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Abstract. As in the first part (J. Brüning, S.Yu. Dobrokhotov, D.S. Minenkov, 2011), we
construct a family of special solutions of the Dirichlet problem for the Laplace equation in a
domain with fast changing boundary. Using these solutions, we construct an analytic model
of cold field electron emission from surfaces simulating arrays of vertically aligned nanotubes.
Explicit analytic formulas lead to fast computations and also allow us to study the case of
random arrays of tubes with stochastic distribution of parameters. We present these results
and compare them with numerical approximations given in [1].
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1. INTRODUCTION

We propose an analytic model of certain types of cold field-emission cathodes based on arrays
of carbon nanotubes, see the review [2]. We consider an array of vertically aligned nanotubes in an
external field and study the dependence of its emission characteristics on its geometry. In the first
part of our work [3], such a model was constructed for the case of regular arrays of identical tubes.
Here we present a generalization of this model to the case of random arrays, where the tubes are
not identical and have geometric characteristics and positions that are defined randomly with some
dispersion, see Fig. 1. This generalization allows us to study the influence of dispersion of geometric
characteristics (such as tube length and position) on the emission properties of the array.

As in [3], we are going to construct a family of exact solutions of the following Dirichlet problem
for the Laplace equation,

△u = 0, g(x, y) 6 z 6 d, (x, y) ∈ R2,

u|z=g(x,y) = 0, u|z=d = U.
(1.1)

Here u(x, y, z) is the electric potential, d is the anode-cathode distance, and U is a bias. The lower
boundary, g(x, y), describes an enveloping surface of an array of vertically aligned tubes (see Fig. 1),
with fast oscillation.

Having thus defined the electrical field E = ∇u near the tube apexes, we can use the Fowler–
Nordheim formula for the current from a flat surface [4, 5] to calculate the emission current of
a single tube or an array of tubes, by the following integral over the surface of the tube or the
array [2]:

I =

∫∫

AF 2 exp
{

−
B

F

}

∣

∣

z=g(x,y)
dxdy. (1.2)

Here F := ∂u/∂z is the z-component of the electric field on the surface z = g(x, y). The constants
A := 1.54 × 10−6 × ϕ−1 = 0.31 × 10−6 A V −2 and B := 6.8 × 103 × ϕ3/2 = 76 × 103 V µm−1

depend on the so-called work function ϕ which is determined by the tubes material and the emission
conditions. Here and below, we take ϕ = 5 eV .
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Fig. 1. Random array of vertically aligned tubes (left) and contour graph for the potential
(right). Average length of the tubes is L = 1 and the radius of apex curvature is R = 0.1.

The aim of the paper is to calculate the emission current (1.2) in the case of random arrays and
to study its behavior under dispersion of the geometric characteristics.

2. THE ANALYTIC MODEL

2.1. Solution of the Laplace Equation

From the field emission point of view, one is interested in the situation when the tube length
L is much larger than the diameter D = 2R, i.e., when the “aspect ratio” L/R is high. In this
case, the solution of problem (1.1) cannot be extended to the layer 0 < z < d without introducing
singularities; they correspond to charges appearing in the tubes as an effect of the applied voltage,
see [6]. This leads to the idea of introducing a family of solutions of the Poisson equation in our
model, thus incorporating the effect of charges situated outside the considered area, g(x, y) 6 z 6 d.

Let us consider the potential V of a vertically oriented charged segment, z ∈ [−L,L], with
“charge density” ρ(z + νz3/L2)δ(x)δ(y), where ρ > 0, ν > −1 are dimensionless parameters. Then
we have

V (x, y, z) =
U

d
ρX(x, y, z), X(x, y, z) :=

∫ L

−L

(ζ + νζ3/L2)dζ
√

x2 + y2 + (z − ζ)2
.

(The integral here can be expressed in terms of elementary functions, see the appendix.) Adding
the potential −V (x, y, 2d − z) of the “reflected charges” (with respect to z = d), we obtain the
following solution of the Dirichlet problem (1.1):

u(x, y, z) =
U

d

(

z − ρX(x, y, z) + ρX(x, y, 2d − z)
)

,

for a given surface z = g(x, y) describing a single tube.

Next, to approximate an array of N tubes, we consider a family of solutions to (1.1).

Proposition 1. Consider constants Ln > 0, ρn > 0, νn > −1, n = 1, 2, . . . , N . The potential
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u(x, y, z) defined by the formulas

u(x, y, z) =
U

d

(

z −
N
∑

n=1

ρnXn(x, y, z) +
N
∑

n=1

ρnXn(x, y, 2d − z)
)

,

Xn(x, y, z) =

∫ Ln

−Ln

(ζ + νnζ
3/L2

n)dζ
√

(x− xn)2 + (y − yn)2 + (z − ζ)2
,

(2.1)

solves (1.1) for the surface z = g(x, y) and describes an enveloping surface of the given array of N
tubes.

The function

Vn(x, y, z) =
U

d
ρnXn(x, y, z)

is the potential at (x, y, z) generated by the nth charged segment x = xn, y = yn, z ∈ (−Ln, Ln).
This was considered in [3] for the case of a regular array of identical tubes, with Ln = L, ρn =
ρ, νn = ν, placed at the square lattice points xnij

= i S, ynij
= j S, where S is the minimal

distance between tubes.
Below, we assume that the tube lengths are much smaller than the anode-cathode distance

L/d ≪ 1 (or that the enveloping surface is placed in a uniform external field F0 = U/d). Hence, in
what follows, we can drop the reflected potential since, asymptotically,

−V (x, y, 2d − z) = O(
L3

d(2d− z)2
)

for z ∼ L.
Following [3], it is easy to show that the enveloping surface z = g(x, y) from Proposition 1

effectively describes an array of tubes with lengths Ln and positions (xn, yn) which are, individually,
almost elliptic near the base and almost parabolic near the apex.

Proposition 2. Consider an array of tubes with length Ln and constants ρn, νn at each position
(xn, yn). Then, near the apex of any given tube with data L, ρ, ν, the position (0, 0) (wlog) and the
index n0, the surface z = g(x, y) is asymptotic to a paraboloid,

z = −
1

2
κ(x2 + y2) + L+

1

2κ
,

κ ≈
1

4L
exp

{1 + 2ρ(1 + 4
3
ν)

ρ(1 + ν)
−

1

ρ(1 + ν)

∑

n 6=n0

ρnXn(0, 0, L +
1

2κ
)
}

> 0.
(2.2)

Near the base (i. e. for z ≪ L), the surface is asymptotic to an ellipsoid stretched along the z-axis,

ω2(x2 + y2) + z2 = L2, ω2 ≈
1

4
exp

{1 + 2ρ(1− 1
2ν)

ρ
−

1

ρ
lim
z→0

1

z

∑

n 6=n0

ρnXn(0, 0, z)
}

. (2.3)

Formulas (2.2) and (2.3) are accurate within small corrections O(
√

x2 + y2/L)+O((z−L)/L) and

O(
√

x2 + y2/L) +O(z/L), respectively.

For applications, it is important to maximize the emission current in terms of the tube distances.
When we change the positions (xn, yn) of the charged segments, then, naturally, the surface z =
g(x, y) changes. Nevertheless, we can choose the parameters ρn in such a way that the tubes still
have the same “structure” for all considered positions, in the sense that they retain the same lengths

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 21 No. 1 2014
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Ln, apex curvatures κn, and parameters νn. Since the tubes have the asymptotic form stated in
Proposition 2, we can find such values ρn(Ln, κn, νn, xn, yn) from the system

u(xm, ym, Lm +
1

2κm
) = 0, m = 1, 2, . . . , N.

This is a linear system with respect to the ρns,

N
∑

n=1

ρnXn

(

xm, ym, Lm +
1

2κm

)

= Lm +
1

2κm
, m = 1, 2, . . . , N, (2.4)

if Xn(xm, ym, Lm + 1
2κm

) is the potential of the nth tube at the apex of mth tube.

Let us rewrite this system in matrix form as H~ρ = ~l, for the vectors ~ρ = (ρn)
N
n=1,

~l =
(Lm + 1

2κm
)Nm=1, and the matrix H =

(

Xn(xm, ym, Lm + 1
2κm

)
)

m,n=1,2,...,N
. We denote the di-

agonal part of H by A :=
(

δmnXn(xm, ym, Lm + 1
2κm

)
)

m,n=1,2,...,N
and set B := H - A. Using the

asymptotics of X, one can show that

‖A‖ ∼ L
L

R
, ‖B‖ ∼ L

L3

S3
,

where L, R, and S are the averages of tube lengths, radii, and distances, respectively. Thus, the
following proposition holds.

Proposition 3. Let the numbers Ln, κn, νn, xn, yn for the tube array under consideration be
such that the aspect ratio is high (i.e., 1/κn ∼ Rn ≪ Ln) and that the density of tubes in the array
is medium or low (i.e., the average distance between tubes, S, and the average length, L, are of the
same order, S ∼ L)1. Then the matrix H = A+B can be inverted by the Neumann series and, in
view of (2.4), the “effective charge” vector, ~ρ = {ρn}, is given by the asymptotic formula

~ρ =
(

1−A−1B+O
(R L2

S3

)2)

A−1~l. (2.5)

Thus, the effective charges have the same order as the aspect ratio, ρn ∼ R/L. The potential
u(x, y, z) defined by (2.1) with these ρn approximates the potential of an array of nanotubes with
tube lengths Ln, apex curvatures κn (or tube diameters Dn = 2/κn), and tube positions (xn, yn).
The supplementary parameters νn can be used to fit the emission properties of real tube arrays.

2.2. Field Enhancement Factor and Emission Current

As shown by numerous experiments (see, e.g., the review [2] and the bibliography therein), the
current-voltage characteristic of tube arrays is often well described by the Fowler–Nordheim formula
(in appropriate voltage ranges). It reads

I = AaF 2e−B/F , F = β
U

d
,

for some field enhancement (amplification) factor β and the effective emission area a, which are
special for each particular array, and A,B are physical constants that depend on the work function.

Even though we consider arrays of tubes, the derivatives of the potential u decay so fast that,
near the apex of a tube, they depend mainly on the parameters of this particular tube (i.e., of
L, κ, ρ, and ν). The very important “screening effect” (see, e.g., [1, 7]) is taken into account through
the “effective charges” ρn(Ln, κn, νn, xn, yn) as defined by system (2.4), for any given tube data

1This is to be distinguished from “high density” arrays, where S ∼ R.
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Ln, κn, νn, xn, yn. To find the derivatives of u near the tube with index n0 in the array, one uses its
tube data (Ln0

, κn0
, ρn0

, νn0
) and the effective charge ρn0

(Ln, κn, νn, xn, yn) from (2.5) in the same
asymptotic formula as for a single tube. (Asymptotic formulas for the derivatives at the apex were
presented in the first part of this work, [3].) Then we calculate the emission current from the integral
in (1.2), evaluating it by the Laplace method. Finally, suppressing the index n0 again, we obtain
for the field enhancement factor β = ∂

∂zu(x, y, L+ 1
2κ ) and the emission current I, respectively,

I ≈
2πA

(2κ)2
βF0

B

(

βF0

)2
e
− B

βF0 , (2.6)

β ≈ 2κL ρ(1 + ν), F0 =
U

d
, (2.7)

where ρ = ρn0
is the effective charge described above. We have omitted error terms of order O(R/L)

and O(R/S) in formulas (2.6) and (2.7), respectively, arising from the asymptotic calculation of
the u-derivatives, as well as a term O(F/B) arising from applying the Laplace method (for the
relevant error estimates, see, e.g., [8]).

The total current is the sum of the currents arising from all tubes in the array I =
∑

In.

3. CALCULATIONS WITH THE PROPOSED MODEL

3.1. Approximation Algorithm

We now describe the approximating procedure.
First of all, we choose the parameters Ln, xn, yn, κn, νn in a sensible way. When studying tube

arrays manufactured by the same method, we may often assume that the tubes have very similar
properties. In the framework of the proposed model, we then may set all tube parameters to be
equal to their averages, Ln = L, κn = κ, and νn = ν. The tube length L and the diameter 2R, as
well as the tube positions (xn, yn) in the array, are usually known, perhaps with some dispersion,
as a result of the production method. One can produce arrays with tubes placed for example in a
square lattice with coordinates (x0

n, y
0
n), but the tubes can bend, and hence, their heads deviate

from their initial positions, changing the coordinates to (xn, yn). Such an array can effectively be
approximated by an array with vertical tubes placed at the positions (xn, yn). So we choose some
positions (x0

n, y
0
n) and define κ and ν for these positions using an experimentally obtained current-

voltage characteristic. Then we consider arrays with random positions (xn, yn), with averages
(x0

n, y
0
n), and calculate the current for these random arrays. In random arrays, Ln, κn, and νn can

also be random with averages L, κ, and ν.
As soon as the parameters Ln, xn, yn, κn, and νn are defined, the “effective charges” ρn are

then again calculated from system (2.4). This can be done either by the iteration method leading
to formula (2.5) or by any other computational method.2Finally, the enhancement factor β and the
emission current I can be calculated by formulas (2.6) and (2.7), respectively. We can also find the
emission current density J = I/aar of an array of tubes, which is the emission current I of the
array over its area aar.

We conclude by noting that our model can be used to study the dependence of the emission
current on the tube distance. In particular, one can determine the optimal tube distance (gener-
ally depending on the applied voltage) and study the influence of fluctuations in the geometrical
parameters on the emission properties. Examples of such studies are presented below.

3.2. The Screening Effect and Computations for Random Arrays

We describe first some verifications of our model. As κ ∼ 1/R, the field enhancement factor
predicted by our model is of the order of the tube aspect ratio L/R, which is in good agreement with
other calculations and also with experiments. We compare our prediction of the field enhancement
factor as function of the aspect ratio with the formulas obtained in [9–12] in Fig. 2. Here we take
κ = 2.2/R, ν = 0.

2We have used Wolfram Mathematica that takes about 1 minute to perform the computations for an array of 30×30

tubes size for which a matrix of 900× 900 has to be inverted.
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6 BRÜNING et al.

0 500 1000 1500 2000
L�R0

500

1000

1500

Β

Fig. 2. Comparison of the enhancement factor β as function of the aspect ratio L/R (see [12]):
(a) linear dependence (dot-dashed); the dependence as defined by the empiric formulas (b)

β = 1.2 (2.15 + L/R)0.9 [9,10] (dotted) and (c) β = 5.93 + 0.73L/R − 0.0001(L/R)2 [11]
(dashed); (d) the dependence predicted by our model (solid).

Fig. 3. Comparison of the results from [1] with the calculations by our model. Left: dependence
of the enhancement factor β on the tube distance S computed by [1] (solid) and by our model
(dashed); right: dependence of the emission current density J on S computed by [1] (lines
without dots) and by our model (with dots).

Next we compare the predictions of our model for the screening effect with those given in
[1], where computations for a regular array (i.e., a periodic square lattice of identical tubes) are
presented. The dependence of the enhancement factor β and the emission current density J on the
tube distance S for different biases is given in Fig. 3. Here L = 1µm, R = 2nm, and we take
κ = 3/R, ν = 5 (which gives ρ = 0.06, 0.15, 0.22 for S = 1, 2, 5 µm, respectively).

The production process of tube arrays often entails nonuniformities which are very hard to
capture by numerical approximations. Therefore, it is often assumed that the array is periodic when
the Laplace equation is solved numerically, leading to a very time consuming procedure. This is
caused by the high aspect ratio of the tubes and the rapid change of the potential and its derivatives
near the tube apex. By contrast, the explicit formulas provided by our model admit fast calculations
even for random arrays. In Fig. 4, such results for random arrays are presented. We consider arrays
with stochastically chosen lengths and positions. The average length and curvature is fixed as in
the previous case: L = 1µm, R = 2nm, κ = 3/R, ν = 5. For the average tube distance, we take
the optimal values S = Sopt = 2.9, 2.6, 2.4µm for U1 = 5, 7, 9V/µm, respectively.

Dispersion of positions near the optimal configuration does not have a big effect on the current
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Fig. 4. Influence of dispersion of tube length (left) and tube positions (right) on emission
properties at different voltages (5 V/µm – dotted, 7 V/µm – dashed, and 9 V/µm – solid).

Tubes positions rn = x2n+y2n are scattered about their optimal positions in square lattice (with
S = Sopt) that provide maximum current for given applied voltage.

given due to the exponential nature of the tunneling current. Dispersion of lengths has a much
greater effect, because it changes the enhancement factor directly. An interesting result is that a
higher voltage shows a lesser impact of dispersion of tube lengths on the current; this agrees with
the experimental results described in [1].

In addition, our model gives a reasonable description not only of nanotube arrays but also of
arrays of “tube-like” emitters, for example, bundles of tubes or the emitters described in [13].
We consider them as a single “tube” with some “effective form” for the purpose of modeling.

APPENDIX. EXPLICIT FORMULA FOR THE POTENTIAL V

The integral in (2.1) can be expressed in terms of elementary functions as follows:

X(x, y, z) =

∫ L

−L

(ζ + νζ3/L2)dζ
√

r2 + (z − ζ)2
=

4Lz
(

− 1− ν
3 + 2νr2

3L2 − 11νz2

6L2

)

√

r2 + (z + L)2 +
√

r2 + (z − L)2
+

5νz

6L

(
√

r2 + (z + L)2 +
√

r2 + (z − L)2
)

+ z
(

1−
3νr2

2L2
+

νz2

L2

)

ln

√

r2 + (z + L)2 + z + L
√

r2 + (z − L)2 + z − L
, r2 = x2 + y2.

This expression leads to the simple asymptotic formulas given in Section 2 (for details, see [3]).
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