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We discuss the structure of asymptotic splitting formula for the lowest eigenvalues of multidimensional quantum double
well problem. We show that the change of instanton by closed unstable trajectory of appropriate Hamiltonian system
gives more natural and simpler preexponential factor (amplitude) in splitting formula. The projection of this trajectories
onto configuration space are well know librations in classical mechanics.

1. Splitting of eigenvalues and closed trajectories in the
1D quantum double well problem

The symmetric potentials V (x), x ∈ Rn, with two minimum points play an important role in problems
of quantum mechanics related to the tunneling effect. Under appropriate conditions, these effects can
be well described within the framework of the semiclassical approximation appealing to trajectories
of classical mechanics.

First, we recall several simple facts and formulas concerning the one-dimensional case (n = 1). We
assume that V (x) = V (−x) is a smooth function increasing at infinity with two minimum points x±
such that V (x±) = 0. Then the spectrum of the Schrödinger operator −h2

2
d2

dx2
+ V (x) behaves as

follows as h → 0. The eigenvalues of this operator located between V (x±) = 0 and V (0) turn out to
be twice degenerate asymptotically. We denote them by E±

n . The difference between the values E+
n

and E−
n (the splitting value) is exponentially small in h and we have E+

n − E−
n = o(h∞), E±

n = En +
+ o(h2). Here En is an asymptotics of E±

n in the parameter h. For large n À 1, n ∼ 1/h (excited
states in quantum mechanics), the En are determined by the Bohr–Sommerfeld quantization rule

1
2π

∮
p dx =

(
n + 1

2

)
h, (1.1)

and the splitting value is given by the asymptotic formula [24] (see also [16], [28])

E+
n −E−

n = ωh
π e−πJ/h(1 + O(h)). (1.2)
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The integral in Bohr–Sommerfeld rule (1.1) can be interpreted as an integral taken along the periodic

trajectory of Hamiltonian system p = −Vx, ẋ = p with the classical energy lying at level En: H ≡ p2

2 +

+ V (x) = En. This system is equivalent to the Newtonian system

ẍ = −Vx. (1.3)

ω in (1.2) is the frequency of motion along this trajectory. The quantity J has the form J =
= 1

π

∫ b+
b−

√
−2(En − V (x)) dx, where b+ = −b− are the roots of the equation V (x) = En that are

the nearest to x = 0 (see Fig. 1, (a)).

Fig. 1. The phase–plane portraits corresponding to the Hamiltonians H (a) and H (b).

Both formula (1.1) for the energy and formula (1.2) for the splitting have an explicit geometric
interpretation, namely, the integral in the Bohr–Sommerfeld condition is the action along the closed

curve, which is invariant under the flow of the Hamiltonian system with Hamiltonian H = p2

2 + V (x)

lying at level En. As was already noted, the frequency ω in formula (1.2) is the frequency of motion
along the corresponding trajectory. The exponent J in (1.2) can be interpreted as follows. Consider

the analytic continuation of the Hamiltonian H = p2

2 + V (x) to the domain of imaginary momenta,
p → ip, multiplying by −1, we obtain the Hamiltonian

H(p, x) = −H(ip, x) ≡ p2

2 − V (x). (1.4)

In the domain (b−, b+) (corresponding to the energies (−V (0), 0)), this Hamiltonian also has closed
trajectories (see Fig. 1, (b)), which can be parameterized by the action variable J . Precisely this
action, which corresponds to the closed trajectory ΓJ (see Fig. 1) lying at the energy level H = −En,
determines the exponent in the formula for the splitting. The projection of this trajectory on the
x-axis connects the turning points b− and b+ and is called a libration ([26], [27]). We also call the
corresponding trajectory in the phase space by the same name.

The Hamiltonian H describes the motions at energy level −En in the domain V (x) > En, where
the motion due to “standard” systems (1.3) is impossible. We shall say that the domain V (x) > En is
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classically prohibited and the domain V (x) ≤ En is classically allowed. Thus the trajectory ΓJ lies in
the classically prohibited domain. We note that the Newtonian system generated by the HamiltonianH
(describing ΓJ) has the form

ẍ = Vx (1.5)

and the potential in this system is the “inverted” potential in system (1.3). Such a system with
an “inverted” potential (in the classically prohibited domain) can be obtained from the Newtonian
system (1.3) in the “classically allowed domain” by replacing the real time t with the imaginary time it.
This argument is often used in the physics literature. In our consideration, it is most convenient to
pass from Hamiltonian H to (1.4) replacing p with ip (see [15], [40], [29], [34], [20]).

We see that the exponent in the formula for the splitting of eigenvalues for excited states is the
action variable of libration lying at the “inverted” energy level of the periodic classical trajectories de-
termining the Bohr–Sommerfeld quantization rule. The splitting amplitude is completely determined
by the frequency of motion along the latter trajectories: the splitting formula does not contain any
additional Maslov-index-type objects related to the trajectory ΓJ (which contribute 1/2 to the Bohr–
Sommerfeld rule (1.1)). Under appropriate analyticity assumptions, the procedure of calculating the
action J can be described as follows. As J is an integral of motion for the Hamiltonian system with
Hamiltonian H, we have J = J(p, x). The analytic continuation J = J(ip, x) gives an integral in the
classically allowed domain for the Hamiltonian system with the original Hamiltonian H, which, in
turn, must be expressed only in terms of the integral I, i. e., the action variable corresponding to the
trajectory in one of the potential wells. This gives the relation J = J(I) equivalent to

H(J) = −H(I), (1.6)

and precisely this relation determines the splitting of excited eigenvalues.
We note that the periodic trajectories in the classically allowed domain (in “potential wells”),

which generate quantization condition (1.1), are also librations, but the meaning of these trajecto-
ries and of ΓJ in the quantum problem is completely different; this difference becomes especially
transparent in the multidimensional case.

For lower energy levels (n = O(1) as h → 1), the Bohr–Sommerfeld formula remains valid, but
it is more convenient to use the harmonic oscillator approximation En = ω0h(1

2 + n), where ω0 =

= Vxx(x±) is the frequency of the “limit periodic motions” in the potential wells. Although the
splitting formula (1.2) also permits passing to small n, the direct passage to the limit gives a false

result. To obtain the correct formula, we must multiply the right-hand side in (1.2) by
√

π
e . This

fact was established in [1] by comparing formula (1.2) with the formulas for the lower eigenvalues
splitting, which were obtained in [38] and actually related to the limit trajectory (the separatrix) of
the system with Hamiltonian H, lying at zero energy level and connecting the potential maximum
points x± [17], [18], [19], [23]. This trajectory (the separatrix) in the tunneling problems is called
an instanton (see e. g. [36], [7], [8]) and is the path of integration in the splitting formula. In this
case, the preexponential factor in the formulas obtained in mentioned papers has a very complicated
structure, and precisely passing from the classical zero energy level to the quantum level E0 = hω0/2
“removes” the cumbersome expressions in the preexponent and permits reducing the splitting formula
to an “elegant geometric form” similar to that obtained in [24]. Of course, passing from the zero level
to the lower quantum energy level is equivalent to passing from the (separatrix) instanton to a closed
trajectory (libration) lying in a small neighborhood of the separatrix.

The goal of this paper is to derive a formula for the splitting of lower energy levels, which is
similar to formula (1.2) (with correction

√
π
e ) for lower energy levels of the Schrödinger operator with

potential of the form of two symmetric potential wells in the multidimensional case.
Before we state the explicit formulas, we note that the formulas for the splitting of excited states

in the multidimensional case have been proved accurately only for the case of separating variables,
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although several papers present formulas based on completely reasonable considerations [9], [40].
In [10], [11], [12] a two-dimensional analogue of formula (1.2) is constructed (and proved) for several
problems with separating variables (treated from a different viewpoint in [25]). In this analogue, the
exponent continues to contain a variable of action-variable-type generated by some tunnel cycle (but in
the complex phase space in the classically prohibited domain), and the frequency ω is replaced by sum
of frequencies ω1m1 + ω2m2 with integer-valued coefficients, which are the indices of intersection of
some cycle with the basis cycles of tori in the potential wells invariant with respect to the Hamiltonian
system.

For lower energy levels in multidimensional case, the splitting formulas appealing to instantons
were proved accurately [22], [35], [34], [29], [37], [20], [30] without any assumptions on the integrability.
Moreover, constructive but very cumbersome formulas for the preexponential factor were obtained
in [13], [14]. Again, for the path of integration in calculating the exponent in the formulas given in
[33], [29], [37], [20], [3], we choose a trajectory of the system (1.5) (an instanton), which does not
corresponds to the lowest energy level in quantum mechanics problem. We show that passing from
the instanton to closed trajectories (which are unstable in the multidimensional situation, and proved

to be librations) with the correcting factor
√

π
e introduced for lower energy levels permits writing

(accurately proved) formulas for the splitting of lower energy levels in the form [13], [14] which is
a generalization of formula (1.2). Apparently, the existence of such a representation proved to be
related to the fact that the Hamiltonians H and H in a neighborhood of the zero energy level can be
replaced by their normal forms, which generate already integrable Hamiltonian systems.

To simplify our presentation, we only consider the two-dimensional case, and, sometimes, our
reasoning is on a physics level of rigor.

2. Statement of the main result: librations and splitting for lower
energy levels of the two-dimensional Schrödinger operator

Restrict ourselves to the case of two degrees of freedom and consider a two-dimensional Schrödinger
operator in L2(R2) with the potential V (x) having the properties described above:

Ĥψ =
[
1
2

(
− ih ∂

∂x1

)2
+ 1

2

(
− ih ∂

∂x2

)2
+ V (x)

]
Ψ, x = (x1, x2)t ∈ R2 (2.1)

We also assume that V (x) is in general position. In particular, the eigenvalues ω2
1 and ω2

2 of the matrix
of second derivatives ∂2V/∂x2 at the points x− and x+ are different. Let ω1 < ω2.

In a neighborhood of the lower energy levels, the structure of the spectrum of this operator is
similar to the structure of the spectrum of the one-dimensional operator. In particular, there are two
smallest eigenvalues E+

0 and E−
0 such that

E±
0 = E0 + O(h2), E0 = h

2 (ω1 + ω2). (2.2)

The distance between these eigenvalues is, in fact, exponentially small in the parameter h: E+
0 −E−

0 =
= o(h∞).

Consider a Hamiltonian system equivalent to Newtonian system (1.5) (with the inverted poten-
tial −V (x)). It follows from the results of [37], [20], [21], [30], [12], [13], [14] that this system has
a trajectory connecting the maximum points x− and x+ of the inverted potential −V (x) in infinite
time. In general, such a trajectory need not be unique, but we assume that it is unique. In general
position, where, in particular, the frequencies of the limit motion ω1 and ω2 are different, we can use
the theory of the Hamiltonian systems to prove that the instanton is entering singular points and

issuing from singular points in the direction of the eigenvector of the matrix ∂2V
∂x2

corresponding to

the smaller frequency ω1.
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PSfrag replacements
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Let us consider the problem of trajectories of the Hamiltonian system with Hamiltonian H =

= p2

2 − V (x). For the energies H = −E < 0, the domain of possible motions in the configuration

space R2 is the plane without two nonintersecting symmetric domains Ω− and Ω+ diffeomorphic to
disks. It follows from [26], [27] that, in the phase space with energy −E, there exists at least one
closed trajectory whose projection on the configuration space is a curve diffeomorphic to an interval
connecting the boundaries ∂Ω− and ∂Ω+ and normal to them (see Fig. 2). Such a trajectory is called
a libration. In this domain, we consider the action functional

∫ T
0

√
2V (x(t))|ẋ(t)| dt, where the

Fig. 2. The potential −V (x) and the domain of possible motions for the energies H = −E < 0. The solid curve
is instanton trajectory, the broken curve is libration corresponding to the energy −E. e1 and e2 are eigenvector

minimum is sought among piecewise smooth curves x(t) connecting the boundaries of the domain of
possible motions in different times T . The librations are the trajectories on which this functional
attains its minimum. Taking into account well-known results from the theory of periodic trajectories
and from variational calculus, it is reasonable to assume that the librations form a one-parameter
family of trajectories parameterized by the energy −E, and, moreover, the librations converge to an
instanton solution as E → 0. In general, the librations need not be unique for each E. On the
other hand, it follows from the theory of the Hamiltonian systems that the librations are unstable
trajectories for small E. Therefore, it is natural to assume that the librations form one-parametric
continuous family.

The family of librations can be parameterized by the action variable J . By ΓJ we denote the
libration corresponding to J . Then J = 1

2π

∮
p dx and J ∈ [0, 2Jins], where Jins = 1

π

∫
Γ p dx is the

action on the instanton Γ. As J → Jins, the parts of the trajectories ΓJ during the motion form the
boundary ∂Ω− to ∂Ω+, tend to Γ. Since the librations are closed trajectories in the phase space, they
generate a variational system, which is a linear system with periodic coefficients

u̇ = Ĵ ∂2H

∂y2

∣∣∣∣∣
ΓJ

· u, Ĵ =
(

0 −E
E 0

)
. (2.3)
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Here ∂2H
∂y2

is the 4x4 matrix of second derivatives of H over the variables y = (p, x)t, E is the

2 × 2 unit matrix. By β(J) we denote the Floquet coefficients corresponding to the motions in
direction perpendicular to the motion along the libration. According to the theory of normal forms
of Hamiltonian systems in a neighborhood of ΓJ , we can introduce new canonical variables J , φ, ξ, η
such that the Hamiltonian H in this neighborhood can be represented in the form

H = H0(J)− β(J)ξη + O(ξ2η2).

Omitting the terms O(ξ2η2), we obtain the Hamiltonian (the normal form) of the integrable Hamil-
tonian system

H̃ = H0(J)− β(J)ξη,

where J and J̃ = ξη are integrals of motion. Thus, in a neighborhood of the libration, our Hamiltonian
has the property of being “almost” integrable. These integrals can be expressed in terms of p and x.
We assume that, in some complex neighborhood of real p, x, these functions are analytic, one can
construct functions of the complex arguments p, x, and, in particular, J ′(p, x) = J(ip, x) and J̃ ′(p, x) =
= J̃(ip, x). These functions are almost integrals of the original Hamiltonian system in the classically

allowed domain for the Hamiltonian H = p2

2 + V (x). On the other hand, the original Hamiltonian
has “approximate” integrals I1 and I2 corresponding to the harmonic oscillator approximation of
the Hamiltonian H near the minimum points x± at which the Hamiltonian can be represented as
H = ω1I1 + ω2I2 + o(I1, I2). These integrals must be related to the integrals J ′ and J̃ ′. We will show
that J̃ ′ = I2 + o(I2). Thus, to find the relation between the integrals J ′ and I1, it is necessary to solve
the equation

−E ≡ H0(J)− β(J)I2 = −ω1I1 − ω2I2, (2.4)

which determines J as a function of I1 and I2.
The following assertion is the main result of this paper.

Theorem 1. The formula for the splitting of lower energy levels has the form

E+
0 − E−

0
def= ∆E0 =

√
π
e

ω1h
π e−πJ0(h)/h(1 + o(1)). (2.5)

Here J0(h) is the solution of (2.4) with I1 = I2 = h
2 .

The goal of the next sections is to derive formula (2.5) from the formulas obtained in [12], [13], [14].
Remark 1. J0(h) is the action on the libration, but it is not connected with the energy level H = −E0.

It would be more appropriate to say that this quantity has the following meaning. In the phase space, the
equations J = J0(h) and J̃ = h determine an “almost invariant Lagrangian manifold.” This manifold has
a complicated structure, but there is a cycle (a closed path) on it near the libration ΓJ0 , and the action integral∮

p dx along this cycle is equal to 2πJ0(h). This cycle does not coincide with the closed trajectory of the
Hamiltonian system lying at the energy level −E0 in the forbidden domain. In the case of separating variables,
V (x) = V1(x1) + V2(x2), where V1(x1) is a one-dimensional potential with two wells and V1(x2) is a potential
increasing at infinity, we have β(J) = ω2 and the motions in a direction perpendicular above-mentioned cycle
do not affect the splitting. If the variables cannot be separated, we have β(J) 6= ω2 and the transversal motions
deform the action J .

3. 2D Splitting problem for the lowest energy levels and the
scattering problem

3.1. Instanton and splitting of the lowest energy levels in two-dimensional case

We first recall the formulas for the splitting of the lowest eigenvalues of the Schrödinger operator (2.1)
based on the instanton trajectory.
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Consider the Newtonian system (1.5) in the “classically forbidden” region. Here x ∈ R2 and V (x)
is the 2D double well potential described in Section 2. The system 1.5 has the solution (trajectory)
γ = {x = X(t)} satisfying the boundary conditions X(−∞) = x− ≡ (−a, 0)t, X(∞) = x− ≡ (a, 0)t.
This trajectory gives the minimum of the action functional

S12 =
∫ √

2V (x(t))|ẋ(t)| dt

among the piecewise smooth functions x(t) connecting the points x− and x+ (the maxima of −V )
(see [26], [27]). Lifting γ to the phase space by the formulas p = Ẋ(t), x = X(t), we obtain a trajectory
of the Hamiltonian system with Hamiltonian H, of (1.4). We denote this trajectory by Γ0 = {p =
= Ẋ(t), x = X(t)}, and we have H|Γ0 = 0. This trajectory is called the instanton. Suppose for
simplicity that the instanton is unique1 (up to a time shift), and normalize the time by the condition
X(0) = 0. Then for the difference E+

0 − E−
0 we have

E+
0 −E−

0 = A(h)exp{−S12/h}(1 + O(
√

h)). (3.1)

In order to construct the amplitude A(h) (see [12], [13], [14]), we must consider the variational system

Z̈(t) = ∂2V

∂x2

∣∣∣∣
γ

Z(t) (3.2)

corresponding to the instanton γ and find its matrix solution with the boundary conditions

Z(−∞) = 0, Z(0) = E2, (3.3)

where E2 is the 2× 2 identical matrix. This solution is unique and we have the limit

J −1
1 = lim

t→−∞ e−(ω1+ω2)tdet Z(t).

Let λ be the matrix element of B = OŻ(0)Ot in the second column and the second row, where O is
a rotation matrix such that Oẋ0(0) = (|ẋ0(0)|, 0)t. According to [12], [13], [14], the amplitude A(h)
in formula (3.1) has the form

A(h) = 4J −1
1

‖ẋ0(0)‖√
λ

√
h
π
√

ω1ω2. (3.4)

We want to show that formula (3.1) with amplitude A(h) can be presented in form (2.5).

3.2. Normal coordinates

The system (1.5) is equivalent to the Hamiltonian system

ẋ = p, ṗ = Vx, x ∈ R2, p ∈ R2 (3.5)

with Hamiltonian (1.4). The equation x = X(t) gives a curve on the plane R2; let us parameterize
this curve by its natural parameter

s =
∫ t

−∞
|Ẋ(t)| dt, s ∈ (0, l),

where l is the length of the instanton. Denote by n(s) = Ĵ2Xs the normal vector to the instanton,

Ĵ2 =
(

0 −1
1 0

)
, and by k(s) the curvature of γ. We have Xss = k(s)n(s).

1 It seems that this assumption is true in the case of general position.
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J.BRÜNING, S.YU. DOBROKHOTOV, E. S. SEMENOV

Introduce normal coordinates (s, q) in a neighborhood of the trajectory γ by the formula x =
= X(s) + n(s)q. This change of variables implies a canonical transformation in the phase space (see
e. g. [2]). We denote by P and Q the new momentum variables corresponding to s and q, respectively.

In new coordinates, the Hamiltonian H takes the form

H = 1
2J2

P 2 + 1
2Q2 − V (X(s) + n(s)q), J = 1 + k(s)q.

The Taylor expansion of 1
J2

and V gives 1
J2

= 1−2kq+6kq2+O(q3) and V = V (X(s))+(∂V/∂x, n)q+

+ 1
2(n, Vxxn)q2 + O(q3). Here (∂V/∂x, n) = −(Ẍ, n) = −2V (X(s))kq. Thus for the Hamiltonian H,

we have the representation

H =
(

P 2

2 − V (X(s))
)

(1− 2kq) + 1
2

(
Q2 − Ω2q2

)
+ O

(
q3

)
, (3.6)

where Ω2(P, s) = (Vxx|x=X(s)n, n)− 3k2P 2.
Let us introduce the 1D Hamiltonian

H0 = P 2

2 − V (X(s)). (3.7)

The trajectory Γ0 of the Hamiltonian system with Hamiltonian (3.6) corresponding to the instanton γ
is determined by the formulas Q = 0, q = 0, P = P0(t), and s = s0(t), where P0(t) = ṡ0(t) and s0(t)
is the solution of the Newtonian system

s̈ = ∂V (X(s))/∂s. (3.8)

3.3. The variational system in the new coordinates

Now let us rewrite the variational system in the new coordinates. We want to show that the solution
of (3.2) and (3.3) can be reduced to the problem

z̈ = ω2
0(t)z, z(0) = 1, z(−∞) = 0, (3.9)

where ω2
0(t) = Ω2(P, s)|Γ0 .

Indeed, according to the theory of Hamiltonian systems, the variational system (3.2) in the new
coordinates corresponding to (P, Q, s, q) takes the form

˙̃
Z = W̃ + KZ̃,

˙̃
W = VssZ̃(t)−KtW̃ , (3.10)

K =
(

∂2H∂P∂s ∂2H∂P∂q
∂2H∂Q∂s ∂2H∂Q∂q

)∣∣∣∣
Γ

=
(

0 −2k∂H∂P |Γ
0 0

)
. Here Z̃(t) and W̃ (t) are 2×2 matrix functions

related to the matrices Z(t) and Ż(t) in system (3.2) by the formulas Z̃ = RZRt, W̃ = RŻ(t)Rt, with
R(t) = ∂(s, q)/∂x|Γ. It is easy to verify that the functions

Z̃(t) =
(

ṡ0(t)/ṡ0(0) C(t)ṡ0(t)
0 z(t)

)
W̃ (t) =

(
Ṗ0(t)/ṡ0(0) C(t)Ṗ0(t)

0 w(t)

)

are solutions of the system (3.10), if z(t) is the solution of problem (3.9), w(t) = ż(t), and C(t) =
= −2

∫ t
0 k|Γz(t) dt. The matrix function Z(t) = RZ̃(t)Rt, R(0) = O, implied by this solution is the

solution of problem (3.2)–(3.3). Using these formulas, we find that λ and J1 in (3.4) are given as

λ = W̃22 = w(0) = ż(0), J −1
1 =

(
lim

t→−∞ e−ω1tṡ0(t)/ṡ0(0)
)(

lim
t→−∞ e−ω2tz(t)

)
.
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Note that we can represent problem (3.9) also in the form of a spectral problem on the semiaxis
(−∞, 0], namely

z̈ = ω2
0(t)z, (ż − λz)|t=0 = 0, lim

t→−∞ z(t) = 0, (3.11)

together with the normalization condition z(0) = 1. If we find the values of λ and b =
= limt→−∞ e−ω2tz(t), then we can compute the amplitude (3.4) as

A(h) = 4

√
h
π

[
b

√
ω2

λ

]√
ω1‖ṡ0(0)‖ lim

t→−∞ e−ω1tṡ0(t)/ṡ0(0). (3.12)

Comparing this formula with the formula given in [39], [1] for the splitting value in the one-dimensional
case, we can formulate the following proposition:

Proposition 1. The amplitude A(h) in (3.1) can be rewritten as

A(h) = T A0(h). (3.13)

Here T = b

√
ω2

λ
, and A0(h) is the amplitude of the splitting between the lowest energy levels of the

one-dimensional Schrödinger operator Ĥ0 = 1
2

(
− ih ∂

∂s

)2
+ V (X(s)).

If ω2
0 = const then the coefficient T is equal to 1 and the splitting problem becomes a one-

dimensional problem. In the general case, the splitting value is distinguished from the one-dimensional
one by the factor T 6= 1.

3.4. Relationship to the “scattering” problem

Let us now interpret the factor T . Consider system (3.9) and introduce the function u(t) = ω2
0(t)−ω2

2.
It is easy to see that (3.11) can be represented as the spectral problem for the Sturm–Liouville problem
L̂ = (−∂2/∂t2 + u(t)), (

− ∂2

∂t2
+ u(t)

)
z(t) = −ω2

2z(t). (3.14)

We can show that u(t) = O(e−ω1|t|), t → ±∞, hence u(t) is a smooth localized potential. It easy
to see that in our case −ω2

2 does not belong to the spectrum of L̂, thus there exists a solution of
problem (3.9) which has the following asymptotic expansion at infinity:

z(t) = beω2t(1 + O(eαt)), t → −∞, α > 0,

z(t) = ceω2t(1 + O(e−αt)), t → +∞.
(3.15)

The “scattering amplitude” b/c can be expressed via b and λ. Indeed, the fact that Ω2(t) = Ω2(−t)
implies that z̃(−t) is also a solution of problem (3.9). The derivative ż(t) has the following expansion
at infinity:

ż(t) = bω2e
ω2t(1 + O(eαt)), t → −∞, α > 0,

z(t) = cω2e
ω2t(1 + O(e−αt)), t → +∞.

(3.16)

At the point t = 0, we have (z(0), ż(0))t = (1, λ)t, (z̃(0), ˙̃z(0))t = (1,−λ)t. Let us consider the
Wronskian W (t) = z(t) ˙̃z(t) − ż(t)z̃(t) = const, W (0) = −2λ = limt→−∞W (t) = −2bcω2 + O(e−αt).
Hence, the scattering amplitude is equal to

b/c =
b2ω2

λ
.

Proposition 2. The factor T in (3.13) is equal to the square root of the “scattering amplitude”
for the solution of problem (3.14).
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4. Closed trajectories and the amplitude in the 2D splitting formula

Now we want to express the parameters of closed trajectories introduced in Section 2 and the normal
form in a neighborhood of these trajectories via the parameters of the instanton and the scattering
amplitude T .

It is convenient to introduce the action-angle variables J , φ instead of P and s. To this end,
let us consider the one-dimensional potential −V (X(s)). It has the structure of the potential well
between the points x− and x+ Consider 1D Hamiltonian (3.7). Its trajectories, which are situated
below H0 = 0, are periodic. We can parameterize them by the action variable J = 1

2π

∮
P ds and

determine by the equations P = P (J, φ+ω(J)t), s = s(J, φ+ω(J)t), φ is the angle variable conjugated
to J , ω(J) is the frequency of motion along the corresponding closed trajectory, J ∈ (0, Jins), and
Jins = 1

π

∫ l
0

√
2V (X(s)) ds. We fix the angle φ so that s = s(J, 0) = l/2.

In the new canonical variables (J, φ, φ, q)t, Hamiltonian (3.6) takes the form

H = H0(J) + 1
2(Q2 − Ω2

1q
2)− 2kH0(J)q + O(q3). (4.1)

Here Ω2
1(J, φ) = Ω2(P (J, φ), s(J, φ)) and k = k(P (J, φ), s(J, φ)).

Our idea is that the librations described in Section 2 are close to trajectories of the Hamiltonian
system with “truncated” Hamiltonian

H = H0(J) + 1
2(Q2 − Ω2q2). (4.2)

The accurate proof requires some delicate estimates, nevertheless our preliminary estimates allow us
to conclude that it is really true. We shall discuss this problem later.

Hamiltonian (4.2) has closed trajectories, which belong to the subspace Q = q = 0 and coincide
with the closed trajectories of the one-dimensional Hamiltonian system described above.

Denote the period of motion along these trajectories by T (J). These trajectories imply variational
systems. In what follows, we need only the parts of these systems corresponding to the perturbations w̃
and z̃ of Q = 0 and q = 0. These equations take the form

˙̃w = Ω2
1(J, ω(J)t)z̃, ˙̃z = w̃. (4.3)

According to the theory of linear equations with periodic coefficients, the basis of its solutions can be
chosen in the form

(w̃, z̃)t = v1(J, ω(J)t) = V1(J, ω(J)t)eβ(J)t,

(w̃, z̃)t = v2(J, ω(J)t) = V2(J, ω(J)t)e−β(J)t,

where β(J) > 0 is the Floquet index and V1(J, φ) and V2(J, φ) are smooth functions 2π periodic in
the angle φ and satisfy the normalization condition (V1, Ĵ2V2) = −1.

Our aim is to express the Floquet index β via the scattering amplitude T and the period T (J) =
= 2π/ω(J) in a neighborhood of the separatrix as J tends to Jins.

Following [31], we assume that, on the interval t ∈ [−T (J)/4, T (J)/4] up to multiplication by
the coefficients C + O(J − Jins), C = const, the solutions v1(J, ω(J)t) and v2(J, ω(J)t) coincide with
the solutions (ż(t), z(t))t and (ż(−t), z(−t))t of the variational system from (3.9) (corresponding to
the instanton trajectory), where z(t) and ż(t) have expansions (3.15) and (3.16) at infinity. Then we
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estimate V1(J,±π/2) and V2(J,±π/2) by the formulas

V1

(
J,−π

2

)
= Nb

(
ω2

1

)
e(β−ω2)T/4 + O(J − Jins),

V1

(
J, π

2

)
= Nc

(
ω2

1

)
e−(β−ω2)T/4 + O(J − Jins),

V2

(
J,−π

2

)
= Nc

(−ω2

1

)
e−(β−ω2)T/4 + O(J − Jins),

V2

(
J, π

2

)
= Nb

(−ω2

1

)
e(β−ω2)T/4 + O(J − Jins).

Here the normalizing coefficient N satisfies the equation −2N2bcω2 = −1
It follows from the symmetry properties of system (4.3) that V1(J,−π/2) = V1(J, π/2) and

V2(J,−π/2) = V2(J, π/2). From these equalities we can easily derive

β(J) = ω2 + 4 lnT
T (J)

+ o(1/T (J)), (4.4)

where T =
√

c
b

is the square root of the “scattering amplitude” introduced above.

According to the theory of normal forms [2], [5], [6], [32], in a neighborhood of closed trajectories,
there exists a change of variables J , φ, Q, q → J ′, φ′, ξ, η such that Hamiltonian (4.2) in the new
coordinates takes the form

H = H0(J ′)− β(J ′)ξη + f1(J ′, ξ, φ′, η). (4.5)

This change of variables can be given by the formulas (see e. g. [5], [6], [32], [4])

J = J ′ + f2(J ′, ξ, φ′, η),
(

Q
q

)
= V1(J ′, φ′)ξ + V2(J ′, φ′)η + g(J ′, ξ, φ′, η), (4.6)

To explain the estimates for the scalar corrections f1, f2 and the vector correction g, we recall that
all our considerations are available in a neighborhood of the instanton, which means that J − Jins, η
and ξ are small enough: these variables should be connected with a small parameter h in the quantum
problem. Namely, an analysis of the splitting formulas shows that

J − Jins = O(h lnh), η = O(
√

h), ξ = O(
√

h).

Taking into account this fact and using formulas [5], [6], [32], [4], we can estimate f1, f2 and g in the
following way:

f1 = O(h2), f2 = O(h3/2), g = O(h).

Rough considerations show that these estimates are sufficient to derive formula (2.5) from (3.1)–(3.4).
Now we want to relate the integrals of motion in the classically allowed and classically forbidden

regions.
Let us consider a neighborhood of the point x−. First, let us move and rotate the coordinate

system so that the point x− be the origin O of coordinates and the instanton enter this point in the
direction of the Ox1-axis (the coordinate system associated with the unite vectors e1 and e2 at the
point x− (see the Fig. 2)). Then in the classically allowed region we have two approximate integrals
of motion:

I1 =
p2
1 + ω2

1(x1)2

2ω1
, I2 =

p2
2 + ω2

1x
2
2

2ω2
.
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The 2D Hamiltonian H can be expressed in the form H = ω1I1+ω2I2+O(I3/2
1 +I

3/2
2 ) in a neighborhood

of x−.
Let us take the following point on the torus determined by the integrals I1 and I2:

p1 = p2 = 0, x1 =

√
2I1
ω1

, x2 =

√
2I2
ω2

.

Since the point lies in a neighborhood of the instanton trajectory, we can express it in coordinates J ,

Q, ψ, q. For the coordinates Q and q, we have Q = 0, q = x2 =

√
2I2
ω2

. Using the second formula

in (4.6) we get 


0√
2I2
ω2


 = 1√

2ω2

(
ω2

1

)
ξ + 1√

2ω2

(−ω2

1

)
η

and it follows that
ξη = I2.

To express J ′ or J in terms of I1 and I2, we can use relation (2.4). Now we show that the
root J0(h) of this equality gives the splitting value by formula (2.5).

At the lowest quantum energy level, we have I1 = I2 = h
2 . Solving equation (2.4) and using

the fact that β(J0) is closed to ω2 in the first approximation, we obtain J0 = J = J1, where J1

is the root of the equation H0(J1) = hω1/2. According to [1], this gives an approximation of the
splitting value ∆E1D for the lowest energy levels of the one-dimensional Schrödinger operator Ĥ0 =

= 1
2

(
−ih ∂

∂s

)2
+V (X(s)) by the formula ∆E1D =

√
πe

ω1h
π exp(−J1π/h). Next, we use the expansions

H0(J0) = H0(J1)+ 2π
T (J1)

(J1)(J0−J1)+ . . . and β(J0) = ω2+ 4 lnT
T (J1)

+ . . . . Substituting these formulas

into (2.5), we get the next approximation for J0:

J0 = J1 + h ln T
π

Substituting this into formula (2.5), we get the desired asymptotic formula ∆E = T ∆E1D.

5. Conclusion

As was mentioned above, the proof of our result rest on several assumptions. In future work, it
should be proved that the exact trajectories of the Hamiltonian system with HamiltonianH describing
librations are approximated by the trajectories determined by the “truncated” Hamiltonian, and also
that the normal form is approximated in a neighborhood of librations by the normal form (4.5).
The passage from integrals in the “classically prohibited domain” to approximate integrals in the
“classically allowed domain” also need a more rigorous derivation.
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