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Abstract. A Helmholtz resonator is a shell Ωshell separating a compact cavity Ωint from a

noncompact outer domain Ωout. A small opening Ωδ in the shell connects the cavity with the
outer domain, causing the transformation of real eigenfrequencies of the Neumann Laplacian
in the cavity into the complex scattering frequencies of the full spectral problem for the
Neumann Laplacian on Ω = R

3\Ωshell.

The Kirchhoff model of 1882, see [21], gives a convenient ansatz

Ψout(x, ν, λ) = ΨN
out(x, ν, λ) + Aout GN

out(x, a, λ), x ∈ Ωout, (1)

for the approximate calculation of the outer component of the scattered wave of the full

spectral problem on Ω in terms of the scattered wave ΨN
out(x, ν, λ) and the Green function

GN
out(x, a, λ) of the Neumann Laplacian on the outer domain, with a pole at the pointwise

opening Ωδ ≈ a.
In this paper, we suggest an explicit formula for the Kirchhoff coefficient Aout, based on

the construction of a fitted solvable model for the Helmholtz resonator with a narrow short
channel Ωδ connecting the cavity with the outer domain. The correcting term of the scattering
matrix of the model serves as a rational approximation, on a certain spectral interval, for the
correcting term of the full scattering matrix of the Helmholtz resonator.

DOI: 10.1134/S1061920809020046

1. PRELIMINARIES

A Helmholtz resonator is a compact shell Ωshell in R
3 with a piecewise smooth boundary. The shell

separates the outer domain Ωout from the inner domain Ωint, the cavity. In this paper, we assume
that the outer domain and the cavity are connected by a cylindrical channel Ωδ, of length H,
of radius δ, and with imaginable “upper” and “lower” lids ΓH and Γ (disks) separating the channel
from Ωout and Ωint, respectively.

Fig. 1. Helmholtz Resonator.
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CALCULATION OF THE KIRCHHOFF COEFFICIENTS 189

On the domain Ω = Ωout ∪ Ωint ∪ Ωδ, we consider the Neumann Laplacian LN =: L with
the Meixner conditions imposed on the inner surfaces (roughly speaking, the assumption that the
energy of the scattered field remains finite in every finite region). This condition provides automatic
convergence of the integrals arising in our formulas.

We discuss the full stationary scattering problem for the Neumann Laplacian L in Ω with the
wave-number k =

√
λ from an “essential spectral interval” Δ situated on the positive semi-axis,

in the range of relatively small wave-numbers kH < π/2 or, equivalently, of large wavelengths,
compared with the length H of the connecting channel.

Typically, one considers the spectral problem for the Helmholtz resonator with a small opening
as a perturbation of the corresponding spectral problem for the Laplacian on Ωint ∪ Ωout without
a connecting channel. This is then a standard perturbation problem with embedded eigenvalues.
Lord Rayleigh noticed around 1916, see [39], that a small opening in the shell causes the transfor-
mation of the eigenvalues of the inner problem for the Laplacian in Ωint into complex “resonances”
and posed the problem of calculating these resonances. The spectral nature of resonances was
understood only fifty years later, see [28]. It has become clear since then that the problem of calcu-
lating the resonances cannot be solved by methods of the spectral theory of self-adjoint operators,
see [2, 3, 33, 34]. Researchers have used advanced asymptotic methods to approximately calculate
the resonances for a small opening (see, e.g., [8, 9, 10, 11, 12]), but the spectral nature of resonances
was hidden in technical details of the asymptotic approach.

Kirchhoff believed, see [21], that the resonator with a small opening can be replaced by a res-
onator with a “pointwise” opening localized at the center a of the upper lid, and supplied with
an asymptotic boundary condition. He suggested an ansatz for the Green function of the above
spectral problem, in the form of a linear combination of the unperturbed Green functions. The
corresponding scattering ansatz (1), with an undefined coefficient Aout, satisfies the Helmholtz
equation −ΔΨ = λΨ in Ωout and the Neumann homogeneous boundary condition on ∂Ωout. A sim-
ilar ansatz appears in the earlier work of Faddeev and Pavlov [7] as an eigenfunction of a “fake”
Hamiltonian for the Helmholtz resonator in the form of a self-adjoint extension, see [19], of the
Neumann Laplacian defined by some asymptotic boundary conditions at the point a. This fake
Hamiltonian considered in [7] contains several extension parameters which do not seem to have any
näıve physical meaning, so fitting them turned out to be a problem. The general question of fitting
all parameters of the model [7] has remained unsolved.

In this paper, we modify the model in such a way that it is fitted, in a sense, on a spectral interval
Δ, namely, the scattering matrix of the modified model serves as an approximation on Δ of the full
scattering matrix. The fitted solvable model can be applied in different situations. First, it can give
an explicit approximate formula for the scattered waves in a remote zone, and it also enables us
to calculate the Kirchhoff coefficients approximately. Using this solvable model, one can construct
approximate solutions of the scattering problem with several resonators and, eventually, the meth-
ods developed here can serve as a jump-start in the two-step analytic perturbation procedure for
embedded eigenvalues, as was suggested in [30, 26, 31] by using ideas of [35, 37, 38]. The procedure
of fitting of the solvable model proposed in this paper is based on a rational approximation of the
Neumann-to-Dirichlet mapping (ND-mapping) of the Laplacian in Ωint and on transport properties
of a short thin channel. In particular, we suggest an explicit formula for the Kirchhoff coefficient
Aout. Most of the analytic results of this paper are derived under the assumption that the channel
is short and thin, kH � π/2 and δ/H � 1.

2. SOLVABLE MODELS FOR HELMHOLTZ RESONATORS

In this section, we recall the basic setup from [7] for the scattering problem in question. We
assume that the upper and lower disks ΓH and Γ of the channel Ωδ are parts of the common
boundary of the shell, of the outer domain Ωout and the inner domain Ωint, respectively, Γ ⊂ ∂Ωint,
ΓH ⊂ ∂Ωout. We restrict the inner and the outer Neumann Laplacian Lint,out → Lint,out

0 to the
smooth functions which vanish near the centers aΓH

= aH ∈ ∂Ωout and aΓ ∈ ∂Ωint of the upper
and lower disks, respectively.

The deficiency indices of the restricted operators Lint
0 and Lout

0 are (1, 1), and the deficiency
elements at any complex point of the spectral parameter λ̄ are the Green functions Gint(x, aΓ, λ)
and Gout(x, aH , λ), see [7].
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We next discuss the asymptotic formulas for the Green functions Gint,out with poles at points
xH ∈ ΓH and xΓ ∈ Γ on the upper and lower disks. We have

Gint(x, xΓ, λ) = Gint(x, xΓ,M) + CΓ(x, xΓ,M) + (λ − M)3
∞∑

s=1

ψs(x)ψs(xΓ)
(λs − λ)(λs − M)3

= Gint(x, xΓ,M) + Mint(xΓ, λ) + · · · , (2)

for x → xΓ and λ �= λs. Here the dots stand for terms vanishing at xΓ and, for x ∈ Γ, M is an
arbitrary spectral point (but will typically be large and negative in applications), CΓ(x, xΓ,M)
is a generalized kernel of a compact operator acting on Γ which does not depend on λ, whereas
Mint(x, xΓ, λ) is a convergent spectral series

Mint(x, xΓ, λ) = (λ − M)3
∞∑

s=1

ψs(x)ψs(xΓ)
(λs − λ)(λs − M)3

with the sum over the discrete spectrum {λs} and with associated eigenfunctions ψs. Note that,
since the disks Γ, ΓH are situated on flat pieces of the boundary of the shell, the inner and the
outer logarithmic terms, e.g., αint log |x−xΓ| := (1/8π)

[
1/R1 +1/R2

]
log |x−xΓ|, ordinarily found

on the right-hand side of (2) and depending on the mean curvature, see [36], can be omitted.
Similar asymptotic formulas for the outer Green function when x → xH ∈ ΓH contain a spectral

characteristic of the outer problem which is represented in the form of the spectral integral over
the scattered waves of Lout at the point xH on the upper section. The eigenfunctions of continuous
spectrum are ψω(x, k) for k � 0, the eigenvalue, and ω ∈ Σ, the unit sphere, ψω(k2, x) ≈ e−ik〈x,ω〉+
eik|x|/(4π|x|) fk(ω, ν) as x → ∞·ν with the scattering amplitude fk(ω, ν). If x → xH and Im λ �= 0,
then

Gout(x, xH , λ) = Gout(x, xH ,M) + CH(x, xH ,M) + (λ − M)3
1

8π3

∫ ∞

0

k2 dk

∫

Σ

dω
ψ̄ω(x, k)ψω(xH , k)
(k2 − λ)(k2 − M)3

=
1

2π|x − xH | + Mout(xH , x). (3)

Here CH(x, xH ,M) can be found by iterating the Hilbert identity which reads, suppressing the other
variables, G(λ) = G(M)+(λ−M)G(λ)G(M) = G(M)+(λ−M)[G(M)+(λ−M)G(λ)G(M)]G(M) =
G(M) + (λ−M)G(M)G(M) + (λ−M)2G(M)G(λ)G(M) = · · · . The limit of the spectral integral
on the positive semi-axis, as λ → λ0 = k2

0 ∈ R+, on the right-hand side of (3), is defined by the
Plejel (or Cauchy principal value) formula

lim
λ→k2

0

1
8π3

∫ ∞

0

k2 dk

∫

Σ

dω
ψ̄ω(x, k)ψω(xH , k)
(k2 − λ)(k2 − M)3

=
iπ k2

0

8π3

∫

Σ

dω
ψ̄ω(x, k0)ψω(xH , k0)

2k0(k2
0 − M)3

+
PV

8π3

∫ ∞

0

k2 dk

∫

Σ

dω
ψ̄ω(x, k)ψω(xH , k)
(k2 − k2

0)(k2 − M)3

=
iπ

(k2
0 − M)3

∂E
∂λ

(x, xH , λ) +
I

(k2
0 − M)3

MPV (x, xH , λ).

Here PV stands for the principal value of the integral and E for the spectral density of scattered
waves.

By the uniqueness theorem for matrix R-functions [27], for any xH , there are only finitely many
degenerate points λ0 (with ∂E

∂λ (xH , xH , λ0) = 0) on the chosen essential spectral interval Δ.

Assumption 1. Assume that, for a given small flat upper disk centered at aH , there are no
zeros of the imaginary part Im Gout(x, y, λ + i0) on the chosen essential interval Δ,

Im Gout(x, y, λ + i0) ≈ π (∂E/∂λ)(aH , aH , λ) > 0, (4)

for λ = k2 ∈ Δ, x, y ∈ ΓH .

Now, combining the asymptotic formula (3) for the Green function at the pole xH ∈ ΓH with
the asymptotic formula for the imaginary part of Gout(x, xH , λ + i0) as x → xH , we obtain the
asymptotic formula for the outer Green function as x → xH .
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Lemma 2.1. An asymptotic formula for the outer Green function G(x, xH , λ+ i0) on the upper
shore of the continuous spectrum [0,∞), as x → xH , is given by

Gout(x, xH , λ + i0) =
1

2π|x − xH | + C(x, xH ,M) + iπ
∂E
∂λ

(xH , xH) + MPV (xH , xH , λ) + · · ·

=
1

2π|x − xH | + Mout(x, xH) + · · · , (5)

where the dots stand for terms vanishing at xH .

Remark 1. Due to Assumption 1, the imaginary part of Mout(x, xH) for λ ∈ R is strictly
positive on the essential spectral interval Δ. We do not provide an explicit formula for Mout(x, xH)
here and assume that this quantity is known, as well as the necessary information on the inner and
outer Neumann Laplacians.

In [7], a solvable model of the Helmholtz resonator was suggested in the form of a self-adjoint
extension of the orthogonal sum Lint

0 ⊕ Lout
0 of the restricted Neumann Laplacian on Ωint,out.

The domain of the extension is obtained by imposing a special boundary condition on the asymp-
totic boundary values A,B as x → aΓ, aH . As was assumed, H = 0, and hence aΓ = aH . Thus,
the asymptotic boundary values Aint,out and Bint,out are defined as the coefficients at the leading
terms at aΓ = aH = a,

uint =
Aint

2π|x − a| + Bint + · · · , uout =
Aout

2π|x − a| + Bout + · · · , (6)

of elements in the domain of the corresponding adjoint operators (Lint)+0 ⊕ (Lout)+0 . The boundary
forms of the adjoint operators are calculated in terms of the boundary values A and B. For instance,

J u,v
out := lim

ε→0

∫

Ωout\B(a,ε)

[−Δū v + ūΔv] dx3 = B̄u
out Av

out − Āu
out Bv

out. (7)

Here B(a, ε) = {x ∈ R
3 : |x − a| � ε}. A similar formula holds for the inner boundary form.

Therefore, the sum of the inner and the outer boundary forms vanishes if the asymptotic boundary
values �A := (Aint, Aout) and �B := (Bint, Bout) are subjected to a self-adjoint boundary condition
with a Hermitian 2 × 2 matrix β (for instance, if β �B = �A).

Unfortunately, this näıve model cannot be fitted to a resonator with nonzero channel length
H > 0. For a thin short channel (δ ≈ 0), another (modified) model can be constructed by using the
same outer operator LN

out =: Lout and an “inner structure” A, E attached to the lower end Γ of the
one-dimensional “link.” This linking is an interval [aΓ, aH ], of length H, and the inner structure
is formed by a finite-dimensional Hilbert space EΓ =: E and a Hermitian matrix A : E → E. The
modified model is constructed as a “zero-range model with an inner structure,” see, e.g., [29, 4].
We shall show (see Section 5) that this model can be fitted on a chosen essential spectral interval.

Here we use the standard notation for the zero-range models with inner structure that can be
found in, say, [31] and which we briefly recall. The elements in the domain of the formal adjoint
operator U = U0 + A

A−iI ξ+ − I
A−iI ξ−, where U0 is chosen from the restricted domain D0, and

the elements ξ± ∈ Ni of the one-dimensional deficiency subspace Ni play the role of symplectic
coordinates for every element U in the domain D0 +Ni +N−i = D+

0 of the formal adjoint operator
A+

0 of the restricted operator A0. The corresponding boundary form is represented as

J ξ±
Γ = 〈ξu

+, ξv
−〉E − 〈ξu

−, ξv
+〉E , (8)

see [29, 31]. The symplectic coordinates ξ± ∈ Ni of the solution of the adjoint homogeneous equation
(A+

0 − λI)U = 0 are connected (see [19]) by the Krein matrix function M,

ξ− = −P
I + λA
A − λI

P ξ+ =: −M ξ+, (9)
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with M = Trace P I+λA
A−λI P . Here P is a 1D orthogonal projection onto Ni. Generally, the Krein

function and its inverse −M−1 are R-functions which admit the standard Herglotz representation

M(λ) := Trace P
I + λA
A− λI

P = M0 + M1λ +
N∑

l=1

1 + λAl

Al − λI
ql, (10)

where M0 is real, M1 is positive, Al are the eigenvalues of A, and ql = Trace QlP are the spectral
projections Ql of A framed as Trace PQlP by the projections P onto the chosen 1D deficiency
subspace Ni.

To construct a fittable model of the Helmholtz resonator, we attach the inner structure {E,A}
to the pointwise opening a = aH via a one-dimensional link, of length H, connecting the points
(aΓ, aH), see Fig. 2, and set M =: MΓ.

Fig. 2. Inner link structure for the cavity of a resonator.

We assume that the link (aΓ, aH) is directed (inner to outer) and one-dimensional, with the
operator −d2 on it. Then the transmission of the Neumann/Dirichlet data u′

Γ, uΓ −→ u′
H , uH

from the lower end aΓ of the channel aγ to the upper end aH is defined by the 1-dimensional
Neumann-to-Dirichlet mapping of the link, in particular:

NDΓ −→ NDH , (11)

where NDΓ = uΓ
u′

Γ
=: − 1

MΓ
and NDH = −1+λ−1/2 tan

√
λHMΓ

λ1/2 tan
√

λH+MΓ
=: − 1

MH
. The direction of differenti-

ation is defined by the vector (aΓ, aH). Considering the boundary forms Ju,v
Γ = ū′v−ūv′

∣∣
Γ
, together

with the boundary form of the inner structure J ξ±
Γ = ξ̄u

+ξv
− − ξ̄u

−ξv
+, we connect the symplectic

coordinates ξu
± with u′

Γ, u′
Γ at aΓ by the symmetric boundary condition,

(
ξ+

u′
Γ

)
=

(
0 1
1 0

)(
ξ−
uΓ

)
, (12)

and thus the sum of the forms vanishes, J ξ±
Γ +Ju,v

Γ = 0, if the symplectic variables ξu
±, uΓ, u′

Γ belong
to the same element (U, u) of the domain of the adjoint A+

0 ⊕ −(d2
0)

+ of the properly restricted
operator. In this way, we also connect M =: MΓ with the Krein function of the inner structure,

ξ− = −P
I + λA
A − λI

ξ+ = −Mξ+ =: −MΓ ξ+. (13)

The boundary form of the Laplacian in Ωout and the boundary form on the link at the upper lid
are J B,A

H = B̄u Av − Āu Bv and J u,v
H = −ū′

HvH + ūH v′H . The sum of these forms vanishes if a
symmetric boundary condition is imposed at the upper end aH of the link,

(
0 β01

β10 β11

)(
B

−u′
H

)
=

(
A
uH

)
. (14)

We now have the following elementary lemma.
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Lemma 2.2. The Weyl function of the link at the upper lid, uH

u′
H

= − 1
MH

= tan
√

λH√
λ

−
1

cos2
√

λH
1√

λ tan
√

λH+MΓ
, for any relatively small

√
λH � 1 is approximately equal to the expres-

sion − 1
MH

≈ H − 1
MΓ(λ)+λH , with a small error order λH2 � 1, on the complement of a small

neighborhood of zeros of the denominator.

This lemma will be used when fitting the solvable model of the Helmholtz resonator in Section 5.

Theorem 2.1. The hybrid operator constructed of the inner structure, the double differentiation
on the link and the Neumann Laplacian in the outer domain, and supplied with the boundary
conditions (12), (14) at the lower and upper lids of the link, respectively, is self-adjoint and defines
a solvable model of the Helmholtz resonator parametrized by the boundary conditions and by the
inner structure A. The outer Kirchhoff constant of the model thus constructed is

− ψout(ω, aH)

Mout + |β01|−2
[
− 1

MH
+ β11

] =: Amod, (15)

and the additional term of the amplitude of the solvable model, for the above boundary condition
and the inner structure, is represented as

1
8π3

ψout(ω, aH)ψout(ν, aH)

Mout + |β01|−2
[
− 1

MH
+ β11

] =: δamod(ω, ν, λ), (16)

and thus the full model amplitude is equal to aβ(ω, ν, k) = aout(ω, ν, k) + δamod(ω, ν, λ).
Here aout is the scattering amplitude of the outer operator Lout and Mout is the kernel defined

in (3). On the smooth part of the boundary, it is continuous and can be calculated for x = xH .

Note that, below, the choice of inner structure defined by (65) or by Theorem 5.2 connects the
characteristics D of the inner problem, see formula (51), with the inner structure.

Proof. Denote by −�0 the restriction of the outer Neumann Laplacian to the functions van-
ishing near aH . Then the restricted operator A0 ⊕−d2 ⊕ −�0 (defined on functions vanishing at
the ends of the link near the point aH on the upper lead and on the vectors e ∈ E0 of the inner
space such that Ae− ie⊥Ni) is symmetric and has equal finite deficiency indices (3, 3). Then, after
switching to the original Neumann version of the extension procedure, which is based on isometries,
we conclude that this is also self-adjoint, because every isometry between two finite-dimensional
spaces is injective.

Then our formulas for the scattering amplitude and for the Kirchhoff constant are obtained as
the joint solution of the linear system (12), (14) with the help of (11).

The model constructed in this way is parametrized by the inner structure A and by the matrix
{βik}. One may guess that the eigenvalues of the inner structure A should simulate properly
renormalized eigenvalues of the Neumann Laplacian on the cavity. The boundary parameters βik
have no näıve physical meaning. We shall fit these parameters by the comparison of the model
scattering amplitude with the approximate full scattering amplitude.

The referee points out that constants similar to that of Aout, which was defined at (6), can
be obtained from the asymptotic results of Gadyl’shin [13–15]. These depend on the asymptotic
behavior at infinity of special harmonic functions in an unbounded domain. We shall discuss these
relationships elsewhere.

3. SCATTERING MATRIX OF THE RESONATOR
VIA THE NEUMANN-TO-DIRICHLET MAPPING

We proceed in this section with studying the extended inner domain Ωint ∪ Ωδ =: Ω∗
int and

considering two boundary problems, namely, the “inner” and the “extended inner” problem for the
Neumann Laplacian Lint, L∗

int in Ωint, Ω∗
int, respectively, with the normal on Γ, ΓH , directed towards

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 2 2009
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Ωout, −Δu = λu, ∂u/∂n
∣∣
Γ

= ρΓ, x ∈ Ωint, −Δu = λu, ∂u/∂n
∣∣
ΓH

= ρH , and x ∈ Ω∗
int. Solutions to

these problems are given by integral transforms with kernels defined by the corresponding Neumann
Green functions Gint, G

∗
int of the inner and the extended inner problems, respectively. For instance,

[Q∗
int(λ) ρH ] (x) =

∫

ΓH

G∗
int(x, y, λ)ρH(y)dΓ, x ∈ Ω∗

int. (17)

The trace of Q∗
intρΓH

on ΓH defines the restrictions of the standard Neumann-to-Dirichlet mapping
in Ω∗

int to ΓH , ∂Q∗
intρH/∂n

∣∣
ΓH

= ρH , ∂Q∗
intρH/∂n

∣∣
∂Ω∗

int\ΓH
= 0. Hence, the trace of Q∗

intρH on

ΓH coincides with the ND-mapping ND∗
intρH . The inverse mapping [ND∗

int]−1 exists if λ is not
an eigenvalue of the corresponding “mixed” boundary problem −Δu = λu, ∂u/∂n

∣∣
∂Ω∗

int\ΓH
= 0,

u
∣∣
ΓH

= 0, and then this inverse is the associated relative Dirichlet-to-Neumann mapping obtained
as the restriction to ΓH of the boundary current for the solution of the relative Dirichlet boundary
problem −Δu = λu, ∂u/∂n

∣∣
∂Ω∗

int\ΓH
= 0, u

∣∣
ΓH

= uH , ∂u/∂n
∣∣
ΓH

=: DN ∗
intuH , and

DN ∗
int ND∗

int ρH = ρH . (18)
A similar statement holds for Γ.

One can consider a similar boundary problem in Ωout with the normal on ΓH directed towards
Ωout, −Δu = λu, ∂u/∂n

∣∣
ΓH

= −ρH , and ∂u/∂n
∣∣
∂Ωout\ΓH

= 0. The solution of this problem
is given by the integral transform u = [QρH ] (x) =

∫
ΓH

GN
out(x, s)ρH(s)dΓH , because, with the

normal defined as above, ∂QρH/∂n
∣∣
H

= −ρH , the corresponding standard Neumann-to-Dirichlet
mapping NDout (associated with the normal on ΓH directed outside Ωout) is defined by the trace of
QρH on ΓH , QoutρH = TraceΓH

QoutρH . It is again convenient to note that the inverse [ND∗
ΓH

]−1

of the ND-mapping associated with ΓH is obtained as the relative Dirichlet-to-Neumann mapping
for the boundary problem on Ωout with relative Dirichlet boundary data, for instance, −Δu = λu,
∂u/∂n

∣∣
∂Ωout\ΓH

=0, u
∣∣
ΓH

=uΓH
, and ∂u/∂n

∣∣
ΓH

=: DNH
out uΓH

. Matching outer normals on Γ gives

DNH
out NDH

out

∣∣
ΓH

ρΓH
= ρΓH

. (19)

As was proved in [32], the singularities of DN int(λ) (regarded as an unbounded operator on
W

3/2
2 (Γ)) and the poles of DN int(λ) at the eigenvalues of the inner Dirichlet problem can be

separated, see Theorems 3.1 and 3.2 below. These statements are valid both in case of classical
DN-mappings and in case of the relative DN-mapping, by the above formulas (18) and (19). In the
following theorems, Theorems 3.1 and 3.2 quoted from [32], we mean, respectively, both the stan-
dard and relative DN-mappings associated with Dirichlet or relative Dirichlet boundary problems,

Theorem 3.1. Consider the Dirichlet Laplacian LD
int or the relative Dirichlet Laplacian in

L2(Ωint) on a compact domain Ωint ⊂ R
3 with a smooth boundary ∂Ω = Γ or ∂Ω ⊃ Γ, respec-

tively. The DN-mapping (the relative DN-mapping) of LD
int has the following representation on the

complement of the corresponding spectrum σD
int in the complex λ plane, for M > 0:

DN Γ(λ) = DN Γ(M) − (λ − M)P+(M)P(M) − (λ − M)2P+(M)RλP(M), (20)
where Rλ stands for the resolvent of LD

int and P(−M) for the corresponding Poisson kernel. A sim-
ilar formula is true for the ND mapping and, after two iterations of the resolvent equation, we
obtain

NDΓ(λ) = NDΓ(M) + (λ − M)Q+
int(M)Qint(M) + (λ − M)2Q+

int(M)RλQint(M). (21)
Here NDΓ(λ) is the trace of Q(λ)ρ on Γ. The operators DN Γ(M) and P+(M)P(M) are bounded
from W

3/2
2 (Γ) to W

1/2
2 (Γ) (onto) and bounded on W

3/2
2 (Γ), respectively, and the operator function

[
P+(M)RλP(M)

]
(xΓ, yΓ) =

∑

λs∈ΣL

∂ϕs/∂n(xΓ) ∂ϕs/∂n(yΓ) (λs − M)−2(λs − λ)−1 (22)

is compact in W
3/2
2 (Γ).

On the continuous spectrum, λ � 0, the Dirichlet-to-Neumann mapping is defined as the bound-
ary current of the outgoing solution of the corresponding boundary problem, which is obtained as
a limit of the square-integrable solution limε→0 uλ+iε of the boundary problem with data on Γ.
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Let us calculate the boundary currents for the inner and outer domain by differentiating the out-
going solution of the corresponding boundary problem (in the outward direction on ΓH). A state-
ment similar to Theorem 3.1 quoted above is also true for the DN-mapping of the exterior domain,
see [32]. In particular,

DN out(λ) = DN out(M) − (λ − M)P+(M)P(M) − (λ − M)2P+(M)RλP(M), (23)

with the only difference that the first terms of the decomposition contain the DN-mapping and the
Poisson mapping for the exterior domain and the generalized kernel in the last term is represented
via the integral over the absolutely continuous spectrum σa

L = [0,∞), and the integrand is combined
of normal derivatives of the scattered waves ψ(x, |k|, ν), k = |k|ν, |ν| = 1, Im λ �= 0, namely,

P+(M)RλP(M)(xΓ, yΓ) = (2π)−3

∫

|k|2 ∈ Σ a
L

∂ψ̄/∂n(xΓ, |k|, ν) ∂ψs/∂n(yΓ |k|, ν)
(|k|2 − M)2(|k|2 − λ)

d3k.

The absolutely continuous spectra σD,N
out of both the Dirichlet and Neumann Laplacians LD,N

out fill
the positive semi-axis 0 � λ < ∞ with infinite multiplicity, and the scattered waves ψ(x, k) are
parametrized by the energy λ = k2 > 0 and the direction ν, |ν| = 1, or just by the momentum
kν ∈ R

3.
The normal limit values of NDout can be calculated as above, due to absolute continuity of the

spectrum of Lout, via the principal values limλ→λ0+i0 NDout = iπdE/dλ+PV Qout, where PV Qout

is found as the principal value of the sum of spectral integrals. For instance, if M > 0, then

PV Qout(M)Rλ Qout(M) =
1

(2π)3
PV

∫ ∞

0

k2dk

∫

Σ

dΣ
ψ(xΓ, k, ν)ψ(yΓ, k, ν)
(k2 − M)2(k2 − λ)

,

where the PV limit of the integrals is taken over the complements of a sequence of small nesting
intervals centered at λ ∈ R+.

In [32], the Hilbert identity is transformed into the corresponding Krein formula for the resolvent,
see (24) below. The transformed expression has a form of Schur complement, see [25], and contains
the denominator Q∗

int(λ)+Qout(λ) constructed of Neumann-to-Dirichlet mappings of the extended
inner and the outer boundary problems. The Krein formula connects the resolvent of the self-adjoint
operator L on the composite domain Ω∗

int ∪ Ωout with the characteristics of the orthogonal sum of
the self-adjoint operators L∗

int ⊕Lout defined in L2(Ω∗
int)⊕L2(Ωout) by the homogeneous Neumann

boundary conditions.

Theorem 3.2. The resolvent kernel G(x, y, λ) of the operator L for regular λ and x, y in Ωout

is represented by the Krein formula

G(x, y, λ) = Gout(x, y, λ) − Gout(x, ∗, λ) [Q∗
int(λ) + Qout(λ)]−1

Gout(∗, y, λ), (24)

where the asterisk stands for the variable in ΓH . In particular, the above formula implies a re-
lationship between the scattered waves ψ(x, ν, λ) of the perturbed problem (with opening) and the
corresponding scattering amplitude with the corresponding characteristics of the outer Neumann
problem,

ψ(x, ν, λ) = ψout(x, ν, λ) − Gout(x, ∗, λ) [Q∗
int(λ) + Qout(λ)]−1

ψout(∗, ν, λ), (25)

a(ω, ν, λ) = aout(ω, ν, λ) +
1

8π3
ψout(∗, ω, λ) [Q∗

int(λ) + Qout(λ)]−1
ψout(∗, ν, λ). (26)

Formulas (25), (26) admit an analytic continuation on the spectral sheet of the variable λ = k2

(Im k > 0), and all operator functions on the upper and lower shores of the continuous spectrum
are calculated as weak limits of the values in the corresponding half-planes.

Formula (26) is a multi-dimensional analog of the popular 1D formula for the scattering matrix
in terms of the Weyl function, see, e.g., [16]. The role of the Weyl function in (26) is played by the
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Dirichlet-to-Neumann mapping (actually, its inverse, the ND-mapping). For the use of DN-mapping
in spectral analysis, we refer the reader to the recent papers [17, 18].

Remark 2. The calculation of the amplitude by using (26) requires the solution of the equation
[
Q∗

int(λ) + Qout(λ)
]
u = ψout(∗, ν, λ). (27)

Both the operators on the left-hand side of this equation exist and, generically, are mappings
W

1/2
2 (Γ) Qout−→ W

3/2
2 (Γ) if λ is not an eigenvalue of the relative Dirichlet problem −Δu = λu,

u
∣∣∣
Γ

= 0, ∂u/∂n
∣∣
∂Ωint\Γ = 0. Both Qout and Q∗

int can be extended from W
1/2
2 (ΓH) to L2(ΓH). The

extended operators are compact in L2(ΓH). Their sum is also a compact operator. To construct
the corresponding inverse, we must regularize the problem.

If λ0 is an eigenvalue of the relative Dirichlet problem and u0 is the corresponding eigenfunc-
tion, then ∂u0/∂n

Qint−→ 0, and hence Qint has a zero eigenvalue. Moreover, QintL2(∂Ω) = L2(∂Ω)�{
∂u0/∂n

∣∣∣
Γ

}
. Due to the absence of eigenvalues of the outer problem, the operator Qout is invert-

ible, and the inverse is an operator of differential order 1, Q−1
out = DNH

out : W
3/2
2 (ΓH) → W

1/2
2 (ΓH)

or Q−1
out = DNH

out : W 1
2 (ΓH) → L2(ΓH). The inverse coincides with the relative DN-mapping

which is associated with the boundary problem −Δu = λu, ∂u/∂n
∣∣
∂Ωout\ΓH

= 0, u
∣∣
ΓH

= uH ,

with the Meixner condition imposed on the inner domain (u ∈ W 2
2,loc(Ω) ∩ W 1

2 (Ω)): DNH
out :=

DN ΓH
out : uH −→ c∂u/∂n

∣∣
ΓH

.

Because of (21), the operator Q∗
int(λ) can be represented as

Q∗
int(λ) = Q∗

int(M) + (λ − M)Q+
int(M)Qint(M) + (λ − M)2Q+

int(M)RλQint(M). (28)

Here we need no smoothness, because the Meixner conditions ensure the convergence of the inte-
grals.

The third term on the right-hand side of (28) can be represented as a series (of one-dimensional
polar terms) convergent with respect to the operator norm on W 1

2 (Γ) × L2(Γ),

(λ − M)2
N∑

l=1

ϕl

∣∣
Γ
〉 〈ϕl

∣∣
Γ
, g〉

(λl − M)2(λl − λ)
+ (λ − M)2 O

( ∞∑

N+1

λ
−3+α/2+α′/2
l

)

= QN
int + (λ − M)2 O

( ∞∑

N+1

λ
−3+α/2+α′/2
l

)
=: QN

int + KN ,

(29)

with the estimates α > 1/2, α′ > 3/2, and α/2 + α′/2 < 3/2 following from embedding results.
The details are like those for the similar estimate in [24].

Note that the compact operator Qout : L2(Γ) → W 1
2 (Γ) is invertible. Its inverse exists for any λ,

Im λ � 0, and acts as the relative DN-mapping DN out associated with the generalized W
3/2
2 (Ωout)

solution of the boundary problem −Δu = λu, ∂u/∂n
∣∣
∂Ωout\Γ

= 0, u
∣∣
Γ

= uΓ, Im λ > 0. The

generalized W
3/2
2 (Ωout) solution of this problem is unique, see [22], and the corresponding relative

DN mapping is a closed operator DN Γ : W 1
2 (Γ) → L2(Γ). Then the inverse operator is a closed

mapping Qout onto L2(Γ) → W 1
2 (Γ).

The operator R-function on the upper half-plane Imλ � 0, Q(λ) := Qout(λ) + Q∗
int(M) +

(λ−M)Q+
int(M)Qint(M), is compact in L2(Γ) and defines a closed operator L2(Γ) → W 1

2 (Γ). The
mapping is “onto” if Q(λ) does not have the zero eigenvalue. In this case, the corresponding inverse
exists and is bounded, due to the closed graph theorem, see, e.g., [6], Q−1(λ) : W 1

2 (Γ) → L2(Γ),
‖Q−1(λ)‖W 1

2 (Γ)×L2(Γ) < ∞. The operator R-function Q(λ) is smooth on the closed upper half-
plane, and its vector zeros μs are real, Q(μs)es = 0, es ∈ L2(Γ). Further, according to [27], it can
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have only finitely many vector zeros of this kind on any finite interval of the real axis of spectral
parameter. Denote by Δμ the finite set of all vector zeros on the essential spectral interval Δ and
select, for a given rational approximation (29), a real neighborhood of Δμ such that the condition

sup
λ∈Δ\Δμ

‖Q−1(λ)KN‖L2(Γ) =: q < 1 (30)

holds on the complement of Δμ in Δ. Then the operator function Q+KN(λ) is invertible on Δ\Δμ,
and equation (27) can be rewritten on Δ\Δμ in a finite-dimensional form,

u +
[
Q + KN (λ)

]−1 QN
intu =

[
Q + KN (λ)

]−1
ψout(∗, ν, λ). (31)

Summarizing the above discussion, we obtain the desired regularization of problem (27). An ex-
tended discussion can be found in [24].

Theorem 3.3 (cf. [24]). Problem (27) is reduced on Δ\Δμ to a finite-dimensional equation
and has a unique smooth solution u ∈ W

1/2
2 (Γ) if λ ∈ Δ\Δμ is not a zero of the corresponding

determinant, det
[
I +

[
Q + KN (λ)

]−1 QN
int

]
=: D(λ) �= 0.

Proof. We use the smoothness of the trace ψout

∣∣
Γ
∈ W

3/2
2 (Γ) on Γ of the generalized eigen-

function ψout (scattered waves) of Lout.

Theorem (3.3) is used below in Section 5 when fitting the solvable model.

Remark 3. The precise smoothness of the scattered waves ψout is determined by the smoothness
of the boundary. In particular, for a sufficiently smooth boundary, ∂Ωout ∈ C2, we have at least
ψout

∣∣
Γ
∈ W

5/2
2 (Γ). Then the right-hand side of (31) belongs to W

3/2
2 (Γ), and hence u ∈ W

3/2
2 (Γ) ∈

C(Γ).
In the next section, we shall develop another regularization method for (27) to obtain an ap-

proximate solution of (31). This regularization is based on filtering the signals by a thin channel
barred at a certain level of frequencies.

4. TRANSPORT PROPERTIES OF A SHORT THIN CHANNEL

Let us now evaluate the contribution of the channel to the additional term of the amplitude (26)
under the assumption that the channel is “relatively short and thin,” kH < π/2, δ/H � 1, see
Fig. 2.

In fact, each of these conditions can be loosened a little, and we make a few concluding comments
about this. In this section, we shall also impose the harder conditions kH � π/2, δ/H � 1, which
define “short thin” channels.

Fig. 3. A thin short channel.

To evaluate the denominator Q∗
int(λ)+Qout(λ) in formula (26) in terms of spectral characteristics

of Ωint, we must transfer the ND mapping of the inner domain from the lower lid Γ to the upper
lid ΓH along the channel Ωδ. This will be done by using transport properties of the channel. If
the channel is relatively short and thin, the final formulas turn out to be sufficient for an explicit
asymptotic calculation of the additional term of scattering amplitude. As in Section 1 above, assume
that the channel is a relatively short and thin circular cylinder, see Fig. 3, of height H, 0 < x < H,
of radius δ, 0 < r < δ, and with the lower lid Γ and the upper lid ΓH .
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Denote by λn,s = ν2
n,s(δ) = δ−2 [ν1

n,s]2 the eigenvalues of the Laplacian on the cross-section of the
cylinder with homogeneous Neumann boundary conditions at r = δ and by Pn,s the projections to
the corresponding normalized eigenfunctions YnJn(νn,s r), n = 1, 2, . . . , with Yn(ϕ) = Const e± in ϕ.
The eigenvalues ν2

n,s = δ−2 (ν1)2n,s are defined by the zeros of the derivative of the Bessel functions,
J ′

n(νn,sδ) = 0. Denote by P0 the projection to the constant eigenfunction Y0,0 = (
√

2π δ)−1 cor-
responding to the eigenvalue ν2

0 = 0. In this case,
∑

(n,s)
=(0,0) Pn,s = P⊥ is the projection to the
orthogonal complement of the constants on the cross-sections Γ, ΓH , P0⊕P⊥ = I in L2(Γ), L2(ΓH).
The complementary projections P0, P

⊥ in L2(Γ), L2(ΓH) are represented as

P0 =
χ(x)〉 〈χ(y)

πδ2
, P⊥ = I − χ(x)〉 〈χ(y)

πδ2
. (32)

Here χ(x) = χΓ(x), χH(x) is an indicator of the corresponding lid Γ, ΓH , e.g., χH(x) = 1 if
x ∈ ΓH and χH(x) = 0 on the complement ∂Ωout\ΓH . Hereafter, we use spectral data for the
scaled Neumann Laplacian −�⊥ on an orthogonal cross-section of the channel Ωδ with respect to
the scaled variables δ−1 r =: ξ, 0 < ξ < 1, with the scaled eigenvalues λ1

n,s = (ν1
n,s)2.

We also consider the boundary problem for the Laplacian on the channel with Neumann bound-
ary condition at r = δ and nonhomogeneous Dirichlet boundary conditions on the lids, −Δu = λu,
u
∣∣
Γ

= uΓ, u
∣∣
H

= uH . The relative Dirichlet-to-Neumann mapping Λδ of this problem on Γ,ΓH is
defined by the normal outward derivatives with respect to the inner domain, on both the sections
Γ,ΓH , and is obtained via the separation of variables,

Λδ =
(

ΛHH ΛHΓ

ΛΓH ΛΓΓ

)
=

√
λ

sin
√

λH

(
cos

√
λH −1

1 − cos
√

λH

)
P0

+
∞∑

n,s=1

√
ν2

n,s − λ

sinh
√

ν2
n,s − λH

⎛

⎝
cosh

√
ν2

n,s − λ H −1

1 − cosh
√

ν2
n,s − λ H

⎞

⎠Pn,s := Λδ
0 + Λδ

⊥.
(33)

For a thin channel, the nontrivial (off-diagonal) component of the DN-mapping, which is responsible
for the transmission of Dirichlet/Neumann data from one lid to another, is essentially defined by
the constant eigenfunction of the cross-section,

Λδ ≈ Λδ
0 +

(
δ−1

√
−�⊥ −δ2λI P⊥

H 0
0 −δ−1

√
−�⊥ −δ2λI P⊥

Γ

)
, (34)

where −�⊥ is the Neumann Laplacian on the orthogonal complement of constants on the lids Γ,
ΓH represented in terms of the scaled variables (on the corresponding scaled section of radius 1).
Let us discuss the approximation suggested above.

The inverse operator, which is the Neumann-to-Dirichlet mapping, can be calculated as

Qδ :=
(
Qω

HH Qω
HΓ

Qω
ΓH Qω

ΓΓ

)
=

(
− 1√

λ tan
√

λH

1√
λ sin

√
λH

− 1√
λ sin

√
λH

1√
λ tan

√
λH

)
P0

+
∑

n,s

⎛

⎝
1√

λn,s−λ tanh
√

λn,s−λ H
− 1√

λn,s−λ sinh
√

λn,s−λ H
1√

λn,s−λ sinh
√

λn,s−λ H
− 1√

λn,s−λ tanh
√

λn,s−λ H

⎞

⎠Pn,s =: Qδ
0 + Qδ

⊥.

This coincides with the restriction of the full ND-mapping of the channel to the lids. Note that the
second sum here also admits the spectral representation

Qδ
⊥ =

(
1 e−

√
−Δ⊥−λI⊥H

e−
√

−Δ⊥−λI⊥H 1

)⎛

⎝
1√

−Δ⊥−λI⊥H
0

0 − 1√
−Δ⊥−λI⊥H

⎞

⎠

×
(

1 −e−
√

−Δ⊥−λI⊥H

−e−
√

−Δ⊥−λI⊥H 1

)
1

1 − e−2
√

−Δ⊥−λI⊥H
.
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Therefore, for a thin channel, δ/H � 1, the values of the spectral parameter, below the second
threshold Qδ

⊥, can be replaced with small error by the diagonal matrix
⎛

⎝
1√

−Δ⊥−λI⊥ tanh
√

−Δ⊥−λI⊥H
0

0 − 1√
−Δ⊥−λI⊥ tanh

√
−Δ⊥−λI⊥H

⎞

⎠ ,

or even by the matrix
( 1√

−Δ⊥−λI⊥H
0

0 − 1√
−Δ⊥−λI⊥H

)
, because tanh

√
−Δ⊥ − λI⊥H ≈ 1 for a thin

channel, δ/H � 1.
Hereafter, for a short thin channel

0 <
√

λH < π/2, δH−1 � 1, (35)

we use the following approximation:

Qδ ≈ Qδ
0 + P⊥ (−Δ − λI)−1/2

P⊥

(
1 0
0 −1

)
, (36)

where the second term on the right-hand side deviates from the corresponding exact term by an
exponentially small error

⎛

⎝
0 1√

λn,s−λ sinh
√

λn,s−λ H

− 1√
λn,s−λ sinh

√
λn,s−λ H

0

⎞

⎠ ≈ e−
√

λ1
n,s−δ2λ H/δ. (37)

For the short channel
√

λH � π/2, a further simplification is possible:

Qδ ≈ 1
λH

(
−1 1
−1 1

)
P0 + P⊥ (−Δ − λI)−1/2

P⊥

(
1 0
0 −1

)
,

but now the deviation of the first term on the second line of (36) from the corresponding exact
term contains powers of

√
λ H.

In what follows, we neglect the exponentially small terms (37) in the second term on the first
line of (36) and retain the exact expression for the first term Q0,

Qδ
appr =

(
− 1√

λ tan
√

λH
1√

λ sin
√

λH

− 1√
λ sin

√
λH

1√
λ tan

√
λH

)
P0 +

∑

n,s

⎛

⎝
1√

λn,s−λ tanh
√

λn,s−λ H
0

0 − 1√
λn,s−λ tanh

√
λn,s−λ H

⎞

⎠Pn,s

=
1

λH

(
−γt γs
−γs γt

)
P0 +

(
d⊥ 0
0 −d⊥

)
=:

(
Qδ

HH Qδ
HΓ

Qδ
ΓH Qδ

ΓΓ

)
. (38)

We use the following notation:

√
λH tan−1

√
λH =: γt,

√
λ H sin−1

√
λH =: γs,

d⊥ =
∑

n,s

1√
λn,s − λ tanh

√
λn,s − λ H

Pn,s =
1√

−Δ⊥ − λP⊥ tanh
√
−Δ⊥ − λP⊥ H

, (39)

and the exponentially small off-diagonal elements of Qδ
Γ are neglected. Note that the diagonal

elements Qδ
ΓΓ,Qδ

HH are invertible if the channel Ωδ is thin. Indeed, for Ωδ
ΓΓ, we have

Qδ
ΓΓ ≈ 1√

λ tan
√

λH

[
P0 −

√
λ tan

√
λH

[−Δ⊥ − λP⊥]1/2

]
≈ P0√

λ tan
√

λH
− d⊥. (40)
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Substituting, for thin channel, δ/H � 1, the exact ND-mapping of Ωδ by the above approximation
Qδ

appr, we admit an exponentially small error O(e−H/δ).

We carry out the subsequent calculations with the precision of o(δ/H), o(
√

λH) and just replace
Qδ by Qδ

appr. In particular, using the above approximation (38) for Qδ, we shall calculate the
restriction to ΓH of the ND-mapping for the extended inner domain Ω∗

int := Ωint∪Ωδ. Using [5], one
can construct an approximate spectral representation for the DN-mapping of the basic domain Ωint,

DN Γ =
N∑

l=1

∂ϕl/∂n〉 〈∂ϕl/∂n

λ − λl
+ KN

dn =: DNN
Γ + KN

dn,

with respect to Γ, on an essential spectral interval Δ and on its complex neighborhood GΔ. Choose
a number N such that ‖Qδ

ΓΓKN
dn‖W

3/2
2 (ΓH )

< 1. Then the operators I−Qδ
ΓΓKN , Qδ

ΓΓ−Qδ
ΓΓKN

dnQδ
ΓΓ

are invertible, and therefore we obtain

[Qδ
ΓΓ −Qδ

ΓΓKN
dnQδ

ΓΓ]−1 =: V = [Qδ
ΓΓ]−1 I

I −Qδ
ΓΓKN

dn

≈ [Qδ
ΓΓ]−1 ≈ λH P0. (41)

Denote by EN =
∨N

l=1 ϕl the invariant subspace of Lint which corresponds to the eigenfunctions
{ϕl}N

l=1 and introduce the spectral projection PN =
∑N

l=1 ϕl〉 〈ϕl and the part LN =
∑N

l=1 λlϕl〉 〈ϕl

of Lint in EN . Below we also use the mappings

T :=
N∑

l=1

ϕl

〉〈∂ϕl

∂n
, Qδ

ΓΓ ∗
〉

Γ
, T+ :=

N∑

l=1

Qδ
ΓΓ

∂ϕl

∂n

∣∣∣
Γ

〉 〈
ϕl, ∗

〉
. (42)

The following statement describes the transmission of the Dirichlet/Neumann data from the lower
lid Γ of the channel Ωδ to the upper lid ΓH .

Theorem 4.1. For a thin channel (δ/H � 1), the approximation (38) for Qδ implies the
following approximate formula for the relative ND-mapping ND∗

H of Ω∗
int on ΓH :

ND∗
H = d⊥ +

tan
√

λH√
λ

P0 −
I

λ sin2
√

λH
P0

[
V T+ I

λIN − LN − TV T+
TV + V

]
P0. (43)

Proof. The DN-mapping of Lint with respect to Γ is related to the ND mapping of L∗
int on the

extended domain Ω∗
int by the linear system

(
Qδ

HH Qδ
HΓ

Qδ
ΓH Qδ

ΓΓ

)(
ρH

DN ΓuΓ

)
=

(
NDH ρH

uΓ

)
. (44)

This system yields the representation

NDH =
[
Qδ

HH −Qδ
HΓ

[
Qδ

ΓΓ

]−1 Qδ
ΓH

]
+ Qδ

HΓ

[
Qδ

ΓΓ −Qδ
ΓΓDNΓQδ

ΓΓ

]−1 Qδ
ΓH , (45)

which we now simplify by using the explicit expressions for Qδ substituted with Qδ
appr picking up

an exponentially small error. In particular, the first term on the right-hand side of (45) simplifies
to Qδ

HH − Qδ
HΓ

[
Qδ

ΓΓ

]−1Qδ
ΓH = d⊥ + tan

√
λH√

λ
P0. To calculate the second term in (45), we must

solve the equation [
Qδ

ΓΓ −Qδ
ΓΓDNΓQδ

ΓΓ

]
u = Qδ

ΓHρH . (46)
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If the spectral rational approximation of DN is chosen in such a way that the mapping

[Qδ
ΓΓ −Qδ

ΓΓKNQδ
ΓΓ]−1 =: V (47)

exists, then, because of the domination condition ‖Qδ
ΓΓKN ‖

W
3/2
2 (ΓH )

< 1, the solution of the
above equation can be found by inverting a finite matrix. Indeed, in terms of the new variable

v =
∑N

l=1 ϕl

〈
Qδ

ΓΓ
∂ϕl
∂n ,u

〉

λ−λl
= (λIN − LN)−1Tu, equation (46) can be represented as

(λIN − LN )v − TV T+v = TV Qδ
ΓHρ; (48)

hence, v = I
λIN−LN−TV T+ TV Qδ

ΓHρ. Then u = V T+v+V Qδ
ΓHρ = V T+ I

λIN−LN−TV T+ TV Qδ
ΓHρ+

V Qδ
ΓHρ, and NDHρ = d⊥ρ + tan

√
λH√

λ
P0ρ + Qδ

HΓ

[
V T+ I

λIN−LN−TV T+ TV + V
]
Qδ

ΓHρ. Note that

Qδ
HΓ = I√

λ sin
√

λH
P0 = −Qδ

ΓH . This completes the proof.

Remark 4. When deriving the expression for ND∗
H , we have neglected the exponentially small

off-diagonal terms O(e−H/δ) of the component Q⊥ and obtained an approximation for ND∗
H in the

form of the diagonal matrix
ND∗

H ≈ d⊥ + MP0 (49)

with the scalar function M = tan
√

λH√
λ

− I
λ sin2

√
λH

Trace
[
V T+ I

λIN−LN−TV T+ TV +V
]
P0. Denoting

D = Trace
[
V T+ I

λIN−LN−TV T+ TV
]
P0, using (41), and replacing the last term in (43) by −1/λH

(on the complement of poles), we also obtain the approximate expression for M, M = tan
√

λH√
λ

−
D

λ sin2
√

λH
− Trace P0V

λ sin2
√

λH
≈ tan

√
λH√

λ
− D

λ sin2
√

λH
− 1

λH
, for short thin channels. It can readily be seen

that the diagonal expression (49) differs from the exact value of ND∗
H by an exponentially small

error estimated as
‖ND∗

H − d⊥ − MP0‖ � CDe−H/δ, (50)

which is small for a thin short channel and for λ outside an open neighborhood of the poles of D.

Remark 5. We might also consider another approximation for ND∗
H (less accurate but more

convenient for fitting) for a short thin channel (kH � π/2, δ/H � 1). This approximation is
obtained by replacing V by P0λH and D by λ2H2D for ImD < 0 and set

D(λ) := Trace
[
P0

N∑

l,m=1

∂ϕl

∂n

∣∣∣
Γ

〉〈
ϕl,

I

λIN − LN − TV T+
ϕm

〉〈∂ϕm

∂n

∣∣∣
Γ

]

=
∑

l,m

π−1δ−2
[ ∫

Γ

∂ϕl

∂n
dΓ

] 〈
ϕl,

I

λIN − LN − TV T+
ϕm

〉[ ∫

Γ

∂ϕm

∂n
dΓ

]
= O(δ2), (51)

again, outside the poles. Then, using (41), for a short channel
√

λH � 1, we can substitute P0V by
P0λH to obtain M ≈ H −D − 1

λH
with a controllable error for small KN

nd, [V P0 − λHP0] ≈ KN
nd.

Next, we can estimate the difference D−λH D λH P0 on the complement GD := Δ\UD of an open
neighborhood UD of the poles of D,

∣∣∣
1

λ sin2
√

λH
Trace[D − λH D λH]P0

∣∣∣ � ‖P0KN
nd‖|D|. (52)

Under the same condition, we estimate

Trace[P0V − P0(Qδ
ΓΓ)−1] ≈ TraceKN

ndP0. (53)

Summarizing the above observations (52) and (53), we obtain the following assertion for short thin
channels.
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Lemma 4.1. For small ‖KN
nd‖ and

√
λH � 1, the function M can be approximated, with a

relatively minor error on GD, by the expression M ≈ H −D − I
λH .

Remark 6. Inserting the expression for M into (49), we obtain, for QH(λ) =: Q∗
int(λ) =

d⊥ + MP0 + · · · , a convenient approximate expression for the denominator of the additional term
of the scattering amplitude (26), namely,

1
8π3

ψout(∗, ω, λ) [Q∗
int(λ) + Qout(λ)]−1

ψout(∗, ν, λ)

≈ 1
8π3

ψout(∗, ω, λ)
[
d⊥ + MP0 + Qout(λ)

]−1
ψout(∗, ν, λ) =: δaM . (54)

We also have an exponential estimate for the deviation of Q∗
int from d⊥ +MP0 on the complement

of some open neighborhood of the poles of M, or, following the above arguments, a slightly coarser
estimate for the deviation on the complement GD of an open neighborhood UD of the poles of D.

5. FITTING OF THE SOLVABLE MODEL

A solvable model of the Helmholtz resonator is said to be “fitted” if the corresponding model
for the scattering matrix serves as a local approximation for the original scattering matrix of the
Helmholtz resonator on the major part GD = Δ\UD of the essential spectral interval Δ, i.e., on the
complement of an open neighborhood of the poles of the corresponding intermediate DN-mapping.

We can fit a solvable model using a comparison of the additional term of the model amplitude
(16) with the corresponding rational approximation.

Note first of all that the values ψout(x, ω, λ), ψout(x, ν, λ) of the scattered waves in a solvable
model are taken at the center aH of the upper lid. According to Remark 3, the solution u of (27)
obtained by the corresponding regularization is unique and smooth, u ∈ W

3/2
2 (Γ), for nonsingular

λ. Now we can evaluate the solution u of (27) by replacing Q∗
int by the approximate expression (49),

see Remark 4 above. We also replace ψout(∗, ω, λ) and ψout(∗, ν, λ) on ΓH by their values at the
center aH of the upper lid which are multiplied by the indicator function χΓH

= χH of the upper
lid, ψout(γ, ω, λ) −→ ψout(aH , ω, λ)χH(x), γ ∈ ΓH . Since ψout ∈ W 2

2 (Ω), it follows that the trace
of ψout on ΓH is smooth, ψout ∈ W

3/2
2 (ΓH). By the embedding theorem, the inclusion W

3/2
2 (ΓH) ⊂

Lip1/3(ΓH) holds, and thus we have the estimate

|ψout(x, ω, λ) − ψout(aH , ω, λ)χ(x)| � C δ1/3|λ|3/4, x ∈ ΓH , (55)

for an absolute constant C, since ‖ψout‖W
3/2
2

(ΓH) � C|λ|. The resulting expression for the approx-
imate correcting term of the amplitude is

1
8π3

ψout(aH , ω, λ)
〈
χH ,

1
Q∗

int + Qout
χH

〉
ψout(aH , ν, λ) =: δâ. (56)

Let us now estimate the difference between δâ and the original correcting term,

1
8π3

ψout(∗, ω, λ) [Q∗
int(λ) + Qout(λ)]−1

ψout(∗, ν, λ) =: δa. (57)

Lemma 5.1. On the major part of the essential spectral interval Δ, i.e., on the complement to Δ
of a small open neighborhood of the poles of the relative DN-mapping, the deviation of the solutions
of equations (56) and (57) from each other can be estimated as maxΓH

|u − û| � Const
(
δ
√

λ
)1/3.

Proof. Let us denote by u and û the solutions of the equations [Q∗
int + Qout]u = ψout(γ) and

[Q∗
int +Qout]û = χH(γ)ψout(aH , ν, λ), respectively. Applying the procedure described in Remark 4

to the above equations, we reduce them (for a thin channel, δ/H � 1) to the finite-dimensional
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linear system with the determinant det
[
I +

(
I + DN outKN

nd

)−1 DN outQN
int

]
=: detB(λ). We have

detB(λ) �= 0 on the complement to Δ of the discrete spectrum of the intermediate Hamiltonian.
In this case, maxΓH

|u−û| � Cδ1/3|λ|3/4/detB(λ) = C
(
δ
√

λ
)1/3 [detB(λ)]−1|λ|7/12 with a constant

C independent of λ. This implies the corresponding estimate for the difference δa − δâ, again with
some constant C independent of λ.

Our next step is to compare the approximate correcting term

1
8π3

ψout(aH , ω, λ)
〈
χH , [d⊥ + MP0 + Qout(λ)]−1χH

〉
ψout(aH , ν, λ) (58)

with the correcting term obtained from the solvable model, see (16). To calculate the approximate
correcting term (58), we must solve the equation

[
P0M + d⊥ + Qout

]
u = χH . (59)

Although the problem is ill-posed, we have already discussed above (in Remark 4) a way to regularize
the problem and establish the smoothness of the solution. The difference between the approximate
correcting term and the original correcting term (26) is estimated by using the results of the previous
section. In particular, the term Q∗

int can be replaced with a minor error by P0M + d⊥.
Writing u = (ρ0 χH + u⊥) and applying P0 = [πδ2]−1χH〉〈χH , P⊥ = I − P0 to (59), we obtain

the system of two equations for ρ0, u⊥, namely,

P⊥d⊥u⊥ + P⊥Qout u⊥ + P⊥Qout χHρ0 = 0, MχHρ0 + P0Qout u⊥ + P0Qout χH ρ0 = χH . (60)

The middle term of the above formula (56) is directly related to the component ρ0 of the solution
of the system 〈

χH ,
1

Q∗
int + Qout

χH

〉
= 〈ρ0 χH , χH〉 = ρ0 π δ2. (61)

The kernel of the integral operator Qout coincides with Green’s function for the Neumann Laplacian
in the outer domain; this kernel can be represented by (5). Hence,

Qoutu =
∫

ΓH

Gout(x, y, λ)u(y)dy =
∫

ΓH

Gout(x, y,M)u(y)dy +
∫

ΓH

Mout(x, y, λ,M)u(y)dy,

with a large negative M and a continuous kernel

Mout(x, y) = (λ − M)
∫

Ωout

Gout(x, z,M)Gout(z, y, λ)dz.

One can show that, near a smooth point y ∈ ∂Ωout, Green’s function Gout(x, y,M) has an as-

ymptotic expansion as x ∈ ΓH → y ∈ ΓH of the form Gout(x, y,M) = 1
2π|x−y| −

√
|M |
2π + · · · for

|x − y|
√

M � 1. Below we use the notation

γ1 = δ−3

∫

Γ

∫

Γ

dxdy

2π|x − y| , and therefore
∫

Γ

∫

Γ

dxdy

2π|x − y| = γ1 δ3.

We also use the notation Mout(λ+i0, a) for the limit of Mout at the center of the upper lid aH ≡ a,
see (4), limx,y→a Mout(x, y, λ,M) = C(a,M) + iπdE/dλ (a) + MV P ≡ Mout(λ + i0, a).
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Theorem 5.1. For small δ, the component ρ0 of the solution of (59) is approximately

ρ0 =
1 − o(γ1δ

4/3 λ3/4)
M + γ1 δ π−1 + Moutπ δ2

out
≈ 1

M + γ1 δ π−1 + Moutπ δ2

on the major part of the essential spectral interval (on the complement of a small neighborhood of
the zeros of the denominator).

Proof. We have already noted at the end of Section 3 that, due to the local smoothness of
eigenfunctions of the Laplacian, see Remark 3, the solution u of the above equation (59) is smooth
and, in particular, u ∈ W

3/2
2 (Γ) ⊂ Lip1/2(Γ). More precisely, due to the corresponding embedding

theorem on the small upper lid and to the relations u ∈ W 2
2 (Ω) and u

∣∣
ΓH

∈ W
3/2
2 (ΓH), we see that

supΓH
|u⊥| = supΓ |u − P0u| � Const δ1/3‖u‖

W
3/2
2 (ΓH )

. Therefore, equation (60) yields

Mρ0 + (πδ2)−1

∫

Γ

∫

Γ

dxdy

2π|x − y| ρ0 + Mout(a) πδ2 ρ0

= 1 − (πδ2)−1

∫

Γ

∫

Γ

u⊥
2π|x − y|dxdy = 1 − Const δ4/3 λ3/4. (62)

This gives an approximate expression for ρ0 on the major part of the essential spectral interval.

Remark 7. Combining the above result with earlier assertions in Lemmas 4.1 and 2.2, Theorem
2.1, and formula (61), we see that, on a major part of the essential spectral interval (on the
complement of a small neighborhood of zeros of the denominator),

〈
χΓH

,
1

Q∗
int + Qout

χΓH

〉
=

πδ2

[H −D − (λH)−1 + γ1 δ π−1] + Mout πδ2
,

for a thin short channel, and the correcting term (56) for the amplitude is

δa ≈ [8π3]−1 ψout(aH , ω, λ)〉πδ2 〈ψout(aH , ν, λ)
[H −D − (λH)−1 + γ1 δ π−1] + Mout πδ2

. (63)

Comparing this expression with the corresponding model correcting term at (16) gives

δamod = [8π3]−1 ψout(aH , ω, λ)〉 〈ψout(aH , ν, λ)
(β01)−2

[
H − 1

MΓ+λH + β11

]
+ Mout

. (64)

We see that the solvable model constructed in Theorem 2.1 is fitted on the complement of an open
neighborhood of the zeros of the denominators of D and MH (on the major part of the essential
spectral interval) if

|β01|−2
[
H − 1

MΓ + λH
+ β11

]
=

1
πδ2

[H −D − (λH)−1 + γ1 δ π−1] (65)

for λ ∈ Δ. Since the analytic functions on the left- and right-hand sides of the above equation
are in the Nevanlinna class, and therefore they can be represented by the Herglotz formula (10),
we can compare the polynomial terms of the formula and the polar sum separately and insert the
calculated values of the model parameters into (65) to obtain the following main result of the paper.
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Theorem 5.2. If |β01|2 = πδ2 and β11 = γ1δ
−1π and if MΓ is such that

− 1
MΓ + λH

= −D − 1
λH

, (66)

then, under Assumption 1, the solvable model constructed in Theorem 2.1 is fitted on the major
part of the essential spectral interval Δ, δamod = δa + o(1), Amod = Aout + o(1), if the channel Ωδ

is thin and short.

Remark 8. Note that the inner structure A is subjected to an essential renormalization (66)
compatible with the restriction LN of the inner Laplacian to the spectral subspace corresponding
to the essential spectral interval. Moreover, the chosen values of the model parameters are not
uniquely defined, because in (66), we apply the Herglotz formula to a rational function of MΓ

rather than to a linear one. By adding equivalent rational terms to the left- and right-hand sides
of (65), we can transfer some part of the sum of polar expressions to the polynomial part of the
Herglotz formula. However, this is not used here.

6. HISTORICAL REMARKS AND BEST PROSPECTS

This work is essentially a continuation of the paper [7] published jointly by M. D. Faddeev with
one of us (B.P.). In that paper, the connection between the Kirchhoff model and the operator
extensions was discovered and developed later into the zero-range model with inner structure,
see [29]. The problem with that paper was that the authors could not present a persuading procedure
to choose parameters of the operator extension to “fit” the solvable model. This problem proved to
be related to the perturbation of embedded eigenvalues. Eventually, these difficulties were overcome,
inspired by the idea of H. Poincaré, see [35], about the “elimination of dangerous resonances.”
We developed in [30, 26] a modified two-step analytic perturbation procedure based on a “jump-
start” technique. We also used essentially recent progress in spectral representations of the Dirichlet-
to-Neumann mappings and the connection between the DN-mapping and the scattering matrix
discovered in 2001, see [32].

The first problem to discuss next is fitting of the original zero-range model suggested in [7],
which actually corresponds to an “almost point-like opening” obtained as a limit of a short channel,
δ2 λ → 0, H/δ → 0. One can expect that, in contrast to the solvable model of the resonator with
thin short channel considered here, this fitting needs just a restriction of the inner Laplacian to
the spectral subspace corresponding to the essential spectral interval rather than an essential re-
normalization of the inner structure A. We feel that the fitting of the original solvable model [7]
of the Helmholtz resonator with “short channel” could be recognized as a solution to the original
1882 Kirchhoff problem, in the original formulation, and simultaneously as a confirmation of the
optimistic 15-year old Gadyl’shin conjecture quoted above [8].

Another tempting problem suggested in [39] is an approximate calculation of the poles of the
scattering matrix and, in particular, the poles of the additional term of the amplitude placed near
the continuous spectrum. These resonances belong to the series of resonances, see [33, 34], which
appear due to the opening. Certainly, it is natural to attempt to calculate them formally as zeros
of the denominator of the additional term δamod of the model amplitude. A simple result which
is obtained in this way (and will be published elsewhere) needs a serious verification based on the
matrix version of Rouché’s theorem, see [20]. This verification requires an accurate estimation in the
complex plane of the errors we neglected on the real axis, when deriving approximate expressions
for ND∗

int,D,Mout. We discuss the related problems elsewhere.
The problem of approximate calculation of the scattering matrix for the Helmholtz resonator

with a relatively wide opening is more interesting. Recall that we successively simplified the basic
equation (27) for a thin channel due to the fact that all exponential modes in the channel that
correspond to positive cross-section eigenvalues λl,m : J ′

m(λm,l) = 0, are “filtered out” by the
channel. Indeed, they do not contribute to the transfer of the Dirichlet/Neumann data from the
lower section to the upper one, because λ1

l,m δ−2 � λ beginning with l = 1. When using direct
computing, we are able to relax the above condition, neglecting only the transfer by the higher
modes, namely, [sinh

√
λ1

m,l − δ2λ H/δ]−1 � 1 if λm,l > Λ0, beginning with some Λ0, which is
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to be be chosen large enough. There are only finitely many modes below that level, which can be
taken into account in an explicit way, by the direct computation. The procedure thus suggested
is actually an extension of the perturbation procedure (suggested recently in [1]) for the junction
of a quantum network to the case of Helmholtz resonator. Note that the computational procedure
is suggested there for resonances in any resonator, without additional conditions on the diameter
of the opening. The procedure described above enables us to extend our analysis to Helmholtz
resonators with wide openings, with potentially intriguing applications of this extension, as was
discussed in [24].
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