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Hofstadter-type spectral diagrams for the Bloch 'electron in three dimensions
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r “Flux-energy and angle-energy diagrams for an exact three-dimensional Hamiltonian of the Bloch electron in-

" a uniform magnetic field are analyzed. The dependence of the structure of the diagrams on the direction of the
field, the ;geometry of the Bravais lattice, and the number of atoms in an elementary cell is considered.
Numerlcal evidence is given to show that the angle-energy diagram may have a fractal structure even in the |
case of a"cublc lattice. It is shown that neglecting coupling of Landau bands changes considerably the shape of : |
the dlaarams The Hall conductivity corresponding to the lowest Landau band is briefly discussed.
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The spectral properties of an  electron in a two-
dimensional (2D) periodic structiire.with. the Bravais lattice
A in the presence of a uniform magnetic field B are-deter-
mined by commensurability or noncommensurability of two
geometric parameters: the area S of an elementary cell of A
and the square of the magnetic length 2 w=h/po (here u is

the mass of the electron and o is the cyclotron frequency) If

Siml? 4 1s a rational number, then the electron energy.spec-
* trum has band structure, otherwise the spectrumis
set. As a result, the flux-energy diagram for the specirum has

a remarkable recursive structure predlcted by Azbe]l*and.nu-
mencally discovered by Hofstadter in the framework ‘of the ~.
tight-binding approx1mat10n The essential point in the ap+
pearance of such a structure is the size quantization of thes:
electron motion along the field direction; hence it seems®

‘ hkely that in 3D periodic systems, the fractal structure of the
" flux-energy diagram must dlsappear Surprisingly, it was

shown recently in a series of papers® that a fractal structure is -
visible in the diagram depicting the dependence of the spec- -

trum on the angle between the field B (with fixed strength B)
and a fixed vector in A, if A is an anisotropic rectangular
lattice. Moreover, a series of energy gaps as in Hofstadter’s
butterfly arise in the isotropic case unless B points in high-
symmetry crystallographic directions.*

The tight-binding approximation method used in Refs.
1,3,4 is based on a series of considerable simplifications of
the initial periodic Landau operator, which imposes severe
limitations of the method. In particular, the models consid-
ered in Refs. 3 and 4 give no way to take into account the
~ effects of the interaction between Landau levels, which have
profound effects on the shape of flux-energy diagrams and on
the accompanying integer quantum Hall conduct1v1ty Even
without the consideration of the Landau band coupling, the

flux-energy diagrams obtained for the periodic Landau op--

_ erator differ considerably from those for the tight-binding
model.® In this paper, we get rid of the restrictions imposed
by the tight-binding approximation method and analyze the

angle-energy and the flux-energy diagrams for the 3D Lan- '

dau operator perturbed by periodic potentials of various ge-
ometries. To deal with an explicitly solvable model, we con-
- sider periodic perturbations represented as sums of short-
range potentials; in the zero-range limit we get an explicit
expression for the dispersion relations, which is very useful
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for the numerical analysis. Such potentials were already used
in the context of spectral problems for a 3D magneto-Bloch
electron # In the 2D case, the flux-energy ‘diagrams for Zero-
range potentials were considered in Ref. 9.

The Hamiltonian H being studied is the sum H= H,
+V, where

1 2
Hy= 2IUJ(P——A(I')) o ey

is the Landau operator with the vector potential A(r)=
Xr/2, and V is the potential of a crystal lattice ' with the

 Bravais lattice A. Let K be the set of all nodes of I" lying in
.an,elementary cell of A, then V is represented in the form

vin=3 3 Vae-n. 0

{(r). is the confinement potential of the node
Kk which supposed to be short range. More precisely,
we choosé Vn=c WV(r—K), where W(r)~0 outside a
small sphere.ofradius R centered at zero, [ W(r) dr=1, and
the coupling coristant ¢, is of order R. At the zero-range
limit, R—>O,‘the po;ent‘ial V . is chdracterized by one param-
eter only, namely,:by. the scattering length p,, which is re-
lated to the binding eriergy: of the ground state for V, by

= —RH2up2. 10 Morgovetiat this limit the Green func-
t10n G of H, G(r,v";E)=(xi{E—H)~ Hy! ), has the follow-
ing- explicit expression s* of the Green function
Go(r.r’ \E) of Hy. 10 —

G(r,x;E)=Gy(r,x";E)— 24
o owY' el

X[ (E)]yy Gol ¥

Here Q~I(E) is the matrix inverse to the infinife. matrix
Q(E) with elements =

M

-\,
7Y

27rﬁ2p.y

+(1-8,,)GnYE), @

Qy,'y’(E): Gaen(,y’ Y;E)_
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where G" denotes the renormalization of the unperturbed
Green functlon Gy: '

p o exp[—imbh(rxXr')]
2mh? r—1’

G{f“(r,r’ 3E)=Go(x,x";E)—

3

with b= Be/27rﬁ-c (note that ¢o=2w#c/e is the magnetic
“flux quantun‘r

of Gy is well known'"1?

ex b(r><r’) (r—r)”
2Py | 41y

exp[ v2(g;— E)/ﬁw]r I/VIM]

Ly(x}/23).
I=o
i ©)
Here rj is the pI‘O_]eCthIl of r on the dlrectlon of the field B,
r, =r—r), Ly(x) denotes the Ith Laguerre polynormal and

g,=hw(l+1/2). Therefore, for all r

Gren(r rE): ) ,U, g l l_i
O gaag2y P\2°2 fe)’

where ((s,v) is the Hurwitz ¢ function.'

It is clear that at least for E <7 w/2 the energy E belongs

to the. spectrum of H if the matrix Q(EY is not invertible.
Using the irreducible representations of the magnetic trans-
lation group (MTG) for H,'* the problem to invert the infinite
matrix Q(E) may be reduced to a problem of finite-
dimensional algebra. This reduction requires the so-called

“ratjonality condition:” the field B is said to be rational with
respect to.the lattice A, if for a basis a;, a,, a; of A, the
numbers b(a;Xa,) are rational.'* In this case a basis a; (j
=1,2,3) can be chosen in such a way that »=b(a;Xa,)

. >0 and b(a, X a;)=h(a; Xa;)=0. Let =N/M, where N'

and M are coprime positive integers. Then all the irreducible
representations of the MTG which are trivial on the center of
the group are M dimensional and are parametrized by a 3D

torus T.* It is convenient to choose coordinates of a point p- .

from T such that 0<<p; <M ™!, 0<p,,p;<1. Then we can

form the following (M K)X (M K) matrix 0, where K is the
number of nodes in K:

Qq,q’(psE) .
=exp[ — mim'b(x' Xa,)]

X X exp(—mi[2N-p+ N (MAy+m)])

A Ag Ag=—c0 »
X Q[Alal+()\2M+m_)az+K,m,a2+ K’,)\3a3 ;E]
Xexp(mi[ha;+ (M +m)ay](bX k). 7)

re b is the density of the magnetlc -
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Here g denotes the pair (m,x) with keK, m=0,...,M
—1. Now the dispersion relation for H reads -

det O(p,E)=0. . ®

Equation (8) has for fixed p infinitely many solutions v

E(p) (dispersion laws), which are continuous with respect
to p; each eigenvalue E (p) is M-fold degenerate. By defi-
nition, the magnetic miniband J; is the set of all values of
E(p). The minibands J; lying below % w/2 form a piece of
the spectrum of H which may be attributed to broadening the

 ground state of Hy; therefore, this piece is nothing but the

lowest Landau band. According to Egs. (7) and (8), this band

.consists of KM magnetic minibands which can overlap. If

the overlapping is absent, then the lowest Landau band ap-
proaches a Cantor set as M tends to infinity.

Using Egs. (7) and (8) we analyze numerically the struc-
ture of the lowest Landau band for various types of crystal
lattices and ranges of the field B employing two ways to
force M to tend to infinity: (1) we change the value of B
keeping the direction of B fixed; (2) we change the direction
of B keeping the value of B fixed. The-lattice constant a
=77.5 nm is chosen relevant to the geometric parameters for

the 3D regimented quantum dot superlattice considered re- .

cently in Ref. 15. As to the scattering length, we put p
~1 nm, this corresponds to the binding energy E
~30 meV.

The flux-energy diagrams for the simple-cubic lattice un-

=2.5 nm). If the magnetic field is directed along an edge of

f,the CllblC elementary cell, then all subbands overlap and the v

ﬁ_eld w;th respect to the lattrce decreases, then the number of
open gaps increases and has tendency to infinite magnifica-
tion [Flgs 1(b) and 1(c)] in full agreement with Ref, 4. Fig-
ure 2 shows:the angle-energy diagrams. for the lattice with
the same’ geometnc parameters and p=1.1 nm (in Figs. 2~4
[bla’=1; for a=7.5 nm this corresponds to the field
strength ~70 T)i “If the vector B is rotated inside a face of a
cubic elementary cell; ‘then the gaps, in general, overlap and
the diagram reveals no fractal structure [Fig. 2(a)]. On the
other hand, if the rotation-plane forms a dihedral angle ¢
=arctan(3/4) with the plane of the face, then the fractal
structure of the diagram is clearly visible [Fig. 2(b)]. There-
fore, the condition of amsotropy3 is not necessary for the
appearance of a fractal structure in:the, angle—energy diagram.
This can be understood taking the limit B—ce in the matrix
Q. Equation (4) shows that in this limit Q approximates the
matrix of the tight-binding Hamiltopian:from Ref. 3 with
energy-depending coefficients ¢;, and this dependence leads
to an anisotropy of the limiting matrix Wlthout any anisot-
ropy of the crystal lattice. ;

If in the representation (5) we. restrict ourselves,,only to
the first term, then this projection of the Green function on
the lowest Landau level models the system with6iit interac-

‘tion between Landau levels. The corresponding diagram is

given in Fig. 2(c). -
To compare our results to those from Ref. 3 we consider

the angle-energy diagrams for the tetragonal monoatomic lat- A
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FIG. 1. The lowest Landau band of the simple-cubic lattice plot-
ted against the magnetic flux for various directions of B: (a) B
=(0,0,3); (b) B=(3B,0,£B); (c) B=(3}B,%B,3B). Here and
below Eq=%% ua®.

tice with py=2.5 nm (Fig. 3). If the vector B is rotated in a
face of an rectangular elementary cell, then we see a typical
1D-like energy spectrum in full agreement with Ref. 3. It is
interesting that the chemical anisotropy radically transforms
the shape of the angle-energy diagram. To show this, we

consider a tetragonal double-atomic lattice with two sorts of

atoms in. an elementary cell with scattering lengths p;
=2.5 nm and p,=0.6 nm (Fig. 4). If B is rotated in a face of
_ anisotropy, then the angle-energy diagram looks like de-
A formed Hofstadter’s butterfly. Since in this case K=2, there
is a doubling of minibands that causes the appearance of a
wide gap in the diagram (“‘atomic” gap). On the other hand,
“if B rotates in the plane perpendicular to the anisotropy axis,
only the atomic gap appears in the diagram. (Figure 4(a)
arises from Fig. 2(a) by the doubling of all bands).

As a conclusion, we have derived a dispersion relation for
a 3D Bloch electron in a uniform magnetic field [Egs. (7)
~and (8)] and analyzed the corresponding flux-energy and
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FIG. 2.-The quést Landau band of the simple-cubic lattice plot;
ted, against the tilting angle @ for various tilting orientations of B:
(a) B=B(sin’6,0,cos 6);(b,c) B=B(%sin §,3sin f,cos 6), in panel
(c) coupling between Landau levels is neglected.

angle-energy dlagrams For amsotroplc rectangular crystals -

3 and 4 concerning the struc-
we show that the anisot-
earance of a multitude of
ergy diagrams. Ne-
0 a substantial de-

ture of these diagrams. M
ropy is not necessary for the:
gaps both in flux-energy and @n
glecting coupling of Landau bands lea
formation of angle-energy diagram..Chemical anisotropy of
the considered crystal (the presence of:distinct sorts of atoms
in an elementary cell of the Bravais lattice leads to another
deformation of the diagram, in particular,:{o the appearance
of an additional wide gap. ;

Let us discuss briefly. the Hall conductanc ajk B 4
=x,y,Z, j#k. According to the Kohmoto- Hilperin-Wu
formula,'® at the Fermi energy E, lying in a gap, 0x(Ep)
equals (up to the factor —e*/h) to the corresponding Chern
number of the magneto-Bloch vector bundle associated with

" Ep. These numbers can be found with the help of Eqs. (7
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FIG. 3. The lowest Landau band of the tetragonal monoatomic
lattice [with lattice constants (a/2,a,a)] plotted against the:tilting
angle 6 for various tilting orientations of <B: ({a) B
=B(sin 6,0,cos 6); (b) B=B(0,sin f,cos 6). :

and (8). We mention here only the following strict result: ""'hevf'

Hall conductance o (Er) corresponding to the entirel

filled lowest Landau band vanishes [but for the subbands |
o, (Ep) are, in generical, nonzero integers]. In 2D case, such .

a phenomenon was observed in Ref. 17.
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FIG. 4. The lowest Landau band of the. tetragonal double-atomic
lattice [with lattice constants (2a,a,a)] plotted against the tilting

angle # for various tilting orientations of B: (a) B
= B(0,sin f,cos §); (b) B=B(sin 6,0,cos 6).
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