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The spectral properties of the quantum mechanical system consisting of a quantum
dot with a short-range attractive impurity inside the dot are studied in the zero-
range limit. The Green function of the system is obtained in an explicit form. In the
case of a spherically symmetric quantum dot, the dependence of the spectrum on
the impurity position and strength of the impurity potential is analyzed in detail.
The recovering of the confinement potential of the dot from the spectroscopy data
is proven; the consequences of the hidden symmetry breaking by the impurity are
considered. The effect of the positional disorder is analyzed. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1647693#

I. INTRODUCTION

Quantum dots~i.e., nanostructures with charge carriers confinement in all spatial directions!
have an atom-like energy spectrum and, therefore, make possible to fabricate quantum devices
with energy level spacing much greater than the temperature smearingkT at work temperatureT
~see, e.g., Ref. 1!. Moreover, dimension and shape of a quantum dot affect considerably the most
important characteristics of the corresponding devices: Relaxation and recombination time, Auger
recombination coefficient etc, thus a possibility arises to control such characteristics in manufac-
turing the devices.2–4 Another way to control the properties of a quantum dot is instilling an
impurity into the dot. Therefore, the investigation of spectral properties of a quantum dot with
impurities as well as the dependence of the spectrum on the geometric parameters of the dot and
physical characteristics of the impurity is an important problem of nano- and mesoscopic physics
~see, e.g., in Refs. 5–7, and references therein!. The case of a hydrogen-like impurity is one of the
most extensively studied up to now; however, the spectral problem in this case has no exact
solution. On the other hand, short-range impurities can be investigated in the framework of the
point potential theory~also called the zero-range potential theory!. An important peculiarity of the
point potential method is that the spectral problem for a point perturbed Hamiltonian is explicitly
soluble as soon as the Green function for the unperturbed operator is known in an explicit form.8,9

For modeling the geometric confinement of a quantum dot, quadratic~in other words, para-
bolic! potentials are successfully used10 ~see also examples of applications in Refs. 5–7, 11–15!.
The reason is that the self-consistent solution to the corresponding system of the Poisson and
Schrödinger equations leads to the confinement potential having the form of a truncated parabolic
potential.16 Moreover, the Green function of the corresponding HamiltonianĤ0,

Ĥ052
\2

2m
D1

mV2

2
r 2 , ~1!

can be explicitly calculated17–19 ~hereV is the frequency of the oscillator,m denotes over the
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paper the mass of the considered charged particle!. This makes possible to perform an exhaustive
spectral analysis of the perturbation ofĤ0 by a point potential of arbitrary positionq and strength
a @we denote this perturbation byĤa(q)] and to analyze the behavior of the eigenvalues ofĤa(q)
as functions ofq anda. This analysis is the main goal of the paper. Note that a quite particular
case of the point perturbation ofĤ0 at q50 ~without obtaining any explicit form for the Green
function! has been considered in Ref. 20. Point potential for modeling an impurity in a spherically
symmetric quantum dot has been studied in the series of papers using the Green function repre-
sentation by means of the Laplace transform of the propagator kernel, but this approach allows to
analyze~with numerical methods! the lowest impurity level only.6,13–15

It should be noted that point perturbations of the one-dimensional harmonic oscillators have
been studied in detail earlier. This study was started in Ref. 21, where the spectral properties of the
point perturbed harmonic oscillator have been considered in the context of the one-dimensional
models for the toponium physics and the Bose–Einstein condensation.22 A strict mathematical
justification of results from Ref. 21 was done in Refs. 23 and 24; see also in Ref. 25. Undoubtedly,
our approach using the three-dimensional harmonic oscillator is more adequate for the analyzing
the spectral properties of three-dimensional systems, in particular, the toponium. It should be
noted also that the one-dimensional harmonic oscillator perturbed by a point potential with vary-
ing position and strength has been investigated in Refs. 26 and 27. A series of phenomena of
low-dimensional condensed matter physics can be analyzed by means of the Hamiltonian of the
perturbed oscillator: Impurity in a one-dimensional quantum well, one-dimensional channel in a
two-dimensional heterostructure subjected to a perpendicular uniform magnetic field etc., see the
bibliography in the cited papers for details. However, the analysis given in Refs. 26, and 27 is
based on the properties of one-dimensional second-order differential operators and is not extended
to the three-dimensional case.

The paper is organized as follows. Preliminary results are collected in Sec. II. In Sec. III we
consider point perturbations of the operator

Ĥ052
\2

2m
D1V , ~2!

with an infinitely growing potentialV. It turns out that the operatorĤa(q) can be defined and
investigated for the more generic case whenĤ0 is defined by Eq.~2!. In Sec. IV some important
properties ofĤa(q) are established. In particular, a complete description of the spectrum and
eigenfunctions ofĤa(q) is given in Theorem 1. As a consequence of this theorem we get the
falling of the considered particle on the attractive center as the potential strengtha tends to2`;
for a very particular case of the one-dimensional harmonic oscillator perturbed at the potential
minimum this phenomenon was observed in Ref. 21. In Sec. V we define at fixeda a family of
continuous functions such that the values of these functions at the pointq form the complete
family of the eigenvalues ofĤa(q). Some elementary properties of these functions are established
in Theorem 2. The main results of the paper are contained in Sec. VI, where the point perturba-
tions of the Hamiltonian of the harmonic oscillator are studied; the case of the isotropic harmonic
oscillator ~1! is considered in detail. These results are based on an explicit form of the Green
function for the operator~1!. The detailed analysis of the dependence of the point levels on the
positionq and on the strengtha is given in Theorem 3. In particular, ifqÞ0, then the point levels
never coincide with the eigenvalues of the unperturbed operatorĤ0. Therefore, we have here no
accidental degeneracy of the levels, which is a peculiarity of the one-dimensional model for the
toponium.21,26 Hence, this degeneracy is an artifact of the one-dimensional model. Another inter-
esting result is the asymptotic expression for the bound state ofĤa(q) @Eqs.~33!, and~34!#. These
equations show that at least for the isotropic harmonic oscillator its potential~i.e., the frequency
V! can be recovered from the dependence of the ground state of the point perturbation on the
support of the perturbation. Moreover, we argue that the form of the parabolic potentialV may be
recovered from the behavior of the excited energy for the ground state. Our conjecture is that this
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Downloaded 30 Nov 2007 to 141.20.50.148. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



property is true for a more general form of the potentialV. In this connection it is of interest to
note that the study of the excited energy is one of the main problems of the quantum dot physics.6

The methods of Sec. VI allow us to analyze rigorously the phenomenon of so-called ‘‘positional
disorder’’ in quantum dots~including nonisotropic ones!. The relation of the degeneracy properties
of the eigenvalues ofĤa(q) at q50 to the symmetry properties of the unperturbed operatorĤ0 in
the phase space is briefly discussed in the conclusion of Sec. VI. In particular, the appearance of
states with nonzero dipole momentum is noted.

II. PRELIMINARIES

Here we present for the convenience of readers some basic properties of point perturbations of
Schrödinger operators inL2(R3) ~see, e.g., Refs. 8, 28–31 for details!. We will consider only
Schrödinger operatorsĤ0 of the form~2!, where the potentialV is subordinated to the conditions

~P1! VPL loc
p (R3) for some p.3;

~P2! V25min(V,0)PL2(R3)1L`(R3).

Conditions ~P1!, ~P2! are weaker than commonly used in applications conditionsV
PL loc

` (R3) and V>c with cPR but making use of~P1!, ~P2! requires no change in proving of
main results below. It is well known that under these conditionsĤ0 is semibounded from below
and essentially self-adjoint onC0

`(R3) ~see in Ref. 32 Theorem X.28!. Further we put, as a rule,
\51, m51/2 and denote the obtained operator2D1V by H0. For the domainD(H0) of H0 we
haveC0

`(R3),D(H0),C(R3). This inclusion implies that the Green functionG0(x,y;z) for H0

~the integral kernel of the resolventR(z)5(H02z)21) is a Carleman operator, this means that

E
R3

uG0~x,y;z!u2 dy , 1` for a.e. xPR3 . ~3!

Moreover, according to Theorem B.7.2 from Ref. 31, for every fixedz, zPC \spec (H0), the
function G0 obeys the following properties:

~G1! For every zPspec(H0) the function G0(x,y;z) is continuous in the domain$(x,y)PR3

3R3 :xÞy%;
~G2! uG0(x,y;z)u<c2(z)ux2yu21;
~G3! if ux2yu>d.0, then uG0(x,y;z)u<c3(d,d,z)exp(2d ux2yu) for somed.0. Moreover, if
Rez ,S [ infspec(H0), then arbitraryd with d2/2,S2Rez is suitable for this estimate.

From ~G1! we get, in particular, that~3! is valid for everyxPR3.
The crucial role in the point potential theory is played by the regularized Green function

Greg
0 ~x,y;z!5G0~x,y;z!2

1

4p

1

ux2yu
. ~4!

In the particular cases, e.g., ifVPC`(R3), it is known that at fixedz this function has a continu-
ous extension on the whole spaceR33R3 ~see, e.g., Ref. 33 or Theorem III.5.1 in Ref. 34!. We
need this property in the general situation and prove it under conditions~P1!, ~P2!.

It is sufficient to prove thatGreg
0 (x,y;z) is continuous with respect to~x,y! for somez5E0

,0. Indeed, then for everyzPC \spec (H0)

G0~x,y;z!5E
E0

z ]

]l
G0~x,y;l! dl1G0~x,y;E0! ,

where the path of integration lies in the resolvent setC \spec (H0). The function
(]G0/]l)(x,y;l) is jointly continuous with respect to~x,y! since it coincides with the integral
kernel of (H02l)22 and this kernel is continuous according to Theorem B.7.1 from Ref. 31.

It is easy to see thatV can be represented in the formV5V11W, whereV1PC`(R3) and
obeys the property~P2! andWPLp(R3)ùL1(R3). DenoteH152D1V1 , S15 infspec (H1) and
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by G1 the Green function ofH1. Fix E0 , E0,min(S,S1), and introduce the functionF(x,y,z)
5G0(x,z;E0)W(z)G1(z,y;E0). Using properties~G2!, ~G3!, and the estimate

E
uy2au<r

dy

ux2yun
< c̃nr 32n , ~5!

where 0,n,3, r .0, a, xPR3, it is easy to prove thatF(x,y,•)PL1(R3) for all x,yPR3. In
virtue of the Lippmann–Schwinger relation

G0~x,y;E0!5G1~x,y;E0!1E
R3

G0~x,z;E0!W~z!G1~z,y;E0! dz,

and the continuity of the regularized Green function forH1, it remains to prove that the function

I ~x,y!5E
R3

F~x,y,z! dz

is continuous onR33R3. Moreover,~G1! shows that it remains to prove the continuity ofI at
points of the form (x0 ,x0). To do this fix «.0 and findh.0 such that the relationsux2x0u
,h, uy2x0u,h imply uI (x,y)2I (x0 ,x0)u<«. Introduce the setsB1(h)5$z: uz2x0u,h%,
B2(h)5R3\B1(h), and for a measurable setB,R3 denoteI B(x,y)5*B F(x,y,z) dz. Then

uI ~x,y!2I ~x0 ,y0!u<uI B1(h)~x,y!u1uI B1(h)~x0 ,y0!u1uI B2(h)~x,y!2I B2(h)~x0 ,y0!u .

If x,y,zPB1(h), then by~G2!

uF~x,y,z!u< f ~z! ux2yu21uz2yu21 ,

where f PLp, therefore relation~5! and the Cauchy–Schwartz inequality lead to the estimate
uI B1(h)(x,y)u1uI B1(h)(x0 ,y0)u<consth. On the other hand, ifx,yPB1(h/2), zPB2(h), then we
have from ~G3!: uF(x,y,z)u<g(z)exp(2d uzu), whered.0 and gPLp. Thus by ~G1! and the
Lebesgue majorization theorem,I B2(h)(x,y) is a continuous function onB1(h/2)3B1(h/2), and

the proof of continuity ofGreg
0 is completed.

Let qPR3, then the restriction ofH0 to the domain$ f PD(H0) : f (q)50% is a closed sym-
metric operatorS with the deficiency indices~1,1!. By definition, thepoint perturbation of H0,
supported onq is a self-adjoint extension ofS different fromH0. All the point perturbations ofH0

supported on a givenqPR3 form a one-parameter familyHa(q), aPR, of self-adjoin operators
such that the Green functionGa of Ha(q) is given by the formula

Ga~x,y;z!5G0~x,y;z!2@Q~z;q!2a#21G0~x,q;z!G0~q,y;z! , ~6!

which is a consequence of the Krein resolvent formula. HereQ(z;q)5Greg
0 (q,q;z) is the so-called

Krein Q-function. The operatorH0 corresponds formally toa5`; moreover,H0 is the Friedrichs
extension ofS.

The extension parametera has an important physical meaning, namely,Ha can be treated as
the HamiltonianH0 perturbed by a zero-range potential, in this casea is the strength of this
potential.8,35,36 In place of the strengtha, it is more convenient to use for applications so-called
‘‘scattering length’’,s , ,s51/(4pa) ~see in Refs. 8, 35, and 36 again!. More precisely,

,s5
m

2p\2a
,

and we see that,s has actually the dimension of the length.
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Note that according to the general results of the Krein self-adjoint extension theory, the
functionz°Q(z;q) is analytic in the domainC \spec(H0) for eachqPR3 and]Q(E;q)/]E.0 if
EPR\spec(H0).37 Remark that Q(z;q) can be continuously extended to some points of
spec(H0). Further we assume thatQ(z;q) is continuously extended to all regular points.

It is easy to prove that for everyqPR3 the mappingz°G0(•,q;z) is an analytic function
from the domainC \spec (H0) to the Hilbert spaceL2(R3). DenoteG0(•,q;z) by gq(z), then we
can rewrite~6! in an operator form

Ra~z!5R0~z!2@Q~z;q!2a#21ugq~z!&^gq~z!u , ~7!

whereRa(z)5(Ha2z)21 andR0(z)5(H02z)21.
Note, thatgq(z) is a nonzero function for everyqPR3 and zPC \spec (H0). Indeed, other-

wise we havew(q)50 for everywPD(H0) that contradicts the inclusionC0
`(R3),D(H0).

In conclusion we mention a possibility to approximate the zero-range perturbation by poten-
tials with decreasing support. ForV50 the corresponding procedure is described in Ref. 8~Theo-
rem 1.2.5!. We sketch here the proof forH0 with potentialV having properties~P1!, ~P2!.

Let WPLcomp
2 (R3), in particular,W is a Rollnik function~see in Ref. 32, Sec. X.2!. Denote

v5uWu1/2, u5v sign(V), and letl(«) be a real-analytic function in a neighborhood of zero such
that l(0)51. For «.0 consider the operatorH«[H«(q)5H01«22l(«)W(«21(x2q)). Then
the resolventR«(z)5(H«2z)21 («.0) has the form

R«~z!5R0~z!2«l~«!A«@11B«#21C« ,

where A«, B«, C« are integral operators with the kernelsA«(x,y;z)5G0(x,«y1q;z)v(y),
C«(x,y;z)5G0(«x1q,y;z)u(x), B«(x,y;z)5«l(«)G0(«x1q,«y1q;z)u(x)v(y). Define A0

and C0 putting «50 in the formulas above, and defineB0 by the integral kernelB0(x,y)
5(4puy2xu)21u(x)v(y). All the operatorsA«, B« andC« («>0) belong to the Hilbert–Schmidt
class andA«→A0, B«→B0, C«→C0 with respect to the Hilbert–Schmidt norm as«→10.
Moreover, using~4! we can prove that with respect to this norm

B«5B01«~l8~0!B01Q~z;q!uu&^vu!1o~«! .

Hence, the arguments using for the proof of Theorem 1.2.5 from Ref. 8 give the following result.
Theorem A:

(1) Let^vuw&50 for all L 2-solutionsw of the equation B0w52w ~in particular, let21 be not an
eigenvalue of B0). Then H«(q)→H0 in the norm-resolvent sense as«→10;

(2) let 21 be a simple eigenvalue of B0 and w be a corresponding eigenfunction normalized by
the condition̂ w̃uw&521, wherew̃5w sign(V). If ^vuw&Þ0, thenlim«→10H«(q)5Ha(q) in
the norm-resolvent sense, wherea52l8(0)u^vuw&u22;

(3) let 21 be a multiple eigenvalue of B0 with eigenfunctionsw1 ,...,wn normalized by the
conditions^w̃ j uwk&52d jk (w̃ j5w j sign(V)). If ^vuw j&Þ0 for some j andl8(0)Þ0, then
lim«→10H«(q)5Ha(q) in the norm-resolvent sense, where

a52l8~0!F (
j 51

n

u^vuw j&u2G21

.

j

III. POINT PERTURBATION IN THE CASE OF UNBOUNDED POTENTIAL V

Starting with this section we suppose additionally that

~P3! limur u→`V(r )51`.

In this caseR0(z) is a compact operator for allzPC \spec(H0) ~the Strichartz theorem; see, e.g.,
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in Ref. 38, Theorem XIII.69!. Therefore, spec(H0) consists of an unbounded sequencel0,l1

,¯,ln,¯ of eigenvalues with finite multiplicitykn . Consequently,Q(z;q) is a meromorphic
function of z. We are going to find the poles of this function.

Denote byLn the eigenspace associated withln , and choose inLn an orthonormal basis
Fn,k(r ), k51,...,kn . For everyqPR3 we denote

s~q!5$lnPspec~H0!:' f PLn s.t. f ~q!Þ0%

Lemma 1: The set of all poles of the functionz°Q(z;q) coincides withs(q).
Proof: Since (]G0/]z)(x,y;z) is the integral kernel for the operator (H02z)22, we have

according to the Mercer theorem

]

]z
G0~x,y;z!5 (

n50

`

(
k51

kn

~ln2z!22Fn,k~x!Fn,k~y! ,

where the series converges locally uniformly onR33R33(C \spec(H0)). Therefore,

]

]z
Q~z;q!5 (

n50

`

(
k51

kn

~ln2z!22uFn,k~q!u2 , ~8!

and the series converges locally uniformly on (C \spec(H0))3R3. The lemma follows from~8!
immediately. j

Lemma 2: For eachqPR3 the sets(q) is infinite. If V is bounded from below, thenl0

Ps(q).
Proof: Consider the space of continuous functionsC(R3) with the topology of compact

convergence. Due to the closed graph theorem and the relationD(H0),C(R3), the operator
R0(21): L2(R3)→C(R3) is continuous. Therefore, for everyf PD(H0) the Fourier expansion for
f with respect to the basis (Fn,k)n,k converges locally uniformly. Assume that the sets(q) is
finite; let N5max$n: lnPs(q)% and P be the orthogonal projection ofL2(R3) on the subspace
M5L01...1LN . Then for everywPD(H0) the conditionsw(q)50 and (Pw)(q)50 are
equivalent. SinceM is finite dimensional, there ishPM such that for everywPM the conditions
w(q)50 and ^h u w&50 are also equivalent. Using the inclusionC0

`(R3),D(H0) we see that
there is a functionhPL2(R3) such that for everywPC0

`(R3) the conditionsw(q)50 and
^h u w&50 are equivalent. Obviously, this is impossible, hences(q) is infinite. If V is bounded
from below, then by Theorem XIII.48 from Ref. 38 the eigenfunctions ofH0 corresponding to the
ground statel0 have no zeros thereforel0Ps(q). j

Another property of the functionz°Q(z;q) we need further follows.
Lemma 3: The function Q(z;q) tends to2` as z→2`, zPR.
Proof: SinceH0 is the Friedrichs extension ofS, the statement follows from Proposition 4 of

Ref. 39. j

IV. SPECTRAL PROPERTIES OF Ha AT FIXED POSITION OF THE POINT
PERTURBATION

Here we describe the spectrum ofHa(q) for a fixedqPR3. Further, if it does not lead to a
misunderstanding, we omitq from the notations.

SinceHa is a rank one perturbation ofH0, the spectrum ofHa is discrete. Moreover, an
eigenvalueln of H0 of the multiplicity kn is an eigenvalue ofHa of the multiplicity kn21, kn or
kn11 @if kn51, the first case means, of course, thatln does not belong to spec(Ha)]. For
l¹spec(H0) we see from~7! thatl is an eigenvalue ofHa if and only if z5l is a solution to the
equation

Q~z;q!2a50. ~9!
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Denote by («n)nPN5(«n(q))nPN the strictly increasing sequence of all the poles ofQ(z;q).
Since (]Q/]E)(E;q).0 for EPR\spec(H0), Eq. ~9! has exactly one solution on each interval
(2`,«0),(«0 ,«1),... . Denote such solutions, which do not belong to spec(H0), by E0 ,E1 ,...,
whereE0,E1,¯ . The following theorem completely describes the eigenvalues and the eigen-
functions ofHa(q).

Theorem 1: Let qPR3 be fixed. The spectrum of Ha5Ha(q) is discrete and consists of four
nonintersecting partss1 ,s2 ,s3 ,s4 described as follows.

(1) s1 is the set of all solutionsEn to the Eq. (9), which do not belong tospec(H0). The
multiplicity of En in the spectrum of H0 is equal to 1.

(2) s2 is the set of alllnPs(q) that are multiple eigenvalues of H0. The multiplicity of the
eigenvaluelnPs2 in the spectrum of Ha is equal to kn21.

(3) s3 consists of allln , lnPspec (H0)\s(q), that are not solutions of~9!. The multiplicity of
the eigenvalueln in spec(Ha) is equal to kn .

(4) s4 consists of allln , lnPspec (H0)\s(q), such thatln is a solution of~9!. The multiplicity
of the eigenvalueln in spec(Ha) is equal to kn11.

The corresponding eigensubspaces are described as follows.

(1) The subspace spanned by the normalized eigenfunction

Fn5F]Q

]z
~En ;q!G2 1/2

gq~En! .

(2) The orthogonal complement in Ln of the function

Cn~x!5 (
k51

kn

Fn,k~q!Fn,k~x! ,

or, equivalently, the subspace of Ln of the form$ f PLn : f (q)50%.
(3) The subspace Ln .
(4) The direct sum of Ln and the space spanned by the function gq(ln), which is orthogonal to

Ln .

Proof: The proof is based on direct calculations with the help of following statements:
~A! The orthoprojector P(E0) on the eigenspace of a self-adjoint operator T corresponding to an
isolated eigenvalue E0 has the form

P~E0!52Res@~T2z!21;z5E0#.

~B! Suppose P1 ,P2 and P11cP2 , where cPC, are orthoprojectors in a Hilbert space and P2

Þ0, then c equals0, 1 or 21.
The first statement is well known; we omit the easy proof of the second one. Denote byA(z),

A~z!5@Q~z;q!2a#21ugq~z!&^gq~z!u,

the second term in the representation~7! of the resolvent. Further, denote forE0PR

Pa~E0!52Res@Ra~z!;z5E0# ,

P0~E0!52Res@R0~z!;z5E0# ,

T~E0!5Res@A~z!;z5E0# ;

therefore, according to~7!

Pa~E0!5P0~E0!1T~E0! .
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Start with the proof of the first assertion of Theorem. It is obvious thats1,spec (Ha). Let
EnPs1 , then in a vicinity ofEn we have the following expansion:

Q~z;q!2a5
]

]z
Q~En ;q!~z2En!1O~z2En!2. ~10!

Therefore,

T~En!5F ]

]z
Q~En ;q!G21

ugq~En!&^gq~En!u . ~11!

Since obviouslyP0(En)50, we havePa(En)5T(En) and the normalized eigenfunction cor-
responding toEn is

Fn5F]Q

]z
~En ;q!G2 1/2

gq~En! . ~12!

Now consider an eigenvalueln of H0. In this casePa(ln)5P0(ln)1T(ln). According to
~8!, in a neighborhoodW of ln we have the following representation

gq~z!5Cn~•;q!~ln2z!211 f ~z! ,

where f is analytic function inW with values inL2(R3) and

Cn~x;q!5 (
k51

kn

Fn,k~q!Fn,k~x! .

Consider the following three cases:~a! lnPs(q); ~b! ln¹s(q) and Q(ln ;q)2aÞ0; ~c!
ln¹s(q) andQ(ln ;q)2a50.

Let us start with the case~a!. Since ln is a pole ofQ(•;q), we haveCn(•;q)Þ0 and
thereforeT5cP, whereP is the orthoprojector on the one-dimensional space spanned byCn

(•;q). SinceCn(•;q)PLn , in virtue of statement~B! c521, and the assertion~2! of Theorem is
proven.

In the case~b! according to Lemma 1,Fn,k(q)50 for all k51,...,kn ; henceCn(•,q)50 and
T(ln)50. This implies assertion~3! of Theorem.

Finally, in the case~c! we can use~10!–~12! with z5ln instead ofz5En , and obtain

T~ln!5uFn&^Fnu ,

according to~B!, this get the statement~4! of Theorem. j

For nPN denote byAn the set of allaPR such that the solutionEn[En(a) of Equation~9!
does not belong to the spectrum ofH0. Lemma 2 shows thatR\An is finite, moreover, ifV
bounded from below, thenA05R.

For all qPR3 we will denote«21(q)5l2152`. Using Lemmas 1 and 3 we get immedi-
ately the following proposition.

Proposition 1: For each nPN the functiona°En(a) strictly increases on An . Moreover,

lim
a→1`

En~a!5«n , lim
a→2`

En~a!5«n21 .

j

Remark:For n50 we have an interesting phenomenon of falling the considered particle on
the point q ~the falling on the attractive center; cf. Ref. 21 for the case of a one-dimensional
oscillator!. Indeed, using estimate (b8) from Theorem B.7.1 of Ref. 31, we obtain without any
difficulty uF0(x)u2→d(x2q) in an appropriate space of distributions asa→2` ~and therefore
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E0→2`). According to the standard interpretation of quantum mechanics, this relation means
that the probability to find the particle in a domain not containing the pointq tends to zero asE0

tends to2`.

V. DEPENDENCE OF THE SPECTRUM OF Ha„q… ON q

Here we are going to analyze the dependence of the eigenvalues ofHa on q. It is clear that
En(q) are continuous branches of the multi-valued function defined by Eq.~9!. This branches can
intersect at valuesln where a monodromy arises. To get a univalent enumeration of these
branches, we modify the parametrization of the eigenvalues ofHa given by Theorem 1~the
enumeration of the numbersEn(q) depends on the enumeration of poles«nPspec(H0), which in
its turn depends obviously onq!. For n521,0,... consider the setsXn defined as follows:X21

5R3, and

Xn5$qPR3:' f PLn s.t. f ~q!Þ0%5$qPR3:lnPs~q!% ,

for n>0. For all nPN the setR3\Xn is nowhere dense inR3 ~see in Ref. 38, Theorem XIII.63!.
According to Lemma 1, forn>0, the setXn coincides with the set of allqPR3 such thatln is a
pole of the functionQ(•;q). Since we do not suppose the potentialV is smooth, the function
Q(z;q) on the set (ln21 ,ln)3(Xn21ùXn), n>0, is not, generally speaking, smooth. Neverthe-
less, it is monotone and real analytic with respect to the first argumentz and continuous with
respect to the second argumentq. In this case the following simple variant of Implicit Function
Theorem is applicable~see in Ref. 40 for the proof!:

Let J be an open nonempty interval of the real lineR, X be a topological space, and F: J
3X→R be a separately continuous function such that each partial function t°F(t,x), xPX, is
strictly monotone. Suppose that F(t0 ,x0)50 for some(t0 ,x0)PJ3X. Then there are an open
neighborhood U of the point x0 in X and a continuous function f: U→J such that (1)
F( f (x),x)50 for all xPU; (2) if U8 is another neighborhood of x0 , and g: U8→J is a function
with the property: F(g(x),x)50 for all xPU8, then U8,U, and fuU85g.

According to this version of Implicit Function Theorem, for anyqPXn21ùXn there exists a
unique solutionEn(q) to Eq. ~9! that belongs to (ln21 ,ln) andq°En(q) is a continuous func-
tion in Xn21ùXn .

Proposition 2: Every function En(q), n50,1,..., has a continuous extension to the whole
spaceR3.

Proof: Fix n50,1,..., and let apoint q, qPR3\(Xn21ùXn), be given. Choose a sequence
(qk)kPN from Xn21ùXn which tends toq. First we note that the sequence (En(qk))kPN is bounded
in R. It is trivial for n.0. If n50, the sequence is bounded from above. We prove that it is
bounded from below as well. OtherwiseE0(qkl

)→2` for some subsequence (qkl
). Since

Q(E;q)→2` as E→2`, there existsA,l0 such thatQ(A;q),a. Then there existsNPN
such thatQ(A;qkl

),a andE0(qkl
),A if l>N. Therefore, fork>N we have

Q~E0~qkl
!;qkl

!2a , Q~A;qkl
!2a,0 ,

and we get a contradiction with the definition ofE0(qkl
).

By Bolzano–Weierstrass we can extract a subsequence (qkl
) from the sequence (qk) such that

the subsequence (En(qkl
)) has a limit, which we denote byE8. To prove that the sequence

(En(qk)) tends toE8 andE8 is independent of the choice of a sequence (qk) tending toq we need
the following lemma concerning properties ofE8.

Lemma 5: The limit E8 has the properties:

(1) E8 is not a pole of the functionz°Q(z;q);
(2) if ln21,E8,ln , then E8 is a unique solution of Eq. (9) in the interval(ln21 ,ln);
(3) if E85ln21 , then limE→E8@Q(E;q)2a#>0;
(4) if E85ln , then limE→E8@Q(E;q)2a#<0.
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Proof of the lemma:

~1! First consider the casen.0. The functionQ̃n(z;q)5@Q(z;q)2a#(z2ln21)(z2ln) is con-
tinuous on the interval (ln22 ,ln11)3R3. SinceQ̃n(En(qkl

);qkl
)50, passing to the limitl

→` we get Q̃n(E8;q)50. Supposez5E8 is a pole of Q(z;q), then Q̃n(E8;q)
5Res@Q(z;q);z5E8#Þ0, and we get a contradiction. Forn50, we considerQ̃0(z;q)
5@Q(z;q)2a#(z2l0), and get the same result.

~2! It is sufficient to pass to the limitl→` in the identityQ(En(qkl
);qkl

)50.
~3! In virtue of statement~1! of the lemma, the functionz°Q(z;q) is continuous in a neighbor-

hood of E8, and therefore there exists a limit limz→ln21
@Q(z;q)2a#5L. Assume thatL

,0, thenQ(E,q)2a,0 for someEP(ln21 ,ln). Choose somem such thatEn(qkm
),E.

SinceQ(z;q) increases on the interval (ln21 ,ln) as the function ofz, we obtain a contra-
diction:

05Q~En~qkm
!;qkm

!2a,Q~E;qkm
!2a,0 .

Statement~4! can be proven similarly to~3!. j

Let us return to the proof of the proposition. We prove that if a sequence (pk)kPN from
Xk21ùXk converges to the pointq, thenEn(pk)→E8.

SupposeEn(pk) does not converge toE8, then there exists a subsequence (pkl
) such that

En(pkl
)→E* , E* ÞE8. AssumeE* ,E8. Taking into account item~2! of Lemma 5 we getE*

5ln21 or E85ln . In both the cases we have

lim
z→E*

@Q~z;q!2a#>0 and lim
z→E8

@Q~z;q!2a#<0.

Take some real numbersE1 andE2 such thatE* ,E1,E2,E8. Then by the strict monotonicity
of z°Q(z;q) we have

0<Q~E1 ;q!2a,Q~E2 ,q!2a<0 .

This is a contradiction. j

The following theorem is the main result of this section.
Theorem 2: For each fixedaPR there is a sequence(En(q))nPN of continuous functions of

qPR3 with the following properties:

(1) ln21<En(q)<ln for all nPN.
(2) For eachqPR3 the set consisting of all En(q) and all the numbersln with multiplicities

kn.1 form the complete collection of the eigenvalues of the operator Ha(q).
(3) If ln21,En(q),ln , then En(q) is a unique solution of the Eq. (9) on the interval

(ln21 ,ln).
(4) If z5ln is a pole of the functionz°Q(z;q), then En21(q),ln,En(q).
(5) If z5ln is not a pole of the functionz°Q(z;q), then we have the following assertions:

(a) if Q(ln ;q)2a,0, then En(q)5ln,En11(q);
(b) if Q(ln ;q)2a.0, then En(q),ln5En11(q);
(c) if Q(ln ;q)2a50, then En(q)5ln5En11(q).

Proof: Consider the functionsEn(q) given by Proposition 2. Then~1! is obvious by definition
of En(q). Assertion~2! follows from Theorem 1. Assertions~3! and~4! were proven in Lemma 5.
It remains to prove~5!.

Let ln be not a pole ofz°Q(z;q). SupposeQ(ln ;q)2a,0. For any positive integerm we
choose a numberEm8 such thatln21/m,Em8 ,ln ; then Q(Em8 ;q)2a,0. Further, we choose
points qmPR3 such thatln21 and ln are not poles of the functionz°Q(z;qm) ~that is qm

PXm21ùXm), and such thatuq2qmu,1/m andQ(Em8 ;qm)2a,0. Thenz5En(qm) is a solution
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of the equationQ(z;qm)2a50 lying in the interval (ln21 ,ln). Since Q(z;qm) is a strictly
monotone function ofz on this interval, the inequalitiesEm8 ,En(qm),ln take place for allm.
ThusEn(qm)→ln andqm→q asm→`; therefore,ln5En(q) by the definition of the function
En(q). According to Lemma 5,Q(ln ;q)2a>0, if ln5En11(q); therefore ln,En11(q).
Hence, item~5a! is proved. The proofs of items~5b! and ~5c! are similar. j

Theorem 2 gives a useful description of the spectrum ofHa . Namely, denote byM the set
$mPN: km.1% and together with the functionsEn(q) introduce a sequence of constant functions
Lm

(k)(q)5lm , wheremPM , k51,...,km21. ThenEn(q)<Ln
(k)(q)<En11(q) for all nPM , k

51,...,kn21, and for any fixed qPR3 the union of the sequences (En(q))nPN and
(Lm

(k)(q))mPM ,k51,...,km21 forms the complete set of the eigenvalues ofHa(q) multiplicity count-

ing. If qPùn50
` Xn , then everyEn(q) is distinct from the numbersLm

(k)(q). SinceR\ùn50
` Xn is

the set of the first Baire category, for a genericq the point perturbation levelsEn(q) are distinct
from the levels of the unperturbed operatorH0.

VI. POINT PERTURBATIONS OF THE HARMONIC OSCILLATOR

Here we apply the results of the previous sections to the Hamiltonian~2! with the potential

V~r !5
mVx

2

2
x21

mVy
2

2
y21

mVz
2

2
z2 , ~13!

whereV j ( j 5x,y,z) are the frequencies of the oscillator. The functionV can be considered as a
confinement potential of a quantum well inR3 with the characteristic sizes

L j5A \

2mV j
, j 5x,y,z

~numbers&L j are called alsolength parametersof the oscillator41!. Therefore the operator with
potential~13! can be used as the Hamiltonian of a~generally speaking, asymmetric! quantum dot.1

It is convenient to pass to dimensionless coordinatesx5r /L, whereL5A3 LxLyLz . In the coordi-
natesx5(x1 ,x2 ,x3) the operatorĤ0 takes the formĤ05\VH0, where

H052D1 1
4 ~v1

2x1
21v2

2x2
21v3

2x3
2! ,

V5A3 VxVyVz , v15
Vx

V
, v25

Vy

V
, v35

Vz

V

~hence,v1v2v351).
Further we discuss the properties ofH0. The spectrum of this operator consists of the eigen-

values

ln1n2n3
5v1~n111/2!1v2~n211/2!1v3~n311/2! ,

wheren1 ,n2 ,n3PN. The corresponding normalized eigenfunctions are

Fn1n2n3
~x!5wn1

~x1!wn2
~x2!wn3

~x3! ,

where

wnj
~xj !5S v j

2p D 1/4

~2njnj ! !21/2expS 2
1

4
v j xj

2DHnSAv j

2
xj D

is the oscillator function@Hn(x) is the Hermite polynomial of degreen].
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If the frequenciesv1 ,v2 ,v3 are independent over the ringZ ~this is the generic case!, then
the spectrum ofH0 is simple; therefore, the multiplicity of the eigenvalues ofHa(q) does not
exceed 2 and the parts2 of the spectrum spec (Ha(q)) is always empty. On the other hand, since
Hn(0)50 if and only if n is odd,ln1 ,n2 ,n3

Pspec(Ha(0)) if and only if one of the numbersnj

( j 51,2,3) is odd; hence, spec(H0)\s(0) is always infinite. In addition, for alln.0 the setR3\Xn

is infinite.
In general case, there are no explicit expressions for the Green functions of the harmonic

oscillator in terms of commonly used elementary or special functions. Nevertheless, in a number
of cases, the representation of the Green functionG0(x,y;E) as the Laplace transform of the heat
kernelK(x,y;t) for H0 is very useful to investigate some properties of the KreinQ-function. The
heat kernel forH0 has the form~see, e.g., in Ref. 42!:

K0~x,y;t !5)
j 51

3 S 1

4pshv j t
D 1/2

expS 2
v j

4shv j t
~~xj

21yj
2!chv j t22xjyj ! D .

Using the heat kernelK f for the free HamiltonianH f52D,

K f~x,y;t !5~4pt !23/2expS 2
~x2y!2

4t D ,

and theQ-function for H f ,

Qf~z!52
A2z

4p
,

we get immediately from the formula

G~x,y;E!5E
0

`

etEK~x,y;t ! dt ,

that for Rez,(v11v21v3)/2 the following representation of theQ-function for H0 takes place:

Q~z;q!52
A2z

4p
1

1

~4p!3/2E
0

`S )
j 51

3 S 1

shv j t
D 1/2

expS 2
1

2
qj

2v j th
v j t

2 D2
1

t3/2D ezt dt . ~14!

It is clear from ~14! that (]Q/]qj )(E;q),0 for qj.0, if E,l05(v11v21v3)/2. Since
]Q/]E.0 for EPR\spec (H0), ~9! implies that]E0 /]qj.0. In particular, the depth of the lowest
impurity level l02E0(q) decreases ifuqu increases in such a way that the inner producta•q
remains positive for each vectora with positive coordinates. In the spherically symmetric case
v15v25v3 , we have]Q/]q,0, whereq5uqu.0, and the depth decreases with increasing ofq.
This phenomenon was discovered numerically for a spherically symmetric quantum dot in Ref. 14
and calledpositional disorder. We see that the positional disorder is common to each parabolic
quantum dot, not only to the spherically symmetric one. The similar result is valid in the two-
dimensional case, i.e., for the case of impurities in a quantum well~see numerical results in Ref.
14!. Our arguments are valid in the two-dimensional case also, thus we have a strict proof for the
positional disorder in a two-dimensional quantum well.

The more detailed analysis is possible in the case of theisotropic oscillator: Vx5Vy5Vz

(5V), i.e., in the case of a spherically symmetric quantum dot. In this casev15v25v351 and
the spectrum ofH0 consists of the eigenvalues

ln5n1 3
2 , nPN ,
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whereln has the multiplicitykn5(n11)(n12)/2. In this case there are natural units of length
~namely,L) and of energy (\V). Therefore, the following very important scaling properties takes
place. Denote byQ̂(z;q) the KreinQ-function for the operatorĤ0 keeping the notationQ(z;q)
for the Q-function of H0. Then

Q̂~z;q!5
1

\VL3 QS z

\V
;
q

L D54p
m

2p\2L
QS z

\V
;
q

L D .

Denotem/(2p\2L) by a0; obviously,a0 is strength of the point potential corresponding to the
scattering lengthL. Then Eq.~9! takes the form

4pQS z

\V
;
q

L D5
a

a0 , ~15!

or, equivalently,

4pQS z

\V
;
q

L D5
L

,s
.

Equation~15! shows that a change of the frequencyV does not change the numerical values of
energy levels in the spectrum ofĤ0 if L is used as the unit of length,\V as the unit of energy and
a0 as the unit of point potential strength.

In the case of isotropic oscillator, the sets~q! has a simple description:
Proposition 3: LetVx5Vy5Vz . Thens(q)5$l2n : nPN%, if q50, and s(q)5spec(H0)

otherwise.
Proof: Eachln is equal toln1n2n3

, wheren11n21n35n. If n is odd, then at least one of
nj is odd, andCn1n2n3

(0)50. Therefore,ln¹s(0). On the other hand, ifn is even, then
Cn00(0)Þ0, and therefore,lnPs(0).

Let now qÞ0. First we remark that for allnPN the following assertion is valid:
Lemma 6: If Hn(x0)50, then Hn11(x0)Þ0.
Proof of the lemma:For all nPN the following relation takes place:43

Hn118 ~x!52~n11!Hn~x! .

If Hn(x0)5Hn11(x0)50, thenHn8(x0)50. Sincey5Hn(x) is a solution to the differential equa-
tion y922xy812ny50, we haveHn(x)50 for all x; but this is impossible. j

Let us return to the proof of the proposition. Suppose thatqÞ0; without loss of generality we
can assumeq2Þ0. SinceH1(x)50 only for x50, and H0(x)Þ0 for all x, we havel0 ,l1

Ps(q). Let n.1. Suppose thatFn21,1,0(q)50, then according to Lemma 6,Fn,0,0(q)Þ0. j

Using Proposition 3 we can give the complete description of the spectrumHa(q) in the case
of an isotropicH0. Moreover, in this case the explicit form of the Green functionG0(x,x8;z) is
known, and therefore, we can give the explicit form of the KreinQ-function and eigenfunction of
Ha(q). In particular, the equation for the point perturbation levelsEn(q) can be obtained in an
explicit form. The mentioned Green function has the form18

G0~x,y;z!52
1

2~2p!3/2GS 1

2
2z D FU~2z;j!U8~2z;2h!1U8~2z;j!U~2z;2h!

ux2yu

1
U~2z;j!U8~2z;2h!2U8~2z;j!U~2z;2h!

ux1yu G , ~16!

wherej5(ux1yu1ux2yu)/2, h5(ux1yu2ux2yu)/2, U(n;z) is the parabolic cylinder function44

~in the Whittaker notationU(n;z)5D2n21/2(z)), andU8 denotes the derivative ofU with respect
to the second argument
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U8~z;y!5
]

]y
U~z;y! .

Using ~16!, we get the following expression for theQ-function:

Q~z;q!52
1

8~2p!3/2GS 1

2
2z D F ~q224z!U~2z,q!U~2z,2q!14U8~2z,q!U8~2z,2q!

2
2

q
~U8~2z,q!U~2z,2q!2U~2z,q!U8~2z,2q!!G , ~17!

whereq5uqu. Due to the symmetry of the problem, theQ-function depends onq only, so we shall
write often Q(z;q) instead ofQ(z;q). Introducing the notationU(z;y)5U(z;y)U(z;2y), we
can rewrite~17! in the sometimes more useful form

Q~z;q!52
1

4~2p!3/2GS 1

2
2z D F ~q224z!U~2z;q!2

1

q
U8~2z;q!2U9~2z;q!G , ~18!

where the prime denotes the derivative with respect to the second argument as before. Passing to
limit we get atq50

Q~z;0!52
1

A8p

GS 3

4
2

z

2D
GS 1

4
2

z

2D . ~19!

It is interesting to compare~19! with the Krein Q-function Q(1)(z;0) for the one-dimensional
harmonic oscillator:26

Q(1)~z;0!5223/2

GS 1

4
2

z

2D
GS 3

4
2

z

2D .

Curiously, in the case of the free HamiltonianH052D, the Q-functionsQd for d51 and for
d53 are also related as follows:

Q1
21~z!528pQ3~z! . ~20!

Namely, for the free HamiltonianQ1(z)5(2A2z)21, Q3(z)52(4p)21A2z. ForqÞ0 relation
~20! for Q-functions of the harmonic oscillators is violated.

It is useful to consider the behavior of the functionz°Q(z;q) near the singular points, i.e.,
near the poles and in a neighborhood of2`. Using properties of the parabolic cylinder
functions,43 we have

Q~z;0!52
~2n11!!!

~2p!3/2~2n!!! S 1

z2l2n
2 ln 2112

1

2 (
k51

n
1

k~112k!
1O~z2l2n!D ,

asz→l2n . If qÞ0, the coefficients for corresponding asymptotics are cumbrous enough, and we
give the leading term only:
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Q~z;q!52
exp~2q2/2!

~2p!3/22n12n!
~2~n11!Hn

2~q/& !1&~q212q!Hn~q/& !Hn11~q/& !

1Hn11
2 ~q/& !!~z2ln!211O~1! , ~21!

asz→ln .
For Rez→2`, we have

Q~z;q!52
A2z

4p S 12
q2

8
z211

82q4

128
z221O~z23! D . ~22!

It is important to note that the leading term in~22! coincides with the KreinQ-function for the free
Hamiltonian2D.

Now consider the properties of the functionq°Q(z;q). SinceU(n;z) is an entire function of
z, the functionq°Q(z;q) at z¹spec(H0) can be extended to a real analytic even function onR
@see~18!#. In particular,

]

]q
Q~z;0!50 .

As to the second derivative, we can obtain after some algebra

]2

]q2 Q~z;0!5
1

8A6p F ~4z211!

GS 1

4
2

z

2D
GS 3

4
2

z

2D 28z

GS 3

4
2

z

2D
GS 1

4
2

z

2D G . ~23!

For the fixedzPR\spec(H0), the asymptotics ofQ at q→` is given by

Q~z;q!52
1

8p Fq2
2z

q
2

112z2

q3 1OS 1

q5D G . ~24!

This follows from the asymptotics forU(z;q) at q→`:45

U~z;q!5
A2p

GS 1

2
1z D F 1

X
1OS 1

X5D G ,

whereX5Aq214z.
Further the following formula will be also useful

]Q

]z
~z;0!5

1

4&p

GS 3

4
2

z

2D
GS 1

4
2

z

2D GS 1

2
2z D . ~25!

Here and below we use the standard notations43

G~z!5cS z

2
1

1

2D2cS z

2D ; c~z!5
G8~z!

G~z!
.

The plot of the graphs for the functionQ(z;q) is shown in Figs. 1 and 2.
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In the case of an isotropic oscillator, the functionsEn(q) depend only onq and we will denote
them by En(q). Further properties of these functions@and, in particular, of the spectrum of
Ha(q)] for the isotropic case are given in Theorem 3 below, which is one of the main results of
the article.

FIG. 1. Q as a function ofz for ~a! q50, ~b! q51/10, ~c! q51, ~d! q53.

FIG. 2. Q as a function ofq for (a) z50, (b) z51, (c) z52, (d) z53, (e) z54.
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Theorem 3: The following assertions take place.
(1) The functions En(q), nPN are real-analytic. Ifa50 and n.0, then in a vicinity of zero,

these functions are continuous branches of a two-valued analytic function.
(2a) E0(0),l0 for eacha, aPR.
(2b) If a.0, then E2n11(0)5l2n11 and l2n11,E2n12(0),l2n12;nPN.
(2c) If a,0, thenl2n,E2n11(0),l2n12 and E2n12(0)5l2n12;nPN.
(2d) If a50, then E2n11(0)5E2n12(0)5l2n11;nPN.
(3a) If aÞ0, then for any n.0

]En

]q
~0!50 . ~26!

If n50, then ~26! is valid for anya.
~3b! If a.0 ~respectively, a,0), then

]2En

]q2 ~0!5
1

8A6GS 1

2
2En~0! D S 4En

2~0!11

8p2a2 28En~0! D , ~27!

for any even (respectively, odd) n. If n50, then ~27! is valid for anya.
~3c! If a50, then (]E2n11 /]q)(0),0, (]E2n12 /]q)(0).0, and (u(]E2n11 /]q)(0)u

5u(]E2n12 /]q)(0)u;nPN.
~4! If qÞ0, thenln21,En(q),ln;nPN.
~5! limq→`En(q)5ln;nPN.
Proof: Item ~4! follows immediately from Proposition 3 and the definition of the functions

En . Formula~19! shows thatQ(z;0)50 if and only if z5l2n11 for somenPN; therefore, items
~2a!–~2d! follow from Theorem 2. Using the standard version of the implicit function theorem and
the Proposition 3 again, we see thatEn(q) are real analytic atq.0. Moreover, item~3! of
Theorem 2 implies that~i! En(q) are real-analytic atq50 for evenn if a.0, ~ii ! En(q) are
real-analytic atq50 for oddn if a,0, and~iii ! E0(q) is real-analytic atq50 for anya. In all
these cases, the derivatives ofEn can be found from the equations

]Q

]z

]En

]q
1

]Q

]q
50 ,

]Q

]z

]2En

]q2 1
]2Q

]z2 S ]En

]q D 2

12
]2Q

]z]q

]En

]q
1

]2Q

]q2 50. ~28!

Since (]Q/]q)(E;0)50 if E¹spec(H0), equation~26! follows from ~28! in the considered
cases. In virtue of~26!, the second derivative ofEn is given by

]2En

]q2 ~0!52
]2Q

]q2 S ]Q

]z D 21

~En~0!;0!. ~29!

Substituting~23! and ~25! into ~29! and using~9! we get~27!.
Now consider the singular case whenEn(0), n>1, coincides with a point of the forml2m11 .

In a neighborhood of the point (En(0),0), introduce the function

Q̃a~z;q!5
Q~z;q!2a

GS 1

2
2z D ,
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which is smooth with respect to (z,q) and analytic with respect to the first argumentz. In a
vicinity of (En(0),0) we have

Q̃a~En~q!;q!50 . ~30!

Further,

]Q̃a

]z
5

1

G~1/22z!

]Q

]z
1~Q2a!

G8~1/22z!

G2~1/22z!
. ~31!

Since (]Q/]z)(z;0) is a finite number atz5l2m11 andG(1/22z) has a pole atl2m11 , the first
term in ~31! vanishes at the point (l2m11,0). The value of the functionG8(1/22z)/G2(1/22z) at
z5l2m11 is a nonzero finite number. Finally,Q(l2m11,0)50; thus]Q̃a /]q vanishes at the point
l2m11 if and only if a50. Therefore, ifaÞ0, then each functionEn(q) has an analytic continu-
ation in a neighborhood of the pointq50. Sinceq°Q̃a(l2m11 ;q) is an even function, we get
easily ~26!.

Let now a50. Then

]2Q̃0

]z2 5
1

G~1/22z!

]2Q

]z2 12
G8~1/22z!

G2~1/22z!

]Q

]z
2Q

G9~1/22z!G~1/22z!22G82~1/22z!

G3~1/22z!
.

~32!

It is easy to see that the first and last terms in~32! vanishes at the point (l2m11,0), whereas the
second one does not. Therefore,]2Q̃0 /]z2Þ0 at the point (l2m11,0), andEn(q) being solutions
of ~30!, are continuous branches a two-valued analytic function in a vicinity of (l2m11,0). Ob-
viously, at the point (l2m11,0) the following relation is valid

]2Q̃0

]z2 S ]En

]q D 2

12
]2Q̃0

]z]q

]En

]q
1

]Q̃0

]z

]2En

]q2 1
]2Q̃0

]q2 50 .

Since]Q̃0 /]z50 at the considered point, we get the quadratic equation for]En /]q:

]2Q̃0

]z2 S ]En

]q D 2

1
]2Q̃0

]q2 50 .

As a result, we complete the proof of items~1! and~3c!. It remains to prove~5!. Fix nPN and let
«, 0,«,1, is given. According to~24! we can chooseq0.0 such thatQ(ln2«;q)2a,0 if
q>q0 . SinceQ(En(q);q)2a50 and the functionE°Q(E;q) increases in the intervalln21

,E,ln , we haveEn(q).ln2« as q>q0 . Moreover, En(q),ln , and the proof is com-
pleted. j

The structure of spec(Ha(q)) given by Theorem 3 is presented in Table I. The peculiarities of
this table atq50 can be understood from the point of view the symmetry group of the problem.
It is well known that for a generic spherically symmetric potentialV(r ), the eigenvaluesl of the
operatorH052D1V are parametrized by three quantum numbers:l5lnr ,l ,m , wherenr (nr

50,1,...) is the socalled principal~or total! quantum number;l ( l 50,1,...) is theorbital quantum
number, andm (m52 l ,2 l 11,...,l 21,l ) is the magnetic quantum number. Each eigenvalue
lnr ,l ,m is degenerate with multiplicity 2l 11, namely, lnr ,l ,m5lnr ,l ,m8 if m,m8P$2 l ,2 l

11,...,l 21,l %. This degeneracy is related to the invariance ofH0 with respect to the rotation
groupSO~3!: eigensubspaces ofH0 carry an irreducible representation of this group. In general,
lnr ,l ,mÞln

r8 ,l 8,m8 if nrÞnr8 or lÞ l 8. The eigenvalues of an isotropic harmonic oscillator have an

additional~so-called accidental! degeneracy: Each eigensubspaceLn is decomposed on the sub-
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spacesLn
( l ) with angular momentuml 5n,n22,...,0~if n is even! or l 5n,n22,...,1~if n is odd!.

This accidental degeneracy is related to the invariance of the HamiltonianH0 of an isotropic
harmonic oscillator with respect to the groupU~3!. Indeed,

H05(
j 51

3

aj
1aj1

3
2 ,

whereaj
1 andaj are standard creation and annihilation operators.41 Therefore,H0 is invariant with

respect to the transformation

aj→aj85(
j 51

3

uk jaj , aj
1→a8

j15(
j 51

3

uk j* aj
1 ,

where (ujk) is a unitary matrix. Ifq50, thenHa(0) is a spherically symmetric perturbation ofH0

that violates theU~3!-symmetry. To prove this, we note that operatorsaj
1ak are generators of the

Lie groupu(3). Therefore, ifHa(0) is invariant with respect to the considered representation of
U~3!, we must have@Ha(0),H0#50. On the other hand it is easy to show that forzPC \R the
operator@Ra(z),R0(z)# has a nonzero integral kernel.

Since point perturbations cannot change states with nonzero angular momentuml ~see, e.g.,
8!, the parts2 ~at q50) may contain only even eigenvaluesl2n and we see this in Table I. Since
all states fromLn have the same parity (21)n, the isotropic oscillator has no stationary states with
a nonzero dipole momentum.35 On the other hand every eigensubspace ofH0(0) with eigenvalue
from s4 have an eigenfunction withl 50 ~this is the eigenfunction from item 4 of Theorem 1!.
Therefore, point perturbations of an isotropic harmonic oscillator can lead to an appearance of
eigenstates with nonzero dipole momentum.

An alternative tool to understand the energy degeneracy of the three-dimensional isotropic
oscillator gives the supersymmetry theory.46–48 We will not dwell here on this approach, never-
theless note that the analysis performed in the cited papers requires a modification in thes-channel
only.

The functionsEn depend not only on the position parameterq, but also on the strengtha; we
will denote these dependencies asEn5En(q,a). If E(q,a0) coincides with one of the numbers
Em , then in a vicinity ofa0 , the functiona°En(q,a) is a continuous branch of the inverse
function to E°Q(E;q). It is already known from Proposition 1 that the following limits take
place:

lim
a→1`

En~q;a!5ln , lim
a→2`

En~q;a!5ln21 ,

TABLE I. The structure of spec(Ha(q)).

q50 qÞ0

a.0 s15$E2n(0): nPN% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%
s35$l2n11 : nPN% s35B

s45B s45B

a50 s15$1/2% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%

s35B s35B

s45$l2n11 : nPN% s45B

a,0 s15$E2n11(0): nPN%ø$E0(0)% s15$En(q): nPN%
s25$l2n12 : nPN% s25$ln11 : nPN%
s35$l2n11 : nPN% s35B

s45B s45B
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wherel2152`. Now we make more precise this behavior. From~22! we get the asymptotics of
the functionE0(q;a) for the fixedq>0 asa→2`,

E0~q;a!5216p2a21
q2

4
1

1

128p2a2 1OS 1

a4D , ~33!

or in terms of the point perturbation of the initial operator~1!

E0~q;a!52
\2

2m l s
2 1

mV2q2

2
1

mV2l s
2

4
1O~ l s

4! , ~34!

where the scattering lengthl s tends to 0. Expression~34! means that up to the infinitely small term
O( l s

2) the ground state ofĤa(q) equals to the ground state of the point perturbation of the free
Hamiltonian 2\2D/2m with the same scattering lengthl s shifted by the potentialV(r )
5mV2r2/2 at the pointr5q. Equation~34! shows that at least for the isotropic harmonic oscil-
lator its potential can be recovered from the dependence of the ground state of the point pertur-
bation on the position of the potential support. It is reasonable to suppose that this is true for more
general forms of the potentialV; we consider this conjecture elsewhere.

Now consider the behavior ofEn(q;a) in a vicinity of the poles ofQ(z,q). We start with the
general caseqÞ0. Using~21! we get asa→6`

En~q;a!5ln
62

exp~2q2/2!

~2p!3/22n12n!
~2~n11!Hn

2~q/& !1&~q212q!Hn~q/& !Hn11~q/& !

1Hn11
2 ~q/& !!a211O~a22!, ~35!

whereln
15ln andn>0 asa→1`, andln

25ln21 andn>1 asa→2`.
In the caseq50, we are in position to give a compact form for more precise asymptotics of

En(q;a). Denote

Ln~a!5
~2n11!!!

~2p!3/2~2n!!!
a212S ~2n11!!!

~2p!3/4~2n!!! D
2S ln 2211

1

2 (
k51

n
1

k~112k!Da22.

For eigenvalues with even indices we have

E2n~0;a!5H l2n21 for a<0 and n>1

216p2a21
1

128p2 a221O~a24! for a→2` and n50

l2n2Ln~a!1O~a23! for a→1` and n>0 .

~36!

For the odd indices

E2n11~0;a!5H l2n11 for a>0

l2n2Ln~a!1O~a23! for a→2` .
~37!

Formulas~35!–~37! explain peculiarities in the plots of functionsEn on Figs. 3 and 4. Note that
in Eqs.~33!–~37! the remainder terms depend onn.

The isotropic harmonic oscillator has an equidistant spectrum. After the perturbation by a
zero-range potential, the distances between energy levels are changed and become dependent on
the energy indexn. This is important in the connection with the problem of the controlled
modulation of the binding energy of the impurity center in quantum dots, that can be used to
design nonlinear opto-electronic active elements.6 The asymptotic formulas~34!–~37! give very
accurate expressions for the excited energies in the most interesting case of a deep zero-range well

1286 J. Math. Phys., Vol. 45, No. 4, April 2004 Brüning, Geyler, and Lobanov
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(a→2`) as well as for the case of a shallow well (a→1`), which confirm numerical results
from Ref. 6. Note also that Proposition 1 and Theorem 3 imply a remarkable distinction between
the excited energy for the ground state and that for the other ones: The energyE1(q;a)
2E0(q;a) can take an arbitrary value depending onq and a; on the other hand, energiesln

2En(q;a) andEn11(q;a)2ln(n>1) are bounded by 1. Since at fixeda, a!21, the function
q°E1(q;a)2E0(q;a) is injective for moderate values ofq, the position of an impurity in the
quantum dot may be determined from the spectroscopy data.

We show the plot of the energiesE1(q;a)2E0(q;a) andl12E1(q;a) as functions ofq and
a on Figs. 5 and 6, respectively.

FIG. 3. En as a function ofq for ~a! a52a0, ~b! a50, ~c! a5a0.
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FIG. 4. En as a function ofa for ~a! q50, ~b! q51/10, ~c! q51, ~d! q53.

FIG. 5. The exciting energy as a function ofq for (a) a52a0, (b) a50, (c) a5a0.
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In conclusion we give the following remark. Letq: @0,̀ )→R be a smooth function obeying
the conditions

~H1! q>0 and the functionr °q(r )1r 2/4 is nondecreasing;
~H2! q8(r )<0, and letk0 and k1 be the first two eigenvalues of the operatorH01q52D
1r 2/41q(r ). It is proven in Ref. 49 thatk0 /k1,l0 /l1 , if qÞ0. Using Theorems 3 and A it is
easy to construct smooth functionsq with properties~H1! and
~H2a! q8(r )>0, such thatk0 /k1.l0 /l1 .
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