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Abstract

We consider the Schrödinger operator on the real line with a 2×2 matrix-valued 1-periodic potential. The
spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define
a Lyapunov function which is analytic on a two-sheeted Riemann surface. On each sheet, the Lyapunov
function has the same properties as in the scalar case, but it has branch points, which we call resonances.
We prove the existence of real as well as non-real resonances for specific potentials. We determine the
asymptotics of the periodic and the anti-periodic spectrum and of the resonances at high energy. We show
that there exist two type of gaps: (1) stable gaps, where the endpoints are the periodic and the anti-periodic
eigenvalues, (2) unstable (resonance) gaps, where the endpoints are resonances (i.e., real branch points
of the Lyapunov function). We also show that periodic and anti-periodic spectrum together determine the
spectrum of the matrix Hill operator.
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1. Introduction and main results

We consider the self-adjoint operator Ty = −y′′ + V (x)y, acting in L2(R) ⊕ L2(R), where
V is a symmetric 1-periodic 2 × 2 matrix potential which belongs to the real space Hp,p = 1,2,
given by

Hp =
{

V = V ∗ = V T =
(

V1 V3
V3 V2

)
:

1∫
0

V3(x) dx = 0

}
,

equipped with the norm ‖V ‖p
p = ∫ 1

0 (|V1(x)|p + |V2(x)|p + 2|V3(x)|p) dx < ∞. Without loss of
generality we assume

V(0) =
1∫

0

V (t) dt, V10 � V20, V30 = 0, Vm0 =
1∫

0

Vm(x)dx, m = 1,2,3.

Let us introduce the self-adjoint operator T 0 = −d2/dx2, with the domain Dom(T 0) = W 2
2 (R)⊕

W 2
2 (R). In order to get self-adjointness of T we use symmetric quadratic forms. We briefly recall

a well-known argument (see [19]). We define the form (V ψ,ψ1) = − ∫
R

V ψψ1 dx, ψ,ψ1 ∈
Dom(T 0). Using the estimate (see [13])

∣∣(q ′f,f )
∣∣ < ε(f ′, f ′) + bε(f,f ) for any small ε > 0 and some bε > 0

and for any f ∈ W 2
2 (R), q ∈ L2(R/Z),

we deduce that

∣∣(V ψ,ψ)
∣∣ < (1/2)(ψ ′,ψ ′) + b(ψ,ψ), ψ ∈ W 2

2 (R) ⊕ W 2
2 (R).

Thus we can apply the KLMN theorem (see [19]) to define T = −d2/dx2 + V . There exists a
unique self-adjoint operator T with form domain Q(T ) = W 2

1 (R) ⊕ W 2
1 (R) and

(T ψ,ψ1) = (−ψ ′′,ψ1) + (V ψ,ψ1) all ψ,ψ1 ∈ Q
(
T 0) = W 2

1 (R) ⊕ W 2
1 (R).

Any domain of essential self-adjointness for T 0 is a form core for T .
It is well known (see [6, pp. 1486–1494], [8]) that the spectrum σ(T ) of T is absolutely con-

tinuous and consists of non-degenerate intervals Sn, n = 1,2, . . . . These intervals are separated
by gaps Gn with lengths |Gn| > 0, n = 1,2, . . . , NG � ∞. Introduce the fundamental 2 × 2
matrix solutions ϕ(x,λ), ϑ(x,λ) of the equation

−y′′ + V (x)y = λy, λ ∈ C, (1.1)
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with initial conditions ϕ(0, λ) = ϑ ′(0, λ) = 0, ϕ′(0, λ) = ϑ(0, λ) = I2, where Im, m � 1, is the
identity m × m matrix. Here and below we use the notation (′) = ∂/∂x. We define the 4 × 4
monodromy matrix by

M(λ) = M(1, λ), M(x,λ) =
(

ϑ(x,λ) ϕ(x,λ)

ϑ ′(x,λ) ϕ′(x,λ)

)
. (1.2)

The matrix-valued function M is entire. An eigenvalue of M(λ) is called a multiplier, it is a root
of the algebraic equation D(τ,λ) = 0, where

D(τ,λ) := det
(
M(λ) − τI4

)
, τ, λ ∈ C. (1.3)

There is an enormous literature on the scalar Hill operator including the inverse spectral theory
[7,10,17]. In the recent paper [13] one of the authors solved the inverse problem (including char-
acterization) for the operator −y′′ + v′y, with a function v ∈ L2(T) and v′ is its distributional
derivative and T = R/Z. However, in spite of the importance of extending these studies to vec-
tor differential equations, apart from the information given by Lyapunov and Krein (see [21]),
until recently nothing essential has been done. The matrix potential poses interesting new prob-
lems: (1) to construct the Lyapunov function, (2) to define the quasimomentum as a conformal
mapping, (3) to derive appropriate trace formulae (e.g. analogous to the trace formulas in [12]),
(4) to obtain a priori estimates of potentials in terms of gap lengths, (5) to define and to study the
integrated density of states. In fact this is the motivation of our paper.

The basic results in the direct spectral theory for the matrix case were obtained by Lyapunov
[16] and Krein [15] (see also Gel’fand and Lidskii [9]). Below we need the following well-known
results of Lyapunov [21], which we formulate only for the case of 2 × 2 matrices.

Theorem (Lyapunov). Let V ∈ H1.

(i) If τ(λ) is a multiplier for some λ ∈ C (or λ ∈ R), then τ−1(λ) (or τ(λ)) is a multiplier too.
(ii) M(λ) has exactly four multipliers τ1(λ), τ−1

1 (λ), τ2(λ), τ−1
2 (λ) for all λ ∈ C. Moreover,

λ ∈ σ(T ) iff |τm(λ)| = 1 for some m.
(iii) If τ(λ) is a simple multiplier and |τ(λ)| = 1, then τ ′(λ) �= 0.

We mention some papers relevant for our context. For variety problems for periodic systems
we refer the reader to [5]. In the papers [2,3] Carlson obtained trace formulas. In [4] he proved
the compactness of Floquet isospectral sets for the matrix Hill operator.

By the Lyapunov Theorem, each M(λ), λ ∈ C, has exactly four multipliers τm(λ), τ−1
m (λ),

m = 1,2, which are the roots of the characteristic polynomial det(M(λ) − τI4) = 0. Define the
very important constant in our paper by

c0 = V20 − V10

2
.

Then the multipliers have the following asymptotics:

τm(λ) = ei(
√

λ−Vm0/(2
√

λ)+O(1/λ)), |λ| → ∞, |√λ − πn| > π
, m = 1,2, (1.4)
4
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as we prove in Lemma 3.2. Next we define the functions

µm(λ) = 1

4
TrMm(λ), m = 1,2, ρ = µ2 + 1

2
− µ2

1, ρ0(λ) = c0
sin

√
λ

2
√

λ
. (1.5)

Note that ϕ(x,λ),ϑ(x,λ),µ1(λ),µ2(λ), ρ(λ) are real for all x,λ ∈ R and entire. If c0 > 0, then
Lemma 3.1 yields ρ(λ) = ρ2

0(λ)(1 + o(1)), as |λ| → ∞ in D1, where

Dr :=
{
λ ∈ C: |λ| > r2, |√λ − πn| > π

4
, n ∈ N

}
, r > 0. (1.6)

Thus we may define the analytic function
√

ρ(λ) for λ ∈ Dr and large r > 0 by the requirement
that

√
ρ(λ) = ρ0(λ)(1+o(1)) as |λ| → ∞ in Dr . Then there exists a unique analytic continuation

of
√

ρ from Dr into the two-sheeted Riemann surface Λ (in general, of infinite genus) defined
by

√
ρ. We now introduce our Lyapunov function ∆(λ) by

∆(λ) = µ1(λ) + √
ρ(λ), λ ∈ Λ. (1.7)

Let ∆1(λ) = µ1(λ)+√
ρ(λ) on the first sheet Λ1 and let ∆2(λ) = µ1(λ)−√

ρ(λ) on the second
sheet Λ2 of Λ. Now we formulate our main result concerning the function ∆.

Theorem 1.1. Let V ∈ H1 with c0 > 0. Then the function ∆ = µ1 + √
ρ is analytic on the two-

sheeted Riemann surface Λ and has the following properties:

(i) ∆m(λ) = τm(λ) + τ−1
m (λ)

2
, λ ∈ Λm, m = 1,2, (1.8)

∆m(λ) = cos
√

λ + Vm0
sin

√
λ

2
√

λ
+ O

(
e|Im√

λ|

λ

)
, m = 1,2, λ ∈ D1. (1.9)

(ii) λ ∈ C belongs to σ(T ) iff ∆m(λ) ∈ [−1,1] for some m = 1,2.
(iii) If λ ∈ σ(T ), then ρ(λ) � 0.
(iv) (The monotonicity property). Let ∆m be real analytic on some interval I = (α1, α2) ⊂ R

and −1 < ∆m(λ) < 1, for any λ ∈ I for some m ∈ {1,2}. Then ∆′
m(λ) �= 0 for each λ ∈ I .

Remark. (i) For the scalar Hill operator the monodromy matrix has exactly two eigenvalues τ

and τ−1. The Lyapunov function 1
2 (τ + τ−1) is an entire function of the spectral parameter and

it defines the band-gap structure of the spectrum. By Theorem 1.1, our Lyapunov function for
the matrix Hill operator also defines the band-gap structure of the spectrum, but it is the sheeted
analytic function.

(ii) Consider the case of a diagonal potential, i.e., V3 = 0. Then the Riemann surface degen-
erates into two components, and we get

µ1 = 1

2
(∆(1) + ∆(2)), ρ = 1

4
(∆(1) − ∆(2))

2,
√

ρ = 1

2
(∆(1) − ∆(2)), (1.10)

where ∆(m) is the Lyapunov function for the scalar Hill operator −y′′ + Vmy, m = 1,2. Thus
∆1 = µ1 + √

ρ = ∆(1) and ∆2 = µ1 − √
ρ = ∆(2).
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(iii) Many papers are devoted to resonances for the Schrödinger operator with compactly
supported potentials on the real line, see [1,14,20,22]. Assume that we have the coupling constant
before the potential. If this constant changes then roughly speaking some resonances create the
eigenvalues. In our case, if the coupling constant (before the periodic matrix potential) changes,
then roughly speaking some resonances create the gaps, see Proposition 1.3.

Let D±(λ) = 1
4D(±1, λ). The zeros of D+(λ) and D−(λ) are the eigenvalues of the pe-

riodic and anti-periodic problems associated with the equation −y′′ + Vy = λy. Denote by
λ2n,k , n = 0,1, . . . , and k ∈ {1,2,3,4} the sequence of zeros of D+ (counted with multi-
plicity) such that λ0,1 � λ0,2 � λ2,1 � λ2,2 � λ2,3 � λ2,4 � λ4,1 � λ4,2 � λ4,3 � λ4,4 � · · · .
Denote by λ2n−1,k, (n, k) ∈ N × {1,2,3,4} the sequence of zeros of D− (counted with multi-
plicity) such that λ1,1 � λ1,2 � λ1,3 � λ1,4 � λ3,1 � λ3,2 � λ3,3 � λ3,4 � · · · . Note that λn,k ,
n = 0,1, . . . , and k ∈ {1,2,3,4} are the eigenvalues of problems with period 2 for the equation
−y′′ + Vy = λy.

Denote by {rn}∞1 the sequence of zeros of ρ in C (counted with multiplicity) such that
0 � |r1| � |r2| � |r3| � · · · . We call these zeros of ρ the resonances of T . We formulate the
theorem about the recovering the spectrum of T and the asymptotics of the periodic and anti-
periodic eigenvalues and resonances at high energy. Furthermore, we write an = bn + �2(n) iff
the sequence {an − bn}n�1 ∈ �2. Recall that V(0) = ∫ 1

0 V (t) dt = diag{V10,V20}.

Theorem 1.2.

(i) Let V ∈ H2 with c0 > 0. Then the following asymptotics hold:

λn,m+k = (πn)2 + Vm0 + �2(n), m, k = 1,2, n → ∞, (1.11)

r2n−m = (πn)2 + �2(n), m = 0,1, n → ∞. (1.12)

(ii) Let V ∈ H2, c0 > 0. Then the following statements hold:
(a) The periodic spectrum and the anti-periodic spectrum determine the resonances and the

spectrum of the operator T .
(b) The periodic (anti-periodic) spectrum is determined by the anti-periodic (periodic) spec-

trum and the resonances.

Less precise asymptotics for the case V ∈ C2 were obtained in [3].

Example. Consider the operator Tγ,ν = −d2/dx2 + qγ,ν , where qγ,ν = aJ + γ vν(x)J1 is a
potential for some constants a, γ ∈ R,

J =
(

1 0
0 −1

)
, J1 =

(
0 1
1 0

)
,

and qγ,ν satisfies
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Condition A. a/(2π2) − na ∈ (0,1) for some integer na � 0. Each function vν ∈ L1(T), ν =
1,1/2,1/3, . . . , is such that vν(x) = vν(1 − x), x ∈ (0,1), and

∫ 1
0 vν(x) dx = 1 and for any

f ∈ C(0, k), k ∈ N, the following limit relation holds:

k∫
0

vν(x)f (x) dx →
k∫

0

δper(x)f (x) dx as ν → 0, δper =
∞∑

−∞
δ

(
x − n − 1

2

)
. (1.13)

If γ = 0, then we have the operator T 0 = −y′′ + q0 with a constant potential q0 = aJ . In
this case there are no gaps in the spectrum. The fundamental solutions of Eq. (1.1) with q0 = aJ

have the form ϑ0 = diag(c+, c−), ϕ0 = diag(s+, s−), where

c±(x,λ) = cosη±x, s±(x,λ) = sinη±x

η±
, η± = √

λ ∓ a, diag(b, c) =
(

b 0
0 c

)

and the branch of
√

λ is given by
√

1 = 1. Below we will sometimes write ρ(λ,V ),M(λ,V ), . . . ,
instead of ρ(λ),M(λ), . . . , when several potentials are being dealt with. Then the functions
ρ0(·) = ρ(·, q0),µ0

m(·) = µm(·, q0), . . . corresponding to q0 become the forms

µ0
m(λ) = c+(m,λ) + c−(m,λ)

2
, m = 1,2, ρ0(λ) = (c+(1, λ) − c−(1, λ))2

4
, (1.14)

D0±(λ) = (
1 ∓ c+(1, λ)

)(
1 ∓ c−(1, λ)

)
, ∆0

(1)(λ) = c+(1, λ), ∆0
(2)(λ) = c−(1, λ),

(1.15)

where ∆0
(m)

is the Lyapunov function for the equation

−y′′ − (−1)may = λy, m = 1,2.

The entire function c+(1, λ) − c−(1, λ) has only the simple roots z0
n given by

z0
n = (πn)2 + a2

(2πn)2
= ∓ a +

(
πn ± a

2πn

)2

, n � 1. (1.16)

Note that z0
1 > z0

2 > · · · > z0
na

and z0
na+1 < z0

na+2 < · · · . Thus all roots of ρ0 = ρ(·, q0) have

multiplicity 2 and are given by (1.16). If 2a/π2 /∈ N, then the zeros of ∆0
(m)

(λ)2 − 1 have multi-
plicity 2 and are given by

λ0
m,n = a − (−1)m(πn)2, λ0

1,n �= λ0
2,s , m = 1,2, n, s � 0. (1.17)

Note that λ0
m,n,m = 1,2, n � 0 are the roots of D0±(λ).

If γ, ν �= 0 are small enough, then there exist gaps in the spectrum of Tγ,ν . Define the disk
Dr = {λ: |λ| < π2r2}, r > 0. We show that there exist non-degenerate resonance gaps for some
potential V . In this example, some resonances are real and some are not.
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Proposition 1.3. Let a potential qγ,ν = aJ + γ vν(x)J1, a > 0, γ ∈ R, satisfy Condition A, and
let 4a/π2 /∈ N. Then for any N � 1 + a there exist small ε, ε1, ε2 > 0 such that for any (γ, ν) ∈
(0, ε1) × (0, ε2) all zeros z±

n (qγ,ν) of ρ(λ, qγ,ν) and the zeros λ±
m,n(qγ,ν) of ∆2

m(λ, qγ,ν) − 1 in
the disk DN+1/2 are simple and have the properties:

z±
n (qγ,ν) ∈ C±, 1 � n � na, z−

n (qγ,ν) < z+
n (qγ,ν), na < n � N,∣∣z±

n (qγ,ν) − z0
n

∣∣ < ε2, (1.18)

λ−
m,n(qγ,ν) < λ+

m,n(qγ,ν),
∣∣λ±

m,n(qγ,ν) − λ0
m,n

∣∣ < ε2, n = 0, . . . ,N, m = 1,2. (1.19)

There are no other roots of ρ(λ, qγ,ν) and ∆2
m(λ, qγ,ν) − 1 in the disk DN+1/2.

Remark. (i) If 0 < a < 2π2, then ρ(λ, qγ,ν) has only real roots z±
1 (qγ,ν) in the disk DN+1/2 for

small γ, ν. If a > 2π2, then ρ(λ, qγ,ν) has at least two non-real roots z±
1 (qγ,ν) for small γ, ν.

(ii) We show that the operator Tγ,ν has gaps associated with the periodic or anti-periodic
spectrum. Moreover, we show the existence of new type gaps (so-called resonance gaps). The
endpoints of the resonance gap are branch points of the Lyapunov function, and, in general, they
are neither the periodic n or the anti-periodic eigenvalues. These endpoints are not stable. If they
are real (n = na + 1, . . . ,N ), then we have a gap. If they are complex (1 � n � na), then we have
no a gap, we have only the branch points of the Lyapunov function in the complex plane.

2. Fundamental solutions

In this section we study ϑ,ϕ. We begin with some notational conventions. A vector h =
{hn}N1 ∈ C

N has the Euclidean norm |h|2 = ∑N
1 |hn|2, while a N × N matrix A has the operator

norm given by |A| = sup|h|=1 |Ah|. The function ϕ satisfies the following integral equation:

ϕ(x,λ) = ϕ0(x,λ) +
x∫

0

sin
√

λ(x − t)√
λ

V (t)ϕ(t, λ) dt, ϕ0(x,λ) = sin
√

λx√
λ

I2, (2.1)

where (x,λ) ∈ R × C. The standard iterations in (2.1) yield

ϕ(x,λ) =
∑

n�0
ϕn(x,λ), ϕn+1(x,λ) =

x∫
0

sin
√

λ(x − t)√
λ

V (t)ϕn(t, λ) dt. (2.2)

A similar expansion gives ϑ = ∑
n�0ϑn with ϑ0(x,λ) = (cos

√
λx)I2.

We introduce the functions

I 0
m(λ) =

m∫
0

dt

t∫
0

cos
√

λ(m − 2t + 2s)F (t, s) ds, F (t, s) = TrV (t)V (s), (2.3)

m = 1,2. In Lemma 2.1 we shall show the simple identity

I 0
2 (λ) = 4I 0

1 (λ) cos
√

λ. (2.4)
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We define |λ|1 ≡ max{1, |λ|} and

V(0) =
1∫

0

V (x)dx, V(1) = TrV(0), V(2) = TrV 2
(0),

A = e|Im√
λ|+�, � = ‖V ‖1√|λ|1 . (2.5)

We prove

Lemma 2.1. For each (x,V ) ∈ R+ × H1 the functions ϕ(x, ·),ϑ(x, ·) are entire and for any
N � −1 the following estimates hold:

max

{∣∣∣∣∣ϑ(x,λ) −
N∑
0

ϑn(x,λ)

∣∣∣∣∣,
∣∣∣∣∣√λ

(
ϕ(x,λ) −

N∑
0

ϕn(x,λ)

)∣∣∣∣∣,∣∣∣∣∣ 1√
λ

(
ϑ ′(x,λ) −

N∑
0

ϑ ′
n(x,λ)

)∣∣∣∣∣,
∣∣∣∣∣ϕ′(x,λ) −

N∑
0

ϕ′
n(x,λ)

∣∣∣∣∣
}

� (x�)N+1

(N + 1)!A
x. (2.6)

Moreover, each µm(λ), m = 1,2 is real for λ ∈ R and entire and the following estimates hold:∣∣µm(λ)
∣∣ � Am,

∣∣µm(λ) − cosmz
∣∣ � m�Am, (2.7)∣∣∣∣µm(λ) − cosmz − sinmz

4z
mV(1)

∣∣∣∣ � (m�)2

2
Am, (2.8)

∣∣∣∣µm(λ) − cosmz − sinmz

4z
mV(1) − 1

8z2

(
I 0
m(λ) − m2 cosmz

2
V(2)

)∣∣∣∣ � (m�)3

3! Am, (2.9)

where I 0
1 , I 0

2 satisfy (2.4) and z = √
λ.

Proof. We prove the estimates of ϕ, the proof for ϕ′, ϑ,ϑ ′ is similar. (2.2) gives

ϕn(x,λ) =
∫

0<x1<x2<···<xn+1=x

ϕ0(x1, λ)

(
�∏

1�k�n

sin(
√

λ(xk+1 − xk))√
λ

V (xk)

)
dx1 dx2 . . . dxn,

(2.10)

where for matrices a1, a2, . . . , an we denote

�∏
1�k�n

ak = anan−1 . . . a1.

Substituting the estimate |√λϕ0(x,λ)| � e|Im√
λ|x into (2.10) we obtain |√λϕn(x,λ)| �

(x�)n/n!e|Im z|x , which shows that for each x � 0 the series (2.2) converges uniformly on
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bounded subsets of C. Each term of this series is an entire function. Hence the sum is an en-
tire function. Summing the majorants we obtain estimates (2.6).

We have

4µm = TrMm(λ) = TrM(m,λ) = Tr
∑
n�0

Mn(m,λ),

where m = 1,2 and

TrM0(m,λ) = 4 cosmz, TrMn(m,λ) = Trϑn(m,λ) + Trϕ′
n(m,λ), n � 1. (2.11)

The estimates

∣∣ϕ′
n(m,λ)

∣∣ � (m�)n

n! e|Im z|m and
∣∣ϑn(m,λ)

∣∣ � (m�)n

n! e|Im z|m

yield

∣∣TrMn(m,λ)
∣∣ � 4

(m�)n

n! em|Im√
λ|, n � 0. (2.12)

Using (2.11) we obtain

TrM1(m,λ) = 1

z

m∫
0

(
sin z(m − t) cos zt + cos z(m − t) sin zt

)
TrV (t) dt

= sinmz

z
mV(1), (2.13)

and

TrM2(m,λ) = 1

z2

m∫
0

t∫
0

sin z(t − s)z(m − t + s)F (t, s) dt ds

= 1

2z2

m∫
0

t∫
0

(
cos z(m − 2t + 2s) − cos zm

)
F(t, s) dt ds

= 1

2z2

(
I 0
m(λ) − m2

2
cosmzV(2)

)
,

since

m∫ t∫
F(t, s) dt ds = 1

2
Tr

( m∫
V (t) dt

)2

= m2

2
V(2).
0 0 0
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We know that µ1,µ2 are entire. Moreover, the trace of the monodromy matrix is the sum of its
eigenvalues. By the Lyapunov Theorem (see Section 1), the set of these eigenvalues is symmetric
with respect to the real axis, as λ ∈ R. Thus, µ1,µ2 are real on R.

We show (2.4). Let I 0
m = I 0

m(λ). We have 2 cos zI 0
1 = Y0 + Y1, where

Y0 =
1∫

0

t∫
0

cos 2z(t − s)F (t, s) dt ds, Y1 =
1∫

0

t∫
0

cos 2z(1 − t + s)F (t, s) dt ds.

We get I 0
2 = Y1 + Y2 + Y3, where

Y2 =
2∫

1

1∫
0

cos 2z(1 − t + s)F (t, s) dt ds, Y3 =
2∫

1

t∫
1

cos 2z(1 − t + s)F (t, s) dt ds

and using the new variable τ = t − 1 we get

Y2 =
1∫

0

τ∫
0

cos 2z(τ − s)F (τ, s) dτ ds = 2Y0.

We use the new variables τ = t − 1, σ = s − 1 and obtain

Y3 =
1∫

0

τ∫
0

cos 2z(1 − τ + σ)F (τ, σ ) dτ dσ = Y1,

which yields I 0
2 = 2Y1 + 2Y0. Thus we have (2.4). �

We need the basic properties of the monodromy matrix.

Lemma 2.2. Let V ∈ H1. Then the function D(τ,λ) = det(M(λ) − τI4), λ, τ ∈ C
2 is entire on

C
2 and the following identities are fulfilled:

D′
τ (τ, λ) = −D(τ,λ)Tr

(
M(λ) − τI4

)−1
, (2.14)

D(τ, ·) = τ 4 − 4µ1τ
3 + 2

(
4µ2

1 − µ2
)
τ 2 − 4µ1τ + 1

= (
τ 2 − 2(µ1 − √

ρ )τ + 1
)(

τ 2 − 2(µ1 + √
ρ )τ + 1

)
. (2.15)

Proof. Let D(τ) ≡ D(τ,λ). The standard identity

D′(τ ) = D(τ)Tr

(
(M − τ)−1 d(M − τ)

)

dτ
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yields (2.14). We prove (2.15). Since detM = D(0) = 1, we have: D(τ) = 1+aτ +bτ 2 + cτ 3 +
dτ 4, a, b, c, d ∈ C. Then D(τ) = (τ − τ1)(τ − τ−1

1 )(τ − τ2)(τ − τ−1
2 ), where τ1, τ

−1
1 , τ2, τ

−1
2

are the multipliers. Therefore d = 1, a = c. Then we have

D(τ) = 1 + D′(0)τ + 1

2
D′′(0)τ 2 + D′(0)τ 3 + τ 4. (2.16)

Identity (2.14) yields D′(0) = −TrM−1 = −TrM = −4µ1. Differentiating (2.14) we obtain

D′′(0) = −D′(τ )Tr(M − τ)−1 − D(τ)Tr(M − τ)−2|τ=0 = 4
(
4µ2

1 − µ2
)
.

Substituting these identities into (2.16) we obtain the first identity in (2.15). The second identity
is proved by direct calculation. �
3. The Lyapunov function

We need some results about the functions ρ, ρ0 = c0sin
√

λ/(2
√

λ), where c0 = 1
2 (V20 −V10).

Lemma 3.1.

(i) For each V ∈ H1 the function ρ = 1
2 (µ2 + 1) − µ2

1 is entire and real on the real line.
Moreover, the following estimate holds:

∣∣ρ(λ) − ρ2
0(λ)

∣∣ � 2�3e2|Im√
λ|+2�, λ ∈ C, � = ‖V ‖1/

√|λ|1. (3.1)

(ii) Let V ∈H1 with c0 = 1
2 (V20 −V10) > 0. Then for each integer N > 27‖V ‖3

1/c
2
0 the function

ρ has exactly 2N roots, counted with multiplicity, in the disk {λ: |λ| < π2(N + 1
2 )2} and for

each n > N , exactly two roots, counted with multiplicity, in the domain {λ: |√λ−πn| < 1}.
There are no other roots.

(iii) Let V ∈ H1, c0 > 0. Then the function
√

ρ is an analytic function in the domain Dr , r =
29‖V ‖3

1/c
2
0 given by (1.6) and the following estimate holds:

∣∣√ρ(λ) − ρ0(λ)
∣∣ � 3C0

5

|ρ0(λ)|√|λ| , C0 ≡ 44 ‖V ‖3
1

c2
0

<

√|λ|
2

, λ ∈ Dr . (3.2)

Proof. (i) By Lemma 2.2, ρ is entire and real on the real line. Let µm ≡ µm0 +µm1 +µm2 +µ̃m3,
m = 1,2, where

µm0 = cosmz, µm1 = sinmz

4z
mV(1), µm2 = 1

8z2

(
I 0
m(λ) − m2

2
cosmzV(2)

)
, (3.3)

and z = √
λ, where V(m) is defined by (2.5). We obtain µ2

1 = B1 + B2, where

B1 = (µ10 + µ11)
2 + 2µ10µ12, B2 = 2µ10µ̃13 + (µ1 − µ10 + µ11)(µ1 − µ10 − µ11).



A. Badanin et al. / Journal of Functional Analysis 234 (2006) 106–126 117
Then (3.3) yields

B1 = cos2 z + sin 2z

4z
V(1) + 4 cos zI 0

1 (λ) + sin2 zV 2
(1) − 2 cos2 zV(2)

16z2
.

Thus we get

ρ = µ2 + 1

2
− µ2

1 = G1 + G2, G1 = 1 + µ20 + µ21 + µ22

2
− B1, G2 = µ̃23

2
− B2,

G1 = I 0
2 (λ) − 2 cos 2zV(2) − 4 cos zI 0

1 (λ) + 2 cos2 zV(2) − sin2 zV 2
(1)

16z2
= sin2 z

16z2

(
2V(2) − V 2

(1)

)
,

which yields G1 = ρ2
0 . Using (2.7)–(2.9) we obtain

|B2| � 2
�3

3! A2 + (�A + �A)
�2

2! A2 = 4�3

3
A2,

|G2| � |µ̃m3|
2

+ |B2| � 4(�)3

3! A2 + 4�3

3
A2 = 2�3A2, (3.4)

which yields (3.1).
(ii) Let N ′ > N be another integer and r = π(N + 1

2 ). Note that

� �
c2

0

27π‖V ‖2
1

� 1

27π
for λ ∈ Dr .

Using the estimate e|Im√
λ| < 4| sin

√
λ|, λ ∈Dr , and (3.1) we obtain (on all contours)

∣∣ρ(λ) − ρ2
0(λ)

∣∣ � 2
‖V ‖3

1

|z|3 e2(|Im z|+�) � C0√|λ|
∣∣ρ2

0(λ)
∣∣, C0 ≡ 44 ‖V ‖3

1

c2
0

<

√|λ|
2

, λ ∈ Dr . (3.5)

Hence, by the Rouché theorem, ρ(λ) has as many roots, counted with multiplicity, as sin2
√

λ/λ

in the bounded domain Dr ∩ {λ: |λ| � π(N ′ + 1
2 )}. Since sin2

√
λ/λ has exactly one double root

at (πn)2, n � 1, and since N ′ > N can be chosen arbitrarily large, (ii) follows.
(iii) Let ρ ≡ ρ2

0 + ρ1, ρ0 = c0sin
√

λ/(2
√

λ). Estimates (3.5) imply

√
ρ(λ) = ρ0(λ)

√
1 + b(λ), b = ρ1

ρ2
0

, |b(λ)| � C0

|z| <
1

2
, λ ∈Dr . (3.6)

Using the estimate

∣∣√1 + b(λ) − 1
∣∣ � 3

5

∣∣b(λ)
∣∣ for λ ∈Dr ,

we obtain ∣∣√ρ(λ) − ρ0(λ)
∣∣ = ∣∣ρ0(λ)

(√
1 + b(λ) − 1

)∣∣ � 3C0 |ρ0(λ)|√ . �

5 |λ|
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We need asymptotics of the eigenvalues of the monodromy matrix.

Lemma 3.2. Let V ∈ H1, c0 = (V20 − V10)/2 > 0. Then the monodromy matrix M(λ) has two
multipliers τm(λ), m = 1,2 with asymptotics (1.4). Moreover, asymptotics (1.9) holds.

Proof. Using the estimates (2.8), (3.2), we obtain asymptotics in (1.9), which yields

∆2
m(λ) − 1 =

(
cos

√
λ + Vm0

sin
√

λ

2
√

λ

)2

− 1 + O
(
E(λ)

)
= − sin2

√
λ + Vm0

sin
√

λ cos
√

λ√
λ

+ O
(
E(λ)

)
= − sin2

√
λ

(
1 − Vm0

cos
√

λ√
λ sin

√
λ

+ O
(
E(λ)

))

as λ ∈D1, |λ| → ∞, where E(λ) = e2|Im√
λ|/λ, which implies

√
∆2

m(λ) − 1 = i sin
√

λ − iVm0
cos

√
λ

2
√

λ
+ O

(
E(λ)

)
. (3.7)

By (2.15), the matrix M(λ), λ ∈ Dr , has the eigenvalues τm(λ) satisfying the identities τm(λ) +
τm(λ)−1 = 2∆m(λ). Then τm(λ) has the form

τm(λ) = ∆m(λ) +
√

∆2
m(λ) − 1

and the asymptotics give

τm(λ) = ei
√

λ + Vm0
sin

√
λ

2
√

λ
− iVm0

cos
√

λ√
λ

+ O
(
E(λ)

) = ei
√

λ

(
1 − iVm,0

2
√

λ

)
+O

(
E(λ)

)
which yields (1.4). �

Now we prove our first result about the Lyapunov function ∆ = µ1 + √
ρ.

Proof of Theorem 1.1. By Lemma 3.1 we have ∆ is the analytic function on the Riemann
surface of the function

√
ρ.

(i) Identity (2.15) shows that ∆m = (τ + τ−1)/2 for some multiplier τ . Lemma 3.2 gives the
asymptotics of ∆m and τm, m = 1,2.

(ii) The result follows from the statement (i) and the Lyapunov Theorem (see Section 1).
(iii) If λ ∈ σ(T ), then µ1(λ) is real. By (ii), ∆(λ) is also real. Hence by (1.7),

√
ρ(λ) is real

and ρ(λ) � 0.
(iv) Assume that ∆′

m(λ0) = 0 for some λ0 ∈ I ⊂ σ(T ) and m ∈ {1,2}. Then we have

∆m(λ) = ∆m(λ0) + (λ − λ0)
p ∆

(p)
m (λ0) + O

(|λ − λ0|p+1), as λ − λ0 → 0, (3.8)

p!
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where ∆
(p)
m (λ0) �= 0 for some p � 1. By the implicit function theorem, there exists some curve

Γ ⊂ {λ: |λ − λ0| < ε} ∩ C+, Γ �= ∅, for some ε > 0 such that ∆m(λ) ∈ (−1,1) for any λ ∈ Γ .
This contradicts the Lyapunov Theorem in Section 1. �

Recall that D±(λ) = 1
4 det(M(λ)∓ I4), the set {λ: D+(λ) = 0} is a periodic spectrum and the

set {λ: D−(λ) = 0} is an anti-periodic spectrum. Now we prove a lemma about the number of
periodic and anti-periodic eigenvalues in a large disc.

Lemma 3.3. For each V ∈ H1 the functions ∆1 + ∆2, ∆1∆2, D± are entire and satisfy the
following identities:

∆2
1 + ∆2

2 = 1 + µ2, ∆1∆2 = 2µ2
1 − µ2 + 1

2
, (3.9)

D± = (µ1 ∓ 1)2 − ρ = (2µ1 ∓ 1)2 − µ2

2
, D+ − D− = −4µ1. (3.10)

Let, in addition, Tr
∫ 1

0 V (t) dt = 0. Then the following estimates and properties are fulfilled:

max

{∣∣∣∣D+(λ) − 4 sin4

√
λ

2

∣∣∣∣, ∣∣∣∣D−(λ) − 4 cos4

√
λ

2

∣∣∣∣} � �2(2 + �)2e2|Im√
λ|+2�, λ ∈ C.

(3.11)

(i) For each integer N > 8‖V ‖1 the function D+ has exactly 4N + 2 roots, counted with multi-
plicity, in the disc {|λ| < 4π2(N + 1

2 )2} and for each n > N , exactly four roots, counted with

multiplicity, in the domain {|√λ − 2πn| < π
2 }. There are no other roots.

(ii) For each integer N > 8‖V ‖1 the function D− has exactly 4N roots, counted with multi-
plicity, in the disc {|λ| < 4π2N2} and for each n > N , exactly four roots, counted with
multiplicity, in the domain {|√λ − π(2n + 1)| < π

2 }. There are no other roots.

Proof. By Lemmas 2.1, 2.2 the functions ∆1 +∆2,∆1∆2,D± are entire and the identities (3.9),
(3.10) are fulfilled. Using Lemmas 2.1 and 3.1 we obtain

µ1(λ) = cos z + µ̃12(λ),
∣∣µ̃12(λ)

∣∣ � �2

2
A2,

∣∣ρ(λ)
∣∣ � (1 + 2�)

�2

2
A2.

Substituting these relations into D± = (µ1 ∓ 1)2 − ρ we get (3.11).
(i) Let N ′ > N be another integer. Let λ belong to the contours

C0(2N + 1), C0(2N ′ + 1), C2n

(
1

2

)
, |n| > N,

where Cn(r) = {√λ: |√λ − πn| = πr}, r > 0. Note that � � 1
16π

on all contours. Then (3.11)

and the estimate e
1
2 Im

√
λ < 4| sin

√
λ/2| on all contours yield∣∣∣∣D+(λ) − 4 sin4

√
λ

∣∣∣∣ � e2�(2 + �)2

4 2
e2|Im√

λ| < 1
∣∣∣∣4 sin4

√
λ

∣∣∣∣.
2 4 π 4 2
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Hence, by Rouché’s theorem, D+(λ) has as many roots, counted with multiplicities, as sin4
√

λ/2
in each of the bounded domains and the remaining unbounded domain. Since sin4

√
λ/2 has

exactly one root of the multiplicity four at (2πn)2, and since N ′ > N can be chosen arbitrarily
large, (i) follows.

The proof for D− is similar. �
We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (i) It is enough to consider the case V10 = c0 = −V20. We prove the
asymptotics (1.11) for λ2n,m, 1 � m � 4. The proof for λ2n+1,m is similar. Firstly, we prove
rough asymptotics of λ2n,m, rn. Lemma 3.3(i) yields

√
λ2n,m = 2πn + εn, |εn| < 1, as n → ∞.

By Lemma 3.3,

D+(λ) = 4 sin4

√
λ

2
+ O

(
n−2) as |√λ − πn| � 1, n → ∞.

Then the identity D+(λ2n,m) = 0 implies√
λ2n,m = 2πn + εn, εn = O

(
n−1/2), 1 � m � 4. (3.12)

Lemma 3.1(ii) implies
√

r2n−m = πn + δn, |δn| < 1 for n → ∞, m = 0,1. Moreover, Lem-
ma 3.1(i) gives

ρ(λ) = c2
0

sin2
√

λ

4λ
+ O

(
n−3), |√λ − πn| � 1 as n → ∞.

Since ρ(rn) = 0, we have

√
r2n−m = πn + δn, δn = O

(
n−1/2), m = 0,1. (3.13)

Secondly, in order to improve these asymptotics of λ2n,m, rn we need asymptotics of the multi-
pliers in a neighborhood of the points πn. We introduce the matrix M̃ = U−1MU with the same
eigenvalues, where

U =
(

I2 0
0

√
λI2

)
.

We shall show the asymptotics

M̃(λ) = M̃0(λ) + �2
1(n), M̃0(λ) =

(
C(λ) S(λ)

−S(λ) C(λ)

)
,

√
λ = πn + O

(
n−1/2), (3.14)

where

C(λ) = diag(cosη+, cosη−), S(λ) = diag(sinη+, sinη−),

η± = √
λ ∓ c0. (3.15)
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Estimate (2.6) gives

ϑ(1, λ) = cos
√

λI2 + 1√
λ

1∫
0

sin
√

λ(1 − t) cos
√

λtV (t) dt + O
(
n−2)

= cos
√

λI2 + 1

2
√

λ

1∫
0

(
sin

√
λ + sin

√
λ(1 − 2t)

)
V (t) dt + O

(
n−2), (3.16)

as n → +∞, |√λ − πn| � 1. Let
√

λ = πn + un, un = O(n−1/2). The Taylor formula gives
sin 2t (πn + un) = sin 2πnt + 2tun cos 2πnt + O(n−1) and the similar formula for the case of
cos 2t (πn + un). Substituting these asymptotics into (3.16) we obtain

ϑ(1, λ) = cos
√

λI2 + sin
√

λ

2
√

λ
c0J + �2

1(n) = C(λ) + �2
1(n),

√
λ = πn + O

(
n−1/2).

Similar arguments for ϕ(1, λ),ϑ ′(1, λ),ϕ′(1, λ) yield

ϕ(1, λ) = 1√
λ

S(λ) + �2
2(n), ϑ ′(1, λ) = −√

λS(λ) + �2(n), ϕ′(1, λ) = C(λ) + �2
1(n),

as
√

λ = πn + O(n−1/2). Substituting the obtained asymptotics into the definition (1.2) of M

and using the identity M̃ = U−1MU we get (3.14).
We will use the next standard arguments from perturbation theory (see [11, p. 291]). Let

A,B be bounded operators, A be normal and denote by σ(A), σ(B) spectra of A, B . Then
dist{σ(A),σ (B)} � ‖A − B‖. Note that M̃0(λ) is a normal operator having eigenvalues eiη± .
Hence M̃ has eigenvalues τ± satisfying the estimates |τ± − eiη±| < |M̃ − M̃0|. Then (3.14)
implies

τ±(λ) = eiη± + �2
1(n), as

√
λ = πn + O

(
n−1/2). (3.17)

Now we improve the asymptotics (3.12) for λ2n,m. We note that λ = λ2n,m iff τ+(λ) = 1 or
τ−(λ) = 1. Then (3.17) and (3.12) yield

eiη±(λ2n,m) = 1 + �2
1(n), λ = λ2n,m. (3.18)

Substituting the asymptotics (3.12) into (3.18) we have√
(2πn + εn)2 ± c0 = 2πn + �2

1(n), n → +∞.

and therefore εn = ∓c0/(4πn)+�2
1(n). Substituting this asymptotics into (3.12) we obtain (1.11)

for λ2n,m.
Finally, we improve the asymptotics (3.13) of rn. Note that λ = rn, iff the following condition

is fulfilled: τ+(λ) = τ−1− (λ) or τ+(λ) = τ−(λ). The asymptotics (3.17) imply that the second
equation has no solutions for large n. We rewrite the first equation in the form:

eiη+ = e−iη− + �2
1(n), as

√
λ = πn + O

(
n−1/2). (3.19)
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Substituting asymptotics (3.13) into (3.19) we obtain√
(πn + δn)2 − c0 +

√
(πn + δn)2 + c0 = 2πn + �2

1(n),

which gives δn = �2
1(n). Substituting (3.13) into we obtain (1.12).

(ii) (a) Assume that we have the periodic spectrum λ0,m, m = 1,2, λ2n,m, m = 1,2,3,4,
n � 1. Using the asymptotics (1.11) and repeating the standard arguments (see [18, pp. 39–40])
we obtain the Hadamard factorization for the function D+:

D+(λ) = (λ − λ0,1)(λ − λ0,2)

4

∏
m=1,2,3,4,n�1

λ2n,m − λ

(2πn)2
.

In a similar way, we determine D− by the anti-periodic spectrum. Using (3.10) we obtain ρ.
Thus, we recover the resonances.

(b) Suppose that we know the periodic spectrum and the set of resonances. Then we determine
the functions D+ by the periodic spectrum and ρ by the resonances. Using (3.10) we get µ1,
µ2 and then D−. Thus, we recover the anti-periodic spectrum. The proof of another case is
similar. �
4. Example

1. Periodic δ-potentials. Consider the operator

T γ = − d2

dx2
+ qγ , γ ∈ C,

where qγ = aJ + γ δperJ1 with the potential δper = ∑∞
−∞ δ(x − n − 1

2 ). Let µ
γ

1 = µ1(·, qγ ),
ργ = ρ(·, qγ ), . . . .

Lemma 4.1. For the operator T γ = −d2/dx2 + aJ + γ δperJ1 the following identities are ful-
filled:

µ
γ

1 = µ0
1, µ

γ

2 = µ0
2 + 2h, ργ = ρ0 + h, D

γ
± = D0± − h, h = γ 2

4
s+s−, γ ∈ C.

(4.1)

Proof. The solution y(x), x ∈ R of the system −y′′ + qγ y = λy is continuous and y′(xn + 0) −
y′(xn − 0) = γ J1y(xn) at the points x = xn = n + 1

2 . Then the fundamental solutions have the
form:

ϑγ (x) = ϑ0(x), ϕγ (x) = ϕ0(x), 0 � x <
1

2
,

and

ϑγ (x) =
(

c+(x) γ c−( 1
2 )s+(x − 1

2 )

γ c ( 1 )s (x − 1 ) c (x)

)
,

1

2
� x <

3

2
,

+ 2 − 2 −
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ϕγ (x) =
(

s+(x) γ s−( 1
2 )s+(x − 1

2 )

γ s+( 1
2 )s−(x − 1

2 ) s−(x)

)
,

1

2
� x <

3

2
,

and

ϑγ (x) =
(

c+(x) + γ 2c+( 1
2 )s−(1)s+(x − 3

2 ) ∗
∗ c−(x) + γ 2c−( 1

2 )s+(1)s−(x − 3
2 )

)
,

ϕγ (x) =
(

s+(x) + γ 2s+( 1
2 )s−(1)s+(x − 3

2 ) ∗
∗ s−(x) + γ 2s−( 1

2 )s+(1)s−(x − 3
2 )

)
,

for 3
2 � x < 5

2 , where ∗ is some term. These relations yield

ϑ(1) =
(

c+(1) ∗
∗ c−(1)

)
, ϕ′(1) =

(
c+(1) ∗

∗ c−(1)

)
,

ϑ(2) =
(

c+(2) + 2h ∗
∗ c−(2) + 2h

)
, ϕ′(2) =

(
c+(2) + 2h ∗

∗ c−(2) + 2h

)
.

The last identities and (1.14) imply

µ
γ

1 = Tr(ϑγ (1) + (ϕγ )′(1))

4
= µ0

1, µ
γ

2 = Tr(ϑγ (2) + (ϕγ )′(2))

4
= µ0

2 + 2h,

which give ργ = 1
2 (1 + µ

γ

2 ) − (µ
γ

1 )2 = ρ0 + h and D
γ
± = (µ

γ

1 ∓ 1)2 − µ
γ

2 = D0± − h. �
We describe the spectrum of the operator T γ .

Lemma 4.2. Let the operator T γ = −d2/dx2 +qγ , where qγ = aJ +γ δperJ1, a > 0 and γ ∈ R.

(i) Let 0 < a/(2π2) − na < 1, for some integer na � 0. Then for each n ∈ N there exist analytic
functions z±

n (γ ), |γ | < γn for some γn > 0 such that z±
n (γ ) are the zeros of ργ (λ) and

z±
n (γ ) = z0

n ± (−1)nγ ikn
(
cn + O(γ )

)
,

cn > 0, kn =
{

1 if 1 � n � na ,
0 if n > na ,

as γ → 0. (4.2)

Moreover, each spectral interval (z−
n (γ ), z+

n (γ )) ⊂ R, n > na is a gap in the spectrum of T γ .
(ii) If 2a/π2 /∈ N, then for each n � 0,m = 1,2 there exist real analytic functions λ±

m,n(γ ),
γ ∈ (−γn, γn) for some γn > 0, such that λ±

n,m(γ ) is the zero of the function ∆2
m(λ) − 1 and

λ−
n,m(γ ) < λ+

n,m(γ ), λ±
n,m(0) = λ0

n,m. (4.3)

Moreover, each spectral interval (λ−
n,m(γ ), λ+

n,m(γ )) �= ∅, n � 1, has multiplicity 2.
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Proof. (i) Recall that η± = √
λ ∓ a. The zero of ργ (λ) = 0 satisfies the equation

0 = ργ (λ) = f 2(λ) + γ 2

4
s+(λ)s−(λ), f ≡ 2 sin

η+ − η−
2

sin
η+ + η−

2
. (4.4)

The zeros z0
n of ρ0 = ρ(·, q0) have the form (1.16) and satisfy the following identities:

√
z0
n + a +

√
z0
n − a = a

πn
,

√
z0
n + a −

√
z0
n − a = 2πn, if 1 � n � na, (4.5)

√
z0
n + a +

√
z0
n − a = 2πn,

√
z0
n + a −

√
z0
n − a = a

πn
, if n > na � 0. (4.6)

Using (4.5), (4.6) we have the identity

sinη+(λ) sinη−(λ)|λ=z0
n
=

{
1 − cos a

πn
> 0 if 1 � n � na ,

cos a
πn

− 1 < 0 if n > na . (4.7)

Recall that the function f has only simple zeros λ = z0
n, n � 1. Consider the case n > na , the

proof for 1 � n � na is similar. We rewrite ργ (λ) = 0 in the form(
f (λ) − γF(λ)

)(
f (λ) + γF(λ)

) = 0, F (λ) ≡ √−s+(λ)s−(λ)/2, F
(
z0
n

)
> 0.

Applying the implicit function theorem to Φ±(λ, γ ) = 0, where Φ±(λ, γ ) = f (λ) ± γF(λ) and
∂Φ±(z0

n,0)/∂λ �= 0 we obtain a unique solution z
γ,±
n = u = u(γ ), γ ∈ (−γ0, γ0), u(0) = z0

n of
the equation Φ±(λ, γ ) = 0, such that Φ±(u(γ ), γ ) = 0, γ ∈ (−γ0, γ0) for some γ0 > 0.

(ii) Consider the equation 0 = D
γ
+(λ) = D0+(λ) − γ 2

4 s+(λ)s−(λ). Using

D0+(λ) = 4 sin2 η+
2

sin2 η−
2

, s±(λ) = 2

η±
sin

η±
2

cos
η±
2

, cosη−(λ2n,1) �= 1, (4.8)

we obtain two equations for the zeros of D
γ
+(λ)

Φ(λ, γ ) ≡ sin
η+
2

− γ 2

4η−η+
cos

η+
2

cot
η−
2

= 0, sin
η+
2

= 0. (4.9)

The equation sin (η+/2)/η+ = 0 has the zeros λ0
1,2n. Consider the first equation in (4.9). Ap-

plying the implicit function theorem to Φ(λ,γ ) = 0, where ∂Φ(λ0
2n,1,0)/∂λ �= 0 we obtain a

unique solution u = un(γ ), γ ∈ (−γn, γn), un(0) = λ0
2n,1 of the equation Φ(λ,γ ) = 0, such that

Φ(un(γ ), γ ) = 0, γ ∈ (−γn, γn) for some γn > 0. The proof for D
γ
−(λ) = 0 is similar. �

2. The perturbed operator. We consider the operator Tγ,ν = −d2/dx2 + qγ,ν where the po-
tential qγ,ν = aJ + γ vνJ1 satisfies Condition A, γ ∈ R is small and a > 0. We determine the
asymptotics of the function ρ(λ, qγ,ν), µm(λ,qγ,ν), m = 1,2.



A. Badanin et al. / Journal of Functional Analysis 234 (2006) 106–126 125
Lemma 4.3. Each function ρ(λ, qγ,ν), µm(λ,qγ,ν),m = 1,2, ν = 1, 1
2 , 1

3 , . . . , is analytic in C
2.

Moreover, uniformly on any compact subset in C
2 the following asymptotics are fulfilled:

ρ(λ, qγ,ν) = ργ (λ) + o(1), µm(λ, qγ,ν) = µ
γ
m(λ) + o(1), m = 1,2, ν → 0. (4.10)

Proof. The fundamental solutions ϑν,γ , ϕν,γ of the equation −y′′ + qγ,νy = λy, satisfying the
conditions ϑν,γ (0, λ) = (ϕν,γ )′(0, λ) = I2, (ϑν,γ )′(0, λ) = ϕν,γ (0, λ) = 0 are the solutions of the
integral equation

ϕν,γ (x,λ) = ϕ0(x,λ) +
x∫

0

ϕ0(x − t, λ)qγ,ν(t)ϕν,γ (t, λ) dt. (4.11)

The standard iterations in (4.11) yield

ϕν,γ =
∑

n�0
ϕn,ν,γ , ϕn,ν,γ (x,λ) =

x∫
0

ϕ0(x − t, λ)qγ,ν(t)ϕn−1,ν,γ (t, λ) dt. (4.12)

The last identity gives

ϕn,ν,γ (x,λ) =
∫

0<x1<x2<···<xn+1=x

ϕ0(x1, λ)

(
�∏

1�k�n

ϕ0(xk+1 − xk,λ)qγ,ν(xk)

)
dx1 dx2 . . . dxn,

(4.13)

where for matrices a1, a2, . . . , an we define
∏

�

1�k�n ak = anan−1 . . . a1. Substituting the esti-

mate ‖√λϕ0(x,λ)‖ � e|Im√
λ|x into (4.13) we obtain

∥∥√
λϕn,ν,γ (x,λ)

∥∥ � (2x(a + |γ |))n
n! e|Im z|x,

which shows that for each x � 0 the formal series (4.12) converges uniformly on bounded subsets
of C. Each term of this series is an entire function. Hence the sum is an entire function. Since
vν → p in the sense of distributions we obtain ϕn,ν,γ (x,λ) → ϕn,0,γ (x, λ) as ν → 0 uniformly
on bounded subset of R × C

2, which yields (4.10). �
We give

Proof of Proposition 1.3. Lemma 4.3 yields ρ(λ, qγ,ν) → ρ(λ, qγ , ) and µm(λ,qγ,ν) →
µm(λ,qγ ), m = 1,2, uniformly on any compact subset in C

2 as ν → 0. Then their zeros converge
to the corresponding zeros at ν = 0, uniformly on any compact subset in C

2. Due to Lemma 3.3
we have convergence of D±(λ, qγ,ν) and of the Lyapunov function ∆(λ,qγ,ν). Thus using Lem-
mas 4.1, 4.2 we obtain the proof of Proposition 1.3. �
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