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In the last few years, the spectral theory of the Laplace–Beltrami operator on periodic manifolds
has attracted special attention (see, e.g., [1] and the references therein). Not the last of the reasons
is the interest in the transport properties of carbon nanostructures composed of fullerenes and
nanotubes [2], whose geometry is adequately modeled by the so-called hybrid manifolds, i.e., by
topological spaces composed of manifolds of different dimensions. In this paper, we present several
results concerning the spectrum of the Schrödinger operator on periodic decorated graphs, which
are a special case of periodic hybrid manifolds and, in turn, include metric graphs (quantum
networks) [3] as a special case.

In what follows, Γ denotes a certain oriented graph with the set V of vertices and the set E
of edges. For each v ∈ V , we choose a compact Riemannian manifold Mv whose dimension does
not exceed 3 , and for each e ∈ E , we choose a segment

Me = [a1(e), a2(e)] ⊂ R, where a1(e) ≤ a2(e).

A topological space obtained from the disjoint union Y of manifolds Mv and segments Me by
gluing each point a1(e) (respectively, a2(e)) to the manifold Mv , where v is the starting point
(respectively, the endpoint) of the edge e , will be called a decorated graph X . We note that
if all the manifolds Mv , v ∈ V , are zero-dimensional and all the segments Me , e ∈ E , are
nondegenerate, then the decorated graph is exactly a metric graph.

By Ξ we denote the disjoint union of the sets V and E . Then, under the natural definition of
the space L2(X) , we have the identification

L2(X) �
⊕
ξ∈Ξ

L2(Mξ).

For each ξ ∈ Ξ, we choose a Schrödinger operator Hξ in L2(Mξ) determined by a second-order
differential expression on Mξ with sufficiently smooth coefficients and (for ξ ∈ E) by self-adjoint
boundary conditions at the endpoints of the segment Mξ . Then the Schrödinger operator on X
can be defined as follows. Suppose that Sξ is the restriction of Hξ to the set of all functions
defined on the domain D(Hξ) and vanishing at the points of gluing, S is the direct sum of all Sξ ,
and ξ ∈ Ξ. Any self-adjoint extension of the operator S will be called a Schrödinger operator
on X . It is convenient to describe all the Schrödinger operators generated by S by using the Krein
formula for resolvents. To do this, we denote the direct sum of all Hξ by H0 and, for each ξ ∈ Ξ,
introduce an auxiliary Hilbert space Gξ whose dimension coincides with the deficiency number of

858 0001-4346/2005/7756-0858 c©2005 Springer Science+Business Media, Inc.
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the operator Sξ . Suppose that γξ and Qξ are, respectively, the Γ-field and the Q-function of the
pair (Hξ , Sξ) [4]; in particular, γξ(z) (respectively, Qξ(z)) is a bounded linear operator from Gξ

to L2(Mξ) (respectively, from Gξ to Gξ) for each regular value z of the operator H0 . Now, we
set

G =
⊕
ξ∈Ξ

Gξ , γ =
⊕
ξ∈Ξ

γξ , Q =
⊕
ξ∈Ξ

Qξ.

Then the following formula determines a bijection between the resolvents of all self-adjoint exten-
sions H of the operator S and the self-adjoint (generally, multivalued) operators Λ in G:

(H − z)−1 = (H0 − z)−1 − γ(z)[Q(z)− Λ]−1γ∗(z̄).

The extension of H corresponding to Λ will be denoted by HΛ . An operator Λ is single-valued
if and only if HΛ and H0 are disjoint, i.e.,

D(HΛ) ∩ D(H0) = D(S).

To simplify the subsequent statements, we assume that HΛ and H0 are disjoint. We note that, in
fact, this assumption does not lead to a loss of generality: the graphs of all Λ are exactly Lagrangian
subspaces in G×G with respect to the standard skew-Hermitian product [5]; obviously, the graphs
of single-valued operators form Lagrangian planes in general position.

We shall consider periodic decorated graphs and gauge-periodic operators HΛ on them. To do
this, we assume that a discrete group G acts freely on a graph Γ; in particular, the action of the
group G on Ξ is given. Assuming that Mgξ = Mξ , g ∈ G , ξ ∈ Ξ, and the points of gluing are
invariant under the action of G on Y , we obtain the natural action of G on X . Now, let σ be
a 2-cocycle on G ranging in U(1) . Closed linear operators A in L2(X) with (G, σ̄)-invariant
resolvents are said to be gauge-periodic. If we have σ = 1 in this case, then A is said to be
periodic. In what follows, we assume that Hgξ = Hξ for any g ∈ G . Then we can easily prove that
the Schrödinger operator HΛ is gauge-periodic if and only if Λ is (G, σ̄)-invariant. Everywhere
below, the last condition is assumed to be satisfied.

Next, we assume that G acts on Γ with finitely many orbits. We let F denote the fundamental
set of the action of G on Ξ, i.e., a subset Ξ containing a single representative of each orbit. By
C∗

r (G, σ) we denote the reduced twisted group C∗ -algebra of the group G with factor σ [6], and
by Hf (respectively, by Gf ) the space

⊕
ξ∈F L

2(Mξ) (respectively,
⊕

ξ∈F Gξ). The space of all
compact linear operators in the Hilbert space H will be denoted by K(H) , and the standard trace
in

C∗
r (G, σ)⊗K(Hf )

will be denoted by Tr . Since Gf is a finite-dimensional space, the following theorem significantly
simplifies the study of the spectrum of the gauge-periodic operator HΛ (in this theorem and in
what follows, we identify the spaces L2(X) and G with l2(G,Hf ) and l2(G, Gf ) , respectively).

Theorem 1. Let Λ belong to the C∗ -algebra C∗
r (G, σ) ⊗ K(Gf ) . Then the resolvent of the

operator HΛ belongs to C∗
r (G, σ)⊗K(Hf ) .

The assumption of Theorem 1 is satisfied for the very important case in which Λ is a bounded
operator in G and its standard matrix representation has only finitely many nonzero diagonals.
Moreover, we assume that G is equipped with a left-invariant metric ρ . Then, using the methods
proposed in [7], we can prove the following theorem.

Theorem 2. Suppose that Λ is a bounded operator and there exist constants C and δ > 0 such
that, for all α, β ∈ G , the matrix elements Λ(α, β) satisfy the condition

‖Λ(α, β)‖ ≤ Cη(ρ(α, β))−1−δ ,
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where η(R) is the number of elements in the ball of radius R . Then Λ ∈ C∗
r (G, σ)⊗K(Gf ) .

In what follows, we assume that HΛ is semibounded below, which is the case under very general
assumptions on Hξ and Λ. We fix a real number E′ < inf spec(HΛ) and, for E /∈ spec(HΛ) ,
define

N(E) :=
{
TrP[E′ ,E] , E ≥ E′ ;
0, E < E′ ,

where P is the spectral projection operator for HΛ .

Corollary 1. Under the assumptions of Theorem 1, the values of N(E) lie in a countable set of
real numbers Tr(K0C

∗
r (G, σ)) , where K0 is the corresponding component of the K-functor on the

category of C∗ -algebras.

It is said that the pair (G, σ) has the Kadison property if the traces of all nonzero self-adjoint
projection operators from C∗

r (G, σ)⊗K(l2) are bounded away from zero. In particular, each pair
(Zm , 1) , m ≥ 1 , has the Kadison property; more examples can be found in [8].

Corollary 2. If, under the assumptions of Theorem 1, the pair (G, σ) has the Kadison property,
then the spectrum of the operator HΛ has a zone structure.

It is said that the C∗ -algebra A has the RRI0 property if A has an exact state F such that
each self-adjoint element from A can be approximated (with arbitrary accuracy) by an element
with finite spectrum whose spectral projection operators are arbitrarily small on F [9]. The proof
of the following corollary is based on an argument from [10].

Corollary 3. Suppose that the assumptions of Theorem 1 are satisfied. Suppose additionally
that the C∗ -algebra C∗

r (G, σ) ⊗ K(Hf ) has the RRI0 property. Then the operator HΛ can be
approximated with arbitrary accuracy in the sense of uniform resolvent convergence by operators
with a Cantor spectrum from C∗

r (G, σ)⊗K(Hf ) .

Next, we assume that G is an Abelian group without torsion; then G � Z
d , and, in G , we fix

the standard metric ρ of the group Z
d .

Theorem 3. Suppose that
Λ(α, β) ≤ c1 exp(−c2ρ(α, β))

with constants c1 , c2 > 0 . Then HΛ has a zone spectrum without any singular continuous compo-
nent.

Remark. Simple examples show that, under the assumptions of Theorem 3, the operator HΛ can
have eigenvalues.

In [11], one can find examples of the Schrödinger operator on a periodic decorated graph X ,
dimX ≥ 2 , whose spectrum has infinitely many gaps, i.e., for which the Bethe–Sommerfeld hy-
pothesis is not true [12]. We show that this hypothesis is not true for a rather wide class of periodic
decorated graphs.

Theorem 4. Suppose that G acts transitively on the set of vertices of the graph Γ . Suppose that
the operator Hv (which is independent of v in this case) has infinitely many eigenvalues whose
multiplicity is greater than the degree of the vertex v (which is also independent of v ). Suppose also
that all segments Me are degenerate. Then, when the points of gluing are in general position, the
spectrum of HΛ has infinitely many lacunas both in the sense of the Lebesgue–Riemann measure
and in the sense of the Baire category.
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