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Abstract. We demonstrate the possibility of computing the intensity of electronic transport
through various junctions of three-dimensional metallic nanotubes. In particular, we observe
that the magnetic field can be used to control the switch of electron in Y-type junctions.
Keeping in mind the asymptotic modeling of reliable nanostructures by quantum graphs,
we conjecture that the scattering matrix of the graph should be the same as the scattering
matrix of its nanosize-prototype. The numerical computation of the latter gives a method
for determining the “gluing” conditions at a graph. Exploring this conjecture, we show that
the Kirchhoff conditions (which are commonly used on graphs) cannot be applied to model
reliable junctions. This work is a natural extension of the paper [1], but it is written in a
self-consistent manner.
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1. INTRODUCTION

Studies of the electron transport through Y-branch junctions of waveguides have attracted con-
siderable attention in the last decades (see, e.g., [2, 3]). The interest to the topic increased recently
in view of the progress in artificial formation of carbon nanotube-junctions [4]. In the paper, we
discuss the procedure of numerical computation of the junction’s scattering properties and demon-
strate its efficiency by various examples. In particular, we observe that the magnetic field can be
used to control the electron transport through Y-type junctions. Hopefully, this observation can be
applied for the practical construction of electron switches.

There is another motivation for this work as well. As is known, the electron motion through nan-
otubes is essentially one-dimensional. In particular, an asymptotically one-dimensional description
comes in a natural way by virtue of the adiabatic analysis of band nanotubes with variable cross-
section [5–7]. However, the one-dimensional analysis fails at junctions. Normally, the modeling by
graphs is used as a convenient tool to study scattering properties of branched quantum wires or
nanotubes. However, such a model contains an uncertainty in the boundary (gluing) conditions at
vertex point(s).

The paper is aimed, in particular, at suggesting a way to determine the gluing condition. We
discuss the motivations to identify the scattering matrix of the graph with the scattering matrix of
its nanosize-prototype; the latter can be computed numerically. Then, in view of the simplicity of
the graph model, the gluing condition is restored explicitly by the scattering matrix of the graph.
We examine graph models equipped with some “standard” gluing conditions and demonstrate that
they are not adequate for reliable junctions.

2. SCATTERING MATRIX AND COMPUTATIONAL APPROACH

We model the nanotube junction by a domain Ω which coincides with a finite family of semi-
infinite cylinders (channels) outside a ball of sufficiently large radius. Let the motion of electrons
in Ω be governed by the Schrödinger equation

HΨ = EΨ (1)
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Fig. 1. On the definition and computation of the S-matrix.

with some boundary condition at ∂Ω. We assume that at each channel the operator H admits the
separation of variables, and thus Eq. (1) has solutions of the form

ψ±mj
=

e±iνmj
zj

√
νmj

Φmj (ρj) , (2)

where j = 1, . . . , N is the index of a channel, (zj , ρj) are the longitudinal and transverse coordinates
at each channel (see Fig. 1), and Φmj (ρj) is the normalized eigenfunction of the transverse eigenvalue
problem H⊥Φ = λΦ (3)
with appropriate boundary conditions on ∂Ω

∣∣
zj=const

. We assume the completeness of Φmj (ρj) for
each j.

Solutions (2) with νmj =
√

E − λmj are called modes. Let, for each j, finitely many eigenvalues
λmj (mj = 1, . . . , Mj) of the problem (3) satisfy the inequality

λmj < E . (4)
The values of E at which Mj jumps are said to be energy thresholds. The modes satisfying condi-
tion (4) are said to be propagating (incoming for the minus and outgoing for the plus sign).1Provided
that this leads to no ambiguity, we assume that the propagating modes are enumerated in some
way throughout all channels and omit the subscript j, ψ±mj

Ã ψ±m. Denote the total number of
propagating modes (incoming and outgoing) by 2M .

The electronic transport through a junction is completely characterized by the scattering matrix.
We introduce this matrix in the following way.

Consider an E such that M > 0. In this case (see [8]), there is a set of solutions to the problem
(1) with the following asymptotics as z → +∞:

ψ̃−m +
M∑

n=1

Smnψ̃+
n + O

(
e−δz

)
, m = 1, . . . , M , (5)

where z = min{z1, . . . , zN}, δ > 0, ψ̃±mj
= ψ±mj

ηj(zj), and ηj(z) is a smooth cut-off function
vanishing everywhere on Ω except for the jth channel, where it is equal to one. The coefficients
Smn in (5) form a unique M × M unitary scattering matrix S = ‖Smn‖. Taking into account
the above agreement on the enumeration of modes, one can clearly interpret a solution with the
asymptotics (5) as the scattering of the incoming mode ψ−m by a junction (see Fig. 1).

Difficulties related to the numerical computation of the scattering matrix arose from its definition
on an infinite domain. To reduce the problem to a bounded domain, consider the truncation of Ω
by planes crossing the channels. By Γj , j = 1, . . . , N , we denote the parts of these planes inside Ω
(see Fig. 1).

1In another terminology, the channel j is said to be open for the mode mj if (4) holds.
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To introduce the artificial boundary conditions on Γj , consider the operators which are called
the Dirichlet-to-Neumann maps:2

Ψ
∣∣∣
Γj

7→ Tj(E)Ψ
∣∣∣
Γj

=
∞∑

mj=1

iνmj amj Φmj (ρj) , (6)

amj =
∫

Γj

Ψ
∣∣∣
Γj

Φmj dσ , νmj =





√
E − λmj > 0 , λmj < E,

i
√∣∣E − λmj

∣∣ , λmj > E .

Clearly Tjψ
±
mj
|Γj = ±νmj ψ

±
mj
|Γj , and thus the operator (∂/∂zj − Tj) is “transparent” for out-

going modes but not transparent for incoming modes,(
∂/∂zj − Tj

)
ψ+

mj

∣∣
Γj

= 0 and
(
∂/∂zj − Tj

)
ψ−mj

∣∣
Γj

= −2iνmj ψ
−
mj

∣∣
Γj

.

Let Pm be the boundary-value problem for Eq. (1) on the truncated domain with boundary
condition preserved on the truncated part of ∂Ω. We close the problem by an additional boundary
condition on Γ =

∑
j Γj of the form( ∂

∂zj
− Tj

)
Ψ

∣∣∣
Γ

= −2iνmψ̃−m
∣∣∣
Γ

(7)

(here we again apply the enumeration of modes). It has been proved [11, 12] that the solution
Ψm to the problem Pm can be extended to the unbounded domain Ω with the asymptotics (5).
Thus, by obtaining all solutions Ψm, m = 1, . . . , M , numerically, one can compute the scattering
matrix as

Smn =
[
diag ‖√νm‖

] 〈
Ψm, ψ+

n

〉 ∣∣∣
Γ

[
diag ‖√νm‖

]−1
. (8)

Remark. In general, the operators Tj cannot be found explicitly, since their definition (6)
requires summation of both propagating modes and infinitely many evanescent modes. The natural
approach is to replace these operators by their projections to open channels (propagating modes)
only. The error which is introduced by this approximation is expected to be exponentially small
provided that the truncating boundaries Γj are put sufficiently far from the junction.

Another approach to the computation of the scattering matrix (also related to the approximation
of the operators Tj) was discussed in [9, 10] (see the references therein).

3. NUMERICAL RESULTS: SCATTERING BY Y-JUNCTION
3.1. Specification of the Examined Problem

For the sake of brevity, we consider only H = − (∇+ iA)2 with the Dirichlet boundary condi-
tions. This choice corresponds (in dimensionless units) to the one-electron effective-mass approxi-
mation of electronic transport in a metallic nanotube under the presence of a magnetic field.

We discuss the numerical results for the “Y-type” junction (N = 3). To reduce the number of
parameters of the problem to a reasonable minimum, we focus on the consideration of a junction
with identical circular cross-sections (assuming the unit radius of cross-section throughout the
paper) of channels. Let the generatrices of half-cylinders be specified by directional vectors {1,0,0}
(1st channel), {cos(π − ϕ),− sin ϕ, 0} (2nd channel), and {cos(π − ϕ), sin ϕ, 0} (3rd channel), see
Fig. 3. The angle ϕ is said to be the opening angle of a junction.

For simplicity, assume that

A =

{
(qy, px, 0) ,

√
x2 + y2 < R ,

0 otherwise ,
p, q = const . (9)

Thus, the magnetic field is directed orthogonally to the plane containing all generatrices. The field
is uniform inside the cylinder x2 + y2 < R2 and vanishes outside it. In other words, H = −∆D

2Special care is necessary for threshold energies. We do not dwell on these details, assuming that E does not coincide
with a threshold. The interested reader is addressed to [8–10] and the references therein.
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Fig. 2. Total conductance |S12|2 + |S13|2 versus energy E
for Y-junction with various opening angles ϕ: ϕ = π/3 (solid
line), ϕ = π/6 (dashed line), and ϕ = π/12 (dash-dot line).

Fig. 3. Scattering of nonrotational mode
(m = 0) incoming from the first channel
(j = 1). Opening angle of the junction
is π/12.

(the Dirichlet Laplacian) outside the cylinder. The Dirichlet eigenfunctions for the circular cross-
section of radius d = 1 are known to be

Φm(ρ) := Φm,p(r, α) = eimα Jm (ζm,pr)√
πdJm+1(ζm,p)

,

where ζm,p, p = 1, . . . , stands for the pth zero of the Bessel function Jm and d for the radius of
the cross-section. Provided that d = 1 is fixed, the corresponding eigenvalues (and thus the energy
thresholds) are λm,p = ζ2

0,1 < ζ2
0,2 < ζ2

1,1 < · · · . The energy range between the first two thresholds
corresponds to nonrotational modes.

3.2. Scattering in the Absence of a Magnetic Field

In this subsection, we assume that p = q = 0, i.e., the transport of a free electron will be
examined. We consider first the scattering of nonrotational modes, i.e., for the energy levels
ζ2
0,1 < E < ζ2

0,2. For such energies, each open channel supports exactly one (up to inversion of
the propagation direction) propagating mode (M = 3).

In Fig. 2, we focus on the total conductance through a junction from one channel, say, j, to others
j1,2 6= j. This term is usually understood as the sum (up to some non-important constant factor)
|Sjj1 |2 + |Sjj2 |2 (‖Sjk‖ is the scattering matrix). We compare the conductance for various mutual
orientations of generatrices of the merged half-cylinders. In all cases, the conductance exhibits a
maximum, not strictly pronounced, around the middle of the energy interval between the first and
second thresholds. At the same time, the variation of the opening angle of the junction causes not
only qualitative but also quantitative differences.

For energy levels between ζ2
0,2 and ζ2

1,1, the scattering picture is more complicated, since both
nonrotational and rotational modes are involved, M = 6. In Fig. 3, the scattering of nonrotational
mode (m = 0) incoming from channel j = 1 is shown. It is seen that rotational modes are excited
in channels j = 2 and j = 3.

The conductance for ζ2
0,2 < E < ζ2

1,1 is shown in Fig. 4. We focus both on the total conductance
and nonrotational and rotational parts of conductance. It can be seen that the conductance to
nonrotational modes is much stronger.
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Fig. 4. Conductance versus energy varying in the range ζ2
0,2 < E < ζ2

1,1: the solid line shows

the total conductance |S13|2 + |S14|2 + |S15|2 + |S16|2 of the nonrotational mode incoming

from the first channel, the dashed line, that of the nonrotational part |S13|2 + |S15|2 of the

conductance, and the dash-dot line, that of the rotational part |S24|2+|S26|2 of the conductance.
The opening angle of the junction is ϕ = π/12.

3.3. Controlling of Electron Transport through the Junction by the Magnetic Field
In this subsection, we study the influence of the magnetic field on electron transport. It can be

seen in Fig. 5 that a sufficiently strong magnetic field thoroughly changes the conductance properties
of the junction. For example, starting from q & 1.75, the channel j = 1 is almost excluded from
the conductance: neither electrons coming from this channel can propagate to others nor electrons
from channels j = 2, 3 can reach the first channel. This observation can be applied for practical
constructing of electron switches.

Fig. 5. Conductance through a Y-junction of opening angle ϕ = π/12
versus strength q (p = 0 is fixed to reduce the number of parameters)
of the magnetic field: the solid line shows |S21|2 (from the second to
the first channel), the dashed line shows |S23|2 (from the second to
the third channel), and the dash-dot line shows |S12|2 + |S13|2 (the
total conductance from the first channel). The energy is fixed in the
middle of the range of nonrotational modes: E = 9.

Fig. 6. Switching of the mode incom-
ing from the channel j = 2 to the
channel j = 3 by a sufficiently strong
(q = 2) magnetic field. The geometry
of Y-junction is the same as in Fig. 3
and E = 9.
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4. ON “GLUING” CONDITIONS FOR QUANTUM GRAPHS

A quantum graph is sometimes regarded as a limiting model for a thin (nano) wire or tube. Such
a model is rather natural and promising because of its one-dimensional character. Moreover, for
some cases, the direct and inverse scattering problems on a graph can be solved explicitly.

Many studies [13–21] have been devoted to the investigation of the limiting procedure as d → 0
from different points of view, where d is the parameter defining the thickness of a wire. In particular,
the problem of adequate formulation of the gluing condition at a graph-junction has attracted much
attention. However, this question is still not completely clear.

We suggest identifying the scattering matrix on the graph (graph-matrix) with the S-matrix for
the nano-junction. The latter can be computed numerically by the technique given in Section 2
(no gluing condition is required). This suggestion is based on the following motivations.

First, we note that the scattering problem (1)–(5) is invariant with respect to simultaneous
scaling of coordinates x Ã x/d and the energy E Ã Ed2. Moreover, the S-matrix is invariant under
this scaling as well. The second observation deals with the composition rules for graph-matrices.
As was discussed in [22], the whole (on-shell) scattering matrix for a graph with several vertices can
be obtained from elementary scattering matrices related to each vertex. It was numerically verified
in [1] that the S-matrix for the wire’s structure with several junctions asymptotically (if the wire’s
longitudinal scale is much larger than the transverse one) behaves in the same way: it can be
computed by means of the same composition rules as in [22], provided that the scattering matrices
for each junction are known.

By accepting the above identifications, we apply the scattering theory on graphs (which is briefly
reviewed in Appendix 1; see also the references there). In particular, we explore the gluing condition
in (the most general) form (2)–(3) and use explicit direct and inverse relations (5) and (6) between
the scattering matrix and the coefficients in (2). As a consequence, the matrices A and B in (2)
are obtained.

These matrices were computed in accordance with the above procedure for various junctions
and energy levels. Since, for all examined cases, the matrix A turned out to be invertible, we
focus on A−1B (the latter matrix is defined uniquely by the scattering matrix). Numerical results
characterizing this matrix are shown in Fig. 7.

Fig. 7. Condition number of matrix A−1B versus energy E for the same junctions as in Fig. 2.

In these results, we control the condition number of A−1B because of the following considerations.
Note that condition (7) was discussed by many authors as an appropriate graph model for reliable
junctions. It follows from (8) that rank

(
A−1B

)
= 1, and thus the condition number is singular. Our

results are in contradiction with this inference: the condition number exhibits peaks only for some
energy values (unfortunately, the authors have no natural explanation for these specific energies).
Thus, condition (7) could hardly be applicable. Moreover, (7) also leads to the energy-independent
matrices (8). This independence does not confirm by numerical results shown in Figs. 2 and 7.
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we showed the possibility to control electronic transport through a Y-junction by the magnetic
field. The research was also applied to arrive at the appropriate gluing condition when modeling
nanostructures by graphs.
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APPENDIX. INVERSE SCATTERING FOR QUANTUM GRAPHS

In this appendix, we briefly represent (with minor modifications) some results of the series of
papers [22–24] dealing with scattering properties of quantum graphs. First, we define an elementary
graph as the direct sum

H =
M⊕

m=1

Hm , Hm = − d2

dx2
m

+ λm, (A.1)

of Schrödinger operators acting on half-lines xm ∈ (0,∞)3 with the gluing condition

Au + Bu′
∣∣∣
x=0

= 0 , (A.2)

where u = {u1(x1), . . . , uM (xM )}T , Hmum = EUm. Here A and B are M ×M matrices such that

ADνB† is Hermitian, Dν = diag ‖νm‖ , νm =
√

E − λm (A.3)

(the inequality E > λm is assumed for all m 6 M).
Let the set of solutions to Hu = Eu,

u−n +
M∑

m=1

Snmu+
m , n = 1, . . . M , (A.4)

where u±m = exp{±iνmxm}/√νm, satisfy condition (A.2). Then S = ‖Snm‖ is called the scattering
matrix of an elementary graph. It can be obtained explicitly as

S = − (A + iBDν)−1 (A− iBDν) . (A.5)

The inverse scattering problem is to determine the matrices A and B in (A.2) when the scattering
matrix S is given. The solution to this problem is not unique, and these matrices can be found
up to left multiplication by an arbitrary nondegenerate matrix. By omitting this uncertainty, one
arrives at

A =
1
2

(IM − S) , B =
1
2i

(IM + S) D−1
ν , (A.6)

where IM is the M ×M identity matrix.
Note that, if A−1 exists, then condition (A.2) (end hence the scattering matrix (A.5)) is defined

by a single matrix A−1B. In turn, this matrix can be restored uniquely from S.
The following gluing condition is commonly used in the analysis on graphs:

u1(0) = u2(0) = · · · = uM (0) , u′1(0) + u′2(0) + · · ·+ u′M (0) = γuM (0) . (A.7)

(It is said that γ models the strength of δ-potential at x = 0; (A.7) is referred to as the Kirchhoff’s
condition for γ = 0.) Conditions (A.7) lead to the following relations:

A−1B =
1
γ

(
1/ν1 . . . 1/νM
. . . . . . . . .
1/ν1 . . . 1/νM

)
, S =

2
M − iγ

(
1 . . . 1

. . . . . . . . .
1 . . . 1

)
− IM . (A.8)

Thus, the gluing condition (A.7) results in the scattering matrix, and the matrix A−1B is indepen-
dent of the energy E.

3The case of more general operators is studied in [25].
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