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The spectral properties of the quantum mechanical system consisting of a quantum
dot with a short-range attractive impurity inside the dot are studied in the zero-
range limit. The Green function of the system is obtained in an explicit form. In the
case of a spherically symmetric quantum dot, the dependence of the spectrum on
the impurity position and strength of the impurity potential is analyzed in detail.
The recovering of the confinement potential of the dot from the spectroscopy data
is proven; the consequences of the hidden symmetry breaking by the impurity are
considered. The effect of the positional disorder is analyzed20®4 American
Institute of Physics.[DOI: 10.1063/1.1647693

I. INTRODUCTION

Quantum dotgi.e., nanostructures with charge carriers confinement in all spatial directions
have an atom-like energy spectrum and, therefore, make possible to fabricate quantum devices
with energy level spacing much greater than the temperature smédriagwork temperaturd
(see, e.g., Ref.)1Moreover, dimension and shape of a quantum dot affect considerably the most
important characteristics of the corresponding devices: Relaxation and recombination time, Auger
recombination coefficient etc, thus a possibility arises to control such characteristics in manufac-
turing the deviced-% Another way to control the properties of a quantum dot is instilling an
impurity into the dot. Therefore, the investigation of spectral properties of a quantum dot with
impurities as well as the dependence of the spectrum on the geometric parameters of the dot and
physical characteristics of the impurity is an important problem of nano- and mesoscopic physics
(see, e.g., in Refs. 5-7, and references ther&ime case of a hydrogen-like impurity is one of the
most extensively studied up to now; however, the spectral problem in this case has no exact
solution. On the other hand, short-range impurities can be investigated in the framework of the
point potential theoryalso called the zero-range potential theoAn important peculiarity of the
point potential method is that the spectral problem for a point perturbed Hamiltonian is explicitly
soluble as soon as the Green function for the unperturbed operator is known in an expliéfform.

For modeling the geometric confinement of a quantum dot, quadiatiather words, para-
bolic) potentials are successfully us@dsee also examples of applications in Refs. 5-7, 11-15
The reason is that the self-consistent solution to the corresponding system of the Poisson and
Schralinger equations leads to the confinement potential having the form of a truncated parabolic

potential*® Moreover, the Green function of the corresponding Hamiltomidn
2 2
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can be explicitly calculatdd° (here () is the frequency of the oscillatoy, denotes over the
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paper the mass of the considered charged partitlds makes possible to perform an exhaustive
spectral analysis of the perturbationfé? by a point potential of arbitrary positiocmnand strength

a [we denote this perturbation By,(q)] and to analyze the behavior of the eigenvaluesl gfq)
as functions ofg and .. This analysis is the main goal of the paper. Note that a quite particular
case of the point perturbation 6f° at =0 (without obtaining any explicit form for the Green
function) has been considered in Ref. 20. Point potential for modeling an impurity in a spherically
symmetric quantum dot has been studied in the series of papers using the Green function repre-
sentation by means of the Laplace transform of the propagator kernel, but this approach allows to
analyze(with numerical methodsthe lowest impurity level onl§:13-1°

It should be noted that point perturbations of the one-dimensional harmonic oscillators have
been studied in detail earlier. This study was started in Ref. 21, where the spectral properties of the
point perturbed harmonic oscillator have been considered in the context of the one-dimensional
models for the toponium physics and the Bose—Einstein condengatostrict mathematical
justification of results from Ref. 21 was done in Refs. 23 and 24; see also in Ref. 25. Undoubtedly,
our approach using the three-dimensional harmonic oscillator is more adequate for the analyzing
the spectral properties of three-dimensional systems, in particular, the toponium. It should be
noted also that the one-dimensional harmonic oscillator perturbed by a point potential with vary-
ing position and strength has been investigated in Refs. 26 and 27. A series of phenomena of
low-dimensional condensed matter physics can be analyzed by means of the Hamiltonian of the
perturbed oscillator: Impurity in a one-dimensional quantum well, one-dimensional channel in a
two-dimensional heterostructure subjected to a perpendicular uniform magnetic field etc., see the
bibliography in the cited papers for details. However, the analysis given in Refs. 26, and 27 is
based on the properties of one-dimensional second-order differential operators and is not extended
to the three-dimensional case.

The paper is organized as follows. Preliminary results are collected in Sec. Il. In Sec. Il we
consider point perturbations of the operator

2

H°=——ﬁ A+V 2
> : )
o

with an infinitely growing potentiaV. It turns out that the operatdt ,(q) can be defined and
investigated for the more generic case withis defined by Eq(2). In Sec. IV some important
properties oﬂ3|a(q) are established. In particular, a complete description of the spectrum and

eigenfunctions ofd (q) is given in Theorem 1. As a consequence of this theorem we get the
falling of the considered particle on the attractive center as the potential strengiius to— ;

for a very particular case of the one-dimensional harmonic oscillator perturbed at the potential
minimum this phenomenon was observed in Ref. 21. In Sec. V we define atdigefamily of
continuous functions such that the values of these functions at the gdonim the complete
family of the eigenvalues d%a(q). Some elementary properties of these functions are established
in Theorem 2. The main results of the paper are contained in Sec. VI, where the point perturba-
tions of the Hamiltonian of the harmonic oscillator are studied; the case of the isotropic harmonic
oscillator (1) is considered in detail. These results are based on an explicit form of the Green
function for the operatofl). The detailed analysis of the dependence of the point levels on the
positiong and on the strength is given in Theorem 3. In particular, if# 0, then the point levels
never coincide with the eigenvalues of the unperturbed opeﬂﬂoﬂ'herefore, we have here no
accidental degeneracy of the levels, which is a peculiarity of the one-dimensional model for the
toponium??® Hence, this degeneracy is an artifact of the one-dimensional model. Another inter-
esting result is the asymptotic expression for the bound stdte, () [Eqs.(33), and(34)]. These
equations show that at least for the isotropic harmonic oscillator its poténéialthe frequency

) can be recovered from the dependence of the ground state of the point perturbation on the
support of the perturbation. Moreover, we argue that the form of the parabolic po¥mial/ be
recovered from the behavior of the excited energy for the ground state. Our conjecture is that this
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property is true for a more general form of the potentialln this connection it is of interest to

note that the study of the excited energy is one of the main problems of the quantum dot physics.
The methods of Sec. VI allow us to analyze rigorously the phenomenon of so-called “positional
disorder” in quantum dotéincluding nonisotropic ongsThe relation of the degeneracy properties

of the eigenvalues dfl ,(q) atq=0 to the symmetry properties of the unperturbed opeitafbin

the phase space is briefly discussed in the conclusion of Sec. VI. In particular, the appearance of
states with nonzero dipole momentum is noted.

II. PRELIMINARIES

Here we present for the convenience of readers some basic properties of point perturbations of
Schralinger operators in.2(R%) (see, e.g., Refs. 8, 28—31 for detail$ve will consider only

Schralinger operatori?-l0 of the form(2), where the potentiaV is subordinated to the conditions

(PD) VelLP (R3) for some p>3;
(P2 V_=min(V,0) e L2(R®)+L*(R3).

Conditions (P1), (P2 are weaker than commonly used in applications conditidhs
eLi(R® andV=c with ce R but making use ofP1), (P2 requires no change in proving of
main results below. It is well known that under these conditidifiss semibounded from below
and essentially self-adjoint o5 (R®) (see in Ref. 32 Theorem X.28Further we put, as a rule,
#=1, u=1/2 and denote the obtained operatoA +V by H®. For the domairD(H®) of H® we
haveCg (k%) CD(H®) C C(IR%). This inclusion implies that the Green functi@?(x,y;¢) for H°
(the integral kernel of the resolveR{(?)=(H%—¢) 1) is a Carleman operator, this means that

fRS |GO(x,y;0)|?dy < +o for a.e. xe R3. ©)

Moreover, according to Theorem B.7.2 from Ref. 31, for every fied € C\spec H°), the
function G° obeys the following properties:

(G1) For every fespec(H) the function G(x,y;{) is continuous in the domaifi(x,y) e R®
X R3:x#y};

(G2 |G°(xy; D)l <ca(Q)|x—y| %

(G3) if |x—y|=d>0, then|G(x,y;{)|<cs(d,,{)exp(jx—y|) for somes>0. Moreover, if
Rel <3 = infspecH?), then arbitrary 6 with §%/2<3 — Re{ is suitable for this estimate

From (G1) we get, in particular, that3) is valid for everyx e R®.
The crucial role in the point potential theory is played by the regularized Green function

1
G?eg(x,y;§)=G°(x,y;§)—EW. 4
In the particular cases, e.g.\ffe C*(IR%), it is known that at fixed’ this function has a continu-
ous extension on the whole spag&x R3 (see, e.g., Ref. 33 or Theorem I11.5.1 in Ref.)3wWe
need this property in the general situation and prove it under conditfihis(P2).

It is sufficient to prove thaG?eg(x,y;g) is continuous with respect tx,y) for some{=E,
<0. Indeed, then for everye C\spec H°)

0 ¢4 0 0
G (xy;{)= KG (x,¥;\) dAN+GO(x,Y;Ep) ,
Eo

where the path of integration lies in the resolvent sétspecH®. The function
(aG%aN)(x,y;\) is jointly continuous with respect ttx,y) since it coincides with the integral
kernel of H°—\) 2 and this kernel is continuous according to Theorem B.7.1 from Ref. 31.
It is easy to see thaf can be represented in the fotvh=V;+W, whereV; e C*(R%) and
obeys the propertyP? andWe LP(R®)NLY(R%). DenoteH'=—A+V;, 3,;=infspec H') and
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by G! the Green function oH!. Fix Ey, Eq<min(,2%), and introduce the functioR(x,y,2)
=G9%x,z,Eq)W(2)G(zy;E,). Using propertiesG2), (G3), and the estimate

d
| o<wai, )

where 0<v<3, r>0, a, xeR?, it is easy to prove thaE(x,y,-)eLY(R®) for all x,yeR3. In
virtue of the Lippmann—Schwinger relation

GO(x,y;Eo) =GX(x,y;Eo) + f , GO(x,z,Eq)W(2)G(z,y;E,) dz,
R

and the continuity of the regularized Green function o, it remains to prove that the function

I(x,y)= ‘HSF(x,y,z) dz

is continuous oriR®*x R3. Moreover,(G1) shows that it remains to prove the continuity loft
points of the form ¥,,Xg). To do this fixe>0 and find »>0 such that the relationisc— X
<7, |y=Xo|<#m imply [I(X,y)—1(Xg,Xo)|<e. Introduce the setsBi(7)=1{z |z—Xq|< 7},
B,(7)=R3B;(7), and for a measurable sBtC R® denotel g(x,y) =[5 F(X,y,2) dz. Then

|I(va) -1 (XO 1y0)|$ | I Bl(n)(xvy)l + | I Bl(n)(XO 1y0)| + | I Bz(n)(xiy) =1 Bz(n)(XO 1y0)| .
If X,y,ze B1(7), then by(G2)
F(xy.2)|<f(2) [x=y| Hz-y| ",

where f e LP, therefore relation5) and the Cauchy—Schwartz inequality lead to the estimate
18, (XY +118,(5)(X0,Yo) [ < constr. On the other hand, i,y e B1(7/2), ze By(7), then we
have from(G3): |F(X,y,2)|<g(z)exp(-45|z|), where 6>0 andgeLP. Thus by(G1) and the
Lebesgue majorization theorerlrbz(,,)(x,y) is a continuous function oB4(7/2)XB1(#%/2), and

the proof of continuity ofG?eg is completed.

Let ge R3, then the restriction oH® to the domain{f e D(H®) : f(q)=0! is a closed sym-
metric operatorS with the deficiency indice$1,1). By definition, thepoint perturbation of H,
supported omy is a self-adjoint extension @& different fromHP°. All the point perturbations aff°
supported on a givege R® form a one-parameter famiM ,(q), a € R, of self-adjoin operators
such that the Green functida, of H,(q) is given by the formula

G.(%Y;0)=Go%x,y; ) —[Q(La)— ] *G%x,0;0)G%q,y; ), (6)

which is a consequence of the Krein resolvent formula. Kg& q) = G?eg(q,q; {) is the so-called
Krein Q-function. The operatad® corresponds formally ta=o; moreoverH? is the Friedrichs
extension ofS.

The extension parameterhas an important physical meaning, namély, can be treated as
the HamiltonianH® perturbed by a zero-range potential, in this cases the strength of this
potential®3%3¢n place of the strengtla, it is more convenient to use for applications so-called
“scattering length"{¢s, €s=1/(4ma) (see in Refs. 8, 35, and 36 aghiiVore precisely,

M

te= 2ahla’

and we see thatg has actually the dimension of the length.
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Note that according to the general results of the Krein self-adjoint extension theory, the
function {—Q(¢;q) is analytic in the domaifi\specH?) for eachqe R® anddQ(E;q)/JE>0 if
E e R\specH?).®” Remark thatQ(¢;q) can be continuously extended to some points of
specH?). Further we assume th@(Z;q) is continuously extended to all regular points.

It is easy to prove that for evenye R® the mappingZ—G°(-,q;¢) is an analytic function
from the domainC\spec H°) to the Hilbert spacé?(R3). DenoteG’(-,q;{) by gq(¢), then we
can rewrite(6) in an operator form

Ro(O)=RAO~[Q(&a) — ]l Hgq())(9q(I @)

whereR,(§)=(H,—¢) * andR%({)=(H°-¢) "

Note, thatgy(¢) is a nonzero function for everge R® and { e C\spec H°). Indeed, other-
wise we havep(q) =0 for everyp e D(H?) that contradicts the inclusio@; (R®) C D(H?).

In conclusion we mention a possibility to approximate the zero-range perturbation by poten-
tials with decreasing support. Fer=0 the corresponding procedure is described in RéTHeo-
rem 1.2.5. We sketch here the proof fét° with potentialV having propertiesP1), (P2).

Let We Lgomp(Re’), in particular,W is a Rollnik function(see in Ref. 32, Sec. X)2Denote
v=|W|¥2, u=v sign(V), and let\(¢) be a real-analytic function in a neighborhood of zero such
that \(0)=1. Fore>0 consider the operatdi®=H?(q)=H%+&e 2\ (g)W(e 1(x—q)). Then
the resolvenR®({)=(H*—¢) ! (¢>0) has the form

R*({)=R%({)—eN(s)A[1+B°]'C?,

where A®, B®, C® are integral operators with the kernefs(x,y;¢)=G°(x,ey+q;0)v(y),
C*(x,Y;0)=G%ex+a,y; )u(x), B(x,y;{)=e\(e)G%(ex+0a,ey+0q;)u(x)v(y). Define A°
and C° putting e=0 in the formulas above, and defirg® by the integral kerneB(x,y)
=(47|y—x|) " tu(x)v(y). All the operatorsA®, B¢ andC® (£=0) belong to the Hilbert—Schmidt
class andA®—A° B°—B° C*—C° with respect to the Hilbert—Schmidt norm as- +0.
Moreover, using4) we can prove that with respect to this norm

B*=B%+&(\'(0)B+Q(¢;a)|u)(v])+0(e) .

Hence, the arguments using for the proof of Theorem 1.2.5 from Ref. 8 give the following result.
Theorem A:

(1) Let(v|¢)=0 for all L 2-solutionse of the equation By=— ¢ (in particular, let — 1 be not an
eigenvalue of B). Then H(q)—H? in the norm-resolvent sense as- +0;

(2) let —1 be a simple eigenvalue of’Band ¢ be a corresponding eigenfunction normalized by
the condition{d| @)= — 1, whereg = ¢ sign(V). If (v|@)#0, thenlim,_ , (H?(q) =H(q) in
the norm-resolvent sense, where=—\'(0)|(v|¢)| ~2;

(3) let —1 be a multiple eigenvalue of Bwith eigenfunctionse;,...,¢, normalized by the
conditions(@;| ¢y = — 6k (@;= ¢ sign(V)). If (v|e;)#0 for some j and\’(0)#0, then
lim,_,  oH®(q)=H,(q) in the norm-resolvent sense, where

-1
a=—\'(0)

> (vlepl?
j=1

I1l. POINT PERTURBATION IN THE CASE OF UNBOUNDED POTENTIAL V
Starting with this section we suppose additionally that
(P limy, .. V(r)=+c°.

In this caseR’(¢) is a compact operator for afle C\specH?) (the Strichartz theorem; see, e.g.,
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in Ref. 38, Theorem XII1.68 Therefore, spe¢{®) consists of an unbounded sequengg<\ ,
<---<\,<--- of eigenvalues with finite multiplicitk,,. ConsequenthyQ(Z;q) is a meromorphic
function of {. We are going to find the poles of this function.

Denote byL, the eigenspace associated wkh, and choose ir,, an orthonormal basis
Foi(r), k=1,...k,. For everyge R® we denote

o(q)={\,espe¢H?:3felL, st f(q)#0}

Lemma 1: The set of all poles of the functior Q(Z;q) coincides witha(q).
Proof: Since @G%a{)(x,y;{) is the integral kernel for the operatoH{—¢) 2, we have
according to the Mercer theorem

) krI

J -
a—ge°<x,y;§>=2 > (=0 2k ()Fniy)
n=0 k

=1

where the series converges locally uniformly Bfix R3x (C\specH?)). Therefore,

Kn

Q<z;q>=n§0 > (A=) Fai(@l?, (8)

k=1

d
aL

and the series converges locally uniformly aingpecH?)) X R3. The lemma follows from8)
immediately. |

Lemma 2: For eachye R3 the seto(q) is infinite. If V is bounded from below, thex,
e a(q).

Proof: Consider the space of continuous functioBéR®) with the topology of compact
convergence. Due to the closed graph theorem and the rel@et?) C C(R®), the operator
RO(—1): L2(R®) —C(R®) is continuous. Therefore, for evefy: D(H°) the Fourier expansion for
f with respect to the basis=( ), x converges locally uniformly. Assume that the s«fg) is
finite; let N=maxn: \,ea(q)} and P be the orthogonal projection df?(R%) on the subspace
M=Lgy+...4+Ly. Then for everype D(H® the conditionse(q)=0 and P¢)(q)=0 are
equivalent. SincéM is finite dimensional, there ise M such that for every e M the conditions
@(q)=0 and(h| ¢)=0 are also equivalent. Using the inclusi@j (R®)CD(H°) we see that
there is a functionhe L2(R®) such that for everyp e C5(R®) the conditionse(g)=0 and
(h| ¢)=0 are equivalent. Obviously, this is impossible, hende) is infinite. If V is bounded
from below, then by Theorem XII1.48 from Ref. 38 the eigenfunctionsiBfcorresponding to the
ground state\, have no zeros thereforg e o(q). |

Another property of the functiod—Q(¢;q) we need further follows.

Lemma 3: The function (Z;q) tends to—» as{— —=, {eR.

Proof: SinceH? is the Friedrichs extension & the statement follows from Proposition 4 of
Ref. 39. |

IV. SPECTRAL PROPERTIES OF H, AT FIXED POSITION OF THE POINT
PERTURBATION

Here we describe the spectrumdf,(q) for a fixedqe R3. Further, if it does not lead to a
misunderstanding, we omif from the notations.

SinceH,, is a rank one perturbation d°, the spectrum oH,, is discrete. Moreover, an
eigenvalue\, of HO of the multiplicity k, is an eigenvalue ofl, of the multiplicity k,— 1, k,, or
k,+1 [if k,=1, the first case means, of course, thatdoes not belong to sped(,)]. For
\ & specH?) we see fron(7) that) is an eigenvalue dfl, if and only if =X\ is a solution to the
equation

Q({;q)—a=0. 9
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Denote by €,)n<n=(£,(0))nc~ the strictly increasing sequence of all the poles)4t;q).
Since @Q/JE)(E:q)>0 for E e R\specH?), Eq. (9) has exactly one solution on each interval
(—%,80),(g0,81),... . Denote such solutions, which do not belong to spE3( by &,&;,. ..,
where&y<&;<---. The following theorem completely describes the eigenvalues and the eigen-
functions ofH ,(q).

Theorem 1: Letqe R® be fixed. The spectrum of J+H (q) is discrete and consists of four
nonintersecting parter,,0,,03,0, described as follows

(1) o is the set of all solutionss, to the Eq. (9), which do not belong wpecH?®). The
multiplicity of &, in the spectrum of Plis equal to 1

(2) o, is the set of all\,e o(q) that are multiple eigenvalues of % The multiplicity of the
eigenvalue\ , e o, in the spectrum of H is equal to k— 1.

(3) o5 consists of all\,, A,espec HO)\a(q), that are not solutions of9). The multiplicity of
the eigenvalue\,, in specf,) is equal to k .

(4) o, consists of al\,, \,,e spec H)\a(q), such that\, is a solution of(9). The multiplicity
of the eigenvalua , in specH,) is equal to k+1.

The corresponding eigensubspaces are described as follows

(1) The subspace spanned by the normalized eigenfunction

—1/2
(Z,—?(En ;q) 9q(&n) -

(2) The orthogonal complement in, lof the function
K

qfn(x>=k§l Fo(@F (%),

or, equivalently, the subspace of, bf the form{f eL,: f(q)=0}.

(3) The subspace L

(4) The direct sum of L.and the space spanned by the functigyiAg), which is orthogonal to
L,.

o=

Proof: The proof is based on direct calculations with the help of following statements:
(A) The orthoprojector RE,) on the eigenspace of a self-adjoint operator T corresponding to an
isolated eigenvalue Ehas the form

P(Eq)=—Reg(T—¢) ¢{=Eql.

(B) Suppose P,P, and P, +cP,, where ce C, are orthoprojectors in a Hilbert space and,P
#0, then c equal®, 1or —1.
The first statement is well known; we omit the easy proof of the second one. Den&{g ay

A =[Q(&;a) — al Hgg(O))gq( D],

the second term in the representati@ of the resolvent. Further, denote fBpe R
P.(Eo)=—RegR,({);{=Eo],
PY(Eo)=—Re$R%({);{=Eo],

T(Eo)=RegA({);{=Eo];
therefore, according t67)

P.(Eq)=P°(Eo)+T(Ep) .

Downloaded 30 Nov 2007 to 141.20.50.148. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1274 J. Math. Phys., Vol. 45, No. 4, April 2004 Brlining, Geyler, and Lobanov

Start with the proof of the first assertion of Theorem. It is obvious that spec H,). Let
&Ene oq, then in a vicinity of&,, we have the following expansion:

Jd
Q(&;a)—a= a—gQ(En;q)(é—Sn)JrO(z—é’n)z- (10
Therefore,
(? _l
T(&)= a_gQ(gn;Q)} |gq(gn)><gq(5n)| . (11)

Since obviouslyP%(&,) =0, we haveP (&,)=T(&,) and the normalized eigenfunction cor-
responding tct, is

- 12

=] —=(&:9) gq(gn) . (12

29

Now consider an eigenvalue, of HC. In this caseP (\,)=P°\,)+T(\,). According to
(8), in a neighborhoodV of \,, we have the following representation

gq(g):q,n(' ;q)()\n_g)_l+f(§) )

wheref is analytic function inW with values inL?(R®) and

[aQ

kn -
\mx;q):g1 Fok(@F (X .

Consider the following three case® \,e o(q); (b) A & a(q) andQ(\,;q) —a#0; (c)
A& o(d) andQ(N,;q) —a=0.

Let us start with the casé). Since\, is a pole ofQ(-;q), we haveV¥,(-;q)#0 and
thereforeT=cP, whereP is the orthoprojector on the one-dimensional space spanne#, by
(-;9). SinceW(-;q) eL,, in virtue of statemenfB) c= — 1, and the assertiof2) of Theorem is
proven.

In the casdb) according to Lemma 15, (q) =0 for allk=1,... k,; hence¥(-,q)=0 and
T(\y)=0. This implies assertiofB8) of Theorem.

Finally, in the casdc) we can usé€10)—(12) with {=\,, instead of{=¢,,, and obtain

T(\p)= |q)n><q)n| )

according to(B), this get the statemeirid) of Theorem. [ |

Forne N denote byA, the set of alle € R such that the solutio,=¢&,(«) of Equation(9)
does not belong to the spectrum EP. Lemma 2 shows thaR\A, is finite, moreover, ifV
bounded from below, theAy=R.

For all ge R® we will denotee _,(q)=A_;=—%. Using Lemmas 1 and 3 we get immedi-
ately the following proposition.

Proposition 1: For each & N the functiona—&,(«) strictly increases on A. Moreover

Iim &(a)=¢e,, lim &E(a)=¢ep_1.

a— +x a— —

Remark:For n=0 we have an interesting phenomenon of falling the considered particle on
the pointqg (the falling on the attractive center; cf. Ref. 21 for the case of a one-dimensional
oscillaton. Indeed, using estimate (bfrom Theorem B.7.1 of Ref. 31, we obtain without any
difficulty |®y(x)|>— 8(x—q) in an appropriate space of distributions @s> —o (and therefore
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Eo— —»). According to the standard interpretation of quantum mechanics, this relation means
that the probability to find the particle in a domain not containing the pwpitends to zero a&,
tends to—oe.

V. DEPENDENCE OF THE SPECTRUM OF H,(q) ON q

Here we are going to analyze the dependence of the eigenvaldés o g. It is clear that
£,(q) are continuous branches of the multi-valued function defined by®qThis branches can
intersect at values\,, where a monodromy arises. To get a univalent enumeration of these
branches, we modify the parametrization of the eigenvaluell pfgiven by Theorem 1(the
enumeration of the numbe&(q) depends on the enumeration of potgs= specH®), which in
its téjrn depends obviously ar). For n=—1,0,... consider the sed, defined as followsX_;
=R", and

X,={qeR%:3fel, st f(q)#0}={qeR3:\,ea(q)},

for n=0. For allne N the setR3\X,, is nowhere dense iRi® (see in Ref. 38, Theorem XII1.63
According to Lemma 1, fon=0, the seiX,, coincides with the set of atj e R® such that\, is a
pole of the functionQ(-;q). Since we do not suppose the potentiais smooth, the function
Q(¢;q) on the set X,,_1,My) X(X,-1NX,), n=0, is not, generally speaking, smooth. Neverthe-
less, it is monotone and real analytic with respect to the first arguenid continuous with
respect to the second argumentin this case the following simple variant of Implicit Function
Theorem is applicablésee in Ref. 40 for the pronf

Let J be an open nonempty interval of the real liReX be a topological space, and:B
X X—R be a separately continuous function such that each partial functief {t,x), xe X, is
strictly monotone. Suppose tha{tg,x,) =0 for some(ty,Xg) € JX X. Then there are an open
neighborhood U of the point xin X and a continuous function: fJ—J such that (1)
F(f(x),x)=0 for all xe U; (2) if U’ is another neighborhood ofpx and g U’ —J is a function
with the property: Kg(x),x)=0 for all xe U’, then U'CU, and fiy =g.

According to this version of Implicit Function Theorem, for agy X,_;NX,, there exists a
unique solutiorE(q) to Eqg.(9) that belongs toX,,_1,\,) andg—E,(q) is a continuous func-
tion in X,,_1NX,.

Proposition 2: Every function Fq), n=0,1,.., has a continuous extension to the whole
spaceR3.

Proof: Fix n=0,1,.., and let apoint g, ge R3\(X,,_;NX,), be given. Choose a sequence
(g ken from X,,_ 1N X, which tends tay. First we note that the sequendg,(qy)) k.~ is bounded
in R. It is trivial for n>0. If n=0, the sequence is bounded from above. We prove that it is
bounded from below as well. Other\Nisiéo(qkl)—»—oo for some subsequenceM). Since
Q(E;q)— — asE— —o, there existsA<A, such thatQ(A;q)<«. Then there existiNe N
such thatQ(A;qkl)<a and Eo(qkl)<A if I=N. Therefore, fok=N we have

Q(Eo(ay,);qk) — @ < Q(A;q) —a<0,

and we get a contradiction with the definition k‘ag(qkl).
By Bolzano—Weierstrass we can extract a subsequemgef(om the sequencey() such that
the subsequenceEf(qy)) has a limit, which we denote b’. To prove that the sequence

(En(qy)) tends toE” andE’ is independent of the choice of a sequengg ¢tending toq we need
the following lemma concerning properties Bf.
Lemma 5: The limit E has the properties:

(1) E’ is not a pole of the functiog— Q(¢;q);

(2) if \p_1<E’'<N\,, then E is a unique solution of Eq. (9) in the intervel,_1,\,);
(3) |f E,:)\n_l, then“mEHEr[Q(E,q)_a]?O,

(4) if E'=N\,, thenlimg_ g/ [Q(E;q) — a]<0.
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Proof of the lemma:

(1) First consider the case>0. The functionQ,(;q) =[Q(Z;q) — a]({—Xy_1)({—\,,) is con-
tinuous on the intervalN,_,\p4 1) X R3. Since@n(En(qkl);qkl)=0, passing to the limit
—o we get Q,(E';q)=0. Suppose/=E’ is a pole of Q(¢{;q), then Q,(E’;q)
=Re$Q({;0);{=E’']#0, and we get a contradiction. Far=0, we considerQq(;q)
=[Q(¢;q) — a]({—\p), and get the same result.

(2) Itis sufficient to pass to the limit—c° in the identityQ(En(dy );dx) =0

(3) In virtue of statementl) of the lemma, the functiog— Q(Z;q) is continuous in a neighbor-
hood of E’, and therefore there exists a limit Iﬁim)\nfl[Q(g;q)—a]zL. Assume that.
<0, thenQ(E,q) —a<0 for someEe (\,,_1,\,). Choose somen such thatEn(qkm)<E.

SinceQ(¢;q) increases on the intervah{_4,\,) as the function of, we obtain a contra-
diction:

0=Q(En(, )itk )~ < Q(E:g )~ a<0.

Statement4) can be proven similarly t63). [ |

Let us return to the proof of the proposition. We prove that if a sequepgg (v from
Xy 1M X converges to the poirg, thenE,(p,)—E’.

SupposeE,(py) does not converge t&’, then there exists a subsequenp@l)( such that
En(px)—E*, E*#E'. AssumeE* <E'. Taking into account itent2) of Lemma 5 we geE*
=N\p_1 Or E'=X\,. In both the cases we have

Iim [Q(¢;9)—a]=0 and IIm[Q(¢{;q)— a]=<0.

{—E* (—E'’

Take some real numbeE; andE, such thatt* <E;<E,<E’. Then by the strict monotonicity
of {—Q(¢;q) we have

0=Q(E;;q)~ a<Q(E;,q)— =<0

This is a contradiction. |
The following theorem is the main result of this section.
Theorem 2: For each fixedx e R there is a sequenddE,(q)), v Of continuous functions of
qe R® with the following properties:

Q) Np_1<E (g)=\,forallneN.

(2) For eachqe R® the set consisting of all Fq) and all the numbers\, with multiplicities
k,>1 form the complete collection of the eigenvalues of the operatggH

3) If N\p_1<En(g)<\,, then E,(q) is a unique solution of the Eqg. (9) on the interval
()\n—lv)\n)-

(4) If Z=\, is a pole of the functiod—Q({;q), then E,_1(q) <A ,<Ex(q).

(5) If Z=\, is not a pole of the functiog— Q({;q), then we have the following assertions:
(@) if Q(An;0) —a<0, then Ey(q) =N,<En.1(q);
(b) if Q(An;0) —a>0, then Ey(q)<\y=En.1(q);
(€) if Q(Np;q) — =0, then E(q) =\ =E,;.1(0q).

Proof: Consider the functiong,(q) given by Proposition 2. Thefl) is obvious by definition
of E,(q). Assertion(2) follows from Theorem 1. Assertior(8) and(4) were proven in Lemma 5.
It remains to proveb).

Let \,, be not a pole of—Q(Z;q). Suppos&(\,;q) — «<0. For any positive integan we
choose a numbekE/, such that\,—1/m<E/<\,; then Q(E/,;q)— a«<O0. Further, we choose
points g, e R® such that\,,_; and \,, are not poles of the functiog—Q(Z;q,,) (that is g,
€ Xm_1NXpm), and such thag—g,,|<1/m andQ(E;,,;0m) — @<0. Then{=E,(q,,) is a solution
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of the equationQ(¢;q,) —a@=0 lying in the interval §,,_1,\,). SinceQ(¢;q,,) is a strictly
monotone function of on this interval, the inequalitieg,;,<E.(q.) <\, take place for alim.
ThusE,(q,)— N\, andg,—q asm—o; therefore \,=E,(q) by the definition of the function
E.(q). According to Lemma 5Q(A,;q)— «=0, if \,=E,,(q); therefore \,<E, .1(q).
Hence, item(5a) is proved. The proofs of item&b) and (5¢) are similar. [ |

Theorem 2 gives a useful description of the spectruridgf Namely, denote by the set
{me N: k,>1} and together with the functioris,(q) introduce a sequence of constant functions
AR(@)=\pm, wheremeM, k=1,...ky—1. ThenE () <A (q)<E,.1(q) for all neM, k
=1,..k,—1, and for any fixedgqeR® the union of the sequencesE/(q)),.n and
(Agf)(q))mEM,k:L__vkm,l forms the complete set of the eigenvaluediof(q) multiplicity count-
ing. If ge N,_oX,, then everyE,(q) is distinct from the numberAE,'j)(q). SinceR\N,_yX, is
the set of the first Baire category, for a genagithe point perturbation levelg,(q) are distinct
from the levels of the unperturbed operakd?.

VI. POINT PERTURBATIONS OF THE HARMONIC OSCILLATOR

Here we apply the results of the previous sections to the Hamilta@jawith the potential

0?2 0?2 0?
V(r)z'uzxx2+ szy2+ 'uzzzz, (13

where(); (j=x,y,z) are the frequencies of the oscillator. The functiércan be considered as a
confinement potential of a quantum well it? with the characteristic sizes

L= j=
j_ mi J_Xiyaz

(numbersv2L; are called alséength parametersf the oscillatot?). Therefore the operator with
potential(13) can be used as the Hamiltonian ofgenerally speaking, asymmetriguantum dot.
It is convenient to pass to dimensionless coordinates/L, WhereL=3\/LxLyLz. In the coordi-
natesx= (X ,X»,X3) the operatoH® takes the fornH°=%QH®, where

HO=— A+ 3 (02X3+ w5x5+ wiX3) ,

0 0 0
0=300,0,, 1= . @;=q . w=q

(hence,wiwow3=1).
Further we discuss the propertiestdf. The spectrum of this operator consists of the eigen-
values
Mnynon, = @1(N1+112) + w5(Np+ 1/2) + wa(ng+1/2)
whereny,n,,n3e N. The corresponding normalized eigenfunctions are
q)nlnzng(x) = (Pnl(xl)(Pnz(XZ)(Pns(Xs) )

where

w: 1/4 1 w;
i) (2”inj!)l’2exp<—zwjxj2)Hn ?'xj

is the oscillator functioiH,(x) is the Hermite polynomial of degred.

‘Pnj(xj):
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If the frequencieswv,,w,,w5 are independent over the rirfg(this is the generic casethen
the spectrum oH? is simple; therefore, the multiplicity of the eigenvaluestbf(q) does not
exceed 2 and the past, of the spectrum speé¢d{,(q)) is always empty. On the other hand, since
H,(0)=0 if and only ifn is odd,\, n, n,€specH,(0)) if andonly if one of the numbers)
(j=1,2,3) is odd; hence, spedf)\c(0) is always infinite. In addition, for ai>0 the setR®\X,
is infinite.

In general case, there are no explicit expressions for the Green functions of the harmonic
oscillator in terms of commonly used elementary or special functions. Nevertheless, in a number
of cases, the representation of the Green fundB8(x,y;E) as the Laplace transform of the heat
kernelK(x,y:t) for H is very useful to investigate some properties of the Ki@ifunction. The
heat kernel foH° has the form(see, e.g., in Ref. 42

3 1/2
1 w;
Ko(x,y;t)=]_1;[1 (W) ex% — 4S|’kjojt((Xj2+ij)Chwjt_2ijj)> .

Using the heat kernék' for the free HamiltoniarH'=—A,

(x—y)2>

f ) — —-3/2 _
K'(x,y;t)=(4t) ex;{ 7t

and theQ-function forHy,

we get immediately from the formula
G(x,y;E)zJ e'BK(x,y;t) dt,
0

that for Re/<(w;+w,+ w3)/2 the following representation of th@-function for H? takes place:

1/2 w]_t

1, 1 i
ex _quwjth7 PR etdt. (149

J=7 1 (=2 1
Qs ==+ (47)37]0 11 (Smjt
It is clear from(14) that (9Q/dq;)(E;q)<<0 for g;>0, if E<\o=(w;+ w,+ w3)/2. Since
dQI/9E>0 for E e R\spec H?), (9) implies thatJE,/dq;>0. In particular, the depth of the lowest
impurity level \g—Ey(q) decreases ifg| increases in such a way that the inner prodai
remains positive for each vectarwith positive coordinates. In the spherically symmetric case
0= w,= w3, We havedQ/dq< 0, whereg=|g|>0, and the depth decreases with increasing. of
This phenomenon was discovered numerically for a spherically symmetric quantum dot in Ref. 14
and calledpositional disorder We see that the positional disorder is common to each parabolic
quantum dot, not only to the spherically symmetric one. The similar result is valid in the two-
dimensional case, i.e., for the case of impurities in a quantum(aedl numerical results in Ref.
14). Our arguments are valid in the two-dimensional case also, thus we have a strict proof for the
positional disorder in a two-dimensional quantum well.
The more detailed analysis is possible in the case ofightopic oscillator: ,=Q,=(),
(=Q), i.e., in the case of a spherically symmetric quantum dot. In this @asew,= w3=1 and
the spectrum oH° consists of the eigenvalues

3
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where\, has the multiplicityk,,= (n+1)(n+2)/2. In this case there are natural units of length
(namely,L) and of energy£(}). Therefore, the following very important scaling properties takes
place. Denote bY)(¢;q) the Krein O-function for the operatoH® keeping the notatio®(¢;q)
for the O-function of H®. Then
1 { q M { q
Q)= —gQ(m L) 4w—2—Q(m L)

Denoteu/(2742L) by a°; obviously, a° is strength of the point potential corresponding to the
scattering length.. Then Eq.(9) takes the form

{ 9| «
47TQ(m L) o (15
or, equivalently,
{9 L
47Q i L) €—S

Equation(15) shows that a change of the frequer@ydoes not change the numerical values of

energy levels in the spectrum B if L is used as the unit of length() as the unit of energy and
a° as the unit of point potential strength.

In the case of isotropic oscillator, the sgig) has a simple description:

Proposition 3: LetQ,=Q,=Q,. Theno(q)={\,,: ne N}, if =0, and a(q)=specH?)
otherwise

Proof: Each\, is equal oA s wheren;+n,+nz;=n. If nis odd, then at least one of
n; is odd, and¥ , , (0)=0. Therefore,\,¢ ¢(0). On theother hand, ifn is even, then
V¥ 00(0)#0, and therefore), e o(0).

Let now g+ 0. First we remark that for athe N the following assertion is valid:

Lemma 6: If H,(Xxg) =0, then H,, 1(Xg) #O0.

Proof of the lemma:For allne N the following relation takes plac®:

Hn1()=2(n+1)Hp(X) .

If H,(Xo) =Hp+1(Xo) =0, thenH/ (Xo) =0. Sincey=H(x) is a solution to the differential equa-
tion y"—2xy’+2ny=0, we haveH,(x)=0 for all x; but this is impossible. |
Let us return to the proof of the proposition. Suppose tf#0; without loss of generality we
can assume),#0. SinceH,(x)=0 only for x=0, andHy(x)#0 for all x, we havehq,\;
e (). Letn>1. Suppose thab,_; ; () =0, then according to Lemma & o(q)#0. N
Using Proposition 3 we can give the complete description of the spedtr(m) in the case
of an isotropicH®. Moreover, in this case the explicit form of the Green funct®¥(x,x’;¢) is
known, and therefore, we can give the explicit form of the Kr@xiunction and eigenfunction of
H,(q). In particular, the equation for the point perturbation leuel¢q) can be obtained in an
explicit form. The mentioned Green function has the fffm

U(=4HU(=&—n)+U0 (= 5HU(=8—1n)
Ix—yl

N U(=4HU (== —-U(=5HU(-C—7n)
Ix+yl

s
G(X,y,l)——m/i 5 ¢

: (16)

whereé=(|x+y|+|x—y|)/2, n=(|x+y|—|x—y|)/2, U(v;2) is the parabolic cylinder functiéf
(in the Whittaker notatiotd (v;z)=D _,_15(2)), andU’ denotes the derivative &f with respect
to the second argument
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U'(z;y)=%u(§:y)-
Using (16), we get the following expression for ti@-function:
Q(z:q)=—w—i)grzF(%—é)[(q2—4§)U(—é,q)U(—5,—q)+4U’(—é,q)U’(—§.—q)
—E(U’(—é,q)U(—é,—q)—U(—Lq)U’(—é.—q)) , 17

whereq=|q|. Due to the symmetry of the problem, tikfunction depends oq only, so we shall
write often Q(¢;q) instead ofQ(¢;q). Introducing the notatiod/({;y)=U({;y)U(L;—y), we
can rewrite(17) in the sometimes more useful form

1 1 1
Q(i;Q)Z—Wr(E—i (q2—4§)U(—£:Q)—au’(—§;Q)—U'(—£;Q), (18

where the prime denotes the derivative with respect to the second argument as before. Passing to
limit we get atq=0

(3 §>
oL MNz72 .
4 2

It is interesting to compar€l9) with the Krein Q-function Q(l)(g;O) for the one-dimensional
harmonic oscillatof®

1 ¢

F(rz)

QM50 =27
F(rz)

Curiously, in the case of the free Hamiltonigt?=— A, the Q-functionsQq for d=1 and for
d=3 are also related as follows:

Q: () =—87Qx3(0). (20)

Namely, for the free Hamiltonia®,({)=(2v—¢) %, Qa(¢)=—(4m) 1= ¢. Forq#0 relation
(20) for Q-functions of the harmonic oscillators is violated.

It is useful to consider the behavior of the functiér>Q(Z;q) near the singular points, i.e.,
near the poles and in a neighborhood efc. Using properties of the parabolic cylinder
functions*> we have

n

(2n+ 1)1 L 12
o2\ N,y n2+l-s2 k(1+ 2K)

Q(£;0)= +O(L—N2n) |

as{—N\,,. If g#0, the coefficients for corresponding asymptotics are cumbrous enough, and we
give the leading term only:
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exp( —qg2/2) 5 .
Q(&iq)=— WW(ZO-H_ DHA(a/v2)+v2(q " —q)H,(a/v2)H 1 1(a/V2)

+HZ, 1 (alv2)({—Ny) 14+ 0(1), (21)

as{—N\,.
For Re/— —<, we have

V=¢f. 9, 8¢

QL)=——F— 1—§ - +1—28§_2+O(§_3) . (22

It is important to note that the leading term(RR2) coincides with the Kreir@-function for the free
Hamiltonian—A.

Now consider the properties of the functigr>Q({;q). SinceU(v;z) is an entire function of
z, the functiong— Q(¢:;q) at ¢ ¢ specH®) can be extended to a real analytic even functiorRon
[see(18)]. In particular,

(9 . —_—
aQ(é,O)—O-

As to the second derivative, we can obtain after some algebra

1 ¢ 3 ¢
i Q(£;0)= - (4§2+1)F<Z_§> ) Z_E) (23
i ’ _8‘/677 1"§_£ I‘E_é
4 2 4 2
For the fixedZ e R\specH?), the asymptotics of at q— o is given by
Q(&a)= ! { 2 1+2€2Jro( 1) (24)
q)= 87 q q P /|
This follows from the asymptotics fa#(Z;q) at q— o0:4°
V27 1 1
U(Z,Q)—Fl—i O(ﬁ) ,
2"t
whereX=/q?+4¢.
Further the following formula will be also useful
3
p(3_¢
&Q( 0)= 1 (4 Z)G(l ) (25
24 £ _4\/27TF1_£ 2 £
4 2

Here and below we use the standard notafidns

Z,
22

G(2)=4

1 (z) _T'(2)

The plot of the graphs for the functid@(¢;q) is shown in Figs. 1 and 2.
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FIG. 1. Q as a function of for (a) q=0, (b) g=1/10,(c) g=1, (d) q=3.

In the case of an isotropic oscillator, the functidfgq) depend only o and we will denote
them by E,(q). Further properties of these functiofand, in particular, of the spectrum of
H,(q)] for the isotropic case are given in Theorem 3 below, which is one of the main results of
the article.

0.3
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O'IXW
Q o
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-0.3
i 2 3 4 5 6 17 =
q
—0.16
(e)
018 (d)
—02
(v)
—0.22
(a)
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FIG. 2. Q as a function ofy for (a) (=0, (b) (=1, (c) (=2, (d) (=3, () {=4.
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Theorem 3: The following assertions take place

(1) The functions E{q), ne N are real-analytic. Ifa=0 and n>0, then in a vicinity of zero,
these functions are continuous branches of a two-valued analytic function

(2a) Ex(0)<\ for eachea, aeR.

(2b) If >0, then B, 1(0)=Non: 1 @ndAon1<Esni2(0)<Ayn.oVnelN.

(2¢) If <0, then\ oy <Esp;1(0)<Nopi2 and Epy2(0)=Non,2VNne N.

(2d) If =0, then B, 1(0)=E5,12(0)=N5,1Vne\.

(3a) If a#0, then for any n~0

JIE,
Jq

(0)=0. (26)

If n=0, then(26) is valid for anya.
(3b) If >0 (respectivelya<0), then

&’E 1 (4E§(0) +1
) _8En(0) ) (27)

aqzn(o): 1 8202
8\/6G<§—En(0)

for any even (respectively, odd) if n=0, then(27) is valid for anya.

(30 If @=0, then (JEz,+1/99)(0)<0, (IEzn+2/39)(0)>0, and (|(9Ezq+1/99)(0)
=[(9Ezn+2/99)(0)[VneN.

(4) If q#0, then\,_1<E,(q)<A,Vnel.

(5) limg_.En(@)=A,Vnel\.

Proof: Item (4) follows immediately from Proposition 3 and the definition of the functions
E,. Formula(19) shows that)(£;0)=0 if and only if =\, 1 for somen € IN; therefore, items
(2a—(2d) follow from Theorem 2. Using the standard version of the implicit function theorem and
the Proposition 3 again, we see tHat(q) are real analytic ag>0. Moreover, item(3) of
Theorem 2 implies thati) E,(q) are real-analytic ag=0 for evenn if «>0, (ii) E,(q) are
real-analytic aig=0 for oddn if «<<0, and(iii) Ex(q) is real-analytic ag=0 for any «. In all
these cases, the derivativesEf can be found from the equations

0Q IE, Q
9 9q  dq

0,

JQ #°E, ¢*Q(JE,\* _ 4°Q JE, &
—Q—zn-i-—? —”) 279 ”+—?=o. (28)
df dq af"\ dq d{dq Jq  dq

Since @Q/dq)(E;0)=0 if E ¢ specH®), equation(26) follows from (28) in the considered
cases. In virtue 0of26), the second derivative @&, is given by

P°E, 7*Q ( 9Q

-1
Pre (O)Z—qu (9_5) (En(0);0). (29

Substituting(23) and (25) into (29) and using(9) we get(27).
Now consider the singular case whEp(0), n=1, coincides with a point of the fori,, 1.
In a neighborhood of the poin&(,(0),0), introduce the function

Qulziq) = 2ad e
{3
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which is smooth with respect ta/(q) and analytic with respect to the first argumentin a
vicinity of (E,(0),0) we have

Q.(En(0);q)=0. (30

Further,

Q, 1 Q I'(1/2-9)
ol T=0 oz T QT YOz

(31

Since ©Q/d¢)(Z;0) is a finite number at=\,,.1 andI'(1/2—{) has a pole ak .1, the first
term in(31) vanishes at the point\gy,+ 1,0). The value of the functioh’ (1/2— ¢)/T'3(1/2— ¢) at
{=N\om+1 is @ nonzero finite number. Finall@(\ o+ 1,0)=0; thusdQ,/dq vanishes at the point
Nom+1 if @and only if «=0. Therefore, ife# 0, then each functiok,(q) has an analytic continu-
ation in a neighborhood of the point=0. SinceqHQa()\Zmﬂ;q) is an even function, we get
easily (26).

Let now a=0. Then

Qg B 1 PQ T (12-¢) dQ  T"(L2—H)T(L2—)—2T"%(1/2—¢)
o7 TR0 o TTHUZ-0) 9l 312 ) '
(32

It is easy to see that the first and last term$38) vanishes at the poinf\G,,+ 1,0), whereas the
second one does not. TherefosdQ,/d># 0 at the point K ,m41,0), andE,(q) being solutions
of (30), are continuous branches a two-valued analytic function in a vicinityzgf,(1,0). Ob-
viously, at the point X,,,+1,0) the following relation is valid

Qo 9En\? _ *Qo 9E,  9Qo I°E, +a2<30_ o
%\ aq acaq aq ¢ 9q® = aq>

Since&@olagzo at the considered point, we get the quadratic equatio@EQr Jq:

9*Qq [ 9E, 2+ 32@0_0
%\ aq g7

As a result, we complete the proof of iterfiy and(3c). It remains to provés). Fix ne N and let
g, 0<e<1, is given. According td24) we can chooseg,>0 such thatQ(A,—¢;q)— a<O if
g=(o. SinceQ(EL(g);q) —a=0 and the functiorE—~Q(E;q) increases in the interval,,
<E<M\,, we haveE,(q)>\,—¢ as q=qy. Moreover, E,(q)<\,, and the proof is com-
pleted. [ |

The structure of spe&{,(q)) given by Theorem 3 is presented in Table I. The peculiarities of
this table atg=0 can be understood from the point of view the symmetry group of the problem.
It is well known that for a generic spherically symmetric potentlét), the eigenvaluea of the
operatorH®=—A +V are parametrized by three quantum numbers:)\nr,,,m, wheren, (n,

=0,1,..) is the sccalled principalor total) quantum numbet; (1=0,1,..) is theorbital quantum

number, andm (m=—1I,—1+1,...1—1]) is the magnetic quantum number. Each eigenvalue
An, 1m is degenerate with multiplicity [2-1, namely, A | m=Np | m If m,m’ e{—1I,—I
+1,...)—1]}. This degeneracy is related to the invarianceHdf with respect to the rotation

group SO(3): eigensubspaces &f° carry an irreducible representation of this group. In general,
Mo, 1m# s 1 if n,#n/ orl#1’. The eigenvalues of an isotropic harmonic oscillator have an
r

additional (so-called accidentaldegeneracy: Each eigensubspégeis decomposed on the sub-
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TABLE I. The structure of spe¢{,(q)).

Spectral properties of a short-range impurity

q=0 q#0
a>0 o1={E»(0): ne N} o1={E\(q): neN}
02={N\zns2:NeN} g,={Ans1:neN}

03={App+1:NeN} o3=0

0,=0 0,=0
a=0 o={1/2} o1={E.(q): ne N}
o2={Nans2: NN} o={N\ns1:neN}

0'3=® 0'3=®

o4={N\zns1:nelN} 04=D
a<0 d1={E2n+1(0): ne NJU{Eq(0)} a1={En(@): ne N}
03={Aans2: NEN} o={N\ns1:neN}

03={Azp+1:NeN} 3=

o,=0 o4=0

spacest_ﬂ) with angular momenturh=n,n—2,...,0(if nis even orl=n,n—2,...,1(if n is odd.
This accidental degeneracy is related to the invariance of the Hamilt¢tfaaf an isotropic
harmonic oscillator with respect to the grouji3). Indeed,

3
0_ + 3
H —JZI a‘a;+ 3,

Whereaj+ anda; are standard creation and annihilation operatbiherefore H is invariant with
respect to the transformation

3 3
!
aj—>aj’=21 Uk;a; , a —a J—F:_El uga;,
i= i=

where () is a unitary matrix. Ifqg=0, thenH ,(0) is a spherically symmetric perturbationtef

that violates thdJ(3)-symmetry. To prove this, we note that operataf’sak are generators of the
Lie groupwu(3). Therefore, ifH,(0) is invariant with respect to the considered representation of
U(3), we must havdH ,(0),H°]=0. On the other hand it is easy to show that faz C\R the
operatof R,(£),R%(£)] has a nonzero integral kernel.

Since point perturbations cannot change states with nonzero angular moniefgee; e.g.,

8), the parto, (atq=0) may contain only even eigenvalugg, and we see this in Table I. Since

all states fronlL , have the same parity{1)", the isotropic oscillator has no stationary states with

a nonzero dipole momentufR.On the other hand every eigensubspacelgf0) with eigenvalue

from o, have an eigenfunction with=0 (this is the eigenfunction from item 4 of Theorem 1
Therefore, point perturbations of an isotropic harmonic oscillator can lead to an appearance of
eigenstates with nonzero dipole momentum.

An alternative tool to understand the energy degeneracy of the three-dimensional isotropic
oscillator gives the supersymmetry the8ty*® We will not dwell here on this approach, never-
theless note that the analysis performed in the cited papers requires a modificatios-ghtrmel
only.

The functionsE,, depend not only on the position paramejetbut also on the strengile, we
will denote these dependencieslBs=E(q,a). If E(d,ag) coincides with one of the numbers
Em, then in a vicinity ofag, the functiona—E,(q,«) is a continuous branch of the inverse
function to E—Q(E;q). It is already known from Proposition 1 that the following limits take
place:

lim E,(q;a)=\,, lim E(q;@)=N,_1,

a— +® a— —
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where\ _;=—oo. Now we make more precise this behavior. Fr(#8) we get the asymptotics of
the functionEqy(q; «) for the fixedq=0 asa— — o,

2

. 2 2 q 1
Eo(q;a)=—167"« -I— 128772 —=—>—>+10 A (33
or in terms of the point perturbation of the initial operatdy
n2 o u0%? w02
Eo(q;a)=— 22 + > + 7 +0(lg), (34

where the scattering lengthtends to 0. Expressiof34) means that up to the infinitely small term

O(Ii) the ground state off ,(q) equals to the ground state of the point perturbation of the free
Hamiltonian —#%2A/2u with the same scattering length, shifted by the potentialV(r)
= u0?r?/2 at the pointr=q. Equation(34) shows that at least for the isotropic harmonic oscil-
lator its potential can be recovered from the dependence of the ground state of the point pertur-
bation on the position of the potential support. It is reasonable to suppose that this is true for more
general forms of the potenti&f; we consider this conjecture elsewhere.

Now consider the behavior &, (q;«) in a vicinity of the poles ofQ(¢{,q). We start with the
general casg#0. Using(21) we get ase— *©

o exp(—q%/2) " i
En(g;a)=\; sznT(Z(nﬂLl) n(a/v2)+v2(q~ " —aq)Hn(a/V2)H . 1(a/vV2)

+H2.(a/V2)a M+ 0(a?), (35)
wherex =\, andn=0 asa— +%, and\, =\,_; andn=1 asa— —x.

In the caseg=0, we are in position to give a compact form for more precise asymptotics of
E.(q;a). Denote

_(2n+pn (2n+1)!11 |2 L2
Anl@)= oy _((277)374(2n)!!) In2=1+3 2k(1+2k) :

For eigenvalues with even indices we have

Non_q for a<0 and n=1

E,n(0;a)=4 —16m2a’+ 24+0(a" %) for a——% and n=0 (36)

12872
Aon—Ap(a@)+0(a™3) for a— -+ and n=0.

For the odd indices

)\2n+1 for a=0
Non—Ap(a)+0(a™3) for a——o.

Eons1(0;a)= (37

Formulas(35)—(37) explain peculiarities in the plots of functioiis, on Figs. 3 and 4. Note that
in Egs.(33)—(37) the remainder terms depend on

The isotropic harmonic oscillator has an equidistant spectrum. After the perturbation by a
zero-range potential, the distances between energy levels are changed and become dependent on
the energy indexn. This is important in the connection with the problem of the controlled
modulation of the binding energy of the impurity center in quantum dots, that can be used to
design nonlinear opto-electronic active eleménthie asymptotic formulag34)—(37) give very
accurate expressions for the excited energies in the most interesting case of a deep zero-range well
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1 2 3 4 5 6
q

FIG. 3. E, as a function ofy for (@) a=—a®, (b) «=0, (c) a=aP’.

(a— —) as well as for the case of a shallow wett- +), which confirm numerical results
from Ref. 6. Note also that Proposition 1 and Theorem 3 imply a remarkable distinction between
the excited energy for the ground state and that for the other ones: The eBgigyx)
—Ep(g; @) can take an arbitrary value depending @rand «; on the other hand, energias,
—En(q;@) andE,,  1(g; @) —A,(n=1) are bounded by 1. Since at fixeg a<—1, the function
g—E(q;a) —Ey(q; @) is injective for moderate values gf, the position of an impurity in the
quantum dot may be determined from the spectroscopy data.

We show the plot of the energi€s (qg; @) — Eq(q; «) and\;—E4(q;«) as functions of] and
a on Figs. 5 and 6, respectively.
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a (23

FIG. 4. E,, as a function of« for (a) g=0, (b) g=1/10,(c) q=1, (d) q=3.

FIG. 5. The exciting energy as a function®ffor (a) a=—a° (b) a=0, (c) a=a°.
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35
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-0.75 =0.5-0.25 0 ©0.25 05 0.75 1
«

FIG. 6. The exciting energy as a function @ffor (a) q=0, (b) g=1, (c) q=3.

In conclusion we give the following remark. Lgt [0,0) — R be a smooth function obeying
the conditions

(H1) =0 and the functiomr—q(r)+r?/4 is nondecreasing;

(H2) q’(r)=<0, and letx, and k; be the first two eigenvalues of the operatéf+q=—A
+r2/4+q(r). Itis proven in Ref. 49 thak,/k;<\o/\q, if q#0. Using Theorems 3 and A it is
easy to construct smooth functiogswith properties(H1) and

(H2a) q'(r)=0, such thatcg/x1>Ng/N\1.
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