can be explained by
observing that tilted gaps represent classically forbidden regions and that their large widths
prevent the particle from propagating over long distances.

On the other hand, the physical meaning of the δ′-coupling remained unclear for a
long time. Recently it has been demonstrated that this interaction can be approximated in
the norm resolvent sense by a family of Schrödinger operators (see [ENZ] where also a
bibliography to the problem is given) but previous studies brought some interesting non-
potential approximations. An interesting example is given by a ‘bubble scattering’ in which
two halflines are attached to the surface of a sphere (see [Ki] and also [ETV, Br]). Such a
system typically exhibits numerous resonances but the background transmission probability
dominates and vanishes at the limit of large energies. This observation is of importance
because systems of a mixed dimensionality are not just a mathematicians toy, but they can
model real objects such as a fullerene molecule coupled to a pair of nanotubes [Ka].5

The aim of this paper is to study systems with components of different dimensions in the
periodic setting. We intend to demonstrate that the structure of the configuration space in this
case is reflected in the gap behaviour. After describing a general method for coupling periodic
systems of spheres, either joining them by line segments or directly through points where
they touch, we will discuss a number of examples in sections 3–5. The results, summarized
in proposition 5.1, show that in all the cases considered the number of gaps is infinite and
the gap-to-band width ratio increases with the band index. The estimated growth is slower
than in the case of the δ′-interaction, and it is slower for a two-dimensional lattice than for a
linear chain, but it is still powerlike for spheres joined by linear segments, thus confirming our
conjecture that the effect is related to the change in dimensionality the particle must undergo.
Even for a tighter coupling, however, where the spheres are coupled directly through contact
points, the gap-to-band ratio is still logarithmically increasing.

2. General theory

2.1. Building blocks of the Hamiltonian

Suppose that X0 is a two-dimensional Riemann manifold. We denote by H0 a Schrödinger
operator,

H0 = |g|−1/2(−i∂j − Aj)|g|1/2gjk(−i∂k − Ak) + V

on L2(X0, |g|1/2 dx) with smooth vector and scalar potentials. The formalism we are going
to describe extends easily to the case dim X0 = 3 but we will limit ourselves here to referring
to [BG2] for the guidelines concerning such a generalization. The metric structure of X0 is
fixed and we will employ the shorthand notation L2(X0) for simplicity in the following. Let
further Xj, j = 1, . . . , n, be a finite or semi-infinite line segment which can be identified
with the interval [0, dj ), 0 < dj � ∞. No external potentials are supposed to act on the
particle on Xj , i.e. we consider the free operators Hj = −d2/dx2 on L2(Xj) with Neumann’s

5 Another model for such systems could be that of manifolds connected smoothly by thin tubes. The existence of
gaps in this setting was demonstrated recently by Post [Po].
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condition at the endpoints (the ‘right’ endpoint x = dj requires a boundary condition if
dj < ∞ which is the situation considered in this paper) as the building blocks of the system
Hamiltonian.

As mentioned above, we consider systems with configuration space consisting of infinite
number of copies of a manifold which are connected either by isolated points common for the
pair of neighbouring copies, or by line segments connecting such points. We will concentrate
on the latter case which is more complicated. The former one can be regarded as the limiting
situation where the length of the connecting segments tends to zero, and the corresponding
modification of the formalism is easy.

A building block of our model is thus a ‘hedgehog manifold’ obtained by attaching each
segment Xj to X0 at a point qj ∈ X0, or more exactly, by identifying the point 0 ∈ Xj with
qj ∈ X0; we suppose that all the connection points qj are mutually different. The topological
space constructed in this way will be denoted as X̂; it can be endowed with a natural measure
which restricts to the Riemannian measure on X0 and to the Lebesgue measure on each
Xj, j = 1, . . . , n. This yields the identification

L2(X̂) = L2(X0) ⊕ L2(X1) ⊕ · · · ⊕ L2(Xn)

for the Hilbert state space of the system.
We denote by S0 the restriction of the operator H0 defined above to the family of functions

{f ∈ D(H0) : f (q1) = · · · = f (qn) = 0}
which—on view of a standard Sobolev embedding—makes sense as long as dim X0 � 3.
In a similar way we use the symbol Sj , j = 1, . . . , n, for the restriction of Hj to the set
{f ∈ D(Hj ) : f (0) = 0}. The Schrödinger operators we consider are by definition self-
adjoint extensions of the symmetric operator S = S0 ⊕ S1 ⊕ · · · ⊕ Sn; their construction is a
standard matter discussed in numerous papers6. The most efficient way to describe them is
based on a bijective correspondence with the Lagrangian planes in G × G, where G = C

2n. To
describe it, we introduce the boundary-value operators

�1, �2 : D(S∗) → G

by

�1(f ) := (a(f0, q1), . . . , a(f0, qn),−f ′
1(0), . . . ,−f ′

n(0))
(2.1)

�2(f ) := (b(f0, q1), . . . , b(f0, qn), f1(0), . . . , fn(0)).

Here a(f0, qj ) =: aj (f0) and b(f0, qj ) =: bj (f0) are the leading-term coefficients of the
asymptotics of f0 in the vicinity of the point qj as determined in [BG1, BG2], or the generalized
boundary values 2π(dim X0 − 1)L0 and L1, respectively, in the terminology of [EŠ1, EŠ2].
Recall that a(f0, qj ) is the coefficient at the logarithmic singularity and b(f0, qj ) is the limit
as q → qj of the remaining part.

Let � be a Lagrangian plane in G × G, i.e. �⊥ = � with respect to the skew-Hermitian
product [x|y] := 〈x1|y2〉 − 〈x2|y1〉 in G × G. Then any restriction of the adjoint operator S∗

to a family of functions from D(S∗) specified by the boundary condition (�1f, �2f ) ∈ � is a
self-adjoint operator which we denote by H�. Recall that a Lagrangian plane is, in general,
the graph of a self-adjoint operator L : G → G so that the above boundary condition can be
rewritten as �2f = L(�1f ). To avoid problems with the invertibility of L one can view �

6 Coupling of two manifolds through a point appeared in [EŠ1, EŠ3]. Earlier a general idea of coupling two quantum
systems using self-adjoint extensions was presented in [Pa1], the same author also made pioneering steps in using
Lagrangian planes (see [Pa2] for more information). Likewise he demonstrated the usefulness of Krein’s formula,
which was first mentioned in the point-interaction context in [BF], in this situation.
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also as the graph of a ‘multivalued’ operator in G, in other words, one may describe it through
a relation Lx = My, (x, y) ∈ G × G, where L,M : G → G are linear operators satisfying the
conditions [KS]:

(i) LM∗ = ML∗,
(ii) rank(L,−M) = n.

2.2. The resolvent

We are concerned with the spectral properties of the said self-adjoint extensions, which are
as usual defined from the resolvent. The latter is expressed here by Krein’s formula [AGH,
appendix A]: if we denote by H 0 the decoupled operator H0 ⊕ H1 ⊕ · · · ⊕ Hn, then we have

(H� − z)−1 = (H 0 − z)−1 − γ (z)[Q(z) − �]−1γ ∗(z) (2.2)

for any z in the resolvent set, in particular for z /∈ C \ R, where the operator γ (z) : G → H is
given by the formula

γ (z) := (�1 � Nz)
−1 Nz = Ker(S∗ − z)

and Q(z) : G → G is defined as

Q(z) := �2γ (z).

Then the inverse [Q(z) − �]−1 exists for all non-real z. To find an explicit expression for the
Green function of the operator H� from (2.2) we need to know the Green function G0 of H 0.

Note first that it is easy to find the Green function Gj of Hj : one has

Gj(x, x ′; z) = cosh[−√−z(dj − |x − x ′|)] + cosh[−√−z(dj − (x + x ′)]
2
√−z sinh[−√−zdj ]

. (2.3)

Using the natural decomposition G = C
2n = C

n × C
n we write the matrix representation of

the operator [Q(z) − �]−1 in block form,

[Q(z) − �]−1 =
[
T (z) W(z)

U(z) V (z)

]
. (2.4)

SinceH = H0 ⊕H1 ⊕· · ·⊕Hn, the Green function of the operator H� can be represented
as a matrix of integral kernels of operators acting from Hk to Hj ,

G�(x, x ′; z) = (
G�

jk(xj , x
′
k; z)

)
0�j,k�n

with xj ∈ Xj x ′
k ∈ Xk. (2.5)

Let (ξ1, . . . , ξn, η1, . . . , ηn) ∈ G = Cn × Cn, then a direct calculation yields

γ (z)(ξ1, . . . , ξn, η1, . . . , ηn) =

 n∑

j=1

G0(·, qj ; z)ξj ,G1(·, 0; z)η1, . . . ,Gn(·, 0; z)ηn


 .

This implies the adjoint operator action,

γ ∗(z̄)(f0, f1, . . . , fn) = (ξ1, . . . , ξn, η1, . . . , ηn)

where

ξj =
∫

X0

G0(qj , x; z)f0(x)|g(x)|1/2 dx ηj =
∫

Xj

Gj (0, x; z)fj(x) dx.

The matrix Q(z) then has the block-diagonal form

Q(z) =
[
Q11(z) 0

0 Q22(z)

]
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where Q11(z) coincides with the Q-matrix Q0 for the pair (S0,H0). Recall that the Q-function
in the Krein formula always corresponds to a pair of self-adjoint operators and fixed symmetric
restriction. In the present case it has the form

Q
jk

0 (z) = Gren
0 (qj , qk; z) (2.6)

where Gren
0 is the renormalized Green’s function obtained from G0 by subtracting the diagonal

singularity,

Gren
0 (x0, x

′
0; z) =

{
G0(x0, x

′
0; z) if x0 �= x ′

0

lim
y0→x0

[
G0(x0, y0; z) + 1

2π
ln ρ(x0, y0)

]
if x0 = x ′

0.

Here ρ(x0, y0) denotes the geodesic distance on X0. On the other hand, the matrix Q22(z) is
diagonal,

Q22
jk(z) = δjkGj(0, 0; z).

Using the above formulae we can write the matrix element kernels in (2.5) more explicitly,

Gjk(xj , x
′
k; z) = δjkGj (xj , x

′
j ; z) − Kjk(xj , x

′
k; z)

where

K00(x0, x
′
0; z) =

n∑
j,k=1

tjk(z)G0(x0, qj ; z)G0(qk, x
′
0; z)

K0k(x0, x
′
k; z) = Gk(0, x ′

k; z)

n∑
j=1

wjk(z)G0(x0, qj ; z) k > 0

Kj0(xj , x
′
0; z) = Gj(xj , 0, ; z)

n∑
k=1

ujk(z)G0(qk, x
′
0; z) j > 0

Kjk(xj , x
′
k; z) = vjk(z)Gj(xj , 0, ; z)Gk(0, x ′

k; z) j, k > 0

the coefficients referring to the block representation (2.4), (tjk(z)) = T (z), etc, can be in
principle computed explicitly.

2.3. Coupling hedgehog manifolds

In the next step we glue together the building blocks considered so far. To begin with,
we consider such a manifold X̂ and select some number of finite segments of lengths
d1, . . . , ds, 1 � s � n. At the same time, we fix a finite number of distinct points
p1, . . . , pm ∈ X0 such that {p1, . . . , pn} ∩ {q1, . . . , qn} = ∅. We fix a Hamiltonian H�

on X̂ and consider its restriction S̃ to the set of functions

{f ∈ D(H�) : f (p1) = · · · = f (pm) = f (d1) = · · · = f (ds) = 0}.
Let us find the Q-matrix of the pair (S̃,H�) which is an (m + s) × (m + s) matrix Q̃(z) with
block structure,

Q̃(z) =
[
Q̃11(z) Q̃12(z)

Q̃21(z) Q̃22(z)

]
.

Using the formula for the Green function of H� we can write the elements of the above
matrix as
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Q̃
11
jk(z) = δjkG

ren
0 (pj , pj ; z) + (1 − δjk)G0(pj , pk; z) − K00(pj , pk; z) 1 � j, k � m

Q̃
12
jk(z) = −K0k(pj , dk; z) 1 � j � m 1 � k � s

(2.7)
Q̃

21
jk(z) = −Kj0(dj , pk; z) 1 � j � s 1 � k � m

Q̃
22
jk(z) = δjkGj(dj , dj ; z) − Kjk(dj , dk; z) 1 � j, k � s.

Recall that Gren
0 denotes the renormalized Green’s function; we drop of course the superscript

whenever the two arguments are different.
The coupling will be realized through conditions relating the generalized boundary

values. We will not strive for utmost generality, however, because the formulae encompassing
manifolds with arbitrary n,m would be rather cumbersome. We will instead discuss in some
detail the properties of a quantum particle living on chained manifolds of different dimensions,
i.e. the case m = n = 1; later on we will extend the argument to a particular situation with
m = n = 2.

Consider, therefore, a manifold X0 on which a pair of mutually different points p, q are
selected. At q, a segment of length d is attached, while p is a ‘socket’ to which another ‘tailed’
manifold can be coupled. In analogy with (2.6) we introduce the matrix

Q0(z) =
[
Gren

0 (q, q; z) G0(p, q; z)

G0(q, p; z) Gren
0 (p, p; z)

]
(2.8)

and similarly, the segment will be characterized by

Q1(z) =
[
G1(0, 0; z) G1(0, d; z)

G1(d, 0; z) G1(d, d; z)

]
. (2.9)

Using (2.3) we find

Q
jk

1 (z) = δjk√−z
coth(

√−zd) +
1 − δjk√−z sinh(

√−zd)

or

Q
jk

1 (z) = δjk

k
cot(kd) +

1 − δjk

k sin(kd)
(2.10)

in the usual momentum notation, k := i
√−z for z ∈ C \ R+.

The operator H� on X̂ is specified by the boundary conditions at the point q identified
with the left endpoint of the segment, 0 ∈ [0, d). In general, these conditions can be given in
the form

b(f0, q) = αf ′
1(0) + βa(f0, q)

(2.11)
f1(0) = γf ′

1(0) − ᾱa(f0, q)

with β, γ ∈ R and α ∈ C; we suppose α �= 0 such that the manifold X0 and the segment are
coupled in a nontrivial way. For the sake of simplicity we will restrict ourselves to the case
where β = γ = 0, i.e.

b(f0, q) = αf ′
1(0) f1(0) = −ᾱa(f0, q). (2.12)

This can be regarded as a ‘minimal’ coupling between the two configuration-space components,
because in the ‘switched-off state’, α = 0, the manifold Hamiltonian contains no point
interaction at the point q and the segment part satisfies the Dirichlet condition at x1 = 0. Note,
however, that there are other natural choices such as

α =
√

2ρ

π
β = −π(1 + ln

√
ρ) γ = 2ρ
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which describe the particle passing through the junction at a low energy if the segment models
a thin tube of radius ρ (cf [EŠ2]).

The boundary condition (2.12) can be cast into the form given in section 2.1 if we choose
M as the 2 × 2 unit matrix and

L :=
[

0 α

ᾱ 0

]
. (2.13)

The Q-matrix entering Krein’s formula for the operator H� can be expressed in terms of
matrices (2.8) and (2.9) as

Q(z) =
[
Q11

0 0
0 Q11

1

]
. (2.14)

From (2.13) and (2.14) we find

[Q(z) − �]−1 = 1

Q11
0 (z)Q11

1 (z) − |α|2
[
Q11

1 (z) −α

−ᾱ Q11
0 (z)

]
and therefore

G�
00(x0, x

′
0; z) = G0(x0, x

′
0; z) − Q11

1 (z)

Q11
0 (z)Q11

1 (z) − |α|2 G0(x0, q; z)G0(q, x ′
0; z)

G�
01(x0, x

′
1; z) = α

Q11
0 (z)Q11

1 (z) − |α|2 G0(x0, q; z)G1(0, x ′
1; z)

G�
10(x1, x

′
0; z) = ᾱ

Q11
0 (z)Q11

1 (z) − |α|2 G1(x1, 0; z)G0(q, x ′
0; z)

G�
11(x1, x

′
1; z) = G1(x1, x

′
1; z) − Q11

0 (z)

Q11
0 (z)Q11

1 (z) − |α|2 G1(x1, 0; z)G1(0, x ′
1; z).

Thus we can calculate the matrix elements (2.7) (the indices j, k are trivial in the present
example and we will drop them):

Q̃
11

(z) = Q̃
22
0 (z) − Q11

1 (z)Q12
0 (z)Q21

0 (z)

Q11
0 (z)Q11

1 (z) − |α|2

Q̃
12

(z) = αQ12
1 (z)Q21

0 (z)

Q11
0 (z)Q11

1 (z) − |α|2

Q̃
21

(z) = ᾱQ12
0 (z)Q21

1 (z)

Q11
0 (z)Q11

1 (z) − |α|2

Q̃
22

(z) = Q̃
22
1 (z) − Q11

0 (z)Q12
1 (z)Q21

1 (z)

Q11
0 (z)Q11

1 (z) − |α|2 .

(2.15)

These formulae can be made even more explicit by plugging in (2.10).

2.4. Point-coupled manifolds

In the same way one can treat the limiting situation when the lengths of the connecting
segment shrink to zero. Then only the boundary conditions have to be modified. Consider the
simplest case when X0 and X1 are coupled by identifying the points pj ∈ Xj , j = 0, 1. The
generalized boundary values (2.1) are then replaced by

�1(f0, f1) := (a(f0, p0), a(f1, p1)) �2(f0, f1) := (b(f0, p0), b(f1, p1)).
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Such a coupling was first discussed in [EŠ3] in the situation where X0 and X1 are two planes.
The four-parameter set of all possible self-adjoint extensions was described there and the result
adapts easily to more general manifolds. For the sake of simplicity, however, we will again
restrict our attention to the ‘minimal’ coupling given by the conditions

b(f0, p0) = αa(f1, p1) b(f1, p1) = ᾱa(f0, p0) (2.16)

with a complex parameter α, decoupled manifolds corresponding to α = 0.

3. Infinite necklaces

3.1. General periodic case

As an illustration of how to couple ‘hedgehog’ manifolds, we now analyse the simplest
nontrivial case, i.e. when the building blocks discussed above are chained into an infinite
‘necklace’. To define the Hamiltonian we have to specify the boundary conditions coupling
the outer endpoint of the segment of the first building block, starting at q, to the point p of the
second one. The boundary-value operators �̃1 and �̃2 for the operator S̃ are of the form

�1(f0, f1) := (a(f0, p), f ′
1(d)) �2(f0, f1) := (b(f0, p), f1(d)).

Note the positive sign of f ′
1(d) in comparison with (2.1) which reflects the orientation of the

segment [0, d].
Consider now a countable family of identical copies of the manifold X̂, i.e. X̂M = X̂ for

all m ∈ Z and set Ẑ := ⋃
m∈Z

X̂m. The state Hilbert space of this necklace is

L2(Ẑ) =
∞⊕

m=−∞
L2(X̂m).

Schrödinger operators on the necklace will be identified with self-adjoint extensions of the
symmetric operator Ŝ := ⊕

m∈Z
S̃m, where S̃m := S̃ for any m ∈ Z. Obviously, the boundary-

value space of Ŝ is of the form

Ĝ =
∞⊕

m=−∞
G̃m with G̃m = C

2 for all m

and

�̂j =
∞⊕

m=−∞
�̃j

m with �̃j
m = �̃j for all m and j = 1, 2.

Of course, the operator Ŝ has infinite deficiency indices, and therefore plenty of self-adjoint
extensions. We restrict our attention to those which are local in the sense that exactly the point
d of X̂m is coupled to the point p of X̂m+1. Moreover, we will consider the situation when
the coupling d to p and q to 0 is minimal in the sense described above. Consequently, for an
element g = {gm} ∈ Ĝ with gm = (f0,m, f1,m) we impose boundary conditions analogous to
(2.12):

b(f0,m, p) = αf ′
1,m−1(0) f1,m(0) = −ᾱa(f0,m+1, p)

which can be written concisely as

�̂2g = L�̂1g (3.1)

where L is an operator in Ĝ given by a matrix L = (Lmn)m,n∈Z, where Lmn = 0 if |m − n| �= 1
and

Lm,m+1 =
[

0 α

0 0

]
Lm+1,m =

[
0 0
ᾱ 0

]
.
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We then infer that the self-adjoint operator HL specified by the boundary conditions (3.1) has
the following resolvent:

(ĤL − z)−1 = (Ĥ 0 − z)−1 − γ̂ (z)[Q̂(z) − L]−1γ̂ ∗(z)

where Q̂(z) = {δmnQ̃(z)}. In this way, the dispersion relation for ĤL can be obtained by
introducing the quasimomentum θ ∈ [0, 2π) and performing the Fourier transformation of
the operator Q̂(z) − L. Thus the result is an operator in the space L2((0, 2π)) ⊗ G with the
kernel

P(θ, z) :=
∞∑

m=−∞
(Q̂m0(z) − Lm0) eimθ = Q̃(z) −

[
0 α eiθ

ᾱ e−iθ 0

]
.

The dispersion relation is of the form det P(θ, z) = 0, or

det

∣∣∣∣ Q̃11(z) Q̃12(z) − α eiθ

Q̃21(z) − ᾱ e−iθ Q̃22(z)

∣∣∣∣ = 0

which is equivalent to

det Q̃(z) − (Q̃12(z)ᾱ e−iθ + Q̃21(z)α eiθ ) − |α|2 = 0. (3.2)

As in similar situations, we have isospectrality with respect to the coupling-constant phase:
put ϕ = arg α, i.e. α = |α| eiϕ , then the last condition can be written as

det Q̃(z) − |α|(Q̃12(z) e−i(θ+ϕ) + Q̃21(z) ei(θ+ϕ)) − |α|2 = 0

which shows that without loss of generality we may restrict ourselves to the case α � 0;
this we shall assume in the following. Using the fact that Q̃

∗
21(z) = Q̃12(z) holds for real z,

condition (3.2) can be rewritten as

det Q̃(z) − |α|2 = 2α(Re Q̃12(z) cos θ + Im Q̃12(z) sin θ). (3.3)

Hence a necessary condition for z ∈ spec(Ĥ ) is

|det Q̃(z) − |α|2|
2α|Q̃12(z)|

� 1. (3.4)

If Q̃12(z) = Q̃21(z), which is true in particular if H 0 is a real operator (i.e. commutes with the
complex conjugation), relation (3.3) simplifies to

cos θ = det Q̃(z) − |α|2
2αQ̃12(z)

(3.5)

and condition (3.4) becomes necessary and sufficient. If H 0 is real, condition (3.5) can be
made more explicit: using (2.15) and the fact that Q11

j = Q22
j holds for j = 1, 2, we find after

a short computation

cos θ = det Q0(z) det Q1(z) − 2α2Q11
0 (z)Q11

1 (z) + α4

2α2Q12
0 (z)Q12

1 (z)
.

Furthermore, using (2.10) we get

cos θ = det Q0(k
2) sin(kd) − 2α2k cos(kd)Q11

0 (k2) − α4k2 sin(kd)

2α2kQ12
0 (k2)

. (3.6)
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Figure 1. A loose straight necklace. Figure 2. A loose zigzag necklace.

3.2. Spherical beads

Since our aim is to present solvable examples, we study next the situation when the elementary
building-block manifold X0 is a two-dimensional sphere S2 of a fixed radius a > 0. We
parametrize it by spherical coordinates,

x = a cos ϑ cos ϕ y = a cos ϑ sin ϕ z = a sin ϑ

with ϑ ∈ [−π/2, π/2], ϕ ∈ [0, 2π). We will assume that there are no external fields, so the
starting operator for construction of the Hamiltonian is the Laplace–Beltrami operator �LB on
S2. Its Green’s function is an integral operator with the kernel

G0(x, y; z) = − 1

4 cos(πt)
P− 1

2 +t

(
−cos

(
ρ(x, y)

a

))
(3.7)

where Pλ is the Legendre function, ρ(x, y) is the geodetic distance on the sphere, and

t ≡ t (z) := 1
2

√
1 + 4a2z.

This allows us to express the renormalized Green’s function, i.e. we find

Q
jj

0 (z) = − 1

2π

[
ψ

(
1

2
+ t

)
− π

2
tan(πt) − ln 2a + CE

]
(3.8)

(see e.g. [BE, table 3.9.2]), where CE is Euler’s number and ψ the digamma function. We
use again the conventional notation z = k2 for the energy parameter; if there is no danger of
misunderstanding we will often suppress the dependence of various quantities on k.

3.3. Loose necklaces

We shall next consider two particular segment-connected periodic chains.

Example I. Suppose that the connecting segments are attached at antipodal points as sketched
in figure 1 so that the geodesic distance of the junctions is πa. We will denote the
segment connecting the spheres S

2
n and S

2
n+1 as In, with the endpoints 0(n) ≡ p

(n)
1 ∈ S

2
n

and d(n) ≡ p
(n+1)
3 ∈ S2

n+1. The lower-index numeration is somewhat arbitrary and
serves just to having a common notation for the present configuration and that considered
below.

Example II. Alternatively, assume that the junction points are chosen on one pole and on the
equator point, as sketched in figure 2, such that their geodesic distance is πa/2. The segment
In now connects the points 0(n) ≡ p

(n)
1 ∈ S2

n and d(n) ≡ p
(n+1)
2 ∈ S2

n+1.
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Figure 3. A tight straight necklace. Figure 4. A tight zigzag necklace.

While the diagonal part (3.8) of the matrix Q0 does not depend on the way we arrange the
spheres, the off-diagonal parts differ and now become

Q
i,i±1
0 = − 1

8
√

π

�
(

1
4 + t

2

)
�

(
3
4 + t

2

) 1

cos π
(

1
4 + t

2

) (3.9)

Q
i,i±2
0 = Q21

0 (k2) = − 1

4 cos(πt)
(3.10)

for the zigzag and straight case, respectively, with the notation we have adopted. In the same
way, the dispersion relation (3.6) becomes

Q11
0 Q11

0 − Q
1j

0 Q
1j

0 − 2α2k cot(kd)Q11
0 − 2α2k

Q
1j

0

sin(kd)
cos θ − α4k2 = 0 (3.11)

with j = 2, 3 in examples II and I, respectively. Let us remark that the condition with j = 2 is
valid whenever all the Q12

0 are the same. Hence the spectrum does not change when we rotate
an arbitrary semi-infinite part of the chain around the axis given by the appropriate connecting
segment, such that, geometrically speaking, the zigzag chain need not be periodic.

3.4. Tight necklaces

In a similar way, one can treat periodic sphere chains which are connected through points
where they touch (i.e. shrinking the line segments to zero), with the boundary conditions
(3.1) replaced by (2.16) at each junction. We shall consider again two particular situations
analogous to the periodic chains discussed above.

Example III. Suppose that the junctions are situated at antipodal points as sketched in
figure 3, being obtained by identifying the points p

(n)
1 ∈ S2

n and p
(n+1)
3 ∈ S2

n+1.

Example IV. The tight zigzag chain in figure 4 is obtained by identifying the points p
(n)
1 ∈ S

2
n

and p
(n+1)
2 ∈ S2

n+1.

The dispersion relation now reads

Q11
0 Q11

0 − Q
1j

0 Q
1j

0 − 2αQ
1j

0 cos θ + α2 = 0 (3.12)

with j = 2, 3 corresponding to examples IV and III, respectively.
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Figure 5. A loose square bead carpet.

4. Square bead carpets

So far we have considered only ‘manifolds’ with a linear structure. Having in mind the essential
differences between the spectra of periodic Schrödinger operators in different dimensions to
detect, it is also useful to look at systems which are periodic in more than one direction;
we will do this again by first analysing simple examples. This time we arrange our spherical
‘beads’ into a square lattice, coupling them either by line segments or directly through touching
points.

Example V. Suppose that the connecting segments are attached at four equally spaced points
at the sphere equator as sketched in figure 5, where the labelling of the junctions and segments
is indicated. With the notation introduced in figure 5 the boundary conditions defining the
Hamiltonian read

b
(
f

(n,m)

0 , p
(n,m)

1

) = −α
(
f

(n+ 1
2 ,m)

1

)′(
0(n+ 1

2 ,m)
)

f
(n+ 1

2 ,m)

1

(
0(n+ 1

2 ,m)
) = ᾱa

(
f

(n,m)
0 , p

(n,m)
1

)
b
(
f

(n,m)

0 , p
(n,m)

3

) = −α
(
f

(n− 1
2 ,m)

1

)′(
d(n− 1

2 ,m)
)

f
(n− 1

2 ,m)

1

(
d(n− 1

2 ,m)
) = ᾱa

(
f

(n,m)
0 , p

(n,m)
3

)
b
(
f

(n,m)
0 , p

(n,m)
2

) = −α
(
f

(n,m+ 1
2 )

1

)′(
0(n,m+ 1

2 )
)

f
(n,m+ 1

2 )

1

(
0(n,m+ 1

2 )
) = ᾱa

(
f

(n,m)

0 , p
(n,m)

2

)
b
(
f

(n,m)

0 , p
(n,m)

4

) = −α
(
f

(n,m− 1
2 )

1

)′(
0(n,m− 1

2 )
)

f
(n,m− 1

2 )

1

(
0(n,m− 1

2 )
) = ᾱa

(
f

(n,m)
0 , p

(n,m)
4

)
.
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Figure 6. A tight square bead carpet.

The dispersion relation is derived as in the previous section, but it becomes rather cumbersome.
It is useful to introduce the following notation:

� := 1

k2

(
Q12

0 Q12
0 − Q11

0 Q11
0

)
+

2α2

k sin(kd)

(
Q11

0 cos(kd) + Q12
0

)
+ α4

aj := Q
1,j+1
0 � +

(
Q

1,j+1
0

k2
− (−1)j

α2

k sin(kd)

)(
Q12

0 Q12
0 + Q13

0 Q13
0

)

+ 2Q12
0 Q13

0

(
Q

1,2−j

0

k2
+ (−1)j

α2

k sin(kd)

)
j = 0, 1

b0 := 1

k2 sin2(kd)

[
Q11

0 Q11
0 − Q12

0 Q12
0

k sin(kd)
cos(kd) + α2Q11

0

]
− � cos(kd)

k sin(kd)

b1 := 1

k2 sin2(kd)

[
Q11

0 Q11
0 − Q12

0 Q12
0

k sin(kd)
− α2Q11

0

]

cj := α

k sin(kd)

[
α2Q

1,4−j

0 +
Q

1,4−j

0 Q11
0 cos(kd)

k sin(kd)

− Q
1,j+1
0 Q11

0 + Q
1,4−j

0 Q12
0 cos(kd)

k sin(kd)

]
j = 1, 2.

Using this notation, we can write the spectral condition as(
a2

0 − a2
1

)(
b2

0 − b2
1

)
+

(
c2

1 − c2
2

)2 − 2[(c1 + c2)
2(a0b0 + a1b1) − 2c1c2(a0 + a1)(b0 + b1)]

+ 2α�
[(

a0b0 + a1b1 − c2
1

)
c1 + (a0b1 + a1b0 − c1c2)c2

]
(cos θ1 + cos θ2)

+ 2α2�2 [(
c2

1 − c2
2

)
cos(θ1 + θ2) +

(
c2

1 − a1b1
)

cos(θ1 − θ2) + c2
1 − a0b0

]
− 2α3�3c1(cos θ1 + cos θ2) + α4�4 = 0 (4.1)

where θ1, θ2 are the quasimomentum components.

Example VI. This arises from example V by shrinking the connecting segments to zero, as
indicated in figure 6 where the labelling of the junctions is the same as in the previous example.
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After a straightforward calculation we find that the spectral condition now takes the form(
Q11

0 Q11
0 − Q13

0 Q13
0

)2 − 4Q12
0 Q12

0

(
Q11

0 − Q13
0

)2
+ 2α

[
Q13

0 Q13
0 Q13

0

− Q11
0 Q11

0 Q13
0 + 2Q11

0 Q12
0 Q12

0 − 2Q12
0 Q12

0 Q13
0

]
(cos θ1 + cos θ2)

+ 2α2 [
Q13

0 Q13
0 − Q11

0 Q11
0 + 2

(
Q13

0 Q13
0 − Q12

0 Q12
0

)]
cos θ1 cos θ2

− 2α3Q13
0 (cos θ1 + cos θ2) + α4 = 0. (4.2)

5. Gap dominance at large energies

As customary in periodic systems the spectrum of the operators described above (which we
denote by HI, . . . , HVI according to the example number) has band structure. To see how the
gap width and the band width are related at high energies, consider first the points

k′
n := πn

d
k′′

n :=
√

n(n+1)

a
n = 1, 2, . . . (5.1)

for which sin(dk′
n) = cos(πt ((k′′

n)
2)) = cos π

(
1
4 + 1

2 t ((k′′
2n)

2)
) = 0, such that the functions

Q
ij

0 and Q
ij

1 have poles. Thus it is natural to look for spectral bands in the vicinity of these
points. We fix ε > 0 and denote by J ′

n = [k′
n − δ′

n, k
′
n + δ̃′

n] the maximal closed neighbourhood
of the point k′

n in which the inequality

|sin(kd)| � k−ε

is satisfied; in the same way the intervals J ′
n = [k′′

n −δ′′
n, k

′′
n + δ̃′′

n] and J ′′′
n = [k′′

2n −δ′′′
n , k′′

2n + δ̃′′′
n ]

correspond to the inequalities

|cos(πt (k2))| � k−ε and

∣∣∣∣cos π

(
1

4
+

t (k2)

2

)∣∣∣∣ � k−ε (5.2)

respectively. It is clear that all the δ′
n, . . . , δ̃

′′′
n are strictly positive, and it is not difficult to

check that

δ′
n, δ̃

′
n ∼ d−1(k′

n)
−ε δ′′

n, δ̃
′′
n ∼ 2(πa)−1(k′′

n)
−ε δ′′′

n , δ̃′′′
n ∼ 4(πa)−1(k′′

2n)
−ε

as n → ∞. Our aim is to show that for a sufficiently high energy the spectral gaps contain
the complement of the above intervals. More specifically, define

�K := [K,∞)
∖ ∞⋃

n=1

(J ′
n ∪ J ′′

n ∪ J ′′′
n )

for a fixed K > 0. In this set, we have (sin(kd))−1 = O(kε) as k → ∞, and similarly

Q11
0 = O(kε) Q12

0 = O(kε−1) Q13
0 = O(kε)

where the first relation was derived using the asymptotic relation

�
(

1
4 + t

2

)
�

(
3
4 + t

2

) = 2

t
(1 + O(t−2))

which follows from the Stirling formula. These relations show that the left-hand side of (3.11)
behaves in �K as

−α4k2 + O(k1+2ε)

for k → ∞, and therefore it diverges uniformly in θ as long as 0 < ε < 1
2 . Consequently,

there is K > 0 such that

spec HI ∩ �K = spec HII ∩ �K = ∅.



Large gaps in point-coupled periodic systems of manifolds 4889

Let us pass to relation (4.1). Note first that � → α4 as k → ∞ in �K . Furthermore, for
0 < ε < 1

2 we have

a0 = O(kε) a1 = O(k2ε−1) bj = O(kε−1) c1 = O(k2ε−1) c2 = O(k4ε−1).

Consequently for ε < 1
4 , the left-hand side of the spectral condition tends to α8 �= 0 uniformly

in θ1, θ2, which implies

spec(HV) ∩ �K = ∅
for K large enough.

The tight necklaces and carpets exhibit a different behaviour. Now we replace the intervals
J ′′

n , J ′′′
n defined by (5.2) by Ĵ ′′

n = [k′′
n − η′′

n, k
′′
n + η̃′′

n] and Ĵ ′′′
n = [k′′

2n − η′′′
n , k′′

2n + η̃′′′
n ] (where all

η are strictly positive) given in a similar way by

|cos(πt (k2))| � (ln k)−ε and

∣∣∣∣cos π

(
1

4
+

t (k2)

2

)∣∣∣∣ � (ln k)−ε . (5.3)

It is straightforward to check that

η′′
n, η̃

′′
n ∼ 2(πa)−1(ln k′′

n)
−ε η′′′

n , η̃′′′
n ∼ 4(πa)−1(ln k′′

2n)
−ε .

Consider the set �̂K := [K,∞) \ ⋃∞
n=1(Ĵ

′′
n ∪ Ĵ

′′′
n ) with a fixed K > 1. If k → ∞ in this set,

the following estimates hold:

Q11
0 = A ln k + O((ln k)ε) Q12

0 = O(k−1(ln k)ε) Q13
0 = O((ln k)ε)

with A �= 0. These relations show that the left-hand side of (3.12) diverges for ε < 1 as
(ln k)2, uniformly in θ as k → ∞ within �̂K . By the same token, the left-hand side of (4.2)
diverges for ε < 1 as (ln k)4, uniformly in θ1, θ2. We infer that there is a K > 1 such that

spec HIII ∩ �̂K = spec HIV ∩ �̂K = spec HVI ∩ �̂K = ∅.

Now it is easy to estimate the band and gap widths. The points E′
n = (k′

n)
2 and E′′

n = (k′′
n)

2

around which the bands concentrate are asymptotically like c′n2 and c′′n2, respectively, by
(5.1). The widths of the excluded intervals behave, in the case of a loose connection, as

|J ′
n|, |J ′′

n |, |J ′′′
n | ∼ const n1−ε .

Hence the total length Bn of the bands contained in the union of the intervals J ′
m, J ′′

m and
J ′′′

m , where m � n, is of order Bn � const n2−ε , and the total length Ln of the adjacent gaps
is Ln � const(n2 − n2−ε) ≈ const n2. In the case of a tight connection the band length is
estimated instead by Bn � const n2(ln n)−ε which still gives the gap length increasing as
const n2. We sum up our discussion with the following result:

Proposition 5.1. For loosely connected necklaces and carpets the band-to-gap ratio satisfies
the bound

Bn

Ln

� const n−ε

as n → ∞, with a positive ε < 1
2 in examples I and II, and ε < 1

4 in example V. On the other
hand, for the tightly connected necklaces and carpets in examples III, IV and VI, we have

Bn

Ln

� const (ln n)−ε

as n → ∞, with any positive ε < 1.
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