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Abstract. The aim of this paper is to construct solutions of the Dirichlet problem for the
3D Laplace equation in a layer with highly oscillating boundary. The boundary simulates the
surface of a nanotube array, and the solutions are applied to compute the cold field electron
emission. We suggest a family of exact solutions that solve the problem for a boundary with
appropriate geometry. These solutions, along with the Fowler–Nordheim formula, allow one
to present explicit asymptotic formulas for the electric field and the emission current. In this
part of the paper, we consider the main mathematical aspects, restricting ourselves to the
analysis of properties of the potential created by a single tube and a regular array of tubes.
In the next part, we shall consider some cases corresponding to nonregular arrays of tubes
and concrete physical examples.
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1. INTRODUCTION. FORMULATION OF THE PROBLEM

Consider the Dirichlet problem for the Laplace equation,

�u(x, y, z) = 0, (x, y, z) ∈ Ω;

u|z=g(x,y) = 0, u|z=1 = 1,
(1.1)

in a layer
Ω = {g(x, y) < z < 1} ⊂ R

3

with fast oscillating lower boundary

Γ =
{
(x, y, z)

∣∣z = g(x, y)
}
.

We first restrict ourselves to a boundary of the form of a regular array of vertically aligned identical
axial-symmetric tubes (see Fig. 1). The geometry of the array is defined by several parameters,
namely, the height h and the diameter d (d � h � 1) of the tubes and the distance s between
them. Here we consider arrays of medium density, s ∼ h � d.

Problems of this kind come from the study of emission effects on a screen surface organized by
an array of nanotubes placed into a stationary external electric field ([2]). In our case, the direction

of the external field coincides with the axes of the tubes. The geometrical sizes (the height h̃

and the diameter d̃ of the tubes, the distance between the tubes s̃, and coordinates x̃, ỹ, z̃, all
measured in μm = 10−6m) are rated to the anode-cathode distance D (in μm). This procedure

gives dimensionless variables h = h̃/D, x = x̃/D, etc.

The electrostatic potential ũ (in V ) is rated to anode-cathode voltage U (in V ), which gives a
dimensionless function u = ũ/U . This normalization leads to the boundary condition u|z=1 = 1 in
problem (1.1). The z-derivative of the solution u gives the field enhancement factor β,

β ≡ F

F0
, F0 ≡ U

D
:

∂u

∂z
=

1

F0

∂ũ

∂z̃
= β, (1.2)

400



SOME SOLUTIONS OF 3D LAPLACE...I. REGULAR ARRAY 401

�0.2

0.0

0.2
x

�0.2

0.0

0.2

y

0.00

0.05

0.10

0.15

z

curvature - k

diametr - d

height - h

distance - S

Z

0

1

Y

X

S

Fig. 1. Fast oscillating boundary. The scheme of the regular array of tubes.

where F and F0 (both in V μm−1) is a field in presence of tubes and the external field, respectively.

The emission current density of an array I (in A μm−2) is an object of interest in physical
problems. This density is given by the integral under the surface of the array of tubes Γ:

I =
1

s2

∫ s
2

− s
2

∫ s
2

− s
2

J(x, y)dxdy. (1.3)

Value of J(x, y) (the emission current density of a small area dxdy, in A μm−2) can be evaluated
by the Fowler–Nordheim law using z-component of the electric field F (x, y, z) ≡ F0 ∂u/∂z on the
surface Γ (see [2]),

J = AF 2 exp
{
− B

F

}∣
∣∣
z=g(x,y)

= AF 2
0 β

2 exp
{
− B

F0

1

β

}∣
∣∣
z=g(x,y)

. (1.4)

Here the constants are given by

A = 1.54 × 10−6 × ϕ−1 = 0.31 × 10−6 A V −2, B = 6.8 × 103 × ϕ3/2 = 76× 103 V μm−1,

and the so-called work function ϕ is taken to be equal to ϕ = 5eV (see, e.g., [1, 3, 4, 5]). It is
important to analyze the dependence of the current density I on the geometry of the array, i.e., to
find the optimum distance maximizing the emission current.

Assume that we have a solution of problem (1.1). For a high aspect ratio λ ≡ h/d � 1
of the tubes, it seems reasonable to calculate the integral (1.3) approximately by the Laplace
method. Let the point (x, y, z) = (0, 0, zmax) be the top point of the central tube in a regular array
(i.e., (0, 0) ∈ argmax g(x, y)). Then

I = 2πAF 2
0

β2

s2
exp

{
− B

F0

1

β

}
· F0

B

β2

√
det

(
−Hessβ

)
∣
∣∣
x=y=0, z=zmax

(
1 +O

(F0

B
)
)
. (1.5)

Here Hessian matrix is

Hessβ ≡
(

∂2β/∂x2 ∂2β/∂x∂y
∂2β/∂x∂y ∂2β/∂y2

)
.

Estimates for the accuracy of the Laplace method can be found in textbooks (see, e.g., in [6]).
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2. SUGGESTED SOLUTION

For the solution u of problem (1.1), one can use the well-known analytical formula for a double
layer potential [7], where the function ϕ(P ) is defined by the integral Fredholm equation derived
using the boundary conditions. This formula is based on the calculation of some integrals admitting
no evaluation in explicit form, and they are of small use from the point of view of applications.

Our idea is to construct special solutions for (1.1) (in the space R
3) which satisfy the related

boundary condition (i.e., the boundary surface Γ should simulate the surface of an array of tubes
with given geometrical characteristics h, d, and s). The lower surface is not arbitrary in this ap-
proach; however, it seems to be sufficient to simulate the emission effects (like field enhancement
and field screening). Due to the general theory of the Laplace equation, it is impossible to construct
a regular solution in the layer {0 < z < 1} ∈ R

3 with the desired properties (like high aspect ratio
of tubes). Thus, the function u must have singularities in this layer, out of the domain Ω. Actually,
it can satisfy the Poisson equation with the right-hand side having a special δ-like form. Here we
use an idea close to that used in [8, 9].

First, we simulate one tube by taking the right-hand side in the form 4πδ(x)δ(y)ρ(z). This
right-hand side corresponds to a vertically aligned infinitely thin “charged stick” with linear charge
density ρ(z) = ν1z+ν3z

3, z ∈ [−h, h]. The cubic density enables us to simulate a tube with almost
vertical walls of given diameter d, whereas the linear charge density ν1z gives a tube of the form of
a smoothed triangle. We use dipole-like “sticks” (with symmetric charge density with respect to z)
to obtain fast decaying potentials.

To construct an array of tubes, one can place the set of such “sticks” in different points and then
summarize the corresponding potentials. This procedure changes the characteristics of individual
tubes, which reflects the screening effect that is important for applications. We shall discuss the
details when presenting the formulas. The above ideas could be used in some general (irregular) sit-
uations; however, as was mentioned above, we restrict ourselves to an array of tubes with “regular”
properties.

The geometrical parameters in real arrays differ from tube to tube, and thus it is important to
obtain a simple family of solutions including several parameters. Changing these parameters, one
can easily analyze the emission current dependence on the averaged geometrical characteristics.
Our approach is based on a selection of such a solution solving the problem for a certain boundary
surface z = g(x, y), which is appropriate for our purposes. We suggest a family of solutions with
parameters h, s, ν1, ν3 as follows:

u(x, y, z)=z−V (x, y, z)+Vrefl(x, y, z)
(
V (x, y, z) ≡

∑

i,j∈Z

V0(Rij , z), Vrefl(x, y, z) ≡ V (x, y, 2 − z)
)
,

V0(Rij , z) ≡
∫ h

−h

(ν1ζ + ν3ζ
3)dζ

√
R2

ij + (z − ζ)2
, R2

ij ≡ (x− is)2 + (y − js)2. (2.1)

Proposition 1. The function u(x, y, z) given by (2.1) is a solution of problem (1.1) for the
lower boundary condition u|Γ = 0. This lower boundary Γ is the zero level surface of the potential
u(x, y, z) and has the form of an array of tubes (as in Fig. 1). The parameters ν1(h, s, d) and
ν3(h, s, d) depend on the geometrical characteristics h, s, and d of the array.

The function V0 gives the potential of a thin “charged stick” with charge density

ρ(x, y, z) = (ν1ζ + ν3ζ
3)δ(x)δ(y), |z| � h,

with the Dirac delta functions δ(x). The functions V and Vrefl solve the Poisson equation for an
array of thin “charged sticks” (see Fig. 2),

Δij = {x = is, y = is, −h � z � h}, Δrefl
ij = {x = is, y = is, 2− h � z � 2 + h},

respectively. Thus, the function u(x, y, z) provides a solution for the Laplace equation in the layer

Ω = {0 < z < 1}
∖ ⋃

i,j

Δij .
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Fig. 2. Level curves for the potential Vrefl (left) and for the solution u = z − V + Vrefl. Thick
vertical intervals illustrate the localized charges.

Proposition 2. The integral in the definition of V0(R, z) can be evaluated using elementary
functions,

V0(R, z) =

∫ h

−h

(ν1ζ + ν3ζ
3)dζ

√
R2 + (z − ζ)2

=

(
− ν1 +

2
3ν3R

2 − 1
3ν3h

2 − 11
6 ν3z

2
)
4hz

√
R2 + (z + h)2 +

√
R2 + (z − h)2

+
5

6
ν3hz

(√
R2 + (z + h)2

+
√

R2 + (z − h)2
)
+ z

(
ν1 −

3

2
ν3R

2 + ν3z
2
)
log

√
R2 + (z + h)2 + z + h

√
R2 + (z − h)2 + z − h

.

(2.2)
The potential V0(R, z) has the following asymptotics at infinity :

V0(R, z) = zh3
(2

3
ν1 +

2

5
ν3h

2
) 1

R3
+O

( 1

R5

)
, R → +∞,

V0(R, z) = h3
(2

3
ν1 +

2

5
ν3h

2
) 1

z2
+O

( 1

z4

)
, z → +∞.

This allows us to write explicit asymptotic formulas for the potential u and for the emission
current density I for an array of tubes with given geometrical characteristics h, d, s.

The potential Vrefl is quite small in the layer 0 < z < 1, namely, it is of order O( h3

(2−z)2
) (see

Fig. 2, left). It gives a very small correction to the zero-level surface of the solution u(x, y, z) and
to the derivatives of the function u(x, y, z) for z � h. Thus, when studying the solution for z � h,
we can omit the term Vrefl in our future considerations and use the following formula for solution
u(x, y, z):

u(x, y, z) = z − V (x, y, z) +O(h3/(2− z)2). (2.3)

3. ANALYSIS OF THE POTENTIAL DESCRIBING A SINGLE TUBE

We need to calculate the field enhancement factor β and the emission current density I for given
geometrical characteristics of a given array of tubes. We calculate them in two steps: we express
parameters h, s, ν1, ν3 of the model via geometrical characteristics of the array and then calculate
β and I.

First we derive formulas for the case of a single tube. In the case of array of tubes, the algorithm
is the same. The presence of neighboring tubes corrects formulas for ν1 and ν3. However, the
dependence of β and I on the parameters of the model h, s, ν1, ν3 is asymptotically the same,
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because β and I depend only on derivatives of the potential u, and the major impact to this
derivatives at the point near a tube is given by the potential of this tube.

Consider the potential for a single tube,

u(x, y, z) = z − V0(r, z), r2 = x2 + y2.

It consists of the plane z = 0 and the surface that simulates a tube and has the form of a “hat.”
These surfaces intersect along a curve γ ∈ {z = 0}, which is almost a circle. Below, by the zero
level surface we mean the surface of the tube with the part of the plane z = 0 outside the curve
γ (and hence outside the tube). The zero level surface of the function u (which has the form of a
“hat”) obtained by using the Wolfram Mathematica software is represented on Fig. 3 by thin lines.
We present the cut lines laying on the plane y = 0.

3.1. Analysis of the Surface of a Single Tube

Let us study the equation u = 0 with respect to variable z outside the vicinity of the top
(z < h − r). The interesting surface r = r0(z) corresponds to r ∼ d ⇒ r � h. Thus, we can try
to expand the potential in a neighborhood of point r = 0. Omitting a small correction O( rh), we
obtain

r20(z) = 4(h2 − z2) exp
{
−

1 + 2ν1 − ν3h
2 + 11

3 ν3z
2

ν1 + ν3z2

}(
1 +O(r/h)

)
. (3.1)

The radius r0(0) of the bottom z = 0 is

r0(0) = 4h2 exp
{
− (1 + 2ν1 − ν3h

2)
/
ν1

}(
1 +O(r/h)

)
. (3.2)

Formula (3.1) gives an approximate description Γ0 of the boundary of the tube Γ = {r = r0(z)}.
The corresponding graphs (see Fig. 3) show very good coincidence of Γ and Γ0, at least in the middle
domain. Moreover, it seems that one has to make a small correction to obtain the description to
Γ0 near the top of Γ. This implies that the height of the tube is approximately equal to h (and it is
the reason for the separation of the zero level curve into two parts; on the upper domain, we shall
construct a small correction near z = h).

Now we study the behavior of the boundary near the top (z = h + δz, δz � h, r � h). We
expand the potential u in the neighborhood of the point z = h, r = 0. Omitting the correction
O(δz/h) +O(r/h), we obtain

z − h ≈ −1

2
κr2 +

1

2

1

κ
, (3.3)

κ ≡ 1

4h
exp

1 + 2ν1 +
8
3
ν3h

2

ν1 + ν3h2
> 0. (3.4)

The value (−κ) is the curvature of the zero-level surface of the function u at the top point.

In the vicinity of the top of the tube, the approximation Γtop (3.3) and the original curve Γ
practically coincide (see Fig. 3). The surface Γ0 gives a good approximation for the middle and the
bottom parts of the tube.

At the point r = 0, z|r=0 = h+ 1/(2κ).

3.2. Computation of Parameters of the Model

We have 3 model parameters h, ν1, ν3 to simulate a single tube with height ht and diameter dt.
We define “the diameter of the tube” as the diameter of its bottom 2r0(0) and set, for instance,
κ ≡ h/d2. Then we find h, ν1, ν3 from the following equations:

h = ht −
1

2κ
≈ ht, (3.5)

u
∣∣
r=0, z=h+ 1

2κ

= 0, (3.6)

lim
z→+0

(u
z

)∣∣
r=dt/2

= 0. (3.7)
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Fig. 3. Function u zero-level surface Γ (solid) and its asymptotics Γ0 (dashed) and Γtop

(dotted) for different ν1 and ν3.

Using formulas (3.3) and (3.2), we find (omitting the corrections O(d/h) and O(1/κ)):

ν1=
1

D

(11

3
−log(4hκ)

)
, ν3=

1

h2D

(
log

d2κ

4h

)
,D ≡ (−2+log(4hκ))−

(
−8

3
+log(4hκ)

)(
−2+log

16h2

d2

)
.

(3.8)
There is some arbitrariness in choosing κ. For instance, the value −κ = −h/d2 is equal to the

curvature ∂2z(x)
∂x2 of the ellipse z2

(h/4)2 +
x2

(d/2)2 = 1 at the point x = 0, z = h/4. The value of κ of this

order gives an appropriate form of the tube given by (2.3) and (2.2).

3.3. Enhancement Factor and Emission Current density.

The field enhancement factor β for a single axial-symmetric tube at the point z = h+ 1
2κ
, r = 0

is equal to

β|r=0 = 1 +

∫ h

−h

(ν1ζ + ν3ζ
3)dζ

(h+ 1
2κ − ζ)2

= 2κ(ν1h+ ν3h
3)

(
1 +O

( 1

κ

))
. (3.9)

For its derivatives at the top point, we have

∂β

∂x

∣
∣
r=0

=
∂β

∂y

∣
∣
r=0

= 0,
∂2β

∂x∂y

∣
∣
r=0

= 0,
∂2β

∂x2

∣
∣
r=0

=
∂2β

∂y2

∣
∣
r=0

⇒
√

det
(
−Hessβ

)∣∣
r=0

= −∂2β

∂x2

∣
∣
r=0

= 3(2κ)3(ν1h+ ν3h
3)×

(
1 +O

( 1

κ

))
. (3.10)
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The emission current density of a single tube on an area with square s2 is calculated by using the
Laplace method,

I = 2π
AF 3

0

B
× 1

s2
2κ

3
(ν1h+ ν3h

3)3 exp
{
− B/F0

2κ(ν1h+ ν3h3)

}
×

(
1 +O

(F0

B

)
+O

( 1

κ

))
, (3.11)

where parameters ν1 and ν3 for a single tube are found from (3.5).

4. ANALYSIS FOR AN ARRAY OF TUBES

4.1. Computation of the Parameters of the Model

We characterize an array of tubes by the height h and the diameter d of the tubes and the
distances between them, s. The potential for the array is defined by formulas (2.1) and depends on
four parameters: on the height h and the distances s (explicitly) and on the parameters ν1 > 0 and
ν3 > 0 (implicitly). As in the case of a single tube, we have a system for ν1, ν3,

u|x=y=0,z=h+ 1
2κ

= 0, lim
z→+0

u|x2+y2=d2/4 = 0.

Using formula (2.2) for V0, we can present this system in the following asymptotic form:

1 = Σ1ν1 +Σ2ν3, 1 = Σ3ν1 +Σ4ν3;

Σ1 ≡
∑

Rij

[√
R2

ij + 4h2 −Rij

h
+ log

√
R2

ij + 4h2 + 2h
√

R2
ij +

1
4κ2 + 1

2κ

]

×
(
1 +O

( 1

κ

))
,

Σ2 ≡
∑

Rij

[
(2

3
R2 − 13

6
h2

) 4h
√

R2
ij + 4h2 +R

+
5

6
h
(√

R2
ij + 4h2 +R

)

+
(
− 3

2
R2

ij + h2
)
log

√
R2

ij + 4h2 + 2h
√

R2
ij +

1
4κ2 + 1

2κ

]

×
(
1 +O

( 1

κ

))
,

Σ3 ≡
∑

i,j

[

− 2h
√

R2
ij,d + h2

+ 2 log

√
R2

ij,d + h2 + h

Rij,d

]

×
(
1 +O

(d

h

))
,

Σ4 ≡
∑

i,j

[

(3R2
ij,d + h2)

h
√

R2
ij,d + h2

− 3R2
ij,d log

√
R2

ij,d + h2 + h

Rij,d

]

×
(
1 +O

(d

h

))
,

(4.1)

Rij ≡
√

(is)2 + (js)2, Rij,d ≡
√

(d/2 + is)2 + (js)2, κ ≡ h

d2
.

This gives asymptotic formulas for ν1, ν3 for given geometrical parameters:

ν1 =
Σ4 − Σ2

Σ1Σ4 − Σ3Σ2
, ν3 =

Σ1 − Σ3

Σ1Σ4 − Σ3Σ2
. (4.2)

Figure 4 shows the form of the array of tubes simulated by the suggested model for different
distances between tubes. There are x-plane cuts to the left and z-plane cuts to the right.
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Fig. 4. Zero level curves of function u in the plane y = 0 (left) and in the planes z =const
(right) for z = 0.5h, z = 0.75h, and z = 0.9h for different distances s.

Note that κ is not a physical value, it is just a parameter of the suggested mathematical model.
To obtain the right form of tubes, we take κ ≡ h/d2. One can take a slightly different value of κ
(of the same order h/d2) to find the suitable enhancement factor β of a single tube. Then this κ
should be used to study an array of such tubes.

The order of the enhancement factor is just as that of κ, namely, β ∼ κ ∼ h/d2. It corresponds
to the enhancement factor of a multistage tube [4] which is much greater than the enhancement
factor for a “one-stage” tube β ∼ h/d. It seems that the consideration of additional terms in the
Taylor expansion of the charge density ρ(ζ) can help to simulate a tube with smaller values of κ
and β.

4.2. Emission Current

Having formulas (4.1), (4.2) for ν1 and ν3 and formula (2.3) for the solution u, we can calculate

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 18 No. 4 2011
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the enhancement factor and the emission current density for an array of tubes with given geometrical
characteristics. For this purpose, it is sufficient to calculate derivatives of the solution (β = ∂u/∂z
and Hessβ) at the top point R = 0, z = h+1/2κ. At this point, the central tube gives a much larger
impact (with respect to (1/κ) � 1) to these derivatives then the other tubes altogether do. This
makes it possible to calculate the enhancement factor and its Hessian asymptotically by formulas
(3.6) and (3.7) as in the case of a single tube.

Proposition 3. In the case of an array of tubes, the enhancement factor β and the emission
current density I are equal to

β|r=0 = 1 +

∫ h

−h

(ν1ζ + ν3ζ
3)dζ

(h+ 1
2κ

− ζ)2
= 2κ(ν1h+ ν3h

3)
(
1 +O(1/κ)

)
, (4.3)

I ≈ 2π
AF 3

0

B
× 1

s2
2κ

3
(ν1h+ ν3h

3)3 exp
{
− B/F0

2κ(ν1h+ ν3h3)

}(
1 +O

(F0

B

)
+O

(
1/κ

))
, (4.4)

where parameters ν1 and ν3 can be found from (4.2).

The current-voltage diagram for different aspect ratio h/d of tubes and different distances be-
tween tubes is presented on Fig. 5. Here the height of tubes is taken to give h/D = 0.1. The
dependence of the field enhancement factor β and the emission current density I on the distance
between tubes s is presented on Fig. 6 (h/D = 0.1).

4.3. Conclusions

We propose explicit asymptotic formulas for the emission current density I via geometrical char-
acteristics. These formulas admit easy and fast computer realization and can be used for numerical
studies. For example, it is easy to calculate the optimum distance s between tubes that gives the
maximum of the emission current density. The knowledge of the optimum distance is important for
applications ([1, 10, 11]). The optimum distance is of the order of the height h of tubes. It depends
both on the geometry of the array (especially on the tube aspect ratio) and on the applied voltage
V (in V/μm).

In the present paper, we consider regular arrays of identical tubes. For future applications, the
study of “irregular” arrays of different tubes or/and with different distances between tubes is of
high interest ([1, 8]). For such arrays, the emission current density should be expressed in terms of
average geometrical characteristics.
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Fig. 6. The dependence of field F and the emission current density I on the distance between
tubes. Both field and current density are normalized with respect to their values Fopt and Iopt
for the optimum distance sopt.
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