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Abstract. In the one-particle approximation, the quantum behavior of a (quasi-)particle is
studied in a thin waveguide having the form of a thin curvilinear film (in three-dimensional
space) placed in external magnetic and electric fields. Objects of this type arise in the actively
developing physics of nano-structures and, in particular, in the theory of ballistic transport
of electrons. The corresponding quantum-mechanical equation is a Pauli-type equation with
nonrelativistic Rashba spin-orbital interaction for a two-dimensional vector function. As-
ymptotic solutions of the Cauchy problem with special localized initial data and those of the
spectral problem are obtained. The construction of asymptotic solutions is carried out in two
stages. At the first stage, in the framework of the adiabatic approximation, using the “opera-
tor separation of variables” (the “generalized adiabatic principle”) for a rather broad class of
quantum states, the original three-dimensional equation is reduced to a two-dimensional sur-
face (the limit film), and then diverse solutions of this reduced equation are constructed. The
first part of the paper is devoted to the reduction and the solutions of the Cauchy problem.
Spectral problems will be treated in the second part.
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1. INTRODUCTION

In the paper, we study the quantum behavior of a (quasi-)particle in a thin waveguide having
the form of a thin curvilinear film (in three-dimensional space) placed in external magnetic and
electric fields. Objects of this type arise in the actively developing physics of nano-structures and,
in particular, in the theory of ballistic transport of electrons [11, 10, 34, 16, 19, 33]. In the one-
particle approximation, the corresponding quantum-mechanical equation is a Pauli-type equation
with nonrelativistic Rashba spin-orbital interaction for a two-dimensional vector function Ψ with
components Ψ1,Ψ2 (see [10, 17]),

i~Ψt = ĤΨ, Ĥ = P̂2/(2m) + vint(r) + vext(r, t)− e~/(2mc)〈σ,H〉+ ĤSO. (1.1)

Here P̂ = −i~∇ − (e/c)A(r, t), ~ is the Planck constant, e is the effective charge, m is the ef-
fective mass of the quasiparticle, c is the velocity of light, vext(r, t) and A(r, t) are the potentials
of the external electric and magnetic field, H = rotA(r, t) is the intensity of the magnetic field,
σ = {σ1, σ2, σ3} stand for the standard Pauli matrices, and ĤSO = α〈σ, [∇vint, P̂]〉 is the inter-
action of the spin with the intrinsic electric field (this interaction is determined by an effective
constant α). We restrict ourselves to the case of a homogeneous magnetic field H. The fact that
the problem is treated in a thin film (the domain Ω) is reflected by the existence of the so-called
confinement potential vint(r, µ) in the operator Ĥ; this potential vanishes on some “middle” smooth
two-dimensional surface Γ and rapidly increases along the normal to the surface. This very potential
keeps the particle in a small neighborhood of the “middle” surface Γ. The fact that the film is thin
means that the typical “longitudinal” size of the film is much greater than the normal size. Below
we return to the problem to define the domain Ω, the surface Γ, etc.
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For Eq. (1.1), we consider special boundary value problems and spectral problems formulated
below. It is clear from physical considerations that the dynamics of an electron in the film must
be approximately determined by some effective Hamiltonian on the two-dimensional surface Γ;
the Hamiltonian can depend on the geometry of the film, its local thickness, and so on. There-
fore, it is natural to decompose the problem to find wave functions on the film into two parts:
1) the reduction of Eq. (1.1) from three-dimensional space to the two-dimensional surface Γ,
2) the construction of solutions of the reduced equation. The first part of the paper is mainly
devoted to the accurate derivation of the reduced equation. This procedure uses a special version of
the adiabatic approximation, namely, the so-called “operator separation of variables” [5, 14, 1, 2].
We also consider here problems concerning the propagation of localized perturbations for the re-
duced equations thus derived; in this consideration, we use the Maslov canonical operator [26, 29] to
construct asymptotic solutions of these equations and complete the exposition with several simple
examples. The spectral problems are treated in the next part of the paper.

2. OPERATOR H IN CURVILINEAR COORDINATES

Curvilinear coordinates. When seeking solutions of Eq. (1.1), it is natural to use appropriate
curvilinear coordinates. The surface Γ can be, for instance, a cylinder or a sphere, and therefore
the coordinates (the longitudinal coordinates x = (x1, x2) and the transversal coordinate y) can be
defined in general only locally, in a small neighborhood of an arbitrary (but connected) part of the
surface Γ. Let the surface Γ be (locally) equipped with some coordinates x1, x2. Suppose that Γ is
defined by a vector function R(x1, x2) by the rule Γ = {r ∈ R3 | r = R(x1, x2)}. Let n be a unit
vector orthogonal to the surface Γ. In this case, the coordinates x1, x2, y can be defined by setting
r = R(x) + yn(x).

Note that the coordinates x1, x2 need not be orthogonal in general; however, we always have
〈n,n〉 = 1 and 〈n, ∂iR〉 = 0, i = 1, 2. Thus, the metric tensor becomes

Gab =
∥∥∥∥

γij 0
0 1

∥∥∥∥ , a, b = 1, 2, 3, (2.1)

where γij = 〈∂ir∂jr〉 = gij + y(〈∂iR, ∂jn〉 + 〈∂in, ∂jR〉) + y2〈∂in, ∂jn〉, i, j = 1, 2, and gij is
the metric tensor on Γ. Hereafter, G = det Gab = γ = det γij , g = det gij . As is well known, in
the curvilinear coordinates, to simplify the manipulations, it is useful to replace the function Φ
by the function Φ = ΨG1/4. Therefore, we immediately represent the original equation in the
curvilinear coordinates for the function Φ,

i~Φt =
[
G1/4ĤG−1/4

]
Φ. (2.2)

Write out the Hamiltonian in the form Ĥ = ĤO + ĤS + ĤSO, where

ĤO = (1/2)
(− i~∇− (e/c)A

)2 + vint(x, y) + vext(r, t),
ĤSO = α

〈
σ,

[∇vint,−i~∇− (e/c)A
]〉

, ĤS = −e~/(2mc)〈σ,H〉. (2.3)

In the calculation below, it is convenient to use the notation customary for relativity theory,
including the summation with respect to repeated indices. We also write

∂j = ∂/∂xj , p̂j = −i~∂/∂xj , p̂y = p̂3 = −i~∂/∂y.

Let us use the invariant form of the operator (−i~∇− (e/c)A)2 and Coulomb gauge:
(
− i~∇− e

c
A

)2

=
1
2

(
− i~div−e

c
A

)
Gab

(
− i~∇b− e

c
Ab

)
, div v =

1√
G

∂

∂xa

√
Gva, div A = 0,

which gives

G1/4ĤOG−1/4 = (γij/2)(p̂ip̂j − 2Aip̂j + AiAj) + vext(r, t) + vint(x, y)−(i~/2)∂i(γij)p̂j (2.4)

− (i~/4)γijAi∂j(ln γ)− (~2/2)γ−1/4∂i[γ1/2γij∂j(γ−1/4)]− (1/2)γ−1/4∂y[γ1/2∂y(γ−1/4)],

where Ai = (e/c)〈∂ir,A〉 and Ay = (e/c)〈n,A〉. Moreover, it is clear that

G1/4HSG−1/4 = HS . (2.5)
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Finally, let us represent the operator of spin-orbital interaction in an invariant form,
G1/4HSOG−1/4 = αγ−1/2εjkmσa(∂kvint)

(
p̂m −Am + (i~/4)∂m(ln γ)

)
, σj = 〈∂jr, σ〉, (2.6)

where j, k, m = 1, 2, 3 and εjkm stands for the identity completely antisymmetric tensor. Formu-
las (2.4)–(2.6) define Eq. (2.2) in the curvilinear coordinates.

Modelling the film’s boundary: “soft” and “rigid” walls. By problems with “rigid”
walls we mean problems with zero confinement potential vint = 0 and with the Dirichlet conditions
Ψ|∂Ω = 0. In problems on films with “soft” walls, it is assumed that vint 6= 0 and Ψ(x, y) ∈ L2(y)
for any x. In the latter case, it is further assumed that the potential vint(x, y) is uniquely defined on
the entire space R3. The last condition is too strong; however, since the function Ψ(x, y) is usually
exponentially small for y À µ, any assumptions concerning the function Ψ in this area negligibly
influence its behavior. To be definite, assume that Ψ(x, y)|∂Ω = 0. An “empty” film with “rigid”
walls can be regarded as the limit case of soft walls described by a potential with rapid growth near
the boundaries. For example, consider the potential vint(x, y′) = (y′/D(x))2m, y′ = y/µ, m > 0. In
this case, vint(x, yd(x)) →∞ as m →∞. Below we restrict ourselves to the modeling of films using
“soft” walls, adding also the hard-wall conditions on the boundary of a certain film neighborhood.

Parameters of the problem. Introduce the typical sizes. Suppose first that the film Ω ⊂ R3 is
bounded by two smooth surfaces Γ1 and Γ2 without boundaries. The quantum process is described
by a wave function Ψ(r, t) on the domain Ω. Denote by l0 the typical size of the domain Ω and
by d0 the typical thickness of the film. We assume that l0 À d0, which means that the film is
thin. This relation leads to the presence of a small parameter µ = d0/l0 in the problem under
consideration. We refer to µ as the adiabatic parameter. Suppose for a while that the film is flat,
Ω = {(x1, x2, y) ∈ R3 : 0 6 y 6 d0}, i.e., it is bounded by the planes Γ1 = {y = 0} and
Γ2 = {y = d0}, that there are no electric and magnetic fields, and that the model with rigid
walls is treated. In this case, instead of (1.1), we have the Schrödinger equation corresponding to
a free particle with Dirichlet conditions on Γ1 and Γ2. In this case, one can construct the wave
function Ψ(x, t) in the form of a plane wave Ψ(r, t) = exp(−iωt + i〈k‖, x〉) sin(k⊥y). This function
is characterized by two wavelengths, the longitudinal length λ = 2π/|k‖| and the transversal length
λ⊥ = 2π/|k⊥|. We consider processes with transversal wavelengths comparable with the thickness
of the film d0, λ⊥ ∼ d0. This means that the wave function Ψ has only a few (for instance, one
or two) oscillations in the transverse direction. The number of oscillations of the wave function in
the longitudinal direction has nothing in common in general with the oscillations in the transverse
direction and can be characterized by another dimensionless parameter h = λ/l0, which we call
semiclassical or dynamical. In contrast to the parameter µ, the parameter h can take different
values corresponding to different wave processes.

Equation in dimensionless variables. Let us now rewrite Eqs. (2.2)–(2.6) in dimensionless
coordinates, considering the existence of diverse scales. Write x′ = x/l0 and y′ = y/d0. Introduce
the dimensionless time, t′ = t/T , T = md0l0/~ (the unit is the time needed for a free particle with
longitudinal energy ε0 = ~2/(md2

0) to travel the distance l0). We also introduce the dimensionless
potentials v′int = vint/ε0, v′ext = vext/ε0, and A′ = ed0(~c)−1A, and also the dimensionless magnetic
field as the number of quanta of the flow of the magnetic field through the rectangle with the sides
l0 and d0, H′ = 2πl0d0 ·H/Φ0 and Φ0 = 2π~c/e, and the dimensionless quantity α′ = ~α/l0d0.
The evaluation of the constant α̃ for specific materials and actual magnetic fields shows that α′
does not exceed one. For this reason, we divide Eq. (1.1) by the typical energy of the transversal
motion, ε0. In this case, Eq. (2.2) becomes

iµΦt = Ĥ′Φ, Ĥ′ = Ĥ′O + Ĥ′S + Ĥ′SO, (2.7)
where

Ĥ′O = (γij/2)(p̂′ip̂′j− 2A′ip̂′j + A′iA
′
j) + (1/2)

(−∂2
y′ + 2iA′y∂y′ + A′2y

)
+v′ext(x

′, µy′, t′) + v′int(x
′, y′)

− iµ2γij
,i p̂′j − (iµ/4)γijA′i∂j(ln γ)− (i/4)A′y∂y′(ln γ)− (µ2/2)γ−1/4∂i

[
γ1/2γij∂j

(
γ−1/4

)]

− (1/2)γ−1/4∂y′
[
γ1/2∂y′

(
γ−1/4

)]
, Ĥ′SO = (µα′/γ1/2)εjkmσj(∂kv′int)Qm,

Ĥ′S = µ/2〈σ,H′〉, Q1,2 =
(
p̂′1,2 −A′1,2 + (iµ/4)∂1,2(ln γ)

)
, Q3 =

(−i∂y + (i/4)∂y(ln γ)
)
,

(2.8)

σj = 〈∂jr, σ〉, p̂′1,2 = −iµ∂/∂x′1,2
, γjk = γjk(x′, µy′), γ = γ(x′, µy′), j, k, m = 1, 2, 3.
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Let us stress that, in contrast to vint, the potential vext includes the parameter µ at y′. This
reflects the rapid growth of vint in the normal direction to the film.

Equation (2.3) with the Hamiltonian (2.8) is the object of our subsequent investigation. In what
follows, to simplify the notation, we omit the primes at all variables and functions except for the
function H′ and the operator Ĥ′. The assumption that the external fields and the confinement
potential change rather slowly in the longitudinal direction means that the coefficients in the
operator Ĥ are smooth functions.

Symbol of the operator Ĥ′ and its expansion. Equation (2.3)–(2.8) belongs to the class
of equations with operator-valued symbol [26, 2]. The variables x and y enter the equation in a
different way with respect to the parameter µ, namely, the derivatives with respect to x contain µ,
whereas the derivative with respect to the other variable does not. This very fact makes it possible
to apply the adiabatic approximation in the case under consideration. It is convenient to represent

the operator (2.8) in the form Ĥ′ = H′(−iµ ∂
1

/∂x,
2
x, ∂y, y, µ), where the digits over the opera-

tors mean the order of their action (see [28]) and the operator-valued function H′(p, x, ∂y, y, µ),
is obtained from (2.8) by replacing the operators p̂′j by the variables pj . In order to find approxi-
mate (asymptotic) solutions of Eqs. (2.3)–(2.8), we need only several first terms of the expansion
H′(p, x, ∂y, y, µ) = H′0(p, x, ∂y, y) + µH′1(p, x, ∂y, y) + µ2H′2(p, x, ∂y, y) + · · · in the parameter µ.
Using the relations A = A0 + µyA1, A0 = 1/2[H,R], A1 = 1/2[H,n], Ai = A0

i + µyA1
i + O(µ2),

A0
i = 〈∂iR,A0〉, A1

i = 〈∂iR,A1〉 + 〈∂in,A0〉, Ay = A0
y + µyA1

y + O(µ2), A0
y = 〈n,A0〉, and

A1
y = 〈n,A1〉 = 0 and the Taylor expansions of the functions γjk, γ, etc., in the parameter µ, we

obtain
H′0

(
x, p, y,−i∂/∂y, t

)
=(1/2)gkjPkPj + (1/2)P̂2

y + vext

(
R(x), t

)
+ vint(x, y), (2.9)

H′1
(
x, p, y,−i∂/∂y, t

)
=(1/2)yγkj

1 PkPj − ygkjPkA1
j +〈∇vext(R(x), t), yn〉 − i

(
(1/2)(∂gkj/∂xk)pj

+(1/4)gkjA0
k∂j(ln g)+(1/4)A0

y

[
∂y(ln γ)

]
y=0

)
+(1/2)〈σ,H〉+g−1/2(∂yvint)(σ2P1−σ1P2). (2.10)

Here p = (p1, p2), Pk = pk − A0
k, P̂y = py − A0

y, gkj = γkj |y=0, and g = γ|y=0. The last summand
in H′1 corresponds to the spin-orbital interaction and the coefficients gij define the elements of the
metric tensor of the surface Γ. The summands H′j with indices j exceeding 2 have a complicated
structure; however, they are not needed to construct the leading term of the asymptotic solutions
of the original equation, except for the value of H′2 for Pi = 0 and vext = 0. For H′2|Pi=0,vext=0, we
have
H′2

(
x, 0, y,−i∂/∂y, t

) ≡ G(x)− (1/2)g−1/4∂i

[
g1/2gij∂j

(
g−1/4

)]
, G(x) = −(κ1 − κ2)2/8. (2.11)

This term does not depend on y and p̂y and contains geometric characteristics only, namely, char-
acteristics of the embedding of the film Γ in three-dimensional space. We refer to G(x) as the
geometric potential; its role in the theory of waveguides and resonators was first discovered by
V.P. Maslov [25, 30].

Remark. With regard to specific numerical values of the intensities of the magnetic and elec-
trical fields, one actually can and must often assume that the potentials vint(x, y), vext

(
R(x), t

)
,

and Aj depend on µ regularly, and thus the formulas for H′0 and H′1 can also include summands
of order O(µ). However, it seems to be hardly reasonable to immediately make the corresponding
re-expansions because the formulas become significantly more awkward. For the same reason, we
omit this dependence in the arguments of these functions.

3. REDUCTION TO AN EQUATION ON A TWO-DIMENSIONAL SURFACE

Adiabatic approximation and the “operator separation of variables”. As we said
above, since the problem has different scales in the longitudinal and transversal directions of the
film, it is natural to assume that the original problem can be reduced to a family of two-dimensional
problems describing the longitudinal motion. Certainly, an exact reduction of this kind can be car-
ried out precisely only for a few models, and the reduction is usually carried out in an approximate
or, more exactly, in an asymptotic sense. As a rule, the full asymptotic expansion is rather com-
plicated and has a rather puristic interest. For physical applications, it suffices to construct the
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leading term of the expansion (and sometimes several corrections to the leading term). From the
“asymptotic point of view,” the reduction is related to the presence of the small parameter µ and
can be realized in the framework of the adiabatic approximation, which we apply in the form
of an “operator separation of variables” (the “generalized adiabatic principle”, [14, 5, 2, 1], see
also [31, 13]). This approach amalgamates the classical Born–Oppenheimer approximation [6, 7],
the theory of equations with operator-valued symbols [26], the operator methods [28], and also the
“Peierls substitution” from the physics of solids [32, 22].

As was noted above, in the problems under consideration there is another “semiclassical” pa-
rameter h characterizing the longitudinal wavelengths in the film. In every specific problem, it is
natural to assume that these parameters are related, and we set h = µα, where 2 > α > 0. This
relation between the parameters was discussed in detail in [1, 2, 8, 3], where a classification of the
longitudinal waves is carried out (based on a relation of this type) and some remarks are expressed
explaining that, in fact, under the corresponding conditions on the potentials, it suffices to restrict
ourselves to the relations h = O(1) (“long” waves), h = O(

√
µ) (“medium” waves), h = O(µ)

(“short” waves), h = O(µ3/2) (“ultrashort” waves), and h = O(µ2) and higher (states). The re-
duction we make includes the case of α 6 3/2, and the two-dimensional reduced equation thus
obtained (on the surface Γ) enables one to describe all cases with these values of α. Moreover, this
equation describes solutions whose structure varies in time and solutions containing singularities
with respect to h related to the presence of focal points. (One of the simplest examples of this kind,
namely, a Cauchy problem with localized initial data, is considered in the next subsection.) In the
case of “superexcitated” states, the adiabatic approximation is no longer applicable, the reduced
equation is not related to the original one, and one must use other approaches. We also note that
there are many monographs and publications concerning adiabatic problems, and we mention only
the sources [10, 12, 13, 17, 18].

Let us now discuss the operator separation of variables for Eq. (2.7). Since there are different
scales in the longitudinal and in the transversal directions of the film, one can separate the modes
adiabatically. The standard adiabatic approach enables one to separate the modes as follows: start-
ing from the fundamental papers of Born and Oppenheimer [6, 7], the leading part of the wave
function in the adiabatic approximation is sought in the form of a product

Φ(x, y, t, µ) ≈ χ(y, x, µ)ψ(x, t, µ). (3.1)

However, this representation can be used only if the function ψ(x, t, µ) is rather smooth, and it
works badly for sufficiently large energies of longitudinal motion. If the function ψ(x, t, µ) has rapid
oscillations (for instance, if ψ is a WKB-solution ψ(x, t, µ) = exp(iS(x, t, µ)/h)ϕ(x, t, µ, h)), then
the representation (3.1) is inconvenient for the decomposition, and it becomes necessary to include
the momentum ∂S/∂x into the factor χ(y, x, µ) and use the formula [26]

Φ(x, y, t, µ) ≈ χ(y, x, ∂S/∂x, µ)ψ(x, t, µ) (3.2)

instead of formula (3.1). Recall that the phase S is a solution of the Hamilton–Jacobi equation
∂S/∂t + Hh

eff(∂S/∂x, x, t) = 0 with the so-called effective Hamiltonian Hh
eff(p, x, t). Formula (3.2)

is still not satisfactory because, if focal effects exist (like turning points or caustics), the WKB-
representation is wrong, and the form of ψ and χ must be changed. We want to “correct” for-
mula (3.2) so that the new formula will be valid for focal points and turning points as well. This
correction is based on the observation that, in the case of WKB solution, the right-hand side of
Eq. (3.2) is preserved (up to a small correction, see [26]) if we assume that the first factor is a

(pseudodifferential) operator χ(
2
x,−iµ∂

1

/∂x, y, t, µ) represented as a function (its symbol) of non-
commuting operators x and p̂ = −iµ∂/∂x. Thus, in the adiabatic approach, it is suggested to seek
Ψ(x, y, t) in the form

Φ(x, y, t, µ) = χ
(2
x,−iµ ∂

1

/∂x, y, t, µ
)
ψ(x, t, µ), (3.3)

where χ̂ is a 2 × 2 matrix whose elements are pseudodifferential operators. The indices over the
operators mean the order of their action. From the physical viewpoint, we “freeze” not only the
slow variables x (as in the adiabatic approximation) but also the slow momentum which is the
differential operator −iµ∂/∂x in quantum mechanics.

We still have not fixed an equation for the function ψ (which describes the longitudinal motion).
Following the idea of Peierls substitution in the physics of solids (see [32, 22]), assume that ψ is a
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6 J. BRÜNING et al.

solution of the following equation describing the longitudinal dynamics:

iµψt = L
(2
x,−iµ ∂

1

/∂x, t, µ
)
ψ, (3.4)

where L̂ stands for the effective Hamiltonian with the essential part Heff(
2
x,−iµ ∂

1

/∂x, t). The ob-
jective of the present paper is to evaluate the operators L̂ and χ̂ and to construct the semi-
classical asymptotics of Eq. (3.4). The evaluation of the operators L̂ and χ̂ is reduced to the
evaluation of their symbols, i.e., of the functions L(p, x, t, µ) and χ(p, x, t, y, µ). As a rule, this eval-
uation cannot be carried out exactly, and we restrict ourselves to the evaluation of the coefficients
L0, L1, L2|p = 0, χ0, and χ1 in the expansions L = L0(p, x, t) + µL1(p, x, t) + µ2L2(p, x, t) + · · ·
and χ = χ0(p, x, t, y) + µχ1(p, x, t, y) + µ2χ2(p, x, t, y) + · · · . This turns out to be sufficient to find
the leading term of the asymptotic solutions (with respect to the parameters µ or h (see [1, 2, 8]))
we are interested in. The description of the operator separation of variables is presented in these
papers; for completeness of our exposition, we also present it in the appendix.

Effective Hamiltonian and corrections to it. To find the effective Hamiltonian L0 and
the function χ0 in the situation with “soft” walls, one must solve the following auxiliary spectral
problem for any chosen x:(− (1/2)∂2/∂y2 + vint(x, y)

)
u(x, y) = ε⊥(x)u(x, y), ‖u(x, y)‖y = 1. (3.5)

Denote by ‖ · ‖ and 〈· , ·〉 the norm and the inner product in L2(Ry), respectively. As is well known,
the spectrum of this problem is nondegenerate, all eigenvalues are separated from one another,
and the eigenfunctions can be chosen to be real. Therefore, the value of u(x, y) is preserved as
the point x bypasses a closed path on Γ, and hence the function u(x, y) (as well as ε⊥(x)) is a
one-valued smooth function of x (and y). Let us enumerate the eigenfunctions and the eigenvalues
by the index ν, ν = 0, 1, 2 . . . We have
Hν

eff(x, p, t) = (1/2)gijPiPj+veff, veff = vext

(
R(x), t

)
+εν

⊥(x), χν
0 = exp(iy〈n,A0〉)uνEs, (3.6)

where Es is a unitary 2 × 2 matrix in the spin space. The index ν is referred to as the index of
“subzone of dimensional quantization.” We fix this index and, to simplify the notation, omit the
dependence on this index in the objects arising below as a rule.

For the model potential vint(x, y) = (y/D(x))2m, m > 0, we obtain ε⊥(x) = (d(0)/d(x))2ε⊥(0),
where d(x) = D(x)

m
m+1 d(0) is the variance of the state with the energy ε⊥(x). Assuming that the

thickness of the film is proportional to d(x), we see that D(x)
m

m+1 is the coefficient of the homothety.
As m →∞, this coefficient tends to D(x), which corresponds to a half of the thickness of the film
with “rigid” walls.

Let us evaluate the first correction for the effective Hamiltonian of the longitudinal motion, i.e.,
the matrix L1. It is determined by the following formula (see the appendix):

L1 =
〈
χT

0 ,H′1χ0

〉
y
− i

〈
χT

0 ,
dχ0

dt

〉
y
− i

〈
χT

0 ,
[∂H0

∂pj
− ∂Hµ

eff

∂pj

]∂χ0

∂xj

〉
y
, (3.7)

dχ0

dt
= T

∂χ0

∂t
− ∂Hµ

eff

∂xj

∂χ0

∂pj
+

∂Hµ
eff

∂pj

∂χ0

∂xj
.

Write Y = Y ν(x) = 〈χ0, yχ0〉y. Apply the relations

〈u, ∂ju〉y = 0,

〈
χ0,

∂χ0

∂t

〉

y

= iY
〈
n,

∂A0

∂t

〉
,

〈
χ0,

∂Hµ
eff

∂pj

∂χ0

∂xj

〉
y

= iY gijPi∂j 〈n,A0〉 ,

Y gijPi〈∂jR,A1〉 = −Y gijPi 〈n, ∂jA0〉 = (1/2)〈H,Λ〉,
gij

,i pj − ∂i(gijA0
j ) = ∂i(gijPj), ∂i(gijA0

j ) + (1/2)gijA0
i ∂j(ln g) + A0

y[∂y(ln γ)]y=0 = 0.

(The last relation is the zero term of the expansion of the gauge rule
∂i(γijAj) + (1/2)γijAi∂j(ln γ) + ∂yAy + (1/2)Ay∂y(ln γ) = 0

with respect to the change y = µy′.) This yields

L1 = −Y αi
jg

jkPiPk −
〈
E

(
R(x), t

)
, Y n

〉− 〈H,Λ〉+ (1/2)〈σ,H〉 − (i/2)∂i(gijPj)

+ g−1/2〈u, (∂yvint)u〉(σ2P1 − σ1P2).
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Here Λ = [Y n,PPP], PPP = gijPi∂jR, and E = −∇vext − T (∂A0/∂t). The summand in the last row
corresponds to the spin-orbital interaction. Note now that, for any subzone with index ν, one can
choose the “middle surface” (by using the change of variable y → y − Y ν(x)) in such a way that
the function Y = Y ν(x) vanishes. In this case, the first three summands in the formula vanish.
Further, we have 〈u, (∂yvint)u〉 = 0 (see Appendix A3), and therefore the spin-orbital interaction
makes no contribution to L1. Thus, as the result, we obtain

L1 = (1/2)〈σ,H〉 − (i/2)(∂/∂xk)(gkjPj), k, j = 1. (3.8)
Finally, it follows from the formula for L2 (see Appendix A2) that the contribution into L2

for Pi = 0, vext = 0 is made only by H′2(x, 0, y,−i∂/∂y, t) ≡ G(x)− (1/2)g−1/4∂i[g1/2gij∂j(g−1/4)].
Therefore, L2|P=0,vext=0 = G(x)− (1/2)g−1/4(∂/∂xk)

[
g1/2gkj∂j

(
g−1/4

)]
. Thus, the reduced equa-

tion for the longitudinal function ψ becomes (we neglect the correcting summands making no
contribution into the leading term of the asymptotic solutions):

iµψt =
[
Heff

(1

p̂,
2
x
)

+ µL1

(1

p̂,
2
x
)

+ µ2G(x)
]
ψ, (3.9)

where Heff is determined by formula (3.6), L1 by (3.8), and G(x) by (2.11).
The matrix part of the operator on the right-hand side is the constant matrix (1/2)〈σ,H〉, which

can be eliminated by the substitution1 ψ = exp(−(i/2)〈σ,H〉t)ϕ. Furthermore, it is convenient to
present ϕ in the form ϕ = g1/4

(
ψ+

ψ−
)
. In what follows, we assume that this substitution is carried

out and that ψ± are the amplitudes corresponding to the spin that is codirected or counterdirected
to the magnetic field. To simplify the notation of the equation derived above, we also note that the
summand −(iµ/2)∂i(gijPµ

j ) in (3.8) should be referred to the operator L̂0 as an addition needed
for L̂0 to be self-adjoint and occurring due to asymmetric (non-Weyl) quantization of the “kinetic”
part of its symbol (1/2)gijPiPj ; the same holds for the second G-summand in (2.11) which occurs
in the Laplace–Beltrami operator due to the modification of the measure of vector functions under
the change Ψ → Φ = ΨG1/4. Finally, for the functions ψ±, we have

iµ
∂ψ±

∂t
=

(−µ2∆M + vext

(
R(x), t

)
+ ε⊥(x) + µ2G(x)

)
ψ±, (3.10)

−∆M = − 1√
g

∂

∂xi

√
g gij ∂

∂xj
+ 2i gijAi

∂

∂xj
+ gijAiAj +

i√
g

( ∂

∂xi

√
g gijAj

)
,

where G(x) = −(κ1 − κ2)2/8, ∆M stands for the Laplace operator on the surface Γ with regard
to the curvature and the presence of magnetic field (which manifests itself in the replacement of
the derivatives by “long” derivatives). We especially note that the spin in the preserved summands
in the equation thus obtained is totally absent, which means that effects related to the spin are
inessential for the leading term of the asymptotics.

The recovering of a solution of the original equation from the functions ψ± is carried out by the
formula

Ψ = g1/4G−1/4
(
exp(iy〈n,A0〉)uν + µχ1(−iµ ∂

1

/∂x,
2
x, y, t)

)
exp(−(i/2)〈σ,H〉t)( ψ+

ψ−
)
. (3.11)

Note that, first, the summand µχ1(−iµ ∂
1

/∂x,
2
x, y, t) (in contrast to χ0) is really an operator

rather than a function and, second, this summand gives only a correction to the leading term;
however, if we do not take it into account, then the function thus constructed is not an asymptotic
solution of the original equation. These problems were discussed in detail in [1, 2, 8].

4. CAUCHY PROBLEM WITH LOCALIZED INITIAL DATA
Let us show by an example of the Cauchy problem with localized initial data how one may find

solutions which are related to regimes with diverse wavelengths on one hand, and contain focal
points and change their structure in the course of evolution on the other hand.

Representation of initial data in the form of canonical operator. Let us suppose for a
while that Γ is a diffeomorphic to the plane R2. Let h be a small positive parameter and let V (z),
z ∈ R2, be a smooth function decaying at infinity as 1/|z|k, k > 1, where the derivatives ∂V /∂zj

1Since the magnetic field is directed along the z axis, the matrix 〈σ,H〉, and hence the matrix L1 as well, is diagonal
(with the elements ±(1/2)|H| − (i/2)∂i(g

ijPj)).
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decay as 1/|z|k+1. Write z = x/h, x ∈ R2. The function V (x/h ) is localized in a neighborhood of
zero. The objective of this section is to construct the asymptotics of the Cauchy problem

ψ
∣∣
t=0

= V (x/h) (4.1)

for the reduced equation (3.10). Here we consider the case in which the parameter h is related to µ
by µ = hα, where α > 0. In particular, we claim that the form of the asymptotic behavior of the
Cauchy problem heavily depends on this ratio (i.e., on α). To solve the Cauchy problem, we would
like to use the general scheme [26, 29] based on the Maslov canonical operator. To this end, we
use the following representation for localized functions. Denote by Ṽ (p) Fourier transform of the
function V (z),

Ṽ (p) =
1
2π

∫

R2
y

e−i〈p,z〉V (z)dz.

Here the symbol 〈· , ·〉 stands for the real inner product. In this case, we have the formula

V (x/h ) =
1
2π

∫

R2
p

e(i/h)〈p,x〉Ṽ (p)dp. (4.2)

The function V (x/h) rapidly decreases outside a small neighborhood of the point x = 0.
Meaning the study of asymptotic solutions of the Cauchy problem with the initial data of the
form (4.2) for partial differential equations, one can represent the expression on the right-hand side
in the form of the Maslov canonical operator Kh

Λ2
0

on the Lagrangian manifold (a plane) given by

Λ2
0 = {p = α, x = 0 | α ∈ R2} acting on the function Ṽ (α) on Λ2

0,

V (x/h) = (h/i)Kh
Λ2

0
[Ṽ (α)]. (4.3)

The last relation readily follows from the definition of canonical operator with regard to the following
facts: (a) we have 〈p, dx〉

∣∣
Λ2

0
= 0; (b) all points on Λ2

0 are focal and infinitely degenerate, and thus

Λ2
0 is covered by a single focal map x = 0 with the coordinates (p1, p2); (c) the Jacobian satisfies

the relation det ∂p/∂α ≡ 1. Formula (4.3) defines a δ-shape sequence and, as h → +0, we have

h−2V (x/h ) → δ(x)
∫

R2
V (z)dz,

and, in essence, formulas (4.2),(4.3) give a “spreading” of the Dirac δ-function which is based on
the well-known representation

δ(x) = (2π)−2

∫

R2
ei〈p,x〉dp.

If Γ is not diffeomorphic to the plane R2, for example, Γ is a sphere or a cylinder, then we assume
that V (z) is finite and preserve (4.1), (4.3).

Shortwave asymptotics. First consider the case in which µ = h in (4.1). Having in mind the
representation (4.3) and the general scheme [26, 29], we construct the asymptotics of the solution
of the Cauchy problem (3.10), (4.1). By [26, 29], this asymptotics is expressed using the solution
of the Hamiltonian system in the phase space with the coordinates p = (p1, p2), x = (x1, x2),

ẋi = ∂Heff(x, p, t)/∂pi, ṗi = −∂Heff(x, p, t)/∂xi. (4.4)

This system generates a canonical transformation gt
Heff

taking a point with coordinates (p0, x0)
to the point (p, x) = gt

Heff
(p0, x0) = P(p0, x0, t),X (p0, x0, t), where P(p0, x0, t),X (p0, x0, t) is the

solution of system (4.4) with the initial data
P

∣∣
t=0

= p0, X
∣∣
t=0

= x0. (4.5)

The transformation gt
Heff

takes the Lagrangian manifold Λ2
0 to the Lagrangian manifold given by

Λ2
t = gt

Heff
Λ2

0 and, for the coordinates on the latter, one can choose the coordinates α induced by
the coordinates on the manifold Λ2

0. Namely, denote by (P (α, t), X(α, t)) the trajectory of (4.4)
issued from the point (α, 0). In this case, Λ2

t = {p = P (α, t), x = X(α, t)}.
Let us choose a point (x = 0, p = 0) on the manifold Λ2

0 and denote by
γ0 = {p = P 0(t) ≡ P (0, t), x = X0(t) ≡ X(0, t)}
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the trajectory of the Hamiltonian system (4.4) issuing from this point (0, 0). For any chosen t, we
regard (P 0(t), X0(t)) as a distinguished point on the Lagrangian manifold Λ2

t . Let us introduce a
function Ṽ (α) on the family of Lagrangian manifolds Λ2

t , where Ṽ (α) is constant on the trajectories
P (α, t), X(α, t). On the trajectory γ0, we have the action

s(t) =
∫ t

0

(〈
p,

∂Heff

∂p

〉
−Heff

)∣∣∣
γ0

dη.

Recall that a point (p, x) = (P (α, t), X(α, t)) (with the coordinates α) on Λ2
t is said to be nonsin-

gular if J(α, t) = det ∂X/∂α 6= 0. This definition works, in particular, for the points (P 0(t), X0(t))
on the trajectory γ0 (with the coordinates α = 0). Let time t be such that the point P 0(t), X0(t) is
nonsingular. In this case, we can define the Morse index m(t) of this point on the trajectory; it is
equal to the number of zeros (counted according to their multiplicities) of the Jacobian J(0, t) on
the interval (0, t]. Let us construct the Maslov canonical operator Kµ

Λ2
t

on Λ2
t acting on the function

Ṽ (α) and write
ψ±(x, t, µ) = −iµeis(t)/µ−iπm(t)/2Kµ

Λ2
t
Ṽ (α). (4.6)

One of the main results of this paper is the following assertion.
The function ψ±(x, t, µ) is the leading term of the asymptotic solution of the Cauchy problem

(3.10), (4.1) with respect to mod O(h2) in L2(Γ).

This assertion seems to hold for a wide class of films and external potentials. Under some
assumptions, in the second part of this paper, we present a proof using general assertions [26, 29]
on solutions of Cauchy problems. Let us now present a realization and simplification of the general
formula (4.6) in specific situations.

Example 1. Van-Vleck-type formula for localized initial conditions. A rather general
formula can still be obtained under the assumption that the surface Γ (the layer) is diffeomorphic
to the plane R2 and that the manifold Λ2

t is projected onto Γ bijectively. In this case, the Jacobian
J(α, t) = det ∂X(α, t)/∂α vanishes nowhere, and the equation

X(α, t) = x (4.7)
can uniquely be solved with respect to α. Therefore, at any point x, we can define (in the coordinates
of x) the action ∫α(x,t)

0 〈p, dx〉 and the Jacobian J(α(x, t), t). In this case, formula (4.6) becomes

ψ±(x, t, µ) = −iµeis(t)/µ−iπm(t)/2e
(i/µ)

∫ α(x,t)

0
〈p,dx〉

Ṽ (α(x, t))/
√
|J(α(x, t), t)|. (4.8)

If the external electric and magnetic fields are absent, the layer is flat, and its thickness is constant,
then (3.10) becomes the Schrödinger equation for the free particle, Heff = p2, P = α, X = 2αt, and
the Jacobian is J = 2t; for t > 0, J does not vanish, the trajectory γ0 is the point (0, 0), m(t) = 0,
s(t) = 0, ∫α

0 〈p, dx〉 = α2t, and α(t, x) = x/2t. Therefore, for t > 0, we obtain a well-known
WKB-formula in quantum mechanics,

ψ±(x, t, µ) = −iµ
eix2/(4µt)

√
2t

Ṽ
( x

2t

)
. (4.9)

If one replaces the function Ṽ by 1 (or, which is the same, the function V by the delta function δ(x)),
then formula (4.8) is transformed, up to normalizing factors, to the Van Vleck formula for the semi-
classical asymptotics of the Green function for the Cauchy problem for the Schrödinger equation,
and this formula is well known in quantum mechanics (see, e.g., [4] and also [9]), whereas formula
(4.9) is transformed into an exact formula for the Green function of the Schrödinger equation for
a free particle. This example shows that the solution (4.8) can change its structure, but the inter-
twining operator χ̂ and the reduced equation remain invariant with respect to such transformations,
which is the main advantage of the “operator separation of variables.”

Example 2. Flat film in a homogeneous magnetic field. In this example, one can again
obtain explicit formulas. Let Ω be a flat film of constant thickness (ε1(x) = const), the exter-
nal electric field being absent, and the magnetic field being everywhere constant and equal to
H = (H1,H2,H3). In this case, the reduced equation (3.10) given on the plane Γ = R2 is simply
the equation for a free particle in a constant magnetic field,

iµ∂ψ/∂t = (1/2)
((− iµ(∂/∂x1) + (ω/2)x2

)2 +
(− iµ(∂/∂x2)− (ω/2)x1

)2)
ψ,
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where ω = H3. The corresponding trajectories of the Hamiltonian system (4.4) are of the form

P1(t, α) =
1
2
(
α1 + α1 cos(ωt) + α2 sin(ωt)

)
, P2(t, α) =

1
2
(
α2 + α2 cos(ωt)− α1 sin(ωt)

)
,
(4.10)

X1(t, α) =
1
ω

(
α2 − α2 cos(ωt) + α1 sin(ωt)

)
, X2(t, α) =

1
ω

(− α1 + α1 cos(ωt) + α2 sin(ωt)
)
.

These very trajectories define the Lagrangian manifolds Λ2
t at the time moment t. At the time mo-

ments that are multiples of T = 2π/ω, the trajectories return to the initial points (x1, x2, p1, p2) =
(0, 0, α1, α2), i.e., the Lagrangian manifold comes to the original one, and at the other moments,
this manifold is projected to the plane (x1, x2) bijectively. The Jacobian J is equal to

J = det
∣∣∂xi/∂αj

∣∣ = ω−2
∣∣ sin(ωt) 1−cos(ωt)

−1+cos(ωt) sin(ωt)

∣∣ = 4 sin2(ωt/2)ω−2,

J = 0 at the points t = 2πk/ω, k = 0,±1,±2, . . . , and the zeros of J are obviously of multiplicity 2.
The trajectory of γ0 is the point (p = 0, x = 0), s(t) = 0 and, when “running along” this trajectory,
the Morse index changes by 2 when passing through the points t = 2πk/ω. Therefore, after “jump-
ing” over k points of this kind, the index becomes equal to 2k, and one can rewrite the exponential
eis(t)/µ−iπm(t)/2 in the form sign(sin(ωt/2)). Let us present the asymptotics of the functions ψ± at
the time instants separated from kT, i.e., for some chosen ε > 0 and any integers k = 1, 2, . . . , the
time moments of interest belong to the set |t − kT | > ε. The phase on the Lagrangian manifold
(in the variables α, the phase is well defined for any t) is

∫ α

0

〈P, dX〉 =
α2

2ω
sin(ωt).

To evaluate the phase in the coordinates x, one must express α1 and α2 in the last formula in terms
of x1, x2 by solving Eq. (4.7). Elementary manipulations give

α1 =
ω

2
(
x1 ctg(ωt/2)− x2), α2 =

ω

2
(x2 ctg(ωt/2) + x1

)
, α2 =

ω2(x2
1 + x2

2)
4 sin2(ωt/2)

.

Therefore, S(x1, x2, t) = (ω/4)(x2
1 + x2

2) ctg(ωt/2). Thus, formula (4.8) becomes

ψ± = − iµω

2 sin(ωt/2)
eiωx2 ctg(ωt/2)/(4µ)Ṽ

(ω

2
(x1 ctg(ωt/2)− x2),

ω

2
(x2 ctg(ωt/2) + x1)

)
.

As Ṽ → 1, we obtain the well-known formula for the Green function for a free particle in a
homogeneous magnetic field.

Example 3: Spherical film. Let Ω be a film of constant thickness near the unit sphere and
let the external electric and magnetic fields be absent. In this case, the reduced equation is given
on the sphere of unit radius Γ = S2,

iµ
∂ψ

∂t
= −µ2

2
∆ψ, ∆ =

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
,

where θ ∈ [0, π], φ ∈ [0, 2π] are the spherical coordinates.
Let us present the asymptotic solution of this equation in the case of initial conditions strongly

localized at the “noth pole” (θ = 0), ψ|t=0 = V (x1/µ, x2/µ), where x1 = θ cos φ, x2 = θ sin φ are the
coordinates in a neighborhood of the pole and V is a smooth compactly supported function. The
trajectories of the Hamiltonian system (4.4) that pass through the north pole are the geodesics with

θ(t, α1, α2) =

{
t
√

α2
1 + α2

2 ( mod 2π) for t
√

α2
1 + α2

2 (mod 2π) ∈ [0, π],

2π − t
√

α2
1 + α2

2 (mod 2π) for t
√

α2
1 + α2

2 (mod 2π) ∈ [π, 2π],

φ(t, α1, α2) = arccos
( α1√

α2
1 + α2

2

)
, pθ(t, α1, α2) =

√
α2

1 + α2
2, pφ = 0.
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Modifying the parameters (α1, α2) ∈ R2, we obtain a set of points corresponding to the Lagrangian
manifold at the time moment t. To any point of the sphere distinct from the poles, at any time
moment t > 0, there comes a set of trajectories that are indexed by the number of performed
full rotations and by the sign of the direction of motion (from the north pole/to the north pole).
This means that, when projecting the Lagrangian manifold from the phase space to the configura-
tion space (the sphere S2), every point of the sphere distinct from the poles has countably many
preimages, α

(k)
1 = ((θ + 2πk)/t) cos φ, α

(k)
2 = ((θ + 2πk)/t) sin φ, k = . . . ,−2,−1, 0, 1, 2, . . .

Let us find the asymptotic behavior of the function ψ(θ, φ, t), t > 0, in the cylindrical band
θ ∈ [ε, π − ε], ε > 0. To begin with, let us find the phase on the Lagrangian surface,

S(t, α1, α2) =
∫ t

0

{
p(τ, P, φ)ẋ(τ, P, φ)−H(x(τ, P, φ), p(τ, P, φ))

}
dτ =

(α2
1 + α2

2)t
2

.

The Jacobian of the passage from the coordinates α1, α2 to the coordinates θ, φ of the configuration
space is J = t/

√
α2

1 + α2
2.

The singular points on Λ2
t are the concentric circles α2 = πn/t, n = 0, 1, 2, . . . (the preimages of

the poles of S2). The Maslov index can change when passing from one map to another. However.
since the Jacobian J is everywhere positive, it follows that the modification of the Maslov index is
zero, and the index is zero everywhere. Thus, the asymptotic solution in this example is of the form

ψ(θ, φ, t) = (1/t)
k=+∞∑

k=−∞

√
|θ + 2πk|ei(θ+2πk)2/(2th)Ṽ (((θ + 2πk)/t) cos φ, ((θ + 2πk)/t) sin φ).

Since the function V is compactly supported, the function Ṽ vanishes at infinity, and the series
can be truncated by replacing the limits ±∞ by ±1/(µ)δ, where δ > 0 is some small number. This
truncation of the series is also useful when justifying the asymptotics.

Example 4: Compact Riemannian manifold. Let Ω be a film of constant thickness near a
compact Riemannian manifold Γ and let the electric and magnetic fields be absent (H = E = 0).
In this case, the reduced equation is given on Γ and has the form

iµ
∂ψ

∂t
= −µ2

2
∆ψ,

where ∆ is the Laplace–Beltrami operator on Γ. The initial condition is localized at an arbitrary
point X0 ∈ Γ. The Hamiltonian flow given by (4.4) is the geodesic flow. Suppose that all geodesics
issuing from X0 contain no focal points.

Let us present an asymptotic solution of this equation outside a neighborhood of the focal points,
i.e., for the points containing no singularities of the projection of Λ2

t . To any point of X ∈ Γ, at any
time moment t > 0, there comes a family of trajectories issuing from X0 at t = 0. All these trajec-
tories have their own length l(X) and their initial momentum α; we enumerate them by an index
k ∈ I(X, t). The sets of preimages smoothly depend on X ∈ Γ, t > 0, and therefore the entire family
of indices is countable and, in what follows, the summation is taken over one and the same set I.

Let us find the asymptotics of the function ψ(θ, φ, t), t > 0. The phase on the Lagrangian
surface is

S(t, α) =
∫ t

0

{
p(τ, P, φ)ẋ(τ, P, φ)−H(x(τ, P, φ), p(τ, P, φ))

}
dτ =

α2t

2
.

Note that, if we know the expression for αk in terms of X at some moment, then we know this
at any time moment, αk(X, t) = αk(X, 1)/t, where α2

k can be expressed in terms of the length
of the geodesic, α2

k(X, t) = l2k(X)t−2. The Jacobian of the passage from the coordinates α to the
coordinates of the configuration space is Jk = Jk(X)t. The Maslov index vanishes because the focal
points are absent by assumption. Thus, in this example, the asymptotic solution is of the form

ψ(X, t) =
1√
t

∑

k∈I

1√
Jk(X)

eil2k(X)t/hṼ (αk(X, t)).
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Gaussian wave packets and “medium” waves. Let us now consider the situation in which
h =

√
µ and restrict ourselves to the case in which the initial function has the form of Gaussian

exponential V = exp (−〈y,B0y〉/2). Here B0 stands for a symmetric positive 2× 2 matrix. Assume
that the initial function is localized in a neighborhood of the point x = ξ. In this case,

ψ±|t=0 = A exp
(− 〈x− ξ, B0(x− ξ)〉/(2µ)

)
, (4.11)

where A is a constant. The application of the above scheme to construct an asymptotic solution
without strong additional assumptions is not possible due to a mismatch between the parameters
µ and h in the equation and in the initial data. If we take µ for the “basic” parameter, then the
corresponding functions V (y) and Ṽ (p) should be replaced by V (y

√
µ) and Ṽ (p/

√
µ), and thus the

amplitude in the asymptotics becomes a rapidly varying function, which prevents an application
of formula (4.6). In this case, to construct an asymptotic solution, one can use complex germ the-
ory [27, 15]. Let us describe these solutions. They consist of a trajectory (P (t, ξ), X(t, ξ)) of the same
Hamiltonian system (4.4) issuing from an initial point of the form (P (0, ξ), X(0, ξ)) = (0, ξ); along
with this chosen trajectory, one must find matrix solutions (B(t, ξ), C(t, ξ)) of the linear system
(system in variations which is linearized on the trajectory (P (t, ξ), X(t, ξ)) of the system (4.4),

Ḃ = −Hpx(P (t, ξ), X(t, ξ))B −Hxx(P (t, ξ), X(t, ξ))C, B
∣∣
t=0

= B0,

Ċ = Hpp(P (t, ξ), X(t, ξ))B + Hpx(P (t, ξ), X(t, ξ))C, C
∣∣
t=0

= E.
(4.12)

Note that det C 6= 0 for any t [27].

Proposition 4.2. The asymptotics of the solution of the Cauchy problem (3.10),(4.11) is de-
termined by the formula (see [27])

ψ±(x, t) = (A/
√

detC(t, ξ))e(i/µ)
∫ t

0

(
〈P (η,ξ),Ẋ(η,ξ)〉−H(X(η,ξ),P (η,ξ))

)
dη

× e(i/µ)〈P (t,ξ),x−X(t,ξ)〉e(i/2µ)〈x−X(t,ξ),BC−1(x−X(t,ξ))〉. (4.13)

Note now that this formula works for any smooth potentials Aj , veff, e. g., if Aj = O(µ) = µA1
j

and veff = v0
eff+µv1

eff. In particular, this means that the walls of the film vary rather slowly. However,
in this case, the wave packet (its leading part) moves rather slowly and cannot have time to pass
the entire wave film at the (dimensionless) time. On the other hand, in this case, we can pass from
the functions ψ± to the functions

ϕ± = e(i/µ)v0
effψ± (4.14)

(this corresponds to a renormalization of energy) and divide the equation for the functions ϕ± by µ.
Further, we can modify the time scale and set t = t′/

√
µ, assuming that the new time t′ varies

from 0 to O(1), and thus the “old time” varies up to “larger” values O(1/
√

µ). However, these are
the very times at which the wave packet propagates along the entire film. We can now pass from
the parameter µ to the parameter h, and then the equation for the function φ becomes

ih∂ϕ±/∂t′ = (−h2∆M + v1
eff + h2G(x))ϕ±. (4.15)

The structure of this equation is the same as that of (3.10); however, this equation now describes
“medium” waves with wavelength ∼ h. The solution of the Cauchy problem (4.15), (4.1) is de-
termined by formula (4.6) (and its diverse realizations) with the changes µ → h, veff → v1

eff,
and Aj → A1

j . In essence, we have “renormalized” the momenta p and the Hamiltonian Heff(p, x)
by setting

H ′
eff(p, x) = (1/µ)(H ′

eff((µ/h)p, x)− v0
eff).

It is clear that the long-wave geometric potential G(x) makes here no contribution to the leading
term of the asymptotic solution either (with respect to the parameter h). From the point of view
of formula (4.6), in this situation, formula (4.13) can be regarded as a realization of the canonical
operator at (small) times for which the solution is still localized in a neighborhood of the initial
focal point.
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Propagation of “widely spread” initial perturbations and the long-wave limit. If os-
cillations are absent in the initial condition, i.e., in Eq. (4.1) we have h = 1, the function V (X)
is compactly supported, and ∂veff/∂x 6= 0, then, as a rule, the solutions ψ± still oscillate with the
frequency ∼ µ. These solutions can be constructed by using the same formula (4.6), but with the
replacement of the Lagrangian manifold Λ2

0 by the manifold Λ̃2
0 = {p = 0, x = α} and the function

Ṽ (α) by V (α). Similarly to the previous subsection, a perturbation of this kind practically does
not move along the film at times tO(1) (as µ → 0) if Aj = O(µ2) = µ2A2

j and veff = v0
eff +µv2

eff. We
have weak fields, and the walls of the film vary very slowly. The time at which the initial perturba-
tion propagates along the entire film becomes equal to µ−2, the semiclassical asymptotics do not
work, and one should carry out the following procedure: introduce a function by formula (4.14),
substitute it into Eq. (3.10), set t = t′′/µ2, and divide the equation for ϕ± by µ2. This leads to the
equation of long-wave approximation (without a parameter),

i∂ϕ±/∂t′′ = (−∆M + v1
eff + G(x))ϕ±. (4.16)

This equation must be now solved exactly, and the “geometric potential” G(x) makes a contribution
to the solution. Similarly to the above considerations, we can say that the procedure of derivation
is reduced to the “renormalization of momenta” p and of the Hamiltonian Heff(p, x), namely,

H ′′
eff(p, x) = µ−2

(
H ′

eff(µp, x)− v0
eff

)

5. APPENDIX

A1. Operator-valued separation of variables. Let Ĥ be a µ-pseudodifferential operator of
the form

Ĥ = H(− iµ ∂
1

/∂x,
2
x, y,−i∂/∂y, µ

)
= ‖Ĥij‖s

i.j=1.

with the operator-valued symbol

H(
x, p, y,−i ∂/∂y, t, h

)
= H0

(
x, p, y,−i ∂/∂y, t

)
+ µH1

(
x, p, y,−i ∂/∂y, t

)
+ · · · .

We assume that the operator-valued symbol and the coefficients of its expansion are (smoothly
dependent on p, x, t) self-adjoint operators acting on an appropriate Hilbert space with respect to
the variable y with the inner product 〈· , ·〉y. Consider an equation (a system of equations) for the
vector function Ψ = (Ψ1, . . . , Ψs)T ,

iµ∂Ψ/∂t = ĤΨ. (5.1)

Let us seek solutions of Eq. (5.1) in the form

Ψi(x, y, t, µ) =
k∑

j=1

χij

(− iµ ∂
1

/∂x,
2
x, y, t, µ

)
ψj(x, t, µ), (5.2)

where ψ = (ψ1, . . . , ψk)T is the wave function of some chosen term (or mode) with multiplicity of
degeneration equal to k and χ̂ stands for the “intertwining” matrix pseudodifferential operator

χ̂ = ‖χ̂ij‖k
i,j=1, χ(p, x, y, t, µ) = χ0(p, x, y, t) + µχ1(p, x, y, t) + · · · . (5.3)

Concerning the vector function ψ, we assume that it satisfies the “effective” equation

iµψt = L
(− iµ ∂

1

/∂x,
2
x, t, µ

)
ψ (5.4)

given by the matrix operator L̂,

L̂ = ‖L̂ij‖k
i,j=1, L(p, x, t, µ) = L0(p, x, t) + µL1(p, x, t) + · · ·

with a matrix L0(x, p, t) proportional to the identity k × k matrix Ek (L0(x, p, t) = Hµ
effEk). The

coefficient of proportionality Hµ
eff is said to be the (classical) effective Hamiltonian. If one defines

χ̂ and L̂, then the initial problem (5.1) is reduced to a simpler (“reduced”) equation, Eq. (5.4),
for the vector function ψ. The original solutions Ψ are recovered via formula (5.2) by using the
intertwining operator χ̂. The problem of finding the operators χ̂ and L̂ is reduced to finding their
symbols (functions) χ and L or the coefficients of their expansion in the parameter µ.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 15 No. 1 2008
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Substituting the function Ψ from (5.2) into Eq. (5.1), we obtain iµχ̂ψt + iµχ̂tψ = Ĥχ̂ψ. Using
condition (5.4), we represent this equation in the form (χ̂L̂ + iµχ̂t − Ĥχ̂)ψ = 0. A sufficient
condition for the validity of the last formula is the relation χ̂L̂+ iµχ̂t−Ĥχ̂ = 0. Let us pass in this
relation from the operators to their symbols [26] by using the following formula: the symbol of the

product of two operators, A(
2
x,−iµ ∂

1

/∂x, µ)B(
2
x,−iµ ∂

1

/∂x, µ), is expressed using their symbols by

the rule A(
2
x, p− iµ ∂

1

/∂x, µ)B(x, p, µ) (for a correct derivation of this formula for pseudodifferential
operators and the description of the conditions on their symbols, see [28]). This leads to the equation

χ
(
p− iµ ∂

1

/∂x,
2
x, y, t, µ

)
L(p, x, t, µ) + iµχt(p, x, t, y, µ)

= H(2
x, p− iµ ∂

1

/∂x, y,−i ∂/∂y, t, µ
)
χ(x, p, y, t, µ).

To solve this equation, we use regular perturbation theory in powers of the parameter µ. Collecting
terms of zero order with respect to µ, we obtain a family of spectral problems (depending on x, p, t)
for the self-adjoint operator H0(x, p, y,−i∂/∂y, t),

H0

(
x, p, y,−i ∂/∂y, t

)
χ0(x, p, y, t) = χ0(x, p, y, t)L0(x, p, t). (5.5)

Suppose that the asymptotics of the desired function (5.2) is completely determined by an eigenvalue
(effective Hamiltonian or term) Hµ

eff(x, p, t) whose multiplicity is equal to k and does not depend
on x, p, t. In this case,

L0(x, p, t) = Hµ
eff(x, p, t)E, (5.6)

where E is a unitary k×k matrix and the matrix χ0(x, p, y, t) formed by orthonormal column vectors
(eigenfunctions of the operator H0 which correspond to the eigenvalue Hµ

eff(x, p, t)) is the projection
to the eigensubspace generated by the eigenvalue. It is natural to assume that χ0(x, p, y, t) depends
smoothly on all its arguments.

Collecting the terms at µj , we obtain nonhomogeneous equations for χj and Lj ,

(H0 −Hµ
effE)χj = Fj −Hjχ0 + χ0Lj ,

where the summands Fj depend on χ0, . . . , χj−1 and L0, . . . , Lj−1; in particular, F1 = D̂χ0 with

D̂ = i
∂χ0

∂t
+ i

[∂H0

∂pj

∂χ0

∂xj
− ∂Hµ

eff

∂xj

∂χ0

∂pj

]
= i

dχ0

dt
+ i

[∂H0

∂pj
− ∂Hµ

eff

∂pj

]∂χ0

∂xj
,

dχ0

dt
=

∂χ0

∂t
− ∂Hµ

eff

∂xj

∂χ0

∂pj
+

∂Hµ
eff

∂pj

∂χ0

∂xj
.

Since the operator (H0 −Hµ
effE) is self-adjoint, it follows from the Fredholm alternative that the

solvability condition for this equation is equivalent to the condition that the right-hand side is
orthogonal to the column vectors of the matrix χ0. This yields Lj = 〈χT

0 ,Hjχ0〉−〈χT
0 , Fj〉 (see [26]),

in particular,

L1 =
〈
χT

0 ,H1χ0

〉
y
− i

〈
χT

0 ,
dχ0

dt

〉
y
− i

〈
χT

0 ,
[∂H0

∂pj
− ∂Hµ

eff

∂pj

]∂χ0

∂xj

〉
y
. (5.7)

Assuming that L1 is of the form (5.7), one can find a correction, i.e., the matrix

χ1 = (H0 −Hµ
effE)−1(F1 −H1χ0 + χ0L1),

choosing it (to be definite) by the condition of orthogonality to the column vectors of the matrices
χ0 and χ1. The repetition of this procedure leads to the evaluation of Lm and χm. Formulas (5.6),
(5.7), etc., give the coefficients of the expansion for the symbol of the reduced equation (5.4).

A2. In order to evaluate the symbol L2, one needs an expression for F2. Let us write it out,

F2 = D̂χν
1 −H1χ

ν
1 +χν

1L1 + i
[∂H1

∂pj

∂χν
0

∂xj
− ∂χν

0

∂pj

∂L1

∂xj

]
+

1
2

[ ∂2H0

∂pi∂pj

∂2χν
0

∂xi∂xj
− ∂2Hµ

eff

∂xi∂xj

∂2χν
0

∂pi∂pj

]
. (5.8)
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By setting A = 0, Pi = 0, vext = 0 here and using Eqs. (2.9), (2.10), and (2.11), we obtain

L2 = G(x)− 1
2g1/4

∂

∂xk

[
g1/2gkj∂j

( 1
g1/4

)]
, G(x) =

1
γ1/4

∂

∂y

[
γ1/2 ∂

∂y

( 1
γ1/4

)]
.

Denote by αj
i the coefficients of the first fundamental form on Γ. In this case, ∂in = αj

i ∂jR, and
∂jr = ∂jR + y∂jn = (δk

j + yαk
j )∂kR. For the matrix γij , we have

γij = 〈∂ir, ∂jr〉 = (δk
i + yαk

i )gkl(δl
j + yαl

j),

and thus γ = (E + yα)T g(E + yα),

γ−1 = (E + yα)−1g−1(E + yα)−1T = g−1 − y(αg−1 + g−1αT ) + O(y2).

Hence, γ−1
1 = −(αg−1 + g−1αT ) and γij

1 pipj = −2αi
jg

jkpipk. The eigenvalues λj of the matrix α
are equal to (−κj), and thus

J = det(1 + yα) = (1− κ1y)(1− κ2y),

so that
1

γ1/4

∂

∂y

[
γ1/2 ∂

∂y

( 1
γ1/4

)]
=

(κ1 − κ2)2

4(1− κ1y)2(1− κ2y)2
. (5.9)

A3. Let us choose an arbitrary point x on the surface (but omit it in the notation as an argument
in quantities depending on it); then we have

〈u, (∂yvint)u〉 =
∫ ∞

−∞
u∗(y)v′int(y)u(y)dy = −

∫ ∞

−∞
vint(y)

(
u∗(y)u′(y) + u∗′(y)u(y)

)
dy,

expressing the products vint(y)u(y) and vint(y)u∗(y) in Eq. (3.5) (and its complex conjugate), we
continue,

−
∫ ∞

−∞
u′(y)

(
ε⊥u∗(y) +

1
2
u∗′′(y)

)
+ u∗′(y)

(
ε⊥u(y) +

1
2
u′′(y)

)
dy

= −
∫ ∞

−∞

(
ε⊥u∗(y)u(y) +

1
2
u∗′(y)u′(y)

)′
dy =

1
2
(|u′(−∞)|2 − |u′(∞)|2) = 0,

since the function u vanishes at infinity together with the derivative.
When performing this research, we had numerous and useful discussions with V. A. Geyler.
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Boston–Berlin, 1994).

28. V. P. Maslov, Operational Methods (Nauka, Moscow, 1973).

29. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics (Reidel, Dor-
drecht, 1981).

30. V. P. Maslov, Mathematical Aspects of Integral Optics (MIEM, Moscow, 1983); Journal version: Russ.
J. Math. Phys. 8 (1), 83–180; (2), 180–238 (2001).

31. G. Panatti, H. Spohn, and S. Teufel, “Effective Dynamics for Bloch Electrons: Peierls Substitution and
Beyond,” Comm. Math. Phys. 242 (3), 547–578 (2003).

32. R. E. Peierls, Quantum Theory of Solids (Interscience, New York, 1960).

33. N.A. Poklonski, E. F. Kislyakov, G.G. Fedoruk, and S. A. Virko, “Model of an Electron Structure of
the Metal Doped Carbon Nanotube,” Fiz. Tverd. Tela 42 (10), 1911–1914 (2000).

34. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial
College Press, London, 1998).

35. P.C. Schuster and R. L. Jaffe, “Quantum Mechanics on Manifolds Embedded in Euclidean Space,”
Ann. Physics 307, 132 (2003).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 15 No. 1 2008


