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1. INTRODUCTION

In linear problems for partial differential equations, averaging methods work in situations where the
equation’s coefficients are fast oscillating functions. Averaging methods have been investigated in nu-
merous publications, where both very serious theoretical mathematical problems and their applications
are considered; here we mention only the monographs [1]–[4]. As a rule, these methods are used to
construct asymptotic solutions of the original equation in the case where the leading term is already a
sufficiently smooth (but not fast oscillating) function. On the other hand, in many physical problems
it is of interest to consider situations in which the leading term of the asymptotic solution is also a fast
varying function. In this case, the initial problem contains several different scales, and it is reasonable
to use the adiabatic approximation in the problem. We illustrate this approach with an example of
two equations in the m-dimensional Euclidean space R

m
x with coordinates x = (x1, . . . , xm), i.e., we

consider Schrödinger- and Klein–Gordon-type equations (in particular, wave-type equations) with fast
varying velocity and potential which have the form

C = C

(
Θ(x)

μ
, x

)
, V = V

(
Θ(x)

μ
, x

)
. (1.1)

Here Θ(x) = (Θ, . . . ,Θn), C(y, x), and V (y, x) are smooth real functions, C(y, x) and V (y, x) are
2π-periodic in each of the variables y1, . . . , yn, n ≤ m, and it is assumed that the phases Θj are locally
noncollinear, i.e., the rank of the matrix Θx composed of the rows ((Θ1)xk

, . . . , (Θn)xk
), k = 1, . . . ,m,

is equal to n for all x. In many physically interesting situations, m takes the values 1, 2, and 3, and
the number of “phases” n can range from 1 to m. The fact that the phases Θj nonlinearly depend
on x means that there is a weak variation in the frequencies of spatial oscillations of the velocity and
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152 BRÜNING et al.

the potential. In R
m
x , we consider the operator −〈∇, C2(Θ)∇〉 + V and the following two evolution

equations corresponding to this operator:

(a) i
∂ψ

∂t
=

(
−

〈
∇, C2

(
Θ(x)

μ
, x

)
∇

〉
+ V

)
ψ,

(b)
∂2ψ

∂t2
= −

(
−

〈
∇, C2

(
θ(x)
μ

, x

)
∇

〉
+ V

)
ψ.

(1.2)

Of course, these equations must be supplemented with initial conditions. Our goal is to construct
some asymptotic solutions of these equations, more precisely, to derive some new “reduced averaged”
equations with smooth coefficients in terms of which the solutions of the original equations can be
expressed. To this end, following the same reasoning as in [5], we first (in Sec. 2) reduce Eqs. (1.2)
to the form of equations with operator-valued symbol (see [6]) and then (in Sec. 3) apply the version
(developed in [7]–[10]) of adiabatic approximation in operator form, which is based on pseudodifferential
operators (functions of noncommuting operators) and on operator methods [11]. Thus, the method
proposed for constructing asymptotic solutions of Eqs. (1.2) is conditionally divided into the following
two parts: the first part is the reduction to “averaged equations” determined by their symbols, the so-
called effective Hamiltonians; the second part is the construction of asymptotic, both slowly and fast
varying, solutions of these “averaged equations”. The assumption about the behavior of solutions of the
“averaged equations” is essential; they allow one to use only the expansions of effective Hamiltonians in
(quasi)momenta (see Sec. 4) and hence to obtain a rather efficient description of the reduced equations
(see Sec. 5) (including equations with the so-called dispersive additional terms). In the present paper,
we mainly deal with the first part of our approach, which, in a sense, is of “operator character” or even
of “algebraic character.” In Sec. 6, we additionally present some estimates justifying our methods
including the derivation of the averaged equations and the possibility of their application to different
solutions.

2. EQUATIONS WITH FAST OSCILLATING COEFFICIENTS
AND AN OPERATOR-VALUED SYMBOL

We seek [5] some solutions of Eqs. (1.2) in the form of functions periodically depending on Θj and
also on x and t:

ψ = Ψ
(

Θ
μ

, x, t

)
, (2.1)

where Ψ(y, x, t) is a smooth function that is 2π-periodic in each of the variable y1, . . . , yn. We introduce
the following notation: by 〈 · , · 〉 we denote the inner product in R

m, by ∇x = ∂/∂x, the (column)
vector expressing the gradient operator in R

m
x , by ∇y = ∂/∂y, the (column) vector expressing the

gradient operator in R
n
y , and by ∇θ

y, the skew gradient vector-operator, ∇θ
y = Θx(x)∇y . Substituting

the functions (2.1) into Eqs. (1.2), we see that the functions ψ are their solutions if Ψ(y, x, t) satisfies
the corresponding equations

(a) iμ2Ψt = ĤΨ,

(b) μ2Ψtt = −ĤΨ,
(2.2)

Ĥ = 〈(−iμ∇x − i∇Θ
y ), C2(y, x)(−iμ∇x − i∇Θ

y )〉 + μ2V (y, x). (2.3)

We denote Δθ
y = 〈∇θ

y, C
2(y, x)∇θ

y〉 and D = 〈p,∇θ
y〉. Then the operator-valued symbol of the operators

in the right-hand side in the variables x can be rewritten as H = H0 + μH1 + μ2H2, where

H0 = 〈(p − i∇Θ
y ), C2(y, x)(p − i∇Θ

y )〉 = −ΔΘ
y − i(DC2(y, x) + C2(y, x)D) + C2(y, x)p2, (2.4)

H1 = −〈∇x, C2(y, x)∇Θ
y 〉 − i〈∇x, C2(y, x)p〉, H2 = V (y, x). (2.5)

Equations (2.2) contain n more variables than the original equations. The new variables are introduced
to ensure the regularization of the coefficients, namely, in (2.2), they depend on μ as μ → 0 already in a
smooth way. The goal of the averaging (adiabatic approximation) methods is to eliminate these variables,

MATHEMATICAL NOTES Vol. 92 No. 2 2012



AVERAGING OF LINEAR OPERATORS, ADIABATIC APPROXIMATION 153

i.e., to decrease the dimension of Eqs. (2.2). Although in such problems there is no actual decrease in
the number of variables compared with the original equations, we nevertheless can assume that the fast
phases are to a certain extent independent of the variables x, and hence their elimination in the further
calculations can also be treated as a reduction of dimension.

3. GENERALIZED ADIABATIC PRINCIPLE
The approach proposed in [7]–[10], [12] (generalized adiabatic principle) can be applied to Eqs. (2.2).

In the general case, the equations under study can be written in the form (2.2), where the Hamiltonian Ĥ
is a pseudodifferential operator with an operator-valued symbol, which, following the notation introduced
in [11], can be written as

Ĥ = H
(
−iμ

1
∂

∂x
,

2
x, y,−i

∂

∂y
, μ

)
.

The digits over the operators denote the order of action of these operators (see [11]). We assume that the
symbol of the operator Ĥ satisfies the asymptotic expansion

H
(

x, p, y,−i
∂

∂y
, μ

)
= H0

(
x, p, y,−i

∂

∂y

)
+ μH1

(
x, p, y,−i

∂

∂y

)
+ · · · . (3.1)

In our case, the operator H(x, p, y,−i(∂/∂y), μ) is differential and consists only of three terms.
We seek some solutions Ψ of Eq. (2.2) as the action of a certain (so far unknown) pseudodifferential

operator on a new (also still unknown) function

Ψ(x, y, t, μ) = χ̂w ≡ χ

(
2
x,−iμ

1
∂

∂x
, y, μ

)
w(x, t, μ). (3.2)

Here χ̂ is an “intertwining” pseudodifferential operator admitting the expansion
χ(x, p, y, μ) = χ0(x, p, y) + μχ1(x, p, y) + · · · . (3.3)

As to the function w, we assume that it satisfies the “effective” (reduced) equation

iμwt = L

(
2
x,−iμ

1
∂

∂x
, μ

)
w, (3.4)

or

μ2wtt = −L

(
2
x,−iμ

1
∂

∂x
, μ

)
w (3.5)

given by the operator1 L̂ whose symbol L admits a regular expansion in μ as follows:

L(x, p, μ) = L0(x, p) + μL1(x, p) + · · · . (3.6)

The function Heff(p, x) = L0(x, p) is called the (classical) effective Hamiltonian. We also note that
an obvious change allows us to reduce the operator H0 defined on periodic function to the form of the
operator ΔΘ

y defined on Bloch functions, and then the variables (parameters) p can be linearly expressed
in terms of the quasimomenta of these functions.

Lemma 1. For the function Ψ of the form (3.2) to satisfy Eq. (2.2 a) (Eq. (2.2 b)), it suffices that the
function w satisfy Eq. (3.4) (Eq. (3.5)) and the symbols χ(p, x, y, μ) and L(p, x, μ) of the operators χ̂

and L̂ satisfy the equation

χ

(
2
x, p − iμ

1
∂

∂x
, y, μ

)
L(x, p, μ) = H

(
2
x, p − iμ

1
∂

∂x
, y,−i

∂

∂y
, μ

)
χ(x, p, y, μ). (3.7)

1In the physical literature (in solid-state physics), the construction of the operator L(
2
x,

1

−iμ(∂/∂x), μ) with respect to the
function L(p, x, μ) is called the Peierls subsitution, see [13] and more precise explanations in [8]–[10].
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Proof. We substitute the function Ψ from (3.2) into Eq. (2.2) and obtain the relation iμ2χ̂wt = Ĥχ̂w,
which we rewrite as

(χ̂L̂ − Ĥχ̂)w = 0

using (3.4). A sufficient condition for the last relation to be satisfied is the following operator relation:

χ̂L̂ − Ĥχ̂ = 0.

In this relation, we pass from operators to their symbols and obtain Eq. (3.7). The derivation of (3.7)
from (3.2) (2.2 b), and (3.5) is quite similar.

Remark 1. We see that Eq. (3.7) is the same in both cases (2.2 a,b). Of course, this reduction can also
be used for solutions harmonic in time, i.e., for solutions of the form Ψ = e−iEt/μ2

Ψ′(x, y, μ). It is clear
that the assertion of the lemma remains valid if Eqs. (2.2) and (3.4) are replaced by the corresponding
stationary equations (the prime is omitted here)

ĤΨ = EΨ, L

(
2
x,−iμ

1
∂

∂x
, μ

)
ψ = Eψ.

Thus, the problem of reduction is reduced to the construction of symbols of the operators χ̂ and L̂. The
fact that (3.7) contains two unknown objects χ̂ and L̂ is similar to the situation arising in the problem
of determining the eigenvectors and eigenvalues. Just as in the case of determining the eigenvectors,
Eq. (3.7) generally has infinitely many χ̂k and L̂k, which are often called “modes” or “terms”. In this
case, χ̂k and L̂k are also determined nonuniquely for each k. Let T be the torus formed by yj mod 2π,
j = 1, . . . , n. In what follows, it is convenient to introduce the space L2(T) with respect to the variables y
with a “normed” inner product by assuming that

(g, f)L2(T) =
1

(2π)n

ˆ
T

g(y)f(y) dyn

for any functions g(y) and f(y), where the bar denotes complex conjugation. A certain ambiguity in
the determination of χ̂k and L̂k can be removed if we assume that the norms of the functions Ψ(x, y, t)
and w coincide in the corresponding spaces L2(T × R

m) and L2(Rm):

(Ψ,Ψ)L2(T×Rm) ≡ (χ̂w, χ̂w)L2(T×Rm) ≡ (χ̂∗χ̂w,w)L2(T×Rm) = (w,w)L2(Rm).

Then, taking the relation

χ̂∗ = χ

(
−iμ

2
∂

∂x
,

1
x, y, μ

)

into account, we see that the symbol of the operator χ̂∗χ̂ is equal to

χ∗
(

p − iμ

2
∂

∂x
,

1
x, y, μ

)
χ(p, x, y, μ),

where χ∗(p, x, y, μ) is the complex conjugate of χ(p, x, y, μ). If the integral of this function with respect
to the variable y is equal to 1, then the norms of the functions Ψ and w coincide. This “normalization”
condition can be written as

1
(2π)n

ˆ
T

χ∗
(

p − iμ

2
∂

∂x
,

1
x, y, μ

)
χ(p, x, y, μ) dyn = 1. (3.8)

Condition (3.8) does not completely remove the ambiguity in the determination of χ and L, because the
operator χ̂ can always be replaced by the product

χ̂U

(
−iμ

1
∂

∂x
,

2
x, μ

)
,
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where U(−iμ
1

(∂/∂x),
2
x, μ) is taken as a unitary (pseudodifferential) operator. Such a variation obviously

leads to a unitary transformation of the operator L̂, i.e., to the replacement of the corresponding
operator L̂ by the pseudodifferential operator

L̂′ = U

(
−iμ

1
∂

∂x
,

2
x, μ

)
L̂

[
U

(
−iμ

1
∂

∂x
,

2
x, μ

)]−1

.

As we shall see later, the leading (with respect to the parameter μ) parts of the symbols L̂′ and L̂ coincide
in this case. This ambiguity in the choice of χ does not affect the final result, i.e., the function Ψ;
nevertheless, a good choice of χ can significantly simplify the calculations in specific problems.

If χ̂ and L̂ are found, then Eq. (2.2 a) (or (2.2 b) is reduced to a simpler (reduced) equation (3.4)
(or (3.5)) for the function w. After a solution of the reduced equation (3.4) (or (3.5)) is determined,
the corresponding solutions Ψ of the original equation can be reconstructed by using the action of the
intertwining operator by formula (3.2).

Different situations, questions, and difficulties typical of the equations with operator-valued symbol
arise in the study of Eqs. (2.4) and (2.5). We make several important remarks related to this fact.

Remark 2. Here, as a rule, the “resonance” situation, which is known as the “change of multiplicity of
characteristics” in the mathematical literature and as the “intersection of terms” in the physics literature,
may arise. In this case, the functions Lk and Lk′

with different k and k′ coincide for some values of p
and x; then infinitely many different situations are possible, and only some of them have been studied
(see, e.g., [14]). On the other hand, the occurrence of such situations is to some extent “local with
respect to (x, p)”, and they can be avoided under certain conditions imposed on the solutions of the
reduced equations (3.4) and (3.5); the problem is to investigate the range of the class of solutions that
have no effects of the “change of multiplicity of characteristics” (on reasonable time intervals). In the
present paper, we in fact assume that the solutions of the original equation have a structure (belong
to such a class) such that these effects practically do not affect their asymptotics on appropriate time
intervals.

Remark 3. The problem of construction of solutions to Eq. (3.7) also arises. This problem can be solved
exactly only in very rare cases, and regular perturbation theory in the parameter μ can therefore be used
to determine the coefficients of the expansion of the functions χ and L. In this case, (3.3) and (3.6) can
naturally be treated as asymptotic series in the parameter μ. Moreover, the practical calculation of the
first coefficients is already a nontrivial problem, and it is necessary to consider only a minimal reasonable
number of terms in expansions (3.3) and (3.6). This number can be determined from the following
“asymptotic” considerations. In the case of nonstationary problems, for example, of specific Cauchy
problems, the above procedure must allow us to calculate the leading term of the asymptotics of the
solution Ψ. In the case of stationary (spectral) problems, this procedure must allow us to construct the
asymptotics of a part of the spectrum (a “spectral series”), and the error of the eigenvalue approximation
by such an asymptotics must be much less than the distance between the nearest eigenvalues.

Remark 4. The digits over the operators were introduced because of the fact that the operators
p̂ = −iμ(∂/∂x) and x do not commute, and the digits determine a method for ordering them in the
construction of functions of the operators. The construction of functions of these operators is not unique
and depends on their ordering. The following two ordering methods (or “quantizations”) are used much
more frequently than the others. In the first case, we deal with the Feynman–Maslov ordering

χ̂ = χ(
1

p̂,
2
x, μ), L̂ = L(

1

p̂,
2
x, μ),

which we already used and, in the second case, with the Weyl ordering

χ̂ = χW

( 1

p̂ +
3

p̂

2
,

2
x, y, μ

)
, L̂ = LW

( 1

p̂ +
3

p̂

2
,

2
x, μ

)
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with the Weyl symbols χW (p, x, t, μ) and LW ((p, x, μ). We stress that the operators are the same,
but their symbols are generally different because of different orderings. From the “theoretical view-
point”, Weyl quantization is more convenient, because it automatically leads to at least symmetric
operators L̂, provided that L∗ = L. But the practical experience of solution of many problems shows
that the Feynman–Maslov ordering is significantly more convenient for deriving explicit formulas, and
the pragmatic method consists, first, in finding the symbols corresponding to the Feynman–Maslov
ordering and then passing to the Weyl symbols (i.e., recalculating them). Such formulas are well known
(see [11], and [8], [10]), in particular,

LW (p, x, μ) = L0(p, x) + μ

(
L1(p, x) +

i

2

〈
∂

∂p
,

∂

∂x

〉
L0

)
+ O(μ2).

Since the initial problems are given by self-adjoint operators, the operator L̂ (in the case of a correct
choice of χ̂) is also self-adjoint. But then LW (p, x, μ) is real-valued, and hence L0 and the coefficient
at μ in the right-hand side of the last relation are also real-valued. The calculations must be performed
with this consideration in mind.

Remark 5. Finally, we note that the class of symbols of pseudodifferential equations with a parameter,
which are considered here and generally in adiabatic problems, differs from the class of symbols
considered, for example, in [15], [16]. In particular, we do not require that the terms of expansions (3.3)
and (3.6) in the variables p decrease with the number k. Moreover, the functions of operators considered
above can of course be written by using the Fourier transform, and precisely this gives their rigorous
definition. In our calculations, we do not need such definitions; if necessary, they can be found
in [11], [17], and also in [9], [10].

4. CALCULATION OF THE SYMBOL OF THE REDUCED EQUATION
BY USING PERTURBATION THEORY IN THE PARAMETER μ

Let us use the well-known formula of composition of pseudodifferential operators. Applying the
Taylor formula, at least formally, we can rewrite the left-hand side of (3.7) as

χ(x, p, y, μ)L(x, p, μ) +
∞∑

|ν|=1

1
ν!

(−i)|ν|μ|ν|∂
|ν|χ

∂pν
(x, p, y, μ)

∂|ν|

∂xν
L(x, p, μ). (4.1)

Here ν = (ν1, . . . , νm) is a multiindex, |ν| = ν1 + · · · + νm, and ν! = ν1! · · · νm!. A similar relation also
holds for the right-hand side of (3.7), but it has finitely many terms. Substituting these expressions
into (3.7), taking expansions (3.1), (3.3), and (3.6) into account, and equating the coefficients at different
powers of μ to zero, we obtain the following system of recursive equations for determining χj(x, p, y)
and Lj(x, p, μ):

H0χ0 − χ0L0 = 0, (4.2)

H0χj − χjL0 = χ0Lj + Fj , j = 1, 2, . . . , (4.3)

where each function Fj can be expressed only in terms of χs and Ls with 0 ≤ s ≤ j − 1. In particular,

F1 = −H1χ0 + i〈∇pH0,∇xχ0〉 − i〈∇pχ0,∇xL0〉,
F2 = χ1L1 −H1χ1 −H2χ0 + i〈∇pH1,∇xχ0〉 − i〈∇pχ1,∇xL0〉 + i〈∇pH0,∇xχ1〉

− i〈∇pχ0,∇xL1〉 +
1
2

∑
j,k

(
∂2H0

∂pj∂pk

∂2χ0

∂xj∂xk
− ∂2χ0

∂pj∂pk

∂2L0

∂xj∂xk

)
. (4.4)

Now let us analyze Eqs. (4.2) and (4.3) in the case where the symbol H0 is given by formula (2.4).
Equation (4.2) means that, for fixed values of the parameters x and p, χ0 is an eigenfunction of the
elliptic operator H0 on a compact manifold T. It follows from the general theory of elliptic operators
on compact manifolds that H0 with the domain C∞(T) is essentially self-adjoint in L2(T) and has a
complete system of eigenfunctions χk

0 , k = 0, 1, . . . , corresponding to the real eigenvalues Lk
0(x, p) (see,

e.g., [16]). We note that for p = 0, the operator H0 becomes −ΔΘ
y , i.e., an elliptic operator on the torus T,
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and its minimal eigenvalue and the corresponding normed eigenfunction can be found easily and are well
known:

L0
0(x, 0) = 0, χ0

0(x, 0, y) = 1; (4.5)

in this case, the eigenvalue L0
0(x, 0) = 0 is nondegenerate and hence is separated from the others. These

assertions can standardly be derived from the “energy relation”

(−ΔΘ
y u, u)L2(T) = (∇Θ

y u,C2∇Θ
y u)L2(T).

Since, in what follows, we consider only the minimal eigenvalue and the corresponding eigenfunction,
we omit the superscript 0 to avoid the cumbersome notation and write

L0
0 = L0, χ0

0 = χ0.

As was shown in [18], for x from a compact set K in R
3 and sufficiently small p, the eigenvalue L0 of

the operator H0 is nondegenerate and analytic in p and the function χ0
0(x, p, y) can be chosen smooth in

(x, p) and analytic in p (a simple proof of these assertions is also given in [19]).
In what follows, we assume that x and p are chosen precisely in this way. For χ0 and L0 in (4.2)

we take χ0 and L0, respectively. We shall solve Eqs. (4.3) in succession. If all equations with numbers
less than j have already been solved, then to determine L0

j , it suffices, in the sense of the inner product
in L2(T), to take the scalar product of the left- and right-hand sides by χ0, to use the fact that the
operator H0 − L0 is self-adjoint, and to apply this operator to the second multiplier of χ0. Since (4.2) is
satisfied and the function χ0 is normed, we obtain

Lj(x, p) = −(Fj(x, p, y), χ0(x, p, y))L2(T). (4.6)

After this, the existence of the solution χj of Eq. (4.3) is a consequence of the following assertion.

Lemma 2. Suppose that F (y) is a smooth function on the torus T and is orthogonal in L2(T) to
the function χ0(x, p, y) (for fixed (x, p)). For x ∈ K and sufficiently small p, there exists a solution
f ∈ C∞(T) of the equation

(H0 − L0)f = F ; (4.7)

this solution is unique and satisfies the condition that f is orthogonal to the function χ0(x, p, y).
If F is a smooth function of the variables x ∈ K, y ∈ T, and p (for small p) and of some

additional parameters z, then the solution f(x, p, y, z) is also a smooth function. Any other
smooth solution f1(x, p, y, z) on the torus T of Eq. (4.7) is expressed in terms of f by the formula
f1 = f + gχ0, where g(x, p, z) is a smooth function of the parameters (x, p, z).

Proof. It follows from the general theory of elliptic equations on compact manifolds that H0 − L0, as
an operator of the Sobolev space H2(T), is Fredholm in L2(T). Therefore, the solvability condition for
Eq. (4.7) means that the right-hand side is orthogonal to the solution χ0 of the homogeneous equation,
and the solution f orthogonal to χ0 can be determined uniquely.

The infinite differentiability of the functions contained in them can easily be proved by using the
general theory of elliptic operators on compact manifolds (see, e.g., [16]). To this end, we consider the
following problem: for fixed (x, p), according to a given function F (y) and a number d, it is required to
find a function u(y) and a number g satisfying the equations

(H0 − L0)u(y) − gχ0(x, p, y) = F (y), (u(y), χ0)L2(T) = d. (4.8)

Since the corresponding operator

A(x, p) : Hs+2(T) × C1 → Hs(T) × C1,

where C1 is a one-dimensional complex space, is invertible and A(x, p) smoothly depends on the
parameters (x, p), the inverse operator A−1(x, p) also smoothly depends on the parameters (x, p). If
for F we take the function F (x, p, y, z), then we see that the solution u(x, p, y, d, z) of problem (4.8)
smoothly depends on the parameters (x, p, z). But f(x, p, y, z) is precisely the solution of problem (4.8)
for d = 0 and g = 0; therefore, f(x, p, y, z) is a smooth function of the parameters (x, p, z) ranging in the
space Hs+2(T) for any s. Now it follows from the standard embedding theorems for Sobolev spaces that
f(x, p, y, z) is an infinitely differentiable function with respect to the set of the variables.
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5. PERTURBATION THEORY FOR THE EFFECTIVE HAMILTONIANS
IN THE MOMENTUM VARIABLES

5.1. Heuristic Considerations about the Minimal Number of Terms Lj and Their Expansion in p
in the Case of Simplified Reduced Equations for Different Solutions

As was already noted, it is not easy to write Lj in a sufficiently simple form in the general situation
even for j = 0, 1, 2. But it seems that Lj with numbers j ≥ 3 are, as a rule, not very interesting for
physical applications. Moreover, depending on the behavior of C2 and V and on some additional
conditions determining the solutions of the reduced equations (and of the original equations), it is
possible to simplify the reduced equations (3.4) themselves. Considerations about such a simplification,
which are based on the WKB method, were illustrated in [8], [10] by the example of the Cauchy problem

iμ
∂w

∂t
= L̂w, w|t=0 = a0(x)eiS0(x)/h

with fast oscillating initial data characterized by the parameter h = μκ, where κ ≤ 1 is a nonnegative
number. Here we present only the conclusions.

For small p, we write Lj(x, p) and χj(x, p, y) as

Lj(x, p) =
∑
|k|≤K

L
(k)
j (x, p) + O(|p|K+1),

χj(x, p, y) =
∑
|k|≤K

χ
(k)
j (x, p, y) + O(|p|K+1),

(5.1)

where L
(k)
j (x, p) and χ

(k)
j (x, p, y) are homogeneous polynomials in p of degree k. In fact, expan-

sions (5.1) are the Taylor series of the right-hand sides, and hence they admit the termwise differentiation
with respect to the parameters x, p, and y.

We point out at once that

L0 = L
(2)
0 + O(|p|4)

for the problems under study. Therefore, for κ = 0 (the “long-wave” mode), the solution oscillates

weakly, and to describe the leading term of the asymptotics, it is necessary to calculate L
(2)
0 , L

(1)
1 ,

and L
(0)
2 |p=0, which gives the limit equations that are well known in the “classical” averaging theory [1]–

[4]. To construct the leading term of the asymptotics for 0 < κ < 2/3 (the “medium-wave” mode), it

suffices to calculate L
(2)
0 and L

(1)
1 . If κ is close to 2/3, i.e., h is close to μ3/2, then these functions must

be supplemented with L
(4)
0 for which it is still possible to write some constructive formulas; in the case of

the wave equation, these formulas give the so-called “weak dispersion” and a reduced Boussinesq-type
equation. If κ continues to increase, then the coefficients of L0 and L1 must be determined exactly,
and we have the “short-wave” mode. A further increase in the parameter κ destroys the adiabatic
approximation, although, for some problems, the parameter κ can be increased even to 3/2, and then
the WKB method becomes the Born approximation. In the present paper, we consider only the long-
and medium-wave modes. The derivation of Boussinesq-type equations requires a great amount of
calculations and place and will be considered in a separate paper. Here we present only the final formulas

for L
(4)
0 . We note that the above considerations can also be used in the case of fast decreasing functions

and in the case where the asymptotics of the solution contains focal points and caustics, i.e., the above
version of the adiabatic approximation covers all these cases.

5.2. Perturbation Formulas for Effective Hamiltonians in the Momentum Variables

Now let us derive formulas for the expansions of Lk in small p, which permits constructing the
“medium-” and “long-wave” asymptotic solutions of the reduced equations. To find them, it suffices
to solve Eqs. (4.2) and (4.3) for small p.

MATHEMATICAL NOTES Vol. 92 No. 2 2012



AVERAGING OF LINEAR OPERATORS, ADIABATIC APPROXIMATION 159

Let G(y) be a function 2π-periodic in each of the variables yj , which can possibly depend on some
other variables. By 〈G〉T we denote the mean value of this function on the torus T:

〈G〉T =
1

(2π)n

ˆ
T

G(y) dy. (5.2)

We need the following simple useful assertion. Let F (y, z) be a smooth function on the torus T with
zero mean 〈F 〉T = 0 which also smoothly depends on the parameters z = (z1, . . . , zl) that belong to a
compact set. On the torus T, we consider the following equation (the so-called “problem on the cell”)
for the function f(y, z) (see [1]–[4]):

ΔΘ
y f = F, 〈f〉T = 0. (5.3)

Lemma 3. Problem (5.3) has a smooth solution on the torus T, and this solution is unique. Any
other smooth solution f1(y, z) on the torus T of the equation ΔΘ

y f1 = F can be expressed in terms
of f by the formula f1 = f + q, where q(z) is a smooth function of the parameters z.

Proof. The proof of this lemma follows from the assertion of Lemma 2 for p = 0.

In what follows, this solution f with zero mean of the problem on the cell (5.3) will be denoted by

f(y, z) =
1

ΔΘ
y

F (y, z), 〈f〉T = 0. (5.4)

This lemma allows us not only to prove the statement about the behavior of L0 and χ0 for small p, but
also to obtain sufficiently explicit formulas for the first terms of the expansion of these functions in p. To
formulate that statement, we introduce the following notation. We set

C̃2(y, x) = C2(y, x) − 〈C2〉T, (5.5)

and, in addition to the operator D = 〈p,Θx(x)∇y〉 linearly depending on p, we introduce the operator

Q = DC2 + C2D. (5.6)

that also linearly depends on p. By g0(y, x) and g1(y, x, p) we denote the solutions with zero mean of the
problem on the cell:

g0 =
1

ΔΘ
y

C̃2(y, x), g1 =
1

ΔΘ
y

(DC̃2(y, x)), 〈g1,2〉T = 0. (5.7)

We note that g1(y, x, p) is a linear function of p.

Lemma 4. For x belonging to the compact set K and sufficiently small p, the minimal eigen-
value L0(x, p) of the operator H0 is nondegenerate. The functions L0(x, p), L1, and L2 are analytic
in p, the functions χ0(x, p, y), χ1(x, p, y), and χ1(x, p, y) can also be chosen analytic in p, and hence
the following relations hold:

L0(x, p) = p2〈C2〉T − 〈Qg1〉T + O(|p|4) ≡ p2〈C2〉T − 〈C2Dg1〉T + O(|p|4),
χ0(x, p) = 1 − ig1(y, x, p) + O(|p|2), (5.8)

where ‖1 − ig1(y, x, p)‖L2(T) = 1 + O(|p|2),

L1(x, p) = − i

2
〈∇x,∇p〉L0 + O(p2) ≡ i〈〈∇x, C2∇Θ

y g1〉〉T − i〈∇x, p〈C2〉T〉 + O(p2), (5.9)

L2(x, p) = 〈V (y, x)〉T + O(p). (5.10)

Corollary. The Weyl symbol of the operator L̂ satisfies the relation

LW (p, x, μ) = L0 + μ2〈V (y, x)〉T + O(|p|3) + μ2O(|p|) + O(μ3). (5.11)
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Remark 6. We present the formulas for the following correction to the expansions of L0 and χ0 without
proofs:

L0(p, x) = p2〈C2〉T − 〈Qg1〉T + p4〈g0C̃
2〉T + 2p2〈g1Qg0〉T + 〈g2

1〉T〈Qg1〉T + p2〈g2
1C̃2〉T

+
〈

(Qg1 − 〈Qg1〉T)
1

ΔΘ
y

(Qg1 − 〈Qg1)
〉

T

+ O(|p|6),

χ0 = 1 − ig1(y, x, p) + p2g0(y, x) − 1
ΔΘ

y

(Qg1 − 〈Qg1〉T) − 1
2
〈g2

1〉T + O(|p|3),
∥∥∥∥1 − ig1(y, x, p) + p2g0(y, x) − 1

ΔΘ
y

(Qg1 − 〈Qg1〉T) − 1
2
〈g2

1〉T
∥∥∥∥

L2(T)

= 1 + O(|p|3).

Proof of Lemma 4. As was already noted, the first part of this assertion follows from the general
theorems given in [18], and hence it remains to show that the first coefficients of the expansion of L0, χ0,
L1, etc. in the power series (5.1) have the same form as in (5.8)–(5.10).

1. Calculation of the coefficients of the expansions of L0 and χ0. Substituting (5.1) into (4.2) and
setting the homogeneous polynomials of the same order in p equal to zero, we obtain the following

system of recursive equations for L
(k)
0 and χ

(k)
0 :

−ΔΘ
y χ

(0)
0 − L

(0)
0 χ

(0)
0 = 0,

(−ΔΘ
y − L

(0)
0 )χ(1)

0 − L
(1)
0 χ

(0)
0 = i(DC2(y, x) + C2(y, x)D)χ(0)

0 ,

(−ΔΘ
y − L

(0)
0 )χ(2)

0 − L
(2)
0 χ

(0)
0 = i(DC2(y, x) + C2(y, x)D)χ(1)

0

− p2C2(y, x)χ(0)
0 + L

(1)
0 χ

(1)
0 ,

(−ΔΘ
y − L

(0)
0 )χ(k)

0 − L
(k)
0 χ

(0)
0 = Fk, k = 3, 4, . . . ,

where Fk is expressed in terms of χ
(j)
0 and L

(j)
0 with j = 0, . . . , k − 1.

The first relation together with the normalization condition implies L
(0)
0 = 0 and χ

(0)
0 = 1. All

subsequent relations have the following general form: the unknowns in the left-hand side are L
(k)
0 and

χ
(k)
0 (if we take into account that L

(0)
0 and χ

(0)
0 have already been determined), and the right-hand side

contains a function determined by the preceding relations. Then, to determine L
(k)
0 , it suffices, to take

the scalar product in L2(T) of the left- and right-hand sides by the function χ
(0)
0 , to use the condition

that the operator −ΔΘ
y − L

(0)
0 is self-adjoint, to apply this operator to the second multiplier of χ

(0)
0 in the

scalar product, which is equal to zero according to the first relation, and to use the fact that χ0 is normed,

i.e., the fact that the obtained coefficient of L
(k)
0 is equal to 1. Thus, L

(k)
0 is uniquely determined by the

preceding χ
(j)
0 and L

(j)
0 , j = 0, . . . , k − 1. Therefore, the second relation implies

L
(1)
0 = −i〈DC2〉 = 0,

because the mean of the differentiated function is equal to zero. Taking the relations

L
(0)
0 = L

(1)
0 = 0 and χ

(0)
0 = 1

into account, we can rewrite the equation for χ
(1)
0 in the form

ΔΘ
y χ

(1)
0 = −i(DC̃2(y, x)),

which implies (5.8).

To determine χ
(k)
0 , it is necessary to transfer L

(k)
0 χ

(k)
0 to the right-hand side, to note that the mean

of the right-hand side is equal to zero by the definition of L
(k)
0 , and to apply Lemma 3. It follows from
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this lemma that χ
(k)
0 is determined not uniquely but up to a constant (with respect to y) qk = O(pk).

We can study the problem only on the cell, i.e., choose solutions with zero mean (as was performed

for χ
(1)
0 ), but then the normalization condition (χ0, χ0) = 1 is not guaranteed. We immediately note that

the normalization condition χ
(0)
0 + χ

(1)
0 is satisfied with the required accuracy of O(p2), because

(χ(0)
0 + χ

(1)
0 , χ

(0)
0 + χ

(1)
0 ) = 1 + ((χ(0)

0 , χ
(1)
0 ) + (χ(1)

0 , χ
(0)
0 )) + (χ(1)

0 , χ
(1)
0 ),

the middle term is equal to zero because of the cellular structure of χ
(1)
0 , and the third term is a

homogeneous polynomial of degree two (χ(1)
0 , χ

(1)
0 ) = O(p2).

It is easy to see that χ
(k)
0 is also not uniquely determined by the normalization condition (just as the

entire function, χ(0)
0 is determined up to multiplication by the phase multiplier eiθ(x,p) with a real θ(x, p)).

The term L
(2)
0 is determined independently of the choice of the constant q1, which can easily be verified

from the second relation, just as the fact that

L
(2)
0 = p2〈C2〉 − 〈C2Dχ

(1)
0 〉.

The analyticity of the further expansion in the series
∑

χ
(k)
0 could, in principle, depend on this choice.

But this is not the case, because the analytic function χ0 can be modified by using the phase multiplier
eiθ = 1 + iθ1 + · · · without changing its analyticity. And choosing the first term, we can obtain the

desired term χ
(1)
0 , because Re q1 = 0 by the normalization condition.

We note that the system of recursive relations for L
(k)
0 and χ

(k)
0 can be solved even if the explicit form

of the eigenfunction χ0 is unknown. For example, let us solve the equation for χ
(1)
0 by the method of

undetermined coefficients presenting χ
(1)
0 as

χ
(1)
0 = 〈b, p〉 = b1(x, y)p1 + b2(x, y)p2 + b3(x, y)p3,

where the coefficients bj(x, y), j = 1, 2, 3, are unknown. Then, to determine each bj(x, y), it is necessary

to solve a cellular problem of the form (5.3). Similarly, the problem of determining each of χ
(k)
0 can be

reduced to solving several cellular problems of the form (5.3) for the coefficients of the corresponding
homogeneous polynomial in the variables p.

2. Calculation of the coefficients of the expansions of L1 and L2. Similarly, the series (5.1) can be
used to solve the other equations in (4.3). But it is possible to use formulas (4.4), (4.6) at once. Taking
these formulas and (2.4), (2.5) into account, we obtain

F1 = i〈∇x, C2(y, x)p〉 + 〈∇x, C2(y, x)∇θ
y〉(−ig1) + i〈∇p(−iQ),∇x(−ig1)〉 + O(p2)

≡ i〈∇x, C2(y, x)p〉 − i〈∇x, C2(y, x)∇θ
y〉g1 − i〈∇pQ,∇xg1〉 + O(p2). (5.12)

Hence, using the definition of Q, we can write

L1 = −i〈〈∇x, C2(y, x)p〉〉T + i〈∇pQ,∇xg1〉T + O(p2), χ1 = O(p). (5.13)

Taking the last relations and the relations for L0 and χ0 into account, we obtain

∇xχ0 = O(p), ∇xL0 = O(p), ∇xχ1 = O(p), ∇xL1 = O(p),

∂2χ0

∂xj∂xk
= O(p),

∂2L0

∂xj∂xk
= O(p2).

This immediately implies

F2 = −H2χ0 + O(p) = −V (y, x) + O(p), L2 = 〈V (y, x)〉T + O(p). (5.14)

To prove the lemma, it remains to write the term ∇p〈Qg1〉T in a different way. We have

∇p〈Qg1〉T = 〈∇pQg1〉T + 〈Q∇pg1〉T = 〈C2∇θ
yg1〉T +

〈
C2D

1
Δθ

y

∇θ
yC

2

〉
T
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= 〈C2∇θ
yg1〉T +

〈
∇θ

y

1
Δθ

y

DC2C2

〉
T

= 2〈C2∇θ
yg1〉T.

Now we apply the operator ∇y, move this operator under the averaging operation, and obtain the first
relations in (5.9).

6. AVERAGED EQUATIONS

Recall that we are solving the operator equation χ̂L̂ = Ĥχ̂ equivalent to (3.7) by using perturbation
theory. First, we expand the corresponding symbols L and χ in asymptotic power series in the param-
eter μ and obtain Eqs. (4.2) and (4.3); then for Lj and χj we pass to the expansions in homogeneous

polynomials in the variables p and obtain the corresponding system of recursive relations for L
(k)
j and χ

(k)
j

for each j, similarly to the proof of Lemma 4.

We introduce an integer N ≥ 2 and treat (Lj)N and (χj)N as the corresponding sums of terms L
(k)
j

and χ
(k)
j with k ≤ N − j; then we treat (L)N and (χ)N as the sums of terms μjLj and μjχj for j ≤ N ,

i.e., (L)N and (χ)N are polynomials of degree N in the variables (p, μ). Taking into account that, for
such symbols, the composition formulas of the form (4.1) contain only finitely many terms, we obtain
the operator relation

(χ̂)N (L̂)N = Ĥ(χ̂)N + r̂N , (6.1)

where rN (x, p, y, μ) is a polynomial in the variables (p, μ) and

rN = O(|p| + |μ|)N+1.

Replacing p by ξ, we write rN (x, p, y, μ) as

rN (x, p, y, μ) = μN+1RN (x, ξ, y, μ),

where RN (x, ξ, y, μ) is a polynomial in the variables (ξ, μ); hence r̂N in (6.1) can be replaced by

r̂N = μN+1RN

(
x,−i

∂

∂x
, y, μ

)
. (6.2)

Instead of (3.4) and (3.5), for the reduced equations we take

iμ2wt = (L̂(0))Nw, (6.3)

μ2wtt = −(L̂(0))Nw. (6.4)

First, we consider the case N = 2. Then

(L)2 = L
(0)
0 + L

(1)
0 + L

(2)
0 + μ(L(0)

1 + L
(1)
1 ) + μ2L

(0)
2 ,

(χ)2 = χ
(0)
0 + χ

(1)
0 + χ

(2)
0 + μ(χ(0)

1 + χ
(1)
1 ) + μ2χ

(0)
2 ,

and the separate terms are determined by the corresponding recursive relations obtained in the proof of

Lemma 4, so that the assertions of this lemma hold for them, in particular, L
(0)
0 = L

(1)
0 = L

(0)
1 = 0. Now

the reduced equation (6.3) becomes

iμ2wt = (L(2)
0 (x, p̂ ) + μL

(0)
1 (x, p̂ ) + μ2L

(0)
2 (x, p̂))w, p̂ = −iμ∇x. (6.5)

We represent χ
(1)
0 = −ig1 as

χ
(1)
0 = −i(b1(y, x)p1 + b2(y, x)p2 + b3(y, x)p3)

and apply formulas (5.8). Then we can write the symbol L
(2)
0 as

L
(2)
0 = 〈C2〉T +

∑
k,j

〈C2∇Θ
y bj〉kTpjpk,
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where 〈C2∇Θ
y bj〉kT is the kth component of the vector 〈C2∇Θ

y bj〉T. Similarly, from (5.9) and (5.10) we
obtain

L
(1)
1 = i

∑
k,j

∂〈C2∇Θ
y bj〉kT

∂xk
pj − i

∑
k

∂〈C2〉T
∂xk

pk, L0
2 0 = 〈V 〉T.

Taking into account the relation

〈C2〉T
∂2

∂x2
k

w + (〈C2〉T)xk

∂

∂xk
=

∂

∂xk
〈C2〉T

∂

∂xk

and the fact that the same relation holds for 〈C2∇Θ
y bj〉kT, we can write the reduced equation (6.5) after

eliminating the multiplier μ2 in the form

i
∂

∂t
w = −

∑
k,j

∂

∂xk

((
〈C2∇Θ

y bj〉kT + 〈C2〉T
) ∂w

∂xj

)
+ 〈V 〉Tw, (6.6)

and Eq. (6.4) for N = 2 after eliminating the multiplier μ2, in the form

∂2

∂t2
w =

∑
k,j

∂

∂xk

((
〈C2∇Θ

y bj〉kT + 〈C2〉T
) ∂w

∂xj

)
− 〈V 〉Tw. (6.7)

These are precisely the averaged equations according to the terminology introduced in [1]. Appropriately
changing the argument in the proof of Lemma 1 and taking (6.1), (6.3), and (6.4) into account, we obtain
the following statement.

Theorem 1. If a function w(x, t) is a solution of (6.6) (or of (6.7)), then Ψ = (χ̂0)2w satisfies the
equation

iμ2Ψt = ĤΨ + μ3R2

(
x,−i

∂

∂x
, y, μ

)
w (6.8)

or

μ2Ψtt = −ĤΨ − μ3R2

(
x,−i

∂

∂x
, y, μ

)
w. (6.9)

Thus, the function Ψ satisfies Eqs. (2.2 a,b) respectively up to O(μ3).

Proof of Theorem 1. We repeat the argument of the proof of Lemma 1, use (6.1), (6.2), (6.3), and (6.6),
and obtain

iμ2Ψt = iμ2(χ̂)2wt = (χ̂)2(L̂)2w = (Ĥ(χ̂)2 + r̂2)w = ĤΨ + μ3R2

(
x,−i

∂

∂x
, y, μ

)
w.

Relation (6.9) can be proved similarly.

Now let us consider the case of an arbitrary N ≥ 2. The operator (L̂)N , which is obtained by
replacing p by p̂ = −iμ∇x (under the assumption that the operator p̂ acts first, and x acts second),
has the form

(L̂)N = μ2A2

(
x,−i

∂

∂x

)
+ μ3A3

(
x,−i

∂

∂x

)
+ · · · + μNAN

(
x,−i

∂

∂x

)
,

As(x, ξ) =
s∑

j=0

L
(s−j)
j (x, ξ),

where As(x,−i∂/∂x) are differential operators of order s. Now the reduced equation (6.3) after the
elimination of μ2 becomes

iwt =
(

A2

(
x,−i

∂

∂x

)
+ μA3

(
x,−i

∂

∂x

)
+ · · · + μN−2AN

(
x,−i

∂

∂x

))
w, (6.10)
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and Eq. (6.4) after the elimination of μ2 becomes

wtt = −
(

A2

(
x,−i

∂

∂x

)
+ μA3

(
x,−i

∂

∂x

)
+ · · · + μN−2AN

(
x,−i

∂

∂x

))
w. (6.11)

Assume that we have a function w(y, x, t) that, for a fixed μ, satisfies Eq. (6.10) (or (6.11)) with a
“discrepancy” in the right-hand side

iwt =
(

A2

(
x,−i

∂

∂x

)
+ μA3

(
x,−i

∂

∂x

)
+ · · · + μN−2AN

(
x,−i

∂

∂x

))
w + F (y, x, t) (6.12)

or

wtt = −
(

A2

(
x,−i

∂

∂x

)
+ μA3

(
x,−i

∂

∂x

)
+ · · · + μN−2AN

(
x,−i

∂

∂x

))
w − F (y, x, t); (6.13)

then iμ2wt = (L0)Nw + μ2F or μ2wtt = −(L0)Nw − μ2F , respectively. In this case, we can use the
intertwining operator (χ̂0)N to construct the function Ψ = (χ̂0)Nw for which Eq. (2.2 a) (or (2.2 b)) is
also satisfies with a certain “discrepancy” in the right-hand side.

Theorem 2. If a function w(x, t) is a solution of (6.12) (or (6.13)), then Ψ = (χ̂0)Nw satisfies the
equation

iμ2Ψt = ĤΨ + μN+1RN

(
x,−i

∂

∂x
, y, μ

)
w + μ2(χ̂)NF (6.14)

or

μ2Ψtt = −ĤΨ − μN+1RN

(
x,−i

∂

∂x
, y, μ

)
w − μ2(χ̂)NF. (6.15)

Proof. Repeating the argument of the proof of Theorem 1, we use (6.1), (6.2), and (6.12) and obtain

iμ2Ψt = iμ2(χ̂)Nwt = (χ̂)N (L̂)Nw + μ2(χ̂)NF = (Ĥ(χ̂)N + r̂N )w + μ2(χ̂)NF

= ĤΨ + μN+1RN

(
x,−i

∂

∂x
, y, μ

)
w + μ2(χ̂)NF.

Relation (6.15) can be proved similarly.
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