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Abstract

We give a self-contained presentation of the theory of self-adjoint exten-
sions using the technique of boundary triples. A description of the spectra
of self-adjoint extensions in terms of the corresponding Krein maps (Weyl
functions) is given. Applications include quantum graphs,point interactions,
hybrid spaces, singular perturbations.
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0 Introduction

In recent two decades, the field of applications of explicitly solvable models of
quantum mechanics based on the operator extension technique has been expanded
considerably. New scopes are presented e.g. in the Appendixby P. Exner [56]
to the second edition of the monograph [6], in the monograph by S. Albeverio
and P. Kurasov [9], and in the topical issue of the Journal of Physics A [44].
A review of papers dealing with the theory of Aharonov–Bohm effects from the
point of view of the operator methods is contained in [65, 103]; new methods
of analyzing singular perturbations supported by sets withnon-trivial geometry
are reviewed in [58]. In addition, one should mention the useof such mod-
els in the quantum field theory [70, 80], including string theory [86], quantum
gravity [123], and quantum cosmology (see S. P. Novikov’s comment in [74] to
results from [73]). Here the two-dimensionalδ -like potential, which is a point
supported perturbation, is of considerable interest because in this case the Dirac
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δ -function has the same dimension as the Laplacian, and this property leads to
an effective non-perturbative renormalization procedureremoving the ultravio-
let divergence [40, 82, 83]. Another peculiarity of the two-dimensional case –
so-called dimensional transmutation – was observed in [39,41]. The operator ex-
tension technique allows to build “toy models” which help better understanding
some phenomena in various fields of mathematics and theoretical physics; as typ-
ical examples we mention here the spectral theory of automorphic functions [32]
or renormalization group theory [3]. This technique is applicable not only to self-
adjoint operators, it can be used, e.g. in investigating dissipative and accumulative
operators as well [85].

Very important applications of the operator extension theory have been found
recently in the physics of mesoscopic systems like heterostructures [72], quantum
graphs [90, 91, 93, 106] and circuits [1], quantum wells, dots, and wires [81]. It
should be stressed that in this case, the corresponding results are not only of qual-
itative character, but allow to give a good quantitative explanation of experimental
data (see e.g. [28, 79]) or explain some discrepancy betweenexperimental data
and standard theories [29].

Among the most popular ways of using singular perturbationsin the physics
literature one should mention first of all various renormalization procedures in-
cluding the Green function renormalization and cut-off potentials in the position
or momentum representations (see [6] and an informative citation list in [110]).
Berezin and Faddeev [20] were first who showed that the renormalization ap-
proach to singular perturbations is equivalent to searching for self-adjoint exten-
sions of a symmetric operator related to the unperturbed operator in question.
At the same time, the mathematical theory of self-adjoint extensions is reduced
as a rule to the classical von Neumann description through unitary operators in
deficiency spaces, which makes its practical use rather difficult. In many cases
self-adjoint operators arise when one introduces some boundary conditions for a
differential expression (like boundary conditions for theLaplacian in a domain),
and it would be useful to analyze the operators in terms of boundary conditions
directly. Such an approach is common in the physics literature [15, 45]. In the
framework of the abstract mathematical theory of self-adjoint (or, more generally,
dissipative) extensions this approach is widely used in thedifferential operator
theory (see e.g., [53,71,75] and the historical as well as the bibliographical com-
ments therein). Moreover, there is a series of quantum mechanics problems related
to the influence of topological boundaries, and in this case the above approach is
the most adequate [13].

On the other hand, Berezin and Faddeev pointed out that the standard ex-
pressions for the Green functions of singularly perturbed Hamiltonians obtained
by the renormalization procedure can be easy derived from the so-called Krein
resolvent formula [20]. In the framework of the theory of explicitly solvable mod-
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els with an internal structure, an elegant way to get the Krein resolvent formula
with the help of abstract boundary conditions has been proposed by Pavlov [111]
(see also [2]), which was applied to the study of numerous applications, see
e. g. [61, 94, 99, 102, 112]. A machinery of self-adjoint extensions using abstract
boundary condisitons is presented in a rather detailed formin the monograph [71],
but only very particular questions of the spectral theory are adressed. A system-
atic theory of self-adjoint extensions in terms of boundaryconditions, including
the spectral analysis, was developed by Derkach and Malamud, who found, in
particular, a nice relationship between the parameters of self-adjoint extensions
and the Krein resolvent formula, and performed the spectralanalysis in terms of
the Weyl functions; we refer to the paper [49] summarizing this machinery and
containing an extensive bibliography.

Nevertheless, one has to admit that the spectral analysis ofself-adjoint exten-
sions in such terms is a rarely used tool in the analysis of quantum-mechanical
Hamiltonians, especially for operators with infinite deficiency indices. On the
other hand, the authors’ experience show that the application of the Krein resol-
vent formula in combination with the boundary values for self-adjoint extensions
can advance in solutions of some problems related to the applications of singular
perturbations [30, 34, 35]. Therefore, it is useful to give aself-contained exposi-
tion of the abstract technique of boundary value problems and to analyze some
models of mathematical physics using this machinery. This is the first aim of the
present paper.

Using the Krein resolvent formula, it is possible often to reduce the spectral
problem for the considered perturbed operator to a problem of finding the kernel of
an analytic family of operators – so-called KreinQ-function – with more simple
structure in comparison with the operator in question. Therefore, it would be
useful to find relations between various parts of the spectrum of the considered
operators and the corresponding parts of the spectrum ofQ-functions. The second
aim of the paper is to describe these relations in a form suitable for applications.
Using the corresponding results, we obtain, in particular,new properties of the
spectra of equilateral quantum graphs and arrays of quantumdots. Of course,
we believe that the technique presented here can be used to analyze much more
general systems. It is worth noting that this problem was considered in [24],
but the main results were obtained in a form which is difficultto use for our
applications.

In Section 1 we describe the machinery of boundary triples and their appli-
cations to self-adjoint extensions. The most results in this section are not new
(we give the corresponding references in the text), but we donot know any work
where this theory was presented with complete proofs, hencewe decided to do it
here. We also relate the technique of boundary triples with the so-called Krein
Q-functions andΓ-fields. Some of our definitions are slightly different from
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the commonly used ones (although we show later that the both are equivalent);
this is motivated by applied needs. We conclude the section by several examples
showing that the machinery of boundary triples include the well known situa-
tions like singular perturbations, point perturbation, hybrid spaces. Section 2 is a
summary of a necessary information about the spectra and spectral measures of
self-adjoint operators. In Section 3 we provide the spectral analysis of self-adjoint
extensions with the help of the KreinQ-functions. In particular, we analyze the
discrete and essential spectra, and carry out a complete spectral analysis for a
special class ofQ-functions, which includes the recently introduced scalar-type
functions [5]; these results are new. Using these results weanalyze two classes
of quantum-mechanical models: equilateral quantum graphsand arrays of quan-
tum dots, where we perform the complete dimension reductionand describe the
spectra of continuous models completely in terms of the associated tight-binding
Hamiltonians. Section 4 is devoted to the study of isolated eigenvalues of self-
adjoint extensions and generalizes previously known results to the case of opera-
tors with infinite deficiency indices.

The second named author, Vladimir Geyler, passed away on April 2, 2007,
several days after the completion and the submission of the manuscript. His un-
timely death has become a great loss for us.

1 Abstract self-adjoint boundary value problems

In this section we describe the theory of self-adjoint extensions using abstract
boundary conditions. Some theorems here are not new, but theexisting presenta-
tions are spread through the literature, so we decided to provide here the key ideas
with complete proofs.

1.1 Linear relations

Here we recall some basic facts on linear relations. For a more detailed discussion
we refer to [12]. LetG be a Hilbert space. Any linear subspace ofG ⊕G will be
called alinear relation in G . For a linear relationΛ in G the sets

domΛ : = {x∈ G : ∃y∈ G with (x,y) ∈ Λ)},
ranΛ : = {x∈ G : ∃y∈ G with (y,x) ∈ Λ)},
kerΛ : = {x∈ G : (x,0) ∈ Λ}
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will be called thedomain, therange, and thekernelof Λ, respectively. The linear
relations

Λ−1 = {(x,y) ∈ G ⊕G : (y,x) ∈ Λ},
Λ∗ = {(x1,x2) ∈ G ⊕G : 〈x1|y2〉 = 〈x2|y1〉 ∀(y1,y2) ∈ Λ}

are calledinverseandadjoint to Λ, respectively. Forα ∈ C we put

αΛ = {(x,αy) : (x,y) ∈ Λ}.
For two linear relationsΛ′,Λ′′ ⊂ G ⊕G one can define theirsum

Λ′ +Λ′′ = {(x,y′ +y′′) : (x,y′) ∈ Λ′, (x,y′′) ∈ Λ′′};

clearly, one has dom(Λ′+Λ′′) = domΛ′∩domΛ′′. The graph of any linear oper-
atorL with domain inG is a linear relation, which we denote by grL. Clearly, ifL
is invertible, then grL−1 = (gr L)−1. For arbitrary linear operatorsL′,L′′ one has
gr(αL) = α gr L and grL′ +gr L′′ = gr(L′ +L′′). Therefore, the set of linear op-
erators has a natural “linear” imbedding into the set of linear relations. Moreover,
if L is a densely defined closable operator inG , then grL∗ = (gr L)∗, hence, this
imbedding commutes with the star-operation.

In what follows we consider mostly only closed linear relations, i.e. which are
closed linear subspaces inG ⊕G . Clearly, this generalizes the notion of a closed
operator. Similarly to operators, one introduces the notion of the resolvent set
resΛ of a linear relationΛ. By definition,λ ∈ resΛ if (Λ−λ I)−1 is the graph of
a certain everywhere defined bounded linear operator (hereI ≡ gr idG =

{
(x,x) :

x∈ G
}

); this operator will be also denoted as(Λ−λ I)−1. Due to the closed graph
theorem, the conditionλ ∈ resΛ exactly means thatΛ is closed, ker(Λ−λ I) = 0,
and ran(Λ−λ I) = G . ThespectrumspecΛ of Λ is defined as

specΛ := C\ resΛ .

A linear relationΛ onG is calledsymmetricif Λ⊂Λ∗ and is calledself-adjoint
if Λ = Λ∗. A linear operatorL in G is symmetric (respectively, self-adjoint) if and
only if its graph is a symmetric (respectively, self-adjoint) linear relation. A self-
adjoint linear relation is always maximal symmetric, but the converse in not true;
examples are given by the graphs of maximal symmetric operators with deficiency
indices(n,0), n > 0.

To describe all self-adjoint linear relations we need the following auxiliary
result.

Lemma 1.1. Let U be a unitary operator inG . Then the operator M: G ⊕G →
G ⊕G ,

M =
1
2

(
i(1+U) U −1
1−U i(1+U)

)
(1.1)

is unitary; in particular,0∈ resM.
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Proof. The adjoint operatorM∗ has the form

M∗ =
1
2

(
−i(1+U∗) 1−U∗

U∗−1 −i(1+U∗)

)
,

and it is easy to show by direct calculation thatM∗ = M−1.

Theorem 1.2.A linear relationΛ in G is self-adjoint iff there is a unitary operator
U in G (called theCayley transformof Λ) such that

Λ =
{
(x1,x2) ∈ G ⊕G : i(1+U)x1 = (1−U)x2

}
. (1.2)

Writing U in the formU = exp(−2iA) with a self-adjoint operatorA one can
reformulate theorem 1.2 as follows:

Corollary 1.3. A linear relationΛ in G is self-adjoint iff there is a self-adjoint
operator A acting inG such thatΛ =

{
(x1,x2) ∈ G ⊕G : cosAx1 = sinAx2

}
.

To prove theorem 1.2 we need the following lemma.

Lemma 1.4. Let U be a unitary operator inG andΛ be defined by(1.2), then

Λ =
{(

(1−U)x, i(1+U)x
)

: x∈ G
}

. (1.3)

Proof of lemma 1.4. The linear relationΛ given by (1.2) is closed as it is the null
space of the bounded operator

G ⊕G ∋ (x1,x2) 7→ i(1+U)x1− (1−U)x2 ∈ G .

Denote the set on the right-hand side of (1.3) byΠ. Clearly,Π⊂Λ. By lemma 1.1,
the operatorM∗ adjoint toM from (1.1) maps closed sets to closed sets. In partic-
ular, the subspaceΠ ≡ M∗(0⊕G ) is closed. Assume that there exists(y1,y2) ∈ Λ
such that(y1,y2) ⊥ Π. The condition(y1,y2) ∈ Λ reads asi(1+U)y1− (1−
U)y2 = 0, and(y1,y2) ⊥ Π means that〈y1|(1−U)x〉+ 〈y2| i(1+U)x〉 = 0 for
all x ∈ G , i.e. that(U −1)y1− i(1+U)y2 = 0. This impliesM(y1,y2) = 0. By
lemma 1.1,y1 = y2 = 0. The requested equalityΛ = Π is proved.

Proof of theorem 1.2. (1) LetU be a unitary operator inG andΛ be defined by
(1.2). By lemma 1.4 one can representΛ in the form (1.3). Using this representa-
tion one easily concludes thatΛ ⊂ Λ∗, i.e. thatΛ is symmetric.

Let (y1,y2) ∈ Λ∗. The equality〈x1|y2〉 = 〈x1|y2〉 for all (x1,x2) ∈ Λ is equiva-
lent to〈(1−U)x|y2〉= 〈i(1+U)x|y1〉 for all x∈ G , from which−i(1+U−1)y1 =
(1−U−1)y2 and i(1+U)y1 = (1−U)y2, i.e. (y1,y2) ∈ Λ. Therefore,Λ∗ ⊂ Λ,
which finally results inΛ = Λ∗.
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(2) LetΛ be a self-adjoint linear relation inG . SetL± := {x1± ix2 : (x1,x2) ∈
Λ}. Assume that for some(x1,x2) and(y1,y2) from Λ one hasx1 + ix2 = y1 +
iy2, then (x1 − y1,x2 − y2) ∈ Λ and x1 − y1 = −i(x2 − y2). At the same time,
0 = Im〈x1−y1|x2−y2〉 = Im〈−i(x2−y2)|(x2−y2)〉 = Im i‖x2−y2‖2, therefore,
x2 = y2 andx1 = y1. In the same way one can show that fromx1− ix2 = y1− iy2,
(x1,x2),(y1,y2)∈Λ, it follows thatx1 = y1 andx2 = y2. Forx1+ ix2 with (x1,x2)∈
Λ setU(x1+ ix2) = x1− ix2. Clearly,U : L+ → L− is well-defined and bijective.
Moreover,‖U(x1+ ix2)‖2 = ‖x1‖2+‖x2‖2 = ‖x1 + ix2‖2, i.e.U is isometric.

Show thatU is actually a unitary operator, i.e. thatL± = G . We consider
only L+; the setL− can be considered exactly in the same way. Assume that
y⊥ L+ for somey∈ G , then〈x1 + ix2|y〉 = 〈x1|y〉−〈x2| iy〉 = 0 for all (x1,x2) ∈
Λ. It follows that (iy,y) ∈ Λ∗ = Λ, which implies Im〈iy|y〉 = − Im i‖y‖2 = 0,
i.e. y = 0. Therefore,L+ = G . To show thatL+ is closed we take an arbitrary
sequence(xn

1,x
n
2) ∈ Λ with lim(xn

1 + ixn
2) = y for somey∈ G , then automatically

lim(xn
1− ixn

2) = y′ for somey′ ∈ G , and

lim xn
1 =

1
2

(y+y′) =: y1 and limxn
2 =

1
2i

(y−y′) =: y2.

As we see, the sequence(xn
1,x

n
2) converges, and the limit(y1,y2) lies in Λ asΛ is

closed. Therefore,y = y1 + iy2 lies inL+, L+ is closed, andU is unitary.
Clearly, by construction ofU , Λ is a subset of the subspace on the right-hand

side of (1.2). As shown in item (1), the latter is self-adjoint as well asΛ is,
therefore, they coincide.

Theorem 1.2 gives only one possible way for parameterizing linear relations
with the help of operators. Let us mention some other ways to to this.

Proposition 1.5. Let A and B be bounded linear operators inG . DenoteΛ :={
(x1,x2) ∈ G ⊕G : Ax1 = Bx2

}
. Λ is self-adjoint iff the following two conditions

are satisfied:

AB∗ = BA∗, (1.4a)

ker

(
A −B
B A

)
= 0. (1.4b)

Proof. Introduce operatorsL : G ⊕G ∋ (x1,x2) 7→ Ax1−Bx2 ∈ G andJ : G ⊕G ∋
(x1,x2) 7→ (−x2,x1) ∈ G ⊕G . There holdsΛ∗ = J(Λ⊥) andΛ = kerL.

Let us show first that the condition (1.4a) is equivalent to the inclusionΛ∗⊂Λ.
Note that this inclusion is equivalent toJ(Λ⊥) ⊂ Λ or, due to the bijectivity ofJ,
to

Λ⊥ ⊂ JΛ. (1.5)
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Clearly,Λ ≡ kerL is closed, therefore, by the well known relation,Λ⊥ = kerL⊥ =
ranL∗. As Λ is closed, the condition (1.5) is equivalent to

ranL∗ ⊂ J(kerL). (1.6)

Noting thatL∗ acts asG ∋ x 7→ (A∗x,−B∗x) ∈ G ⊕G , we see that (1.6) is equiva-
lent to (1.4a).

Now let Λ be self-adjoint, thenJ(Λ⊥) = Λ or, equivalently,J(Λ) = Λ⊥ ≡
kerL⊥. Therefore, the restriction ofL to J(Λ) is injective. This means that the
systems of equationsLz= 0,LJz= 0 has only the trivial solution, which is exactly
the condition (1.4b).

On the other hand, if (1.4a) and (1.4b) are satisfied, then, asshown above,
Λ⊥ ⊂ J(Λ). If Λ⊥ 6= J(Λ), thenJ(Λ) contains a non-zero element of(Λ⊥)⊥≡Λ =
kerL, i.e. there existsz 6= 0 withLz= 0 andLJz= 0, which contradicts (1.4b).

For a finite-dimensionalG the condition (1.4b) simplifies, and one arrives at

Corollary 1.6. Let G be finite dimensional, A,B be linear operators inG . The
linear relationΛ :=

{
(x1,x2)∈G ⊕G : Ax1 = Bx2

}
is self-adjoint iff the following

two conditions are satisfied:

AB∗ = BA∗, (1.7a)

det(AA∗ +BB∗) 6= 0 ⇔ the block matrix(A|B) has maximal rank. (1.7b)

The conditions (1.4a), (1.4b), (1.7a), (1.7b) can be rewritten in many equiva-
lent forms, see e.g. [4, Section 125], [31,47,107,118].

1.2 Boundary triples for linear operators

Definition 1.7. Let A be a closed linear operator in a Hilbert spaceH with the
domain domA. Assume that there exist another Hilbert spaceG and two linear
mapsΓ1,Γ2 : domA→ G such that:

〈 f |Ag〉−〈A f |g〉= 〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 for all f ,g∈ domA, (1.8a)

the map(Γ1,Γ2) : domA→ G ⊕G is surjective, (1.8b)

the set ker(Γ1,Γ2) is dense inH . (1.8c)

A triple (G ,Γ1,Γ2) with the above properties is called aboundary triplefor A.

Remark 1.8. This definition differs slightly from the commonly used one.In [49,
71, 88] one defines boundary triple only for the case whenA∗ is a closed densely
defined symmetric operator; the property (1.8c) holds then automatically. In our
opinion, in some cases it is more convenient to find a boundarytriple than to check
whether the adjoint operator is symmetric. Below we will see(theorem 1.12) that
these definitions are actually equivalent if one deals with self-adjoint extensions.
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In Definition 1.7, we do not assume any continuity propertiesof the mapsΓ1
andΓ2, but they appear automatically.

Proposition 1.9. Let A be a closed linear operator in a Hilbert spaceH and
(G ,Γ1,Γ2) be its boundary triple, then the mappingdomS∋ g 7→ (Γ1g,Γ2g) ∈
G ⊕G is continuous with respect to the graph norm of S.

Proof. Suppose that a sequencegn ∈ domA, n∈ N, converges in the graph norm.
As A is closed, there holdsg := lim gn ∈ domA andAg= lim Agn. Assume that
lim(Γ1gn,Γ2gn) = (u,v), where the limit is taken in the norm ofG ⊕G . Let us
show thatΓ1g = u andΓ2g= v; this will mean that the mapping(Γ1,Γ2) is closed
and, therefore, continuous by the closed graph theorem.

For an arbitraryf ∈ domA there holds

〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 = 〈 f |Ag〉−〈A f |g〉
= lim〈 f |Agn〉−〈A f |gn〉 = lim〈Γ1 f |Γ2gn〉−〈Γ2 f |Γ1gn〉

= 〈Γ1 f |v〉−〈Γ2 f |u〉.

Therefore,〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 = 〈Γ1 f |v〉−〈Γ2 f |u〉 and

〈Γ1 f |Γ2g−v〉 = 〈Γ2 f |Γ1g−u〉 (1.9)

for any f ∈ domA. Using the property (1.8b) from definition 1.7, one can take
f ∈ domA with Γ1 f = Γ2g− v andΓ2 f = 0, then (1.9) reads as‖Γ2g− v‖2 = 0
andΓ2g = v. Analogously, choosingf ∈ domA with Γ1 f = 0 andΓ2 f = Γ1g−u
one arrives atΓ1g = u.

Our next aim is to describe situations in which boundary triples exist and are
useful. For a symmetric operatorA in a Hilbert spaceH and forz∈C, we denote
throughout the paperNz(A) := ker(A∗− zI) and write sometimesNz instead of
Nz(A), if it does not lead to confusion.

Is is well known thatA has self-adjoint extensions if and only if dimNi =
dimN−i . The von Neumann theory states a bijection between the self-adjoint
extensions and unitary operators fromNi to N−i . More precisely, ifU is a unitary
operator fromNi to N−i , then the corresponding self-adjoint extensionAU has
the domain{ f = f0+ fi +U fi : f0 ∈ domA, fi ∈Ni} and acts asf0+ fi +U fi 7→
A f0 + i f i − iU f i. This construction is difficult to use in practical applications,
and our aim is to show that the boundary triples provide a useful machinery for
working with self-adjoint extensions.

The following proposition is borrowed from [88].

Proposition 1.10. Let A be a densely defined closed symmetric operator in a
Hilbert spaceH with equal deficiency indices(n,n), then there is a boundary
triple (G ,Γ1,Γ2) for the adjoint A∗ with dimG = n.

10



Proof. It is well known that domA∗ = domA+Ni +N−i , and this sum is direct.
Let P±i be the projector from domA∗ to N±i corresponding to this expansion.

Let f ,g ∈ domA∗, then f = f0 + Pi f + P−i f , g = g0 + Pig+ P−ig, f0,g0 ∈
domA. Using the equalitiesA∗Pi = iPi andA∗P−i = −iP−i one obtains

〈 f |A∗g〉−〈A∗ f |g〉 = 〈 f0+Pi f +P−i f |Ag0+ iPig− iP−ig〉
= 2i〈Pi f |Pig〉−2i〈P−i f |P−ig〉. (1.10)

As the deficiency indices ofA are equal, there is an isomorphismU from N−i

ontoNi. DenoteG := N−i endowed with the induced scalar product inH , and
setΓ1 = iUP−i − iPi , Γ2 = Pi +UP−i, then

〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 = 2i〈Pi f |Pig〉−2i〈UP−i f |UP−ig〉
= 2i〈Pi f |Pig〉−2i〈P−i f |P−ig〉. (1.11)

Comparing (1.10) with (1.11) one shows that(G ,Γ1,Γ2) satisfy the property
(1.8a) of definition (1.7). Due to domA ⊂ ker(Pi,P−i) ⊂ ker(Γ1,Γ2) the prop-
erty (1.8c) is satisfied too. To prove (1.8b) take anyF1,F2 ∈ N−i ≡ G and show
that the system of equations

iUP−i f − iPi f = F1, UP−i f +Pi f = F2, (1.12)

has a solutionf ∈ domA∗. Multiplying the second equation byi and adding it to
the first one one arrives at 2iUP−i f = F1+ iF2. In a similar way, 2iPi f = iF2−F1.
Therefore, the funtcion

f =
1
2i

(iF2−F1)+
1
2i

U−1(F1+ iF2) ∈ Ni(A
∗)+N−i(A

∗) ⊂ domA∗

is a possible solution to (1.12), and (1.8b) is satisfied. Therefore,(G ,Γ1,Γ2) is a
boundary triple forA∗.

Let A be a closed densely defined linear operator,A∗ have a boundary triple
(G ,Γ1,Γ2), Λ be a closed linear relation inG . By AΛ in this subsectionwe mean
the restriction ofA∗ to the domain domAΛ = { f ∈ domA∗ : (Γ1 f ,Γ2 f ) ∈ Λ}.

The usefulness of boundary triples is described in the following proposition.

Proposition 1.11. For any closed linear relationΛ in G one has A∗Λ = AΛ∗ . In
particular, AΛ is symmetric/self-adjoint if and only ifΛ is symmetric/self-adjoint,
respectively.
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Proof. Clearly, one hasA ⊂ AΛ ⊂ A∗. Therefore,A ⊂ A∗
Λ ⊂ A∗. Moreover, one

has

gr A∗
Λ = {( f ,A∗ f ) : 〈 f |A∗g〉 = 〈A∗ f |g〉 ∀g∈ domAΛ}

= {( f ,A∗ f ) : 〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 ∀g∈ domAΛ}
= {( f ,A∗ f ) : 〈Γ1 f |x2〉−〈Γ2 f |x1〉 ∀(x1,x2) ∈ Λ}

= {( f ,A∗ f ) : (Γ1 f ,Γ2 f ) ∈ Λ∗} = gr AΛ∗ .

This proves the first part of proposition. The part concerning the self-adjointness
of AΛ is now obvious, asAΛ ⊂ AΛ′ if and only if Λ ⊂ Λ′.

Theorem 1.12.Let A be a closed densely defined symmetric operator.

(1) The operator A∗ has a boundary triple if and only if A admits self-adjoint
extensions.

(2) If (G ,Γ1,Γ2) is a boundary triple for A∗, then there is a one-to-one cor-
respondence between all self-adjoint linear relationsΛ in G and all self-
adjoint extensions of A given byΛ ↔ AΛ, where AΛ is the restriction of A∗

to the vectors f∈ domA∗ satisfying(Γ1 f ,Γ2 f ) ∈ Λ.

Proof. (1) Let A∗ have a boundary triple andΛ be any self-adjoint linear relation
in G , then according to proposition 1.11 the operatorAΛ is self-adjoint, andAΛ ⊃
A. The converse is exactly proposition 1.10.

(2) If Λ is a self-adjoint linear relation inG , then due to proposition 1.11 the
corresponding operatorAΛ is self-adjoint.

Now let B be a self-adjoint extension ofA, then A ⊂ B ⊂ A∗. Denote
Λ = {(Γ1 f ,Γ2 f ), f ∈ domB∗}, thenB = AΛ, andΛ is self-adjoint due to propo-
sition 1.11.

Theorem 1.13.Let a closed linear operator B have a boundary triple(G ,Γ1,Γ2),
and A:= B|ker(Γ1,Γ2), then A⊂ B∗. Moreover, the following three conditions are
equivalent:

(1) B has at least one restriction which is self-adjoint,

(2) B∗ is symmetric;

(3) B∗ = A,

(4) A∗ = B.

12



Proof. By constructionA is densely defined. By definition 1.7 for anyf ∈ domA
one has〈 f |Bg〉− 〈A f |g〉 = 0, which meansA ⊂ B∗. In particular,B∗ is densely
defined. By proposition 1.9,A is closed, therefore, (3) and (4) are equivalent.

(1)⇒(2). Let C be a self-adjoint restriction ofB. From C ⊂ B it follows
B∗ ⊂C∗ ≡C⊂ B≡ (B∗)∗, i.e. B∗ is symmetric.

(2)⇒(3). LetD = B∗ be symmetric, thenD ⊂ B is closed andB = D∗.
Let f ∈ domD. According to the definition 1.7 there existsg ∈ domD∗ =

domB with Γ1g = −Γ2 f andΓ2g = Γ1 f . One has

0 = 〈D f |g〉−〈D f |g〉= 〈 f |D∗g〉−〈D∗ f |g〉
≡ 〈 f |Bg〉−〈B f |g〉= ‖Γ1 f‖2+‖Γ2 f‖2,

from which Γ1 f = Γ2 f = 0. Therefore, domD ⊂ ker(Γ1,Γ2) ≡ domA. At the
same time, as shown above,A⊂ B∗, which meansA = D = B∗.

(4)⇒(1). Let B = A∗. By theorem 1.12(1) the operatorA has self-adjoint
extensions, which are at the same time self-adjoint restrictions ofA∗ = B.

The proof of proposition 1.10 gives a possible constructionof a boundary
triple. Clearly, boundary triple is not fixed uniquely by definition 1.7. For a
description of all possible boundary triple we refer to [100, 101]. We restrict
ourselves by the following observations.

Proposition 1.14. Let A be a closed densely defined symmetric operator with
equal deficiency indices. For any self-adjoint extension H of A there exists a
boundary triple(G ,Γ1,Γ2) for A∗ such that H is the restriction of A∗ to kerΓ1.

Proof. Let (G ,Γ′
1,Γ

′
2) be an arbitrary boundary triple forA∗. According to the-

orem 1.12(2), there exists a self-adjoint linear relationΛ in G such thatH is the
restriction ofA∗ to the vectorsf ∈ domA∗ satisfying(Γ′

1 f ,Γ′
2 f ) ∈ Λ. Let U be

the Cayley transform ofΛ (see theorem 1.2). Set

Γ1 :=
1
2

(
i(1+U)Γ′

1+(U −1)Γ′
2

)
, Γ2 :=

1
2

(
(1−U)Γ′

1+ i(1+U)Γ′
2

)
.

By lemma 1.1 the map(Γ1,Γ2) : domA∗ → G ⊕G is surjective and ker(Γ1,Γ2) =
ker(Γ′

1,Γ
′
2). At the same time one has〈Γ1 f |Γ2g〉− 〈Γ2 f |Γ1g〉 ≡ 〈Γ′

1 f |Γ′
2g〉−

〈Γ′
2 f |Γ′

1g〉, which means that(G ,Γ1,Γ2) is a boundary triple forA∗. It remains to
note that the conditions(Γ′

1 f ,Γ′
2 f ) ∈ Λ andΓ1 f = 0 are equivalent by the choice

of U .

Proposition 1.15. Let (G ,Γ1,Γ2) be an arbitrary boundary triple for A∗, and L
be a bounded linear self-adjoint operator inG , then(G , Γ̃1, Γ̃2) with Γ̃1 = Γ1 and
Γ̃2 = Γ2+LΓ1 is also a boundary triple for S∗.

13



Proof. The conditions of definition 1.7 are verified directly.

An explicit construction of boundary triples is a rather difficult problem, see
e.g. [124] for the discussion of elliptic boundary conditions. In some cases there
are natural boundary triples reflecting some specific properties of the problem,
like in the theory of singular perturbations, see [114] and subsection 1.4.2 below.

1.3 Krein’s resolvent formula

In this subsection, if not specified explicitly,

• S is a densely defined symmetric operator with equal deficiencyindices
(n,n), 0< n ≤ ∞, in a Hilbert spaceH ,

• Nz := ker(S∗−z),

• G is a Hilbert space of dimensionn,

• H0 is a certain self-adjoint extension ofS,

• for z∈ resH0 denoteR0(z) := (H0−z)−1, the resolvent ofH0.

Forz1,z2 ∈ resH0 put

U(z1,z2) = (H0−z2)(H
0−z1)

−1 ≡ 1+(z1−z2)R
0(z1).

It is easy to show thatU(z1,z2) is a linear topological isomorphism ofH obeying
the following properties:

U(z,z) = I , (1.13a)

U(z1,z2)U(z2,z3) = U(z1,z3), (1.13b)

U−1(z1,z2) = U(z2,z1), (1.13c)

U∗(z1,z2) = U(z̄1, z̄2), (1.13d)

U(z1,z2)Nz2(S) = Nz1(S). (1.13e)

Definition 1.16. A map γ : resH0 → L(G ,H ) is called aKrein Γ-field for
(S,H0,G ) if the following two conditions are satisfied:

γ(z) is a linear topological isomorphism ofG andNz for all z∈ resH0, (1.14a)

for any z1,z2 ∈ resH0 there holdsγ(z1) = U(z1,z2)γ(z2) or, equiva-
lently, γ(z1)− γ(z2) = (z1−z2)R0(z1)γ(z2) = (z1−z2)R0(z2)γ(z1).

(1.14b)

Let us discuss questions concerning the existence and uniqueness ofΓ-fields.

14



Proposition 1.17. For any triple(S,H0,G ) there exists a KreinΓ-field γ. If γ̃(z)
is another KreinΓ-field for (S,H0, G̃ ) with a certain Hilbert spaceG̃ , then there
exists a linear topological isomorphism N from̃G to G such that̃γ(z) = γ(z)N.

Proof. Fix anyz0 ∈ resH0, choose any linear topological isomorphismL : G →
Nz0, and setγ(z0) := L. Then property (1.14b) forces to set

γ(z) = U(z,z0)L ≡ L+(z−z0)R
0(z)L. (1.15)

On the other hand, the properties (1.13) ofU(z1,z2) show thatγ(z) defined by
(1.15) is aΓ-field for (S,H0,G ).

If γ̃(z) : G̃ → H , z∈ resH0, is anotherΓ-field for (S,H0,G ), then setting
N = γ̃(z0)γ(−1)(z0) whereγ(−1)(z0) is the inverse toγ(z0) : G → Nz0, and using
(1.14b) again, we see thatγ̃(z) = γ(z)N for all z∈ resH0.

The following propositions gives a characterization of allKrein Γ-fields.

Proposition 1.18. Let H0 be a self-adjoint operator in a Hilbert spaceH , G be
another Hilbert space, andγ be a map fromresH0 toL(G ,H ), then the following
assertions are equivalent:

(1) there is a closed densely defined symmetric restriction Sof H0 such thatγ
is theΓ-field for (S,H0,G ).

(2) γ satisfies the condition(1.14b)above and the following additional condi-
tion:

for someζ ∈ resH0 the mapγ(ζ ) is a linear topological
isomorphism ofG on a subspaceN ⊂ H such thatN ∩
domH0 = {0}.

(1.16)

Proof. Clearly, anyΓ-field satisfies (1.16).
Conversely, let the conditions (1.16) and (1.14b) be fulfilled for a mapγ :

resH0 → L(G ,H ). Then, in particular,γ(z) is a linear topological isomorphism
on a subspace ofH for anyz∈ resH0. DenoteDz = kerγ∗(z)(H0− z̄). According
to (1.14b) we have for anyz1,z2 ∈ resH0

γ∗(z2) = γ∗(z1)U
∗(z2,z1) = γ∗(z1)(H

0− z̄1)(H
0− z̄2)

−1 .

Henceγ∗(z2)(H0− z̄2) = γ∗(z1)(H0− z̄1), thereforeDz is independent ofz. De-
noteD := Dz and defineSas the restriction ofH0 to D . Show thatD is dense in
H . Let ϕ ⊥ D . SinceD = Dζ = R0(ζ̄ )(N ⊥), this means that〈R0(ζ )ϕ|ψ〉 = 0
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for eachψ ∈ N ⊥, i.e. we haveR0(ζ )ϕ ∈ N . Hence,R0(ζ )ϕ = 0, therefore
ϕ = 0. Thus,S is densely defined. Let us show that

ran(S−z) = kerγ∗(z) (1.17)

for anyz∈ resH0. Let γ∗(z)ϕ = 0; setψ := (H0−z)−1ϕ, thenψ ∈ domS≡ D ,
therefore,ϕ ∈ ran(S−z). Conversely, ifϕ ∈ ran(S−z), thenϕ = (S−z)ψ where
γ∗(z)(H0− z̄)ψ = 0, and (1.17) is proven. In particular, (1.17) implies thatS is
closed. Moreover, we have from (1.17)

Nz = ran(S− z̄)⊥ = kerγ∗(z)⊥ = ranγ(z) = ranγ(z).

Thus,γ is aΓ-field for (S,H0,G ).

Let now the triple(S,H0,G ) be endowed with aΓ-field γ, γ : resH0 →
L(G ,H ).

Definition 1.19. A map Q : resH0 → L(G ,G ) is called aKrein Q-function for
(S,H0,G ,γ), if

Q(z1)−Q∗(z̄2) = (z1−z2)γ∗(z̄2)γ(z1) for anyz1,z2 ∈ resH0. (1.18)

Proposition 1.20. For any(S,H0,G ) endowed with a KreinΓ-field γ there exists
a KreinQ-function Q: resH0 → L(G ,G ). If Q̃(z) : G → G , z∈ resH0, is another
Q-function for(S,H0,G ,γ), thenQ̃(z) = Q(z)+ M, where M is a bounded self-
adjoint operator inG .

Proof. Fix as anyz0 ∈ resH0 and denotex0 := Rez0, y0 := Im z0, L := γ(z0). If a
Q-function exists, then by (1.18) one hasQ(z) = Q∗(z0)+(z− z̄0)L∗γ(z). On the
other hand

Q∗(z0) =
Q(z0)+Q∗(z0)

2
− Q(z0)−Q∗(z0)

2
.

Clearly,Q(z0)+Q∗(z0) is a bounded self-adjoint operator inG , denote it by 2C.
According to (1.18),Q(z0)−Q∗(z0) = 2iy0L∗L, and therefore

Q(z) = C− iy0L∗L+(z− z̄0)L
∗γ(z) . (1.19)

We have from (1.19) that if̃Q(z) is anotherQ-function for (S,H0,G ,γ), then
Q̃(z)−Q(z) = M whereM is a bounded self-adjoint operator which is independent
of z.

It remains to show that a function of the form (1.19) obeys (1.18). Take arbi-
trary z1,z2 ∈ resH0. We haveQ∗(z2) = C+ iy0L∗L+(z̄2−z0)γ∗(z2)L. Therefore,

Q(z1)−Q∗(z2) = (z̄0−z0)L
∗L+(z− z̄0)L

∗γ(z1)+(z0− z̄2)γ∗(z2)L. (1.20)
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By (1.14b),L = γ(z0) = γ(z1)+(z0−z1)R0(z0)γ(z1) andL∗ = γ∗(z0) = γ∗(z2)+
(z̄0− z̄2)γ∗(z2)R0(z̄0). Substituting these expressions in (1.20) we obtain

Q(z1)−Q∗(z2) = (z1− z̄2)γ∗(z2)γ(z1)

+ γ∗(z2)
{
(z̄0−z0)

[
(z̄0− z̄2)R

0(z̄0)+(z0−z1)R
0(z0)

+(z̄0− z̄2)(z0−z1)R
0(z̄0)R

0(z0)
]
+(z1− z̄0)(z̄0− z̄2)R

0(z̄0)

+(z0− z̄2)(z0−z1)R
0(z0)

}
γ(z1) .

The expression in the curly brackets is equal to

(z̄0−z0)(z̄0− z̄2)R
0(z̄0)+(z1− z̄0)(z̄0− z̄2)R

0(z̄0)

+(z0−z1)(z̄0− z̄2)R
0(z̄0)+(z̄0−z0)(z0−z1)R

0(z0)

+(z0− z̄2)(z0−z1)R
0(z0)− (z̄0− z̄2)(z0−z1)R

0(z0) .

It is easy to see that the latter expression is equal to zero, and we get the result.

Below we list some properties ofΓ-fields andQ-functions which follow easily
from the definitions.

Proposition 1.21.Let γ be a KreinΓ-field for (S,H0,H ), thenγ is holomorphic
in resH0 and satisfies

d
dz

γ(z) = R0(z)γ(z), (1.21a)

S∗γ(z) = zγ(z), (1.21b)

γ∗(z) is a bijection fromNz ontoG , (1.21c)

γ∗(z) f = 0 iff f ⊥ Nz, (1.21d)

γ∗(z1)γ(z2) = γ∗(z2)γ(z1), (1.21e)

ran
[
γ(z1)− γ(z2)

]
⊂ domH0 for any z1,z2 ∈ resH0. (1.21f)

Let in addition Q be a KreinQ-function for(S,H0,G ) andγ, then Q is holomor-
phic in resH0, and the following holds:

d
dz

Q(z) = γ∗(z̄)γ(z), (1.22a)

Q∗(z̄) = Q(z), (1.22b)

for any z∈ C\R there is cz > 0 with
ImQ(z)

Imz
≥ cz. (1.22c)
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Remark 1.22. The property (1.22c) means thatQ–function is an operator-valued
Nevanlinna function (or Herglotz function). This implies anumber of possible
relations to the measure theory, spectral theory etc., and such functions appear
in many areas outside the extension theory, see e.g. [47, 49,66, 68, 104, 105] and
references therein.

Our next aim is to relate boundary triples in definition 1.7 toKrein’s maps
from definition 1.16.

Theorem 1.23.Let S be a closed densely defined symmetric operator in a Hilbert
spaceH with equal deficiency indices.

(1) For any self-adjoint extension H of S and any z∈ resH there holdsdomS∗ =
domH +Nz, and this sum is direct.

(2) Let (G ,Γ1,Γ2) be a boundary triple for S∗ and H0 be the restriction of S∗

to kerΓ1 which is self-adjoint due to theorem 1.12. Then:

(2a) for any z∈ resH0 the restriction ofΓ1 to Nz has a bounded inverse
γ(z) : G → Nz⊂ H defined everywhere,

(2b) this map z7→ γ(z) is a KreinΓ-field for (S,H0,G ),

(2c) the mapresH0 ∋ z 7→ Q(z) = Γ2γ(z) ∈ L(G ,G ) is a KreinQ-function
for (S,H0,G ) andγ.

(2d) for any f∈ domH0 and z∈ resH0 there holdsγ∗(z̄)(H0−z) f = Γ2 f .

Proof. (1) Let f ∈ domS∗, Denotef0 := (H−z)−1(S∗−z) f . Clearly, f0∈ domH.
For g := f − f0 one has(S∗− z)g = (S∗− z) f − (S∗− z)(H − z)−1(S∗− z) f ≡
(S∗−z) f − (H −z)(H −z)−1(S∗−z) f = 0, therefore,g∈ ker(S∗−z) ≡ Nz.

Now assume that for somez∈ resH one hasf0+g0 = f1+g1 for somef0, f1∈
domH andg0,g1 ∈Nz, then f0− f1 = g1−g0 ∈Nz and(H−z)( f0− f1) = (S∗−
z)( f0− f1) = 0. AsH −z is invertible, one hasf0 = f1 andg0 = g1.

(2a) Due to condition (1.8b),Γ1(domS∗) = G . Due toΓ1(domH0) = 0 and
item (1) one hasΓ1(Nz) = G . Assume thatΓ1 f = 0 for some f ∈ Nz, then
f ∈ domH0∩Nz and f = 0 by item (1). Therefore,Γ1 : Nz → G is a bijection
and, moreover,Γ1 is continuous in the graph norm ofS∗ by proposition 1.9. At
the same time, the graph norm ofS∗ onNz is equivalent to the usual norm inH ,
which means that the restriction ofΓ1 to Nz is a bounded operator. The graph of
this map is closed, and the inverse map is bounded by the closed graph theorem.

(2b) The property (1.14a) is already proved in item (2a). Take arbitraryz1,z2∈
resH0 andξ ∈ G . Denotef = γ(z1)ξ andg = U(z2,z1) f ≡ f +(z2−z1)R0(z2) f .
As R0(z2) f ∈ domH0, there holdsΓ1R0(z2) f = 0 andΓ1g = Γ1 f . Clearly, f ∈
Nz1, and to prove property (1.14b) it is sufficient to show that(S∗− z2)g = 0.
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But this follows from the chain(S∗−z2)g = (S∗−z2) f +(z2−z1)(S∗−z2)(H0−
z2)

−1 f = (S∗−z2) f +(z2−z1)(H0−z2)(H0−z2)
−1 f = (S∗−z1) f = 0.

Therefore,γ satisfies both properties (1.14a) and (1.14b) in definition 1.16.
(2c) As γ(z) is bounded by item (2a) andΓ2 is bounded by proposition 1.9,

the mapQ(z) is a bounded linear operator onL(G ,G ). To prove property (1.18)
take arbitraryz1,z2 ∈ resH, φ ,ψ ∈ G , and setf := γ(z̄2)φ , g := γ(z1)ψ. Clearly,

〈 f |S∗g〉−〈 f |S∗g〉− (z1−z2)〈 f |g〉
= 〈 f |(S∗−z1)g〉−〈(S∗− z̄2) f |g〉 = 0. (1.23)

At the same time one has

〈 f |g〉 = 〈γ(z̄2)φ |γ(z1)ψ〉 = 〈φ |γ∗(z̄2)γ(z1)ψ〉. (1.24)

Moreover, using the equalityΓ1γ(z)ξ = ξ , which holds for allξ ∈ G andz∈
resH0, one obtains

〈 f |S∗g〉−〈 f |S∗g〉 = 〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉
= 〈Γ1γ(z̄2)φ |Γ2γ(z1)ψ〉−〈Γ2γ(z̄2)φ |Γ1γ(z1)ψ〉

= 〈φ |Q(z1)ψ〉−〈Q(z̄2)φ |ψ〉 = 〈φ |
[
Q(z1)−Q∗(z̄2)

]
ψ〉.

Therefore, Eqs. (1.23) and (1.24) read as

〈φ |
[
Q(z1)−Q∗(z̄2)

]
ψ〉 = 〈φ |(z1−z2)γ∗(z̄2)γ(z1)ψ〉,

which holds for anyφ ,ψ ∈ G . This implies (1.18).
(2d) For anyφ ∈ G one has

〈φ |γ∗(z̄)(H0−z) f 〉 = 〈γ(z̄)φ |(H0−z) f 〉 = 〈γ(z̄)φ |S∗ f 〉−z〈γ(z̄)φ | f 〉
= 〈S∗γ(z̄)φ | f 〉−z〈γ(z̄)φ | f 〉+ 〈Γ1γ(z̄)φ |Γ2 f 〉−〈Γ2γ(z̄)φ |Γ1 f 〉

= 〈(S∗− z̄)γ(z̄)φ | f 〉+ 〈φ |Γ2 f 〉 = 〈φ |Γ2 f 〉,

i.e. Γ2 f = γ∗(z̄)(H0−z) f .

Definition 1.24. The KreinΓ-field andQ-function defined in theorem 1.23 will
be calledinducedby the boundary triple(G ,Γ1,Γ2).

Remark 1.25. The Q-function induced by a boundary triple is often called the
Weyl function[5,49].

Conversely, starting with given Krein maps one can construct a boundary
triple.
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Proposition 1.26. Let γ be a KreinΓ-field for (S,H0,G ). For any z∈ resH0,
represent f∈ domS∗ as

f = fz+ γ(z)F, (1.25)

where fz ∈ domH0, F ∈ G . For a fixedz∈ resH0 define

Γ1 f := F, Γ2 f :=
1
2

(
γ∗(z̄)(H0−z) fz+ γ∗(z)(H0− z̄) fz̄

)
,

then(G ,Γ1,Γ2) is a boundary triple for S∗, andγ(z) is the inducedΓ-field.

For further references we formulate a simplified version of proposition 1.26
for the case whenH0 has gaps.

Corollary 1.27. Letγ be a KreinΓ-field for(S,H0,G ). Assume that H0 has a gap,
andλ ∈ resH0∩R. Represent f∈domS∗ as f= fλ +γ(λ )F, where fλ ∈ domH0,
F ∈ G . Define

Γ1 f := F, Γ2 f := γ∗(λ )(H0−λ ) fλ ,

then(G ,Γ1,Γ2) is a boundary triple for S∗.

Proof of proposition 1.26. First of all note that the componentF in (1.25) is in-
dependent ofz. To see that it is sufficient to writef as fz+

(
γ(z)− γ(λ )

)
F +

γ(λ )F and to use the uniqueness of this expansion and the inclusion
(
γ(z)−

γ(λ )
)
F ∈ domH0 following from (1.21f).

The property (1.8b) of boundary triples is obvious. From theequality(H0−
z)domS⊥ = ker(S∗− z̄) and (1.21d) it follows that domS⊂ ker(Γ1,Γ2), which
proves (1.8c). To show (1.8a) we write

2〈 f |S∗g〉−2〈S∗ f |g〉
= 〈 f |(S∗−z)g〉+ 〈 f |(S∗− z̄)g〉−〈(S∗−z) f |g〉−〈(S∗− z̄) f |g〉

= 〈 fz̄+ γ(z̄)Γ1 f |(H0−z)gz〉+ 〈 fz+ γ(z)Γ1 f |(H0− z̄)gz̄〉
−〈(H0−z) fz|gz̄+ γ(z̄)Γ1g〉−〈(H0− z̄) fz|gz+ γ(z)Γ1g〉

= 〈 fz̄|(H0−z)gz〉+ 〈 fz|(H0− z̄)gz̄〉−〈(H0− z̄) fz̄|gz〉−〈(H0−z) fz|gz̄〉
+ 〈Γ1 f |γ∗(z̄)(H0−z)gz〉+ 〈Γ1 f |γ∗(z)(H0− z̄)gz̄〉
−〈γ∗(z̄)(H0−z) fz|Γ1g〉−〈γ∗(z)(H0− z̄) fz,Γ1g〉

= 2〈Γ1 f |Γ2g〉−2〈Γ2 f |Γ1g〉.

To show that this boundary triple inducesγ it is sufficient to note thatΓ1γ(z) = idG

andγ(z)Γ1 = iddomS∗ .

Proposition 1.26 does not use any information onQ-functions, andQ-
functions can be taken into account as follows.
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Proposition 1.28. Let γ be aΓ-field for (S,H0,G ) and Q be an associatedQ-
function, then there exists a boundary triple(G ,Γ1,Γ2) for S∗ which inducesγ
and Q.

Proof. Let (G ,Γ′
1,Γ

′
2) be the boundary triple forS∗ defined in proposition 1.26

and Q̃ be the inducedQ-function. By proposition 1.20, there exists a bounded
self-adjoint operatorM on G with Q(z) = Q̃(z) + M. Clearly, (G ,Γ1,Γ2) with
Γ1 = Γ′

1 andΓ2 = Γ′
2+MΓ′

1 is another boundary triple forS∗ by proposition 1.15.
On the other hand,γ is still theΓ-field induced by this new boundary triple, and the
inducedQ-function, which isΓ2γ(z)≡ Γ′

2γ(z)+MΓ′
1γ(z) ≡ Q̃(z)+M, coincides

with Q(z).

One of the most useful tools for the spectral analysis of self-adjoint extensions
is the Krein resolvent formula described in the following theorem.

Theorem 1.29.Let S be a closed densely defined symmetric operator with equal
deficiency indices in a Hilbert spaceH , (G ,Γ1,Γ2) be a boundary triple for S∗,
H0 be the self-adjoint restriction of S∗ to kerΓ1, γ and Q be the KreinΓ-field
and Q-function induced by the boundary triple. LetΛ be a self-adjoint linear
relation inG and HΛ be the restriction of S∗ to the functions f∈ domS∗ satisfying
(Γ1 f ,Γ2 f ) ∈ Λ.

(1) For any z∈ resH0 there holdsker(HΛ−z) = γ(z)ker
(
Q(z)−Λ

)
.

(2) For any z∈ resH0∩ resHΛ there holds0∈ res
(
Q(z)−Λ

)
and

(H0−z)−1− (HΛ−z)−1 = γ(z)
(
Q(z)−Λ

)−1γ∗(z̄).

(3) There holdsspecHΛ \specH0 =
{

z∈ resH0 : 0∈ spec
(
Q(z)−Λ

)}
.

Proof. (1) Assume thatφ ∈ ker
(
Λ − Q(z)

)
then there existsψ ∈ G such

that (φ ,ψ) ∈ Λ and ψ − Q(z)φ = 0. This means the inclusion(φ ,Q(z)φ) ∈
Λ. Consider the vectorF = γ(z)φ . Clearly, (S∗ − z)F = 0. The condition
(Γ1F,Γ2F) ≡ (φ ,Q(z)φ)∈ Λ means thatF ∈ domHΛ and(HΛ−z)F = 0. There-
fore,γ(z)ker

(
Q(z)−Λ

)
⊂ ker(HΛ−z).

Conversely, letF ∈ ker(HΛ − z), z∈ resH0. Then also(S∗− z)F = 0 and
by theorem 1.23(1) there existsφ ∈ G with F = γ(z)φ . Clearly,

(
φ ,Q(z)φ

)
≡

(Γ1F,Γ2F) ∈ Λ, i.e. there existψ ∈ G with (φ ,ψ) ∈ Λ andQ(z)φ = ψ. But this
meansφ ∈ ker

(
Q(z)−Λ

)
.

(2) Let z∈ resH0∩ resHΛ. Take anyh ∈ H and denotef := (HΛ − z)−1h;
clearly, f ∈ domHΛ, and by theorem 1.23(1) there exist uniquely determined func-
tions fz ∈ domH0 andgz ∈ Nz with f = fz+ gz. There holdsh = (HΛ − z) f =
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(S∗−z) f = (S∗−z) fz+(S∗−z)gz = (S∗−z) fz =(H0−z) fz and fz = (H0−z)−1h.
Moreover, fromΓ1 fz = 0 one hasΓ1 f = Γ1gz, gz = γ(z)Γ1 f , and, therefore,

(HΛ−z)−1h = (H0−z)−1h+ γ(z)Γ1 f . (1.26)

Applying to the both sides of the equalityf = fz+ γ(z)Γ1 f the operatorΓ2

one arrives atΓ2 f = Γ2 fz+Q(z)Γ1 f and

Γ2 f −Q(z)Γ1 f = Γ2 fz. (1.27)

Whenh runs through the whole spaceH , then fz runs through domH0 and the
valuesΓ2 fz cover the whole spaceG . At the same time, iff runs through domHΛ,
then the values(Γ1 f ,Γ2 f ) cover the wholeΛ. It follows then from (1.27) that
ran

(
Λ−Q(z)

)
= G . On the other hand, by (1) one has ker

(
Λ−Q(z)

)
= 0 and

0∈ res
(
Λ−Q(z)

)
. From (1.27) one obtains

Γ1 f =
(
Λ−Q(z)

)−1Γ2 fz. (1.28)

By theorem 1.23(2d) there holdsΓ2 fz = γ∗(z̄)h. Substituting this equality into
(1.28) and then into (1.26) one arrives at the conclusion.

The item (3) follows trivially from the item (2).

Remark 1.30. Note that the operatorsHΛ andH0 satisfy domHΛ ∩ domH0 =
domSiff Λ is a self-adjoint operator (i.e. is a single-valued); one says thatHΛ and
H0 aredisjoint extensions ofS. In this case the resolvent formula conains only
operators and has the direct meaning. As we will see below, inthis case one can
obtain slightly more spectral information in comparison with the case whenΛ is
a linear relation, so it is useful to understand how to reducethe general case to the
disjoint one.

Let T be the maximal common part ofH0 andHΛ, i.e. the restriction ofS∗ to
domH0∩domHΛ. Clearly,T is a closed symmetric operator,

domT = { f ∈ domS∗ : Γ1 f = 0, Γ2 f ∈ L } (1.29)

whereL = ker(Λ−1) is a closed linear subspace ofG .

Lemma 1.31.LetL be a closed linear subspace ofG and T be defined by(1.29),
thendomT∗ = { f ∈ domS∗ : Γ1 f ∈ L ⊥}.

Proof. It is clear that bothT andT∗ are restrictions ofS∗. Hence, for anyf ∈
domT andg∈ domS∗ one has

W( f ,g) := 〈 f |S∗g〉−〈T f |g〉 = 〈Γ1 f |Γ2g〉−〈Γ2 f |Γ1g〉 = 〈Γ2 f |Γ1g〉.

As Γ2(domT) = L , one hasW( f ,g) = 0 for all f iff Γ1g⊥ L .
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Now one can construct a boundary triple forT∗ starting from the boundary
triple for S∗.

Theorem 1.32. Let the assumptions of theorem 1.29 be satisfied. LetL be a
closed subset ofG and an operator T be defined by(1.29). Then(G̃ , Γ̃1, Γ̃2)

is a boundary triple for T∗, whereG̃ := L ⊥ with the induced scalar product,
Γ̃ j := PΓ j , j = 1,2, and P is the orthogonal projection ontõG in G . The induced
Γ-field γ̃ andQ-functionQ̃ areγ̃(z) := γ(z)P,Q̃(z) := PQ(z)P considered as maps
from G̃ to Nz and inG̃ , respectively.

Proof. Direct verification.

Returning to the operatorsH0 andHΛ one sees that, by construction, they are
disjoint extensions ofT, and in the notation of theorem 1.32 they are given by the
boundary conditions̃Γ1 f = 0 andΓ̃2 f = LΓ̃1 f , respectively, whereL is a certain
self-adjoint operator inG̃ . Using theorem 1.29 one can relate the resolvents ofH0

andHΛ by

(H0−z)−1− (HΛ −z)−1 = γ̃(z)
(
Q̃(z)−L

)−1γ̃∗(z̄)

= γ(z)P
(
PQ(z)P−L

)−1
Pγ∗(z̄), (1.30)

and specHΛ \specH0 =
{

z∈ resH0 : 0∈ spec
(
PQ(z)P−L

)}
.

The operatorL can be calculated, for example, starting from the Cayley tran-
form of Λ (see proposition 1.2). Namely, letUΛ be the Cayley transform ofΛ,
then, obviously,G̃ = ker(1−UΛ)⊥. The Cayley transform ofL is then of the form
UL := PUΛP considered as a unitary operator iñG , andL = i(1−UL)

−1(1+UL).

Remark 1.33. For the case of asimplesymmetric operator (that is, having no
nontrivial invariant subspaces) one can describe thewholespectrum in terms of
the limit values of the Weyl function, and not only the spectrum lying in gaps of a
fixed self-adjoint extensions, see [17,24] for discussion.We note that, neverthless,
the simplicity of an operator is a quite rare property in multidimensional problems
which is quite difficult to check.

Remark 1.34. It seems that the notion of boundary value triple appered first in the
papers by Bruk [27] and Kochubei [88], although the idea goesback to the paper
by Calkin [38]. The notion of aΓ-field and aQ-function appeared first in [92,98],
where they were used to describe the generalized resolventsof self-adjoint exten-
sions. The relationship between the boundary triples and the resolvent formula in
the form presented in theorems 1.23 and 1.29 was found by Derkach and Mala-
mud, but it seems that the only existing discussion was in [50], which is hardly
available, so we preferred to provide a complete proof here.The same scheme of
the proof works in more abstract situations, see e.g. [46]. The forumula (1.30) is
borrowed from [115], but we give a different proof.
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Remark 1.35.Theorem 1.29 shows that one can express the resolvents ofall self-
adjoint extensions of a certain symmetric operator throughthe resolvent of afixed
extension, more precisely, of the one corresponding to the boundary condition
Γ1 f = 0. On the other hand, proposition 1.14 shows that by a suitable choice of
boundary triple one start with any extension. Formulas expressingQ-functions
associated with different extensions of the same operator can be found e.g. in
[49,67,96].

In view of proposition 1.5 on the parameterization of linearrelations it would
be natural to ask whether one can rewrite the Krein resolventformula completely
in terms of operators without using linear relations. Namely, if a self-adjoint
linear relationΛ is given in the formΛ = {(x1,x2) ∈ G ⊕G ; Ax1 = Bx2}, whereA
andB are bounded linear operators satisfying (1.4a) and (1.4b),can one write an
analogue of the Krein resolvent formula forHΛ in terms ofA andB? We formulate
only here the main result referring to the recent work [107] for the proof.

Theorem 1.36. Let the assumptions of theorem 1.29 be satisfied and A, B be
bounded linear operators inG satisfying(1.4a) and (1.4b). Denote by HA,B

the self-adjoint extension of S corresponding to the boundary conditions AΓ1 f =
BΓ2 f , then

(1) For any z∈ resH0 there holdsker(HA,B−z) = γ(z)ker
(
BQ(z)−A

)
.

(2) For any z∈ resH0∩ resHA,B the operator BQ(z)−A is injective and

(H0−z)−1− (HA,B−z)−1 = γ(z)
(
BQ(z)−A

)−1
Bγ∗(z̄). (1.31)

(3) If A and B satisfy additionally the stronger condition

0∈ res

(
A −B
B A

)
, (1.32)

then 0 ∈ res
(
BQ(z)− A

)
for all z ∈ resH0 ∩ resHA,B, and, respectively,

specHA,B\specH0 =
{

z∈ resH0 : 0∈ spec
(
BQ(z)−A

)}
.

Note that the condition (1.32) is satisfied if one uses the parameterization by
the Cayley transform (theorem 1.2), i.e.A = i(1+U), B = 1−U with a unitary
U , see proposition 1.1. Therefore, one can perform a “uniform” analysis of all
self-adjoint extensions using the single unitary parameter U . Note that the above
normalization condition is trivial for finite deficiency indices, hence the Krein
formula has a particularly transparent form [10].

We note in conclusion that the resolvent formulas (1.30) and(1.31) provide
two different ways of working with non-disjoint extensions, and thay can be ob-
tained one from another [115].
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1.4 Examples

Here we consider some situations in which boundary triples arise.

1.4.1 Sturm-Liouville problems

A classical example comes from the theory of ordinary differential operators. Let
V ∈ L2

loc(0,∞) be real valued and, for simplicity, semibounded below. Denote by

S0 the closure of the operator− d2

dx2 +V with the domainC∞
0 (0,∞) in the space

H := L2(0,∞). It is well-known that the deficiency indices ofS0 are(1,1). Us-
ing the integration by parts one can easily show that for the adjoint S := S∗0 as
a boundary triple one can take(C,Γ1,Γ2), Γ1 f = f (0), Γ2 f = f ′(0). Denoting
for z 6= C by ψz the uniqueL2-solution to−ψ ′′

z +Vψz = zψz with ψz(0) = 1 we
arrive to the induced KreinΓ-field, γ(z)ξ = ξ ψz, and the inducedQ-function
Q(z) = ψ ′

z(0), which is nothing but the Weyl-Titchmarsh function. Determining
the spectral properties of the self-adjoint extensions ofS0 with the help of this
function is a classical problem of the spectral analysis.

An analogous procedure can be done for Sturm-Louville operators on a seg-
ment. In H := L2[a,b], −∞ < a < b < ∞ consider an operatorS acting by
the rule f 7→ − f ′′ +V f with the domain domS= H2[a,b]; here we assume that
V ∈ L2[a,b] is real-valued. It is well-known thatSis closed. By partial integration
one easily sees that(G ,Γ1,Γ2),

G = C
2, Γ1 f =

(
f (a)
f (b)

)
, Γ2 f =

(
f ′(a)

− f ′(b)

)
,

is a boundary triple forS. The distinguisged extensionH0 corresponding to the
boundary conditionΓ1 f = 0 is nothing but the operator−d2/dx2 +V with the
Dirichlet boundary conditions.

Let two functionss(·;z),c(·;z)∈ ker(S−z) solve the equation

− f ′′ +V f = z f, z∈ C, (1.33)

and satisfys(a;z) = c′(a;z) = 0 ands′(a;z) = c(a;z) = 1. Clearly,s, c as well as
their derivatives are entire functions ofz; these solutions are linearly independent,
and their Wronksianw(z) ≡ s′(x;z)c(x;z)− s(x;z)c′(x;z) is equal to 1. Forz /∈
specH0 one hass(b;z) 6= 0, and any solutionf to (1.33) can be written as

f (x;z) =
f (b)− f (a)c(b;z)

s(b;z)
s(x;z)+ f (a)c(x;z), (1.34)

which means that theΓ-field induced by the above boundary triple is

γ(z)

(
ξ1

ξ2

)
=

ξ2−ξ1c(b;z)
s(b;z)

s(x;z)+ξ1c(x;z).

25



The calculation off ′(a) and− f ′(b) gives
(

f ′(a;z)
− f ′(b;z)

)
= Q(z)

(
f (a;z)
f (b;z)

)
, Q(z) =

1
s(b;z)

(
−c(b;z) 1

1 −s′(b;z)

)
,

(1.35)
andQ(z) is the inducedQ-function.

A number of examples of boundary triples in problems concerning ordinary
differential equations as well as their applications to scattering problems can be
found e.g. in [18,49].

The situation becomes much more complicated when dealing with elliptic dif-
ferential equations on domains (or manifolds) with boundary. In this case the
construction of a boundary triple involves certain information about the geom-
etry of the domain, namely, the Dirichlet-to-Neumann map, see e.g. the recent
works [16, 115] and the classical paper by Vishik [124], and the question on ef-
fective description of all self-adjoint boundary value problems for partial differen-
tial equations is still open, see the discussion in [54, 55] and historical comments
in [75]; an explicit construction of boundary triples for the Laplacian in a bounded
domain is presented in Example 5.5 in [115]. We remark that boundary triples
provide only one possible choice of coordinates in the defect subspaces. Another
possibility would be to use some generalization of boundarytriples, for example,
the so-called boundary relations resulting in unbounded Weyl functions [26, 48],
but it seems that this technique is rather new and not developed enough for appli-
cations.

1.4.2 Singular perurbations

Here we discuss the construction of self-adjoint extensions in the context of the
so-called singular perturbations; we follow in part the constriction of [114].

Let H0 be a certain self-adjoint operator in a separable Hilbert spaceH ; its
resolvent will be denoted byR0(z), z∈ resH0. Denote byH1 the domain domH0

equiped with the graph norm,‖ f‖2
1 = ‖H0 f‖2 + ‖ f‖2; clearly, H1 is a Hilbert

space. LetG be another Hilbert space. Consider a bounded linear mapτ : H1 →
G . We assume thatτ is surjective and that kerτ is dense inH .

By definition, by a singular perturbation ofH0 supported byτ we mean
any self-adjoint extension of the operatorS which is the restriction ofH0 to
domS:= kerτ. Due to the above restrictions,S is a closed densely defined sym-
metric operator.

It is wortwhile to note that singular perturbations just provide another language
for the general theory of self-adjoint extensions. Namely,let S by any closed
densely defined symmetric operator with equal deficiency indices andH0 be some
its self-adjoint extension. Construct the spaceH1 as above. Clearly,L := domS
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is a closed subspace ofH1, therefore,H1 = L ⊕L ⊥. DenotingL ⊥ by G and
the orthogonal projection fromH1 to L ⊥ by τ, we see the self-adoint extensions
of Sare exactly the singular perturbations ofH0 supported byτ. At the same time,
knowing explicitly the mapτ gives a possibility to construct a boundary triple for
S.

Proposition 1.37. The mapsγ(z), γ(z) =
(
τR0(z)

)∗
, z∈ resH0, form a KreinΓ-

field for (S,H0,G ).

Proof. Note that the operatorA := τR0(z) : H → G is surjective, therefore,
ranA∗ = kerA⊥. In other words,

ranγ(z) = kerτR0(z)⊥ =
{

f ∈ H : τR0(z) f = 0
}⊥

=
{
(H0−z)g : τg = 0

}⊥
=

{
(S−z)g : g∈ domS

}⊥

= ran(S−z)⊥ = ker(S∗−z) =: Nz. (1.36)

Let us show thatγ(z) is an isomorphism ofG andNz. First note thatγ(z) is
bounded and, as we have shown above, surjective. Moreover, kerγ(z) = ranA⊥ =
G⊥ = {0}. Therefore,γ(z) : G → Nz has a bounded inverse defined everywhere
by the closed graph theorem, and the condition (1.14a) is satisfied.

The condition (1.14b) is a corollary of the Hilbert resolvent identity.

Now one can construct a boundary triple for the operatorS∗.

Proposition 1.38.Take anyζ ∈ resH0 and represent any f∈ domS∗ in the form
f = fζ + γ(ζ )F, fζ ∈ domH0, F ∈ G , whereγ is defined in proposition 1.37.

Then(G ,Γ1,Γ2), Γ1 f = F, Γ2 f =
1
2

τ
(

fζ + fζ
)
, is a boundary triple for S∗. The

inducedΓ-field isγ(z), and the inducedQ-function Q(z) has the form

Q(z) =
1
2

zτR0(z)
(
γ(ζ )+ γ(ζ )

)
− 1

2
τR0(z)

(
ζ γ(ζ )+ζγ(ζ )

)
.

Proof. The major part follows from proposition 1.26. To obtain the formula for
Q(z) it is sufficient to see that for the functionf = γ(z)ϕ, ϕ ∈ G , one hasfζ =(
γ(z)− γ(ζ )

)
ϕ and to use the property (1.14b).

Let us consider in greater detail a special type of the above construction, the
so-called finite rank perturbations [8].

Let H0 be as above. Forα ≥ 0 denote byHα the domain of the operator

((H0)2+1)α/2 equiped with the norm‖ f‖α =
∥∥(

(H0)2+1
)α/2

f
∥∥. The spaceHα

becomes a Hilbert space, and this notation is compatible with the above definition
of H1, i.e. H1 is the domain ofH0 equiped with the graph norm, andH0 = H .
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Moreover, forα < 0 we denote the completion ofH with respect to the norm
‖ f‖α =

∥∥(H0)2+1)α/2 f
∥∥. Clearly,Hα ⊂ Hβ if α > β .

Takeψ j ∈ H−1, j = 1, . . . ,n. In many problems of mathematical physics one
arrives at operators given by formal expressions of the form

H = H0+
n

∑
j ,k=1

α jk〈ψ j |·〉ψk, (1.37)

whereα jk are certain numbers (“coupling constants”). This sum is notdefined
directly, as genericallyψ j /∈ H . At the same time, the operatorH given by
this expression is usually supposed to be self-adjoint (andthen one has formally
α jk = αk j). Denote byS the restriction ofH0 to the functionsf ∈ domH0 with
〈ψ j | f 〉 = 0 for all j; we additionally assume thatψ j are linearly indepedent mod-
ulo H (otherwiseS might become nondensely defined). Clearly, for any rea-
sonable definition, the operatorsH0 and H must coincide on the domain ofS.
Therefore, by definition, under an operator given by the right-hand side of (1.37)
we understand the whole family of self-adjoint extensions of S. The boundary
triple for S∗ can be easily obtained using the above constructions if one set

τ f :=



〈ψ1| f 〉

. . .
〈ψn| f 〉


 ∈ C

n.

The correspondingΓ-field from proposition 1.37 takes the form

γ(z)ξ =
n

∑
j=1

ξ jh j(z), h j(z) := R0(z)ψ j ∈ H , ξ = (ξ1, . . .ξn) ∈ C
n,

and the boundary triples and theQ-function are obtained using the formulas of
proposition 1.38.

Unfortunately, the above construction has a severe disadvantage, namely, the
role of the coefficientsα jk in (1.37) remains unclear. The definition ofH using
self-adjoint extensions involves self-adjoint linear relations inCn, and it is difficult
to say what is the relationship between these two types of parameters. In some
cases, if bothH andH0 have certain symmetries, this relationship can be found
using a kind of renormalization technique [95, 97]. The situation becomes more
simple if in the above construction one hasψ j ∈ H−1/2 andH0 is semibounded.
In this case one can properly defineH given by (1.37) using the corresponding
quadratic form,

h( f ,g) = h0( f ,g)+
n

∑
j ,k=1

α jk〈 f |ψ j〉〈ψk|g〉,
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whereh0 is the quadratic form associated withH0, see [89]. Also in this case
one arrives at boundary triples and resolvent formulas. A very detailed analysis
of rank-one perturbations of this kind with an extensive bibliography list is given
in [121].

We also remark that one can deal with operator of the form (1.37) in the so-
called supersingular caseψ j /∈ H−1; the corresponding operatorsH must be con-
structed then in an extended Hilbert or Pontryagin space, see e.g. [51,95,119] and
references therein.

1.4.3 Point interactions on manifolds

Let X be a manifold of bounded geometry of dimensionν, ν ≤ 3. LetA = A j dxj

be a 1-form onX, for simplicity we suppose hereA j ∈C∞(X). The functionsA j

can be considered as the components of the vector potential of a magnetic field
on X. On the other hand,A defines a connection∇A in the trivial line bundle
X ×C → X, ∇Au = du+ iuA; by −∆A = ∇∗

A∇A we denote the corresponding
Bochner Laplacian. In addition, we consider a real-valued scalar potentialU of
an electric field onX. This potential will be assumed to satisfy the following
conditions:

U+ := max(U,0) ∈ Lp0
loc(X), U− := max(−U,0) ∈

n

∑
i=1

Lpi (X),

2≤ pi ≤ ∞, 0≤ i ≤ n;

we stress thatpi as well asn are not fixed and depend onU . The class of such po-
tentials will be denoted byP(X). For the caseX = Rn one can study Schrödinger
operators with more general potentials from the Kato class [25,122].

We denote byHA,U the operator acting on functionsφ ∈ C∞
0 (X) by the rule

HA,Uφ =−∆Aφ +Uφ . This operator is essentially self-adjoint inL2(X) and semi-
bounded below [36]; its closure will be also denoted byHA,U . It is also known [36]
that

domHA,U ⊂C(X). (1.38)

In what follows, the Green functionGA,U(x,y;ζ ) of HA,U , i.e. the integral kernel
of the resolventRA,U(ζ ) := (HA,U −ζ )−1, ζ ∈ resHA,U , will be of importance.

The most important its properties for us are the following ones:

for anyζ ∈ resHA,U , GA,U is continuous inX×X for ν = 1
and inX×X \{(x,x), x∈ X} for ν = 2,3;

(1.39a)

for ζ ∈ resH0 andy∈ X one hasGA,U(·,y;ζ ) ∈ L2(X); (1.39b)

for any f ∈ L2(X) and ζ ∈ resHA,U , the functionx 7→∫

X
GA,U(x,y;ζ ) f (y)dy is continuous.

(1.39c)
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We remark that for any f ∈ domHA,U and ζ ∈ resHA,U one has f =
RA,U(ζ )(HA,U −ζ ) f . Using the Green function we rewrite this as

f (x) =
∫

X
GA,U(x,y;ζ )(HA,U −ζ ) f (y)dy a.e.;

by (1.39c) and (1.38) the both sides are continuous functions of x, therefore, they
coincide everywhere, i.e.

f (x) =

∫

X
GA,U(x,y;ζ )(HA,U −ζ ) f (y)dy, f ∈ domHA,U , for all x∈ X. (1.40)

Fix pointsa1, . . . ,an ∈ X, a j 6= ak if j 6= k, and denote byS the restriction of
HA,U on the functions vanishing at alla j , j = 1, . . . ,n. Clearly, due to (1.38) this
restriction is well defined, andS is a closed densely defined symmetric operator.
By definition, by a point perturbation of the operatorHA,U supported by the points
a j , j = 1, . . . ,n, we mean any self-adjoint extension ofS. Now we are actually
in the situation of subsubsection 1.4.2. To simplify notation, we denoteH0 :=
HA,U and change respectively the indices for the resolvent and the Green function.
Denote byτ the map

τ : domH0 ∋ f 7→




f (a1)
. . .

f (an)


 ∈ C

n.

By (1.40) and (1.39b),τ is bounded in the graph norm ofH0. Now let us use
proposition 1.37. The mapτR0(z) is of the form

f 7→




∫

X
G0(a1,y;z) f (y)dy

. . .∫

X
G0(an,y;z) f (y)dy


 .

Calculating the adjoint operator and taking into account the identityG0(x,y;z) =

G0(y,x;z) we arrive at

Lemma 1.39.The map

γ(ζ ) : C
n ∋ (ξ1, . . . ,ξn) 7→

n

∑
j=1

ξ jG
0(·,a j ;ζ ) ⊂ L2(X) (1.41)

is a KreinΓ-field for (S,H0,Cn).
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Let us construct a boundary triple corresponding to the problem. Use first
corollary 1.27. Chooseζ ∈ resH0 ⊂ R; this is possible becauseH0 is semi-
bounded below. For anyf ∈ domS∗ there areFj ∈ C such that fζ := f −
∑ j FjG0(·,a j ;ζ ) ∈ domH0. The numbersFj are ζ -independent, and by corol-
lary 1.27, the maps

Γ̃1 f := (F1, . . . ,Fn), Γ̃2 f =
(

fζ (a1), . . . , fζ (an)
)

(1.42)

form a boundary triple forS∗. Nevertheless, such a construction is rarely used in
practice due to its dependence on the energy parameter. We modifiy the above
considerations using some information about the on-diagonal behavior ofG0.

Consider the caseν = 2 or 3. As shown in [37], there exists a function
F(x,y) defined forx 6= y such that for anyζ ∈ resH0 there exists another function
G0

ren(x,y;ζ ) continuous inX×X such that

G0(x,y;ζ ) = F(x,y)+G0
ren(x,y;ζ ), (1.43)

and we additionally requestF(x,y) = F(y,x). It is an important point that un-
der some assumptions the functionF can be chosen independent of the magnetic
potentialA j and the scalar potentialU . For example, ifν = 2 one can always

setF(x,y) = log
1

d(x,y)
. In the caseν = 3 the situation becomes more compli-

cated. For example, for two scalar potentialsU andV satisfying the above condi-
tions one can take the same functionF for the operatorsHA,U andHA,V provided
U −V ∈ Lq

loc(X) for someq > 3. In paritucular, for anyU satisying the above
conditions and, additionally,U ∈ Lq

loc(X), for the operatorH0,U one can always

put F(x,y) =
1

4πd(x,y)
.

For the Schrödinger operator with a uniform magnetic field in R
3, H0 = (i∇+

A)2, where∇×A=: B is constant, one can putF(x,y) :=
eiBxy/2

4π|x−y| . For a detailed

discussion of on-diagonal singularities we refer to our paper [37].
Let us combine the representation (1.43) for the Green function and the equal-

ity domS∗ = domH0 +Nζ . Near each pointa j , any functionf ∈ domS∗ has the
following asymptotics:

f (x) = f j +FjF(x,a j)+o(1), f j ,Fj ∈ C.

Proposition 1.40.The triple(Cn,Γ1,Γ2) with Γ1 f = (F1, . . . ,Fn)∈C
n andΓ2 f =

( f1, . . . , fn) ∈ Cn is a boundary triple for S∗.

Proof. Let us fix someζ resH0∩R. Comparing the mapsΓ j with the maps̃Γ j

from (1.42) one immediately seeΓ1 ≡ Γ̃1. Furthermore,Γ2 f = Γ̃2 f +BΓ̃1, where
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B is an×n matrix,

B jk =

{
G0(a j ,ak;ζ ) if j 6= k,

G0
ren(a j ,a j ;ζ ) otherwise.

As B = B∗, it remains to use proposition 1.15.

Clearly, the map (1.41) is the KreinΓ-field induced by the boundary triple
(Cn,Γ1,Γ2). The calculation of the correspondingQ-functionQ(ζ ) gives

Q jk(ζ ) =

{
G0(a j ,ak;ζ ) if j 6= k,

G0
ren(a j ,a j ;ζ ) otherwise.

We note that the calculating of theQ-function needsa priori the continuity of the
Green function (otherwise the values of the Green function at single points would
not be defined). A bibliography concerning the analysis of operators of the above
type for particular HamiltoniansH0 can be found e.g. in [6].

The above construction can generalized to the case of point perturbations sup-
ported by non-finite (but countable) sets provided some uniform discreteness, we
refer to [63] for the general theory, to [7, 33, 69] for the analysis of periodic con-
figurations, and to [22, 52, 77, 116] for multidimensional models with random in-
teractions.

For analysis of interactions supported by submanifolds of higher dimension
we refer to [19,42,43,59,60,113] and references therein.

1.4.4 Direct sums and hybrid spaces

Assume that we have a countable family of closed linear operators Sα in some
Hilbert spacesHα , α ∈ A , having boundary triples(G α ,Γα

1 ,Γα
2 ). Denote by

H0
α the corresponding distinguished extensions,H0

α := Sα |kerΓα
1
. We impose some

additional regularity conditions, namely, that:

• there exist constantsa andb such that for anyα ∈A and fα ∈ domSα there
holds‖Γα

1/2 fα‖ ≤ a‖Sα fα‖+b‖ fα‖,

• for any(ξ 1/2
α ) ∈ ⊕

α∈A G α there is( fα) ∈ ⊕
α∈A Hα , fα ∈ domSα , with

Γα
1/2 fα = ξ 1/2

α .

The above conditions are obviously satisfied if, for example, the operatorsSα are
copies of a finite set of operators, and the same holds for the boundary triples.
Another situation where the conditions are satisfied, is provided by the operators
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Sα = − d2

dx2 +Uα acting inL2[aα ,bα ] with the domainsH2[aα ,bα ] provided that

there are constantsl1, l2,C such thatl1 ≤ |aα −bα | < l2 and‖Uα‖L2 < C and that
the boundary triples are taken as in subsection 1.4.1, see [108] for details.

Under the above conditions, the operatorS :=
⊕

α∈A Sα acting in H :=⊕
α∈A Hα is closed and has a boundary triple(G ,Γ1,Γ2),

G :=
⊕

α∈A

Gα , Γ j :=
⊕

α∈A

Γα
j , j = 1,2.

Moreover, the corresponding distinguished extensionH0 and the induced Krein
mapsγ andQ are also direct sums, i.e., at least

H0 :=
⊕

α∈A

H0
α , γ(z) =

⊕

α∈A

γα(z), Q(z) =
⊕

α∈A

Qα(z).

Note thatγ(z) andQ(z) are defined only forz /∈ specH0 ≡ ⋃
α∈A specH0

α . Let us
show how this abstract construction can be used to define Schrödinger operators
on hybrid spaces, i.e. on configurations consisting of pieces of different dimen-
sions.

Let Mα , α ∈A , be a countable family of manifolds as in subsubsection 1.4.3.
Fix several pointsmα j ∈Mα , j = 1, . . . ,nα . We interpret these points as points of
glueing. More precisely, we consider a matrixT with the entriesT(α j)(βk) such that
T(α j)(βk) = 1 if the pointmα j is identified withmβk (i.e. pointmα j of Mα is glued
to the pointmβk of Mβ ), andT(α j)(βk) = 0 otherwise. The obtained topological
space is not a manifold as it has singularities at the points of glueing; we will
refer it to as ahybrid manifold. Our aim is to show how to define a Schrödinger
operator in such a structure.

On of the manifoldsMα consider Schrödinger operatorsHα as in subsubsec-
tion 1.4.3. To satisfy the above regularity conditions we request that these opera-
tors are copies of a certain finite family. Forα ∈ A denote bySα the restriction
of Hα to the functions vanishing at all the pointsmα j and construct a boudary
triple (Cmα ,Γα1,Γα2) for S∗α as in in subsubsection 1.4.3. Clearly, as a boundary
triple for the operatorS∗, S :=

⊕
α∈A Sα , in the spaceL2(M) :=

⊕
α∈A L2(Mα)

one take
(
G ,Γ1,Γ2

)
with G :=

⊕
α∈A Cnα , Γ j( fα) = (Γα j fα), j = 1,2. Un-

der a Schrödinger operator onL2(M) one can mean any self-adjoint extension
of S. To take into account the way how the manifolds are glued witheach
other, one should restrict the class of possible boundary conditions. A reason-
able idea would be to consider boundary conditions of the form AΓ1 = BΓ2 such
that A(α j)(βk) = B(α j)(βk) = 0 if T(α j)(βk) = 0, i.e. assuming that each boundary
condition involves only points glued to each other.

The analysis of generic Schrödinger operators on hybrid manifolds is hardly
possible, as even Schrödinger operators on a single manifold do not admit the
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complete analysis. One can say some more about particular configuration, for
example, if one has only finitely many piecesMα and they all are compact [57].
Some additional information can be obtained for periodic configurations [30,32].

One can extend the above construction by combining operators from subsec-
tion 1.4.1 and 1.4.3; in this way one arrive at a space with consists of manifolds
connected with each other through one-dimensional segments.

One can also take a direct sum of operators from subsubsection 1.4.1 to define
a Schrödinger operator on a configuration consisting of segments and halflines
connected with each other; such operators are usually referred to asquantum
graphs, and their analysis becomes very popular in the last decades, see e.g. [21]
for the review and recent developments.

2 Classification of spectra of self-adjoint operators

2.1 Classification of measures

Here we recall briefly some concepts of the measure theory.
Let B be the set of all the Borel subsets of a locally compact separable metric

spaceX. A mappingµ : B → [0,+∞] is called apositive Borel measureon X
if it is σ -additive (i.e. µ(

⋃

k

Bk) = ∑
k

µ(Bk) for every countable family(Bk) of

mutually not-intersecting sets fromB) and has the following regularity properties:

• µ(K) < ∞ for every compactK ⊂ X;

• for everyB ∈ B there holdsµ(B) = sup{µ(K) : K ⊂ B, K is compact} =
inf{µ(G) : G⊃ B, G is open} .

A complex valued Borel measure onX is a σ -additive mappingµ : B → C

such that the variation|µ| of µ defined onB by

|µ|(B) = sup∑ |µ(Bk)| ,

where the supremum is taken over all finite families(Bk) of mutually non-
intersecting setsBk from B such that

⋃
Bk ⊂ B, is a Borel measure. For a positive

measureµ one has|µ| = µ. If |µ|(X) < ∞, thenµ is calledfinite (or bounded)
and |µ|(X) is denoted also by‖µ‖. We will denote byM (X) (respectively, by
M +(X)) the set of all complex Borel measures (respectively, the set of all pos-
itive Borel measures) onX; if X = R we write simplyM andM +. It is clear
thatM (X) is a complex vector space (even a complex vector lattice) andthe sub-
setM b(X) of all bounded measures fromM (X) is a vector subspace ofM (X)
which is a Banach space with respect to the norm‖µ‖.
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Ona says that a measureµ is concentratedon a Borel setS∈ B, if µ(B) =
µ(B∩S) for all B ∈ B. Let µ1 andµ2 be two measures; they are calleddisjoint
or mutually singular, if there exists two disjoint Borel setS1 andS2 such thatµ j

is concentrated onSj ( j = 1,2); we will write µ1⊥µ2 if µ1 andµ2 are disjoint.
The measureµ1 is said to besubordinatedto µ2 (or absolutely continuous with
respect toµ2) if every |µ2|-negligible Borel set is simultaneously|µ1|-negligible.
According to the Radon–Nikodym theorem, the following assertions are equiva-
lent: (1) µ1 is subordinated toµ2; (2) there exists a Borel functionf such that
µ1 = f µ2 (in this casef ∈ L1

loc(X,µ2) and f is called theRadon–Nikodym deriva-
tiveof µ1 with respect toµ2). If µ1 is subordinated toµ2 and simultaneouslyµ2 is
subordinated toµ1 (i.e., if µ1 andµ2 have the same negligible Borel sets), thenµ1

andµ2 are calledequivalent(in symbols:µ1 ∼ µ2). For a subsetM ⊂ M (X) we
denoteM⊥ = {µ ∈ M (X) : µ⊥ν ∀ν ∈ M}; M⊥ is a vector subspace ofM (X).
A subspace M⊂M (X) is called aband(or acomponent) in M (X), if M = M⊥⊥.
For every subsetL ∈ M (X) the setL⊥ is a band; the bandL⊥⊥ is called theband
generated by L. In particular, ifµ ∈ M (X), then the band{µ}⊥⊥ consists of all
ν which are subordinated toµ. Moreover,µ1 is subordinated toµ2 if and only if
{µ1}⊥⊥ ⊂ {µ2}⊥⊥; in particular,µ1 ∼ µ2 if and only if {µ1}⊥⊥ = {µ2}⊥⊥. The
bandsM andN are calleddisjoint, if µ⊥ν for every pairµ ∈ M andν ∈ N.

The family (Lξ )ξ∈Ξ of bands inM (X) such thatµ ∈
( ⋃

ξ∈Ξ
Lξ

)⊥
implies

µ = 0 is calledcomplete. Let a complete family of mutually disjoint bandsLξ ,
ξ ∈ Ξ, is given. Then for everyµ ∈ M (X), µ ≥ 0, there exists a unique family
(µξ )ξ∈Ξ, µξ ∈ Lξ , such thatµ = sup

ξ∈Ξ
µξ , where the supremum is taken in the

vector latticeM (X); µξ is called thecomponentof µ in Lξ . If, in addition, the
family (Lξ ) is finite, thenM (X) is the direct sum of(Lξ ) andµ is the sum of its
componentsµξ .

In particular, if L is a band, then the pair(L,L⊥) is a complete family of
mutually disjoint bands; the component of a measureµ in L coincides in this case
with the projection ofµ ontoL parallel toL⊥ and denoted byµL. The measure
µL is completely characterized by the following two properties:

• µL ∈ L;

• (µ −µL)⊥L.

A Borel measureµ is called apointor atomicmeasure, if it is concentrated on
a countable subsetS⊂ X. A points∈ Ssuch thatµ({s}) 6= 0 is called an atom for
µ. For every setB∈ B there holds

µ(B) = ∑
s∈B∩S

µ({s}) .
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The set of all complex point Borel measures onX we will denote byMp(X), this
is a band inM (X).

A Borel measureµ is called acontinuousmeasure, ifµ({s}) = 0 for every
s∈ X. The set of all continuous Borel measures onX we will denote byMc(X).
It is clear thatM⊥

c (X) = Mp(X), M⊥
p (X) = Mc(X), andM (X) is the direct sum

of the bandsMp(X) andMc(X).
Let nowX be a locally compact separable metric group with the continuous

Haar measure. We fix the left Haar measureλ ; if X is a compact space, we choose
λ to be normalized, in the caseX = R we chooseλ to be the Lebesgue measure.
A measureµ on X is calledabsolutely continuous, if it is subordinated toλ and
singular, if it is disjoint to λ (it is clear that these definitions are independent on
the particular choice ofλ ). The set of all absolutely continuous Borel measures
onX (respectively, the set of all singular Borel measures onX) will be denoted by
Mac(X) (respectively, byMs(X)). In particular,Mp(X)⊂ Ms(X). It is clear that
M⊥

s (X) = Mac(X), M⊥
ac(X) = Ms(X), andM (X) is the direct sum of the bands

Mac(X) andMs(X).
A Borel measureµ on X is called asingular continuousmeasure, if it is si-

multaneously continuous and singular. The set of all singular continuous Borel
measures onX we will denote byMsc(X); this is a band inM (X). By definition
µ ∈ Msc if and only if µ is concentrated on a Borel set of zero Haar measure and
µ(S) = 0 for every countable setS.

According to theLebesgue decomposition theoremeach Borel measureµ on
the groupX is decomposable in a unique way into the sum

µ = µp + µac+ µsc,

whereµp ∈ Mp(X), µac ∈ Mac(X), µsc ∈ Msc(X). We will denote alsoµc =
µac+ µsc andµs = µp + µsc. It is clear thatµc ∈ Mc(X), µs ∈ Ms(X).

2.2 Spectral types and spectral measures

In this section,A denotes a self-adjoint operator in a Hilbert spaceH , resA is the
resolvent set ofA, specA := C\ resA is the spectrum ofA. Forz∈ resA we denote
R(z;A) := (A−z)−1 (the resolvent ofA).

The first classification of spectra is related to the stability under compact
perturbations ofA. By definition, thediscretespectrum ofA (it is denoted by
specdisA) consists of allisolatedeigenvalues offinite multiplicity, and theessen-
tial spectrum ofA, specessA, is the complement of the discrete spectrum in the
whole spectrum: specessA = specA\ specdisA. By the famous Weyl perturbation
theorem, for a pointx0 ∈ specA the following assertions are equivalent

• ζ ∈ specessA,
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• for every compact operatorK in H there holdsζ ∈ specess(A+K).

The second classification is related to the transport and scattering properties
of a quantum mechanical system with the HamiltonianH = A. ForΩ ∈B denote
PΩ(A) = χΩ(A), whereχΩ is the indicator function of the subsetΩ ⊂ R; PΩ(A)
is the spectral projector forA on the subsetΩ. The mappingB ∋ Ω 7→ PΩ(A) is
called the projection valued measure associated withA (the resolution of identity).
For every pairϕ,ψ ∈ H , the mapping

B ∋ Ω 7→
〈
ϕ

∣∣PΩ(A)ψ
〉

=
〈
PΩ(A)ϕ

∣∣PΩ(A)ψ
〉

is a complex Borel measure on the real lineR which is called thespectral measure
associated with the triple(A,ϕ,ψ) and denoted byµϕ,ψ (or more precisely, by
µϕ,ψ (· ;A)). If ϕ = ψ, thenµϕ ≡ µϕ,ϕ is a bounded positive Borel measure onR,

B ∋ Ω 7→ 〈ϕ|PΩ(A)ϕ〉 = ‖PΩ(A)ϕ‖2 ,

with the norm‖µϕ‖ = ‖ϕ‖2. Therefore,µϕ,ψ is bounded and

|µϕ,ψ |(Ω)≤
[
µϕ(Ω)µψ(Ω)

]1/2
.

Moreover, suppµϕ,ψ ⊂ specA.
According to the Riesz–Markov theorem, for a bounded complex Borel mea-

sureµ onR the following three conditions are equivalent:

• µ = µϕ,ψ for someϕ,ψ ∈ H ;

• for every continuous functionf onR with compact support

〈ϕ| f (A)ψ〉 =

∫

R

f (x)dµ(x) ;

• for every bounded Borel functionf onR

〈ϕ| f (A)ψ〉 =

∫

R

f (x)dµ(x) .

The following proposition is obvious.

Proposition 2.1. For a Borel subsetΩ ⊂ R the following assertions hold:

(1) µϕ (Ω) = 0 if and only if PΩϕ = 0.

(2) µϕ is concentrated onΩ if and only if PΩϕ = ϕ.
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Proposition 2.2. The following assertions take place.

(1) µϕ,ψ andµϕ+ψ are subordinated toµϕ + µψ ;

(2) µaϕ = |a|2µϕ for every a∈ C;

(3) if µϕ⊥µψ , thenϕ ⊥ ψ;

(4) if µϕ⊥µψ , and B= f (A) where f is a bounded Borel function, then
µBϕ⊥µψ ;

(5) if µϕn⊥µψ for a sequenceϕn fromH , andϕn → ϕ in H , thenµϕ⊥µψ .

Proof. (1) ForB∈ B we have:

|µϕ,ψ |(B)≤ ‖PB(ϕ)‖‖PB(ψ)‖,
[
µϕ+ψ (B)

]1/2
= ‖PB(ϕ +ψ)‖ ≤ ‖PB(ϕ‖+‖PB(ψ)‖,

hence|µϕ,ψ |(B) = µϕ+ψ (B) = 0, if µϕ+ψ (B) = 0.
(2) Trivial.
(3) Let S,T ∈ B, S∩T = /0, µϕ be concentrated onSandµψ be concentrated

onT. Then, according to proposition 2.1,〈ϕ,ψ〉= 〈PSϕ,PTψ〉= 〈ϕ,PSPTψ〉= 0.
(4) LetSandT be as in item (3). ThenPSϕ = ϕ, PTψ = ψ. HencePSf (A)ϕ =

f (A)PSϕ = f (A)ϕ and we can refer to proposition 2.1
(5) Let Sn,Tn ∈ B, Sn∩Tn = /0, µϕn be concentrated onSn andµψ be concen-

trated onTn. SetT =
⋂

Tn, S= R \T. Thenµϕn is concentrated onS for every
n andµψ is concentrated onT. By proposition 2.1,PSϕn = ϕn, PTψ = ψ. As a
result, we havePSϕ = ϕ, henceµϕ⊥µψ by proposition 2.1.

Let L be a band inM . DenoteHL ≡ {ψ ∈ H : µψ ∈ L}. Then by proposi-
tion 2.2HL is a closedA-invariant subspace ofH . Moreover, let(Lξ )ξ∈Ξ be a
complete family of bands inM . ThenH is the closure of the linear span of the
family of closedA-invariant subspacesHLξ . If, in addition,Lξ are mutually dis-

joint thenH is the orthogonal sum ofHLξ . In particular,H ⊥
L = HL⊥. Moreover,

the following proposition is true.

Proposition 2.3. Let ϕ ∈ H andϕL is the orthogonal projection ofϕ ontoHL.
Then

(1) µϕ −µϕL ≥ 0 and is subordinated toµϕ−ϕL ;

(2) µϕL = µL
ϕ .
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Proof. (1) First of all we show thatµϕ − µϕL ≥ 0. Let B ∈ B, then (µϕ −
µϕL)(B) = ‖PBϕ‖2 − ‖PBPHLϕ‖2. SinceHL is A-invariant, PBPHL = PHLPB,
therefore(µϕ −µϕL)(B) = ‖PBϕ‖2−‖PHLPBϕ‖2 ≥ 0.

Further we have forB∈ B

(µϕ −µϕL)(B)

= ‖PBϕ‖2−‖PBϕL‖2 = (‖PBϕ‖+‖PBϕL‖)(‖PBϕ‖−‖PBϕL‖)
≤ 2‖ϕ‖‖PB(ϕ −ϕL)‖ = 2‖ϕ‖

[
µϕ−ϕL(B)

]1/2
,

and the proof of the item is complete.
(2) µϕL ∈ L, and according to item (1)µϕ −µϕL ∈ L⊥.

SinceHL is A invariant, the restriction ofA to HL is a self-adjoint operator in
HL. The spectrum of this restriction is denoted by specL A and is calledL-part of
the spectrum ofA.

It is clear that for a pointx0 ∈ R the following assertions are equivalent:

• x0 ∈ specA;

• for anyε > 0 there existsϕ ∈ H such thatµϕ(x0− ε,x0− ε) > 0.

Therefore, we have

Proposition 2.4. The following assertions are equivalent:

• x0 ∈ specL A;

• for anyε > 0 there existsϕ ∈ H with µL
ϕ (x0− ε,x0− ε) > 0;

• for anyε > 0 there existsϕ ∈ HL with µϕ(x0− ε,x0− ε) > 0.

Let (Lξ )ξ∈Ξ be a complete family of mutually disjoint bands inM . Then

specA =
⋃

ξ∈Ξ
specLξ

A.

Let L be a band inM , N = L⊥ andΩ ∈ B. If B∩specM A = /0, then we say
thatA has onlyL-spectrum onΩ (or the spectrum ofA onΩ is purelyL).

Denote nowHj, where j∈ {p, ac, sc, s, c}, the subspaceH ≡HMj . Then the
spectrum of the restriction ofA to Hj is denoted specj A. In particular,

• H = Hp⊕Hac⊕Hsc, therefore specA= specpA∪specacA∪specscA. The
part specpA is called thepoint spectrum ofA, specacA is called theabso-
lutely continuousspectrum ofA and specscA is called thesingular continu-
ousspectrum ofA.
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• H = Hp⊕Hc, therefore specA = specpA∪ speccA. The part speccA is
called thecontinuousspectrum ofA.

• H = Hac⊕Hs, therefore specA = specacA∪ specsA. The part specsA is
called thesingularspectrum ofA.

Consider the point part of the spectrum in detail. The set of all eigenvalues of
A is denoted by specppA and is calledpure pointspectrum ofA. In particular, for
a pointx0 ∈ R the following assertions are equivalent:

• x0 ∈ specppA;

• µϕ ({x0}) > 0 for someϕ ∈ H .

Proposition 2.5. Let δa, where a∈ R, be the Dirac measure concentrated on a.
Then for a∈ R andϕ ∈ H the following conditions are equivalent

(1) P{a}ϕ = ϕ ;

(2) µϕ = ‖ϕ‖2δa ;

(3) Aϕ = aϕ .

Proof. (1)⇒(2). ForΩ ∈ B we haveµϕ(Ω) = ‖PΩϕ‖2 = ‖PΩP{a}ϕ‖2. There-
fore, µϕ(Ω) = ‖ϕ‖2, if a∈ Ω andµϕ(Ω) = 0 otherwise.

(2)⇒(3). We have for az∈ res(A)

〈ϕ|R(z;A)ϕ〉=

∫

R

dµϕ(x)

x−z
=

‖ϕ‖2

a−z
,

hence, by polarization,R(z;A)ϕ = (a−z)−1ϕ.
(3)⇒(1). Indeed,P{a} = χ{a}(A) andχ{a}(a) = 1.

As a corollary we have that ifa is an atom for a spectral measureµψ , then
a ∈ specppA. Indeed, ifµψ ({a}) > 0, thenϕ = P{a} 6= 0. On the other hand,
P{a}ϕ = ϕ.

Proposition 2.6. Hp is the orthogonal direct sumHpp of the eigensubspaces of
A, andspecpA = specppA.

Proof. It is clear thatHpp⊂Hp. To show thatHpp⊃ Hp it is sufficient to prove
that if ψ ⊥ Hpp, thenµψ has no atoms. Suppose thatψ ⊥ Hpp but µψ ({a}) > 0.
Thenϕ = P{a}ψ 6= 0. Further,ϕ = P{a}ϕ, thereforeϕ ∈ Hpp. On the other hand
〈ψ,ϕ〉 = 〈ψ,P{a}ψ〉 = µψ({a}) > 0.

It is clear that specppA⊂ specpA. Suppose thata∈ specpA. Takeε > 0, then
µψ (a−ε,a+ε) > 0 for someψ ∈Hp. Hence, there is an atoms for µψ such that
s∈ (a− ε,a+ ε). It remains to remark thats∈ specppA.
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The considered classifications of spectra are related as follows.

• specdisA⊂ specppA;

• specessA is the union of the following three sets:

(1) speccA,

(2) {x∈ R : x is a limiting point of specppA},

(3) {x∈ specppA : x is of infinite multiplicity}.

2.3 Spectral projections

Let x,y∈ R. In what follows we will use often the identities

Im
〈
ϕ

∣∣R(x+ iy;A)ϕ
〉

=
1
2i

[
〈ϕ|R(x+ iy;A)ϕ〉−〈R(x+ iy;A)ϕ|ϕ〉

]

=
1
2i

〈
ϕ

∣∣[R(x+ iy;A)−R(x− iy;A)
]
ϕ

〉

= y〈ϕ|R(x− iy;A)R(x+ iy;A)
]
ϕ〉

= y
∥∥R(x+ iy;A)ϕ

∥∥2
.

(2.1)

The following Stone formulas for spectral projections willbe very useful, cf.
Theorem 42 in [84]. Let−∞ < a < b < +∞ andϕ ∈ H , then

1
2

[
P[a,b]ϕ +P(a,b)ϕ

]
= lim

y→+0

1
2π i

∫ b

a

[
R(x+ iy;A)−R(x− iy;A)

]
ϕ dx

= lim
y→+0

1
π

b∫

a

[
Im R(x+ iy;A)

]
ϕ dx

= lim
y→+0

y
π

∫ b

a
R(x− iy;A)R(x+ iy;A)ϕ dx.

(2.2)

Sinceµϕ(Ω) = 〈ϕ|PΩ(A)ϕ〉 = ‖PΩ(A)ϕ‖2, we have fora,b∈ R\specpp(A)

µϕ((a,b)) = µϕ([a,b]) = lim
y→+0

1
π

∫ b

a
Im〈ϕ|R(x+ iy;A)ϕ〉dx

= lim
y→+0

1
π

Im
∫ b

a
〈ϕ|R(x+ iy;A)ϕ〉dx

= lim
y→+0

y
π

∫ b

a
‖R(x+ iy;A)ϕ‖2dx.

(2.3)
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If a ∈ R and ϕ ∈ H , then P{a}(A)ϕ = −i lim
y→+0

yR(a+ iy;A)ϕ, therefore

µϕ ({a}) = ‖P{a}(A)ϕ‖2 = lim
y→+0

y2‖R(a+ iy;A)ϕ‖2.

The following statement is known [11,84]

Theorem 2.7.Let ϕ ∈ H . For Lebesgue a.e. x∈ R there exists the limit

〈ϕ|R(x+ i0;A)ϕ〉 := lim
y→0+

〈ϕ|R(x+ iy;A)ϕ〉;

this limit is is finite and non-zero a.e. and, additionally, using(2.1),

(1) µac
ϕ = π−1Fϕ dx , where

Fϕ(x) = Im〈ϕ|R(x+ i0;A)ϕ〉 = lim
y→0+

y‖R(x+ iy)ϕ‖2 .

(2) µs
ϕ is concentrated on the set{x∈ R : Im〈ϕ|R(x+ i0;A)ϕ〉= ∞}.

Additionally, for−∞ < a≤ b < +∞ one has:

(3) µac
ϕ ([a,b]) = 0 if and only if for some p,0 < p < 1,

lim
y→0+

∫ b

a
[Im〈ϕ|R(x+ iy;A)ϕ〉]p dx= 0.

(4) Assume that for some p,1 < p≤ ∞ one has

sup{‖ Im〈ϕ|R(· + iy;A)ϕ〉‖p : 0 < y < 1} < ∞ ,

where‖ · ‖p stands for the standard norm in the space Lp([a,b]). Then
µs

ϕ ((a,b)) = 0.

(5) Let (a,b)∩ specsA = /0. Then there is a dense subset D⊂ H such that
sup{‖ Im〈ϕ|R(· + iy;A)ϕ〉‖p : 0 < y < 1} < ∞ for every p,1 < p ≤ +∞,
and everyϕ ∈ D.

(6) µp
ϕ ((a,b)) = 0 if and only if

lim
y→0+

y
∫ b

a
[Im〈ϕ|R(x+ iy;A)ϕ〉]2 dx= 0.
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Lemma 2.8. Let θ be a smooth strictly positive function on[a,b] and a,b /∈
specppA. Then

lim
y→+0

1
π

Im
∫ b

a
〈ϕ|R(x+ iy;A)ϕ〉dx

= lim
y→+0

1
π

Im
∫ b

a
〈ϕ|R(x+ iyθ(x);A)ϕ〉dx

= lim
y→+0

y
π

∫ b

a
‖R(x+ iyθ(x);A)ϕ‖2θ(x)dx. (2.4)

Proof. The second equality in (2.4) follows from (2.1), so its is sufficient to prove
the first equality only.

Rewrite the left-hand side of (2.4) as
∫ b

a
〈ϕ|R(x+ iy;A)ϕ〉dx=

∫

ℓ(y)
〈ϕ|R(ζ ;A)ϕ〉dζ , (2.5)

where the pathℓ(y) is given in the coordinatesζ = ξ + iη by the equations:ξ = t,
η = y, t ∈ [a,b]. Consider another pathλ (y) given byξ = t, η = yθ(t), t ∈ [a,b]
and two vertical intervals:v1(y): ξ = a, η betweeny andyθ(a) andv2(y): ξ = b,
η betweeny andyθ(b). Since the integrand in (2.5) is an analytic function, we
can choose the orientation of the intervalsv1(y) andv2(y) in such a way that

∫

ℓ(y)
〈ϕ|R(ζ ;A)ϕ〉dζ =

∫

λ (y)
〈ϕ|R(ζ ;A)ϕ〉dζ

+
∫

v1(y)
〈ϕ|R(ζ ;A)ϕ〉dζ +

∫

v2(y)
〈ϕ|R(ζ ;A)ϕ〉dζ . (2.6)

Supposeθ(a) ≥ 1 (the opposite case is considered similarly). Then
∫

v1(y)
〈ϕ|R(ζ ;A)ϕ〉dζ =

∫ yθ (a)

y
〈ϕ|R(a+ iη;A)ϕ〉dη .

Let νϕ be the spectral measure associated withA andϕ, then by Fubini

Im
∫ yθ (a)

y
〈ϕ|R(a+ iη;A)ϕ〉dη = Im

∫ yθ (a)

y

∫

R

dνϕ(t)

t −a− iη
dη

=
∫ yθ (a)

y
dη η

∫

R

dνϕ(t)

(t−a)2+η2 =
1
2

∫

R

ln
(t −a)2+y2θ(a)2

(t −a)2+y2 dνϕ(t) .

Using the estimate

ln
(t −a)2+y2θ(a)2

(t −a)2+y2 = ln

(
1+

y2(θ(a)2−1)

(t−a)2 +y2

)
≤ 2lnθ(a) .
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and the boundedness ofνϕ we obtain by the Lebesgue majorization theorem

lim
y→0+

Im
∫

v1(y)
〈ϕ|R(ζ ;A)ϕ〉dζ = 0. (2.7a)

Exactly in the same way there holds

lim
y→0+

y
∫

v2(y)
〈ϕ|R(ζ ;A)ϕ〉dζ = 0. (2.7b)

On the other hand,

Im
∫

λ (y)
〈ϕ|R(ζ ;A)ϕ〉dζ

= Im
∫ b

a
〈ϕ|R(x+ iyθ(x);A)ϕ〉

(
1+ iyθ ′(x)

)
dx= I1(y)+ iyI2(y), (2.8)

where, by (2.1),

I1(y) := Im
∫ b

a
〈ϕ|R(x+ iyθ(x);A)ϕ〉dx

≡ y
∫ b

a

∥∥R(x+ iyθ(x);A)ϕ
∥∥2

dx,

I2(y) := Im
∫ b

a
〈ϕ|R(x+ iyθ(x);A)ϕ〉θ ′(x)dx

≡ y
∫ b

a

∥∥R(x+ iyθ(x);A)ϕ
∥∥2θ ′(x)dx.

Denotingc= maxx∈[a,b]

∣∣θ ′(x)
∣∣ one immediately obtains|I2(y)| ≤ c|I1(y)|. There-

fore, passing to the limity→ 0+ in (2.8) we arrive at

lim
y→0+

I1(y) = lim
y→0+

Im
∫

λ (y)
〈ϕ|R(ζ ;A)ϕ〉dζ .

Substituting the latter equality, (2.7a), and (2.7b) in (2.6) results in (2.4).

3 Spectra and spectral measures for self-adjoint ex-
tensions

3.1 Problem setting and notation

In this section we return to self-adjoint extensions. Below
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• S is a densely defined symmetric operator inH with equal deficiency in-
dices in a Hilbert spaceH ,

• Nz := ker(S∗−z),

• (G ,Γ1,Γ2) is a boundary triple forS∗,

• Λ is a self-adjointoperatorin G ,

• H0 is the self-adjoint restriction ofS∗ to kerΓ1,

• HΛ is the self-adjoint restriction ofS∗ to ker(Γ2−ΛΓ1); due the the condi-
tion onΛ, HΛ andH0 are disjoint, see Remark 1.30.

• R0(z) := (H0−z)−1 for z∈ resH0,

• RΛ(z) := (HΛ−z)−1 for z∈ resHΛ,

• γ is the KreinΓ-field induced by the boundary triple,

• Q is the Krein’sQ-function induced by the boundary triple.

Recall that the resolvent are connected by the Krein resolvent formula (theorem
1.29):

RΛ(z) = R0(z)− γ(z)
[
Q(z)−Λ

]−1γ∗(z̄). (3.1)

We are interested in the spectrum ofHΛ assuming that the spectrum ofH0 is
known. Theorem 1.23 and Eq. (3.1) above show the equality

specHΛ \specH0 =
{

E ∈ resH0 : 0∈ spec
(
Q(E)−Λ

)}
. (3.2)

We are going to refine this correspondence in order to distinguish between dif-
ferent spectral types ofHΛ in gaps ofH0. Some of our results are close to that
obtained in [24] for simple operators, but are expressed in different terms.

3.2 Discrete and essential spectra

The aim of the present subsection is to relate the discrete and essential spectra for
HΛ with those forQ(z)−Λ.

Lemma 3.1. Let A and B be self-adjoint operators inG , and A be bounded and
strictly positive, i.e.〈φ ,Aφ〉 ≥ c〈φ ,φ〉 for all φ ∈ domA with some c> 0. Then0
is an isolated eigenvalue of B if and only if0 is an isolated eigenvalue of ABA.
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Proof. DenoteL := ABA. Let 0 is a non-isolated point of the spectrum ofB.
Then there isφn ∈ domB such thatBφn → 0 and dist(kerB,φn) ≥ ε > 0. Set
ψn = A−1φn. ThenLψn → 0. Suppose that liminfdist(kerL,ψn) = 0. Then there
areψ ′

n ∈ kerL such that liminf‖ψn−ψ ′
n‖ = 0. It is clear thatφ ′

n = Aψ ′
n ∈ kerB

and liminf‖φn− φ ′
n‖ = liminf ‖Aψn−Aψ ′

n‖ = 0. This contradiction shows that
dist(kerL,ψn) ≥ ε ′ > 0 and 0 is a non-isolated point of the spectrum ofL.

The converse follows by symmetry, asA−1 is also positive definite.

Theorem 3.2.For E ∈ resH0 the following assertions are equivalent:

(1) E is an isolated point of the spectrum of HΛ;

(2) 0 is an isolated point of the spectrum of Q(E)−Λ.

Moreover, if one of these conditions is satisfied, then for z in a punctured neigh-
borhood of E there holds

∥∥∥
(
Q(z)−Λ

)−1
∥∥∥ ≤ c

|z−E| for some c> 0. (3.3)

Proof. Clearly, one can assume thatE is real. DenoteQ0 := Q(E), Q1 := Q′(E).
Both Q0 and Q1 are bounded self-adjoint operators. By (1.22a) there holds
Q1 = γ∗(E)γ(E), therefore,Q1 is positive definite. Take anyr < dist(E,specH0∪
specHΛ \{E}). For |z−E| < r we have an expansion

Q(z) = Q0 +(z−E)Q1+(z−E)2S(z), (3.4)

whereS is a holomorphic map from a neighborhood ofE to L(G ,G ).
(1) ⇒ (2). Let E be an isolated point of the spectrum ofHΛ. SinceE is an

isolated point in the spectrum ofHΛ, the resolventRΛ(z)≡ (HΛ−E)−1 has a first
order pole atz = E, therefore, as follows from the resolvent formula (3.1), the
functionz 7→

(
Q(z)−Λ

)−1
also has a first order pole at the same point. Hence,

we can suppose that for 0< |z−E| < r there exists the bounded inverse
(
Q(z)−

Λ
)−1

and, moreover,‖(z−E)(Q(z)−Λ)−1‖ ≤ c for some constantc > 0. This
implies the estimate (3.3). By (3.4) we can chooser small enough, such that
Q0−Λ+(z−E)Q1 has a bounded inverse for 0< |z−E| < r. Representing

Q0−Λ+(z−E)Q1 = Q1/2
1

(
Q−1/2

1

(
Q(E)−Λ

)
Q−1/2

1 +(z−E)I
)

Q1/2
1

we see that 0 is an isolated point in the spectrum ofQ−1/2
1

(
Q(E)−Λ

)
Q−1/2

1 and
hence ofQ(E)−Λ in virtue of lemma 3.1.

(2) ⇒ (1). Conversely, let 0 be an isolated point of the spectrum ofQ(E)−Λ
or, which is equivalent by lemma 3.1, in the spectrum ofT := Q−1/2

1

(
Q(E)−
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Λ
)
Q−1/2

1 . For sufficiently smallr and 0< |z−E| < r the operatorM(z) := T +

(z−E)I is invertible, and‖(z−E)M−1(z)‖ ≤ c′ for thesez for some constant

c′. For the samez, the operatorQ0 − Λ + (z−E)Q1 ≡ Q1/2
1 M(z)Q1/2

1 is also

boundedly invertible, and
∥∥∥(z−E)

(
Q0−Λ+(z−E)Q1

)−1
∥∥∥≤ c′′. Hence, we can

choser such thatQ(z)−Λ = Q0−Λ +(z−E)Q1+(z−E)2S(z) is invertible for
0 < |z−E| < r, which by (3.2) means thatz /∈ resHΛ.

Now we are able to refine the relationship (3.2) between the spectra ofH0 and
HΛ. This is the main result of the subsection.

Theorem 3.3.The spectra of H and HΛ are related by

spec•HΛ \specH0 =
{

E ∈ resH0 : 0∈ spec•
(
Q(E)−Λ

)}
(3.5)

with • ∈ {pp,dis,ess}.

Proof. By theorem 1.23(1), Eq. (3.5) holds for• = pp, moreover, the multi-
plicities of the eigenvalues coincide in this case. Therefore, by theorem 3.2, the
isolated eigenvalues of finite multiplicities forHΛ correspond to the isolated zero
eigenvalues forQ(z)−E, which proves (3.5) for•= dis. By duality this holds for
the essential spectra too.

It is also useful to write down the spectral projector forHΛ corresponding to
isolated eigenvalues lying in resH0.

Proposition 3.4. Let E∈ resH0 be an isolated eigenvalue of HΛ. Then the eigen-
projector PΛ for HΛ corresponding to E is given by

PΛ = γ(E)
(
Q′(E)

)−1/2Π
(
Q′(E)

)−1/2γ∗(E),

whereΠ is the orthoprojector onker(Q′(E)
)−1/2(

Q(E)−Λ
)(

Q′(E)
)−1/2

in G .

Proof. Follows from the equalityPΛ = −Res
[
RΛ(z); z= E

]
.

3.3 Estimates for spectral measures

In this subsection we are going to obtain some information onthe absolutely con-
tinuous, singular continuous, and point spectra ofHΛ using the asymptotic be-
havior of

(
Q(x+ iy)−Λ

)−1
for x ∈ R andy→ 0+. To do this, we need first an

expression for the resolventRΛ on the defect subspaces ofS.

Lemma 3.5. Let ζ ,z∈ C \R, z 6= ζ , and g∈ domΛ. For ϕ = γ(ζ )g there holds

RΛ(z)ϕ =
1

ζ −z

[
ϕ − γ(z)

(
Q(z)−Λ

)−1(
Q(ζ )−Λ

)
g
]
.
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Proof. Substituting identities (1.14b) and (1.21e) into (3.1) we obtain:

RΛ(z)ϕ = R0(z)γ(ζ )g− γ(z)
[
Q(z)−Λ

]−1γ∗(z̄)γ(ζ )g

= R0(z)γ(ζ )g− γ(z)
[
Q(z)−Λ

]−1γ∗(ζ̄ )γ(z)g

=
γ(z)− γ(ζ )

z−ζ
g− γ(z)

[
Q(z)−Λ

]−1Q(z)−Q(ζ )

z−ζ
g

=
1

ζ −z

[
γ(ζ )g− γ(z)

{
I −

[
Q(z)−Λ

]−1

×
(
Q(z)−Λ+Λ−Q(ζ )

)}
g

]

=
1

ζ −z

[
ϕ − γ(z)

(
Q(z)−Λ

)−1(
Q(ζ )−Λ

)
g
]
.

Theorem 3.6. Fix ζ0 ∈ C \R. Let g∈ domΛ; denote h:=
(
Q(ζ0)−Λ

)
g, ϕ :=

γ(ζ0)g, and letµϕ be the spectral measure for HΛ associated withϕ.

(1) If [a,b] ⊂ resH0∩R and a,b /∈ specppHΛ, then

µϕ
(
[a,b]

)
≡

∥∥P[a,b](HΛ)ϕ
∥∥2

= lim
y→+0

y
π

∫ b

a

1
|ζ0−x|2

∥∥(
Q′(x)

)1/2(
Q(x+ iy)−Λ

)−1
h
∥∥2

dx.

(2) For a.e. x∈ resH0∩R there exists the limit

f (x) := lim
y→+0

y
∥∥∥
(
Q′(x)

)1/2(
Q(x+ iy)−Λ

)−1
h
∥∥∥

2
,

and the function F(x) :=
1

π|ζ0−x|2 f (x) is the Lebesgue density of the mea-

sureµac
ϕ , i.e. µac

ϕ = F(x)dx.

(3) For a∈ resH0∩R the limit

lim
y→+0

y2
∥∥∥
(
Q′(a)

)1/2(
Q(a+ iy)−Λ

)−1
h
∥∥∥

2

exists and is equal toµp
ϕ({a}).
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Proof. We start with proving item (2). Using lemma 3.5 we get fory > 0:

RΛ(x+ iy)ϕ =
1

ζ0−x− iy
ϕ − 1

ζ0−x− iy
γ(x+ iy)

[
Q(x+ iy)−Λ

]−1
h,

therefore
∣∣∣∣
∥∥∥√yRΛ(x+ iy)ϕ

∥∥∥−
∥∥∥

√
y

ζ0−x− iy
ϕ

∥∥∥
∣∣∣∣

≤
√

y

|ζ0−x− iy|
∥∥∥γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h
∥∥∥

≤√
y
∥∥RΛ(x+ iy)ϕ

∥∥+

√
y

|ζ0−x− iy|‖ϕ‖ .

Hence, if
√

y‖RΛ(x+ iy)ϕ‖ has a limit (finite or infinite) asy → +0, then also
√

y
∥∥∥γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h
∥∥∥ does, and in this case

lim
y→+0

√
y
∥∥RΛ(x+ iy)ϕ

∥∥

=
1

|ζ0−x| lim
y→+0

√
y‖γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h‖ . (3.6)

Let us show that, at fixedx, the finiteness of the limit (3.6) is equivalent to

sup
0<y<1

√
y
∥∥∥
(
Q(x+ iy)−Λ

)−1
h
∥∥∥ < ∞ . (3.7)

Indeed, sinceγ(z) is a linear topological isomorphism on its image and is ana-
lytic, for a givenx∈ resH0 there existsc> 0 such thatc−1‖g‖ ≤ sup0<y<1

∥∥γ(x+

iy)g
∥∥ ≤ c‖g‖ for all g∈ G . This shows that the conditions

lim
y→+0

√
y
∥∥γ(x)

(
Q(x+ iy)−Λ

)−1
h
∥∥ = +∞

and

lim
y→+0

√
y
∥∥γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h
∥∥ = +∞

are equivalent. Assume now limy→+0
√

y
∥∥∥γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h
∥∥∥ < +∞,

then for all 0< y < 1 one has
∣∣∣√y

∥∥γ(x+ iy)
(
Q(x+ iy)−Λ

)−1
h
∥∥−√

y
∥∥γ(x)

(
Q(x+ iy)−Λ

)−1
h
∥∥
∣∣∣

≤√
y
∥∥γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
h− γ(x)

(
Q(x+ iy)−Λ

)−1
h
∥∥

≤ c
∥∥γ(x+ iy)− γ(x)

∥∥ ,
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wherec = sup0<y<1
√

y
∥∥(

Q(x+ iy)−Λ
)−1

h
∥∥ < ∞. Thus, we have

lim
y→+0

√
y
∥∥∥RΛ(x+ iy)ϕ

∥∥∥ =
1

|ζ0−x| lim
y→+0

√
y
∥∥∥γ(x)

(
Q(x+ iy)−Λ

)−1
h
∥∥∥ . (3.8)

On the other hand there holds

∥∥∥γ(x)(Q(x+ iy)−Λ)−1h
∥∥∥

2

=
〈

γ∗(x)γ(x)
(
Q(x+ iy)−Λ

)−1
h
∣∣∣
(
Q(x+ iy)−Λ

)−1
h
〉
,

and, due to identitiesγ∗(x)γ(x) ≡ Q′(x) and
∥∥γ(x)

(
Q(x + iy) − Λ

)−1
h
∥∥2

=∥∥(
Q′(x)

)1/2(
Q(x+ iy)−Λ

)−1
h
∥∥2, item (2) follows from proposition 2.7.

The proof of items (1) and (3) is completely similar to that for item (2); in the
case of (1) one should use the norm

‖ f‖2 =
(∫ b

a
‖ f (x)‖2dx

)1/2

on the spaceL2([a,b];H ) in the above estimates.

Below we will use the notation

H0 :=
( ⋃

Imζ 6=0

ker(S∗−ζ )
)⊥

, H1 := H ⊥
0 .

For a subspaceL ⊂ G we writeH1(L) :=
⋃

Imζ 6=0 γ(ζ )Xζ with Xζ (L) =
(
Q(ζ )−

Λ
)−1

L. Note that if spanL is dense inG , then alsoXζ (L) is, and the linear hull of
H0∪H1(L) is dense inH .

If ψ ∈ H0, thenγ∗(ζ )ψ = 0 for all ζ ∈ C\R. By (3.1), it followsRΛ(ζ )ψ =
R0(ζ )ψ, and henceµψ(Ω) = 0 for all Borel setsΩ ⊂ resH0∩R, whereµψ is the
spectral measure forHΛ associated withψ.

Proposition 3.7(cf. Theorem 2 from [62]). Let a,b∈ resH0. Suppose that there
exists a subset L⊂ G with densespanL such that

sup
{∥∥(

Q(x+ iy)−Λ
)−1

h
∥∥ : a < x < b, 0 < y < 1

}
< ∞

for all h ∈ L. Then(a,b)∩specHΛ = /0.
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Proof. We can assume thata,b /∈ specppHΛ; otherwise we consider(a,b) as the
union of a increasing sequence of intervals(an,bn), wherean,bn /∈ specppHΛ.

It is sufficient to show thatP(a,b)(HΛ)H1(L) = 0. Let ϕ ∈ H1(L), then there

is g∈ L andζ ∈ C\R such thatϕ = γ(ζ )
(
Q(ζ )−Λ

)−1
g. Using lemma 3.5 with

z= x+ iy we get

RΛ(x+ iy)ϕ =
1

ζ −x− iy

[
ϕ − γ(x+ iy)

(
Q(x+ iy)−Λ

)−1
g
]
. (3.9)

Using (2.3) we arrive atP(a,b)(HΛ)ϕ = 0.

Proposition 3.8. For any x0 ∈ resH0∩R the following two assertions are equiv-
alent:

(1) x0 /∈ specHΛ;

(2) there existε > 0and a subset L⊂G with densespanL such that(x0−ε,x0+
ε) ⊂ resH0 and

lim
y→+0

y
∫ x0+ε

x0−ε

∥∥∥
(
Q(x+ iy)−Λ

)−1
h
∥∥∥

2
dx= 0.

for all h ∈ L.

Proof. The implication(1) ⇒ (2) is trivial. Let us prove(2) ⇒ (1).
It is sufficient to show that‖P(x0−ε,x0+ε)(H

Λ)ϕ‖ = 0 for all ϕ ∈ H1(L). For a
givenϕ ∈ γ(ζ )Xζ (L) with Imζ 6= 0 we takeh∈ L such thath=

(
Q(ζ )−Λ

)
g, ϕ =

γ(ζ )g for someg ∈ domΛ. Then the equality‖P(x0−ε,x0+ε)(H
Λ)ϕ‖ = 0 follows

from theorem 3.6(1).

Proposition 3.9. Let a,b∈ resH0. Suppose that there exists a subset L⊂ G with
densespanL such that for all h∈ L and x∈ (a,b) there holds

sup
{√

y
∥∥(

Q(x+ iy)−Λ
)−1

h
∥∥ : 0 < y < 1

}
< ∞ .

Then(a,b)∩specsHΛ = /0.

Proof. Let µϕ be the spectral measure associated withϕ andHΛ. It is sufficent to
show thatµs

ϕ (a,b)= 0 for all ϕ ∈H1(L). Writing anyϕ ∈H1(L) in the formϕ =

γ(ζ )
(
Q(ζ )−Λ

)−1
g with g∈ L and Imζ 6= 0 one arrives again at (3.9). Therefore,

for anyx∈ (a,b) one has supy∈(0,1)
√

y‖RΛ(x+ iy)ϕ‖ < ∞, and suppµs
ϕ ∩(a,b) =

/0 by theorem 2.7(2).
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Proposition 3.10.Let x0 ∈ resH0∩R. Then the following assertions are equiva-
lent:

(1) x0 /∈ specacH
Λ;

(2) there existε > 0and a subset L⊂G with densespanL such that(x0−ε,x0+

ε) ⊂ resH0 and limy→+0
√

y
(
Q(x+ iy)−Λ

)−1
h = 0 for all h ∈ L and for

a.e. x∈ (x0− ε,x0+ ε).

Proof. The proof of the implication(2) ⇒ (1) is completely similar to that for
proposition 3.8, cf. theorem 3.6(1)

To prove(1) ⇒ (2) we takeε > 0 such that(x0− ε,x0 + ε)∩specacHΛ = /0.
According to theorem 3.6(2) we have

lim
y→+0

y
∥∥∥
(
Q′(x)

)1/2(
Q(x+ iy)−Λ

)−1
h
∥∥∥

2
= 0

for all h ∈ G , and it is sufficient to note that
(
Q′(x)

)1/2 is a linear topological
isomorphism.

Proposition 3.11.Let x0 ∈ resH0. Then the following assertions are equivalent:

(1) x0 /∈ specpHΛ;

(2) there existε > 0 and a subset L⊂ G with densespanL such that(x0 −
ε,x0 + ε) ⊂ resH0 and limy→+0y

(
Q(x+ iy)−Λ

)−1
h = 0 for all h ∈ L and

for every x∈ (x0− ε,x0+ ε).

Proof. Similar to the proof of proposition 3.10 using theorem 3.6(3).

Using propositions 3.10 and 3.11 we get immediately

Proposition 3.12.Let x0 ∈ resH0∩specHΛ. If for everyε > 0 there exists h∈ G
such that

• limy→+0y
(
Q(x+ iy)−Λ

)−1
h = 0 for all x ∈ (x0− ε,x0+ ε) and

• limy→+0
√

y
(
Q(x+ iy)−Λ

)−1
h = 0 for a.e. x∈ (x0− ε,x0+ ε),

then x0 ∈ specscHΛ.
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3.4 SpecialQ-functions

In this subsection we assume that the expressionQ(z)−Λ in the Krein forumula
(3.1) has the following special form:

Q(z)−Λ =
A−m(z)

n(z)
, (3.10)

where

• m andn are (scalar) analytic functions at least inC\R,

• A is a self-adjoint operator inG .

We assume thatm and n admit analytic continuation to some interval(a,b) ⊂
resH0∩R, moreover, they both are real andn 6= 0 in this interval.

Below, in subsections 3.5 and 3.6 we provide examples where such a situation
arises. Our aim is to relate the spectral properties ofHΛ in (a,b) to the spectral
properties ofA. In what follows we denote byJ := (infspecA,supspecA).

Lemma 3.13.If n is constant, then m is monoton in(a,b). If n is non-constant and
m′(x) = 0 for some x∈ (a,b), then either m(x) < infspecA or m(x) > sup specA.

Proof. For any f ∈ domA consider the functionaf (x) :=
1

n(x)

〈
f
∣∣∣
(
A−m(x)

)
f
〉

.

Using (1.22a) we write

c‖ f‖2 ≤
〈

f
∣∣Q′(x) f

〉
≡ a′f (x) = −m′(x)

n(x)
‖ f‖2− n′(x)

n2(x)

〈
f
∣∣∣
(
A−m(x)

)
f
〉

with some constantc > 0 which is independent off .

For constantn one hasn′ ≡ 0 and−m′(x)
n(x)

≥ c, i.e. m′ 6= 0.

If n′ 6= 0 andm′(x) = 0, then
n′(x)
n2(x)

〈
f
∣∣∣
(
A−m(x)

)
f
〉
≥ c‖ f‖2 for any f , i.e.

the operatorA−m(x) is either positive definite or negative definite.

Lemma 3.14.Let K be a compact subset of(a,b)∩m−1(J ), then there is y0 > 0
such that for x∈ K and0 < y < y0 one has

(
Q(x+ iy)−Λ

)−1
= n(x+ iy)L(x,y)

[
A−m(x)− iym′(x)

]−1
, (3.11)

where L(x,y) is a bounded operator and‖L(x,y)− I‖→ 0 uniformly with respect
to x∈ K as y→ 0.

53



Proof. We have
(
Q(x+ iy)−Λ

)−1
= n(x+ iy)

(
A−m(x+ iy)

)−1
. Further,A−

m(x+ iy) = A−m(x)− iym′(x)+B(x,y), where‖B(x,y)‖= O(y2) uniformly with
respect tox∈K. Sincem′(x) 6= 0 for x∈K by lemma 3.13, the operatorA−m(x)−
iym′(x) has a bounded inverse defined everywhere, and

A−m(x+ iy) =
(
A−m(x)− iym′(x)

)[
1+(A−m(x)− iym′(x)

)−1
B(x,y)

]
.

It is easy to see that
∥∥(

A−m(x)− iym′(x)
)−1∥∥ = O

(
|y|−1

)
uniformly with respect

to x∈ K. Therefore, for sufficiently smally,

(
A−m(x+ iy)

)−1
=

(
1+B1(x,y)

)−1[
A−m(x)− iym′(x)

]−1

with ‖B1(x,y)‖ = O
(
|y|

)
uniformly with respect tox∈ K.

Lemma 3.15. Fix ζ0 with Imζ0 6= 0 and let h∈ G , ϕ = γ(ζ0)
(
Q(ζ0)−Λ

)−1
h.

Denote byµ the spectral measure for the pair(HΛ,ϕ) and byν the spectral
measure for the pair(A,h). There is a constant c> 0 with the following property:
for any segment K:= [α,β ]⊂ (a,b)∩m−1(J ) such thatα,β /∈ specppHΛ there
holdsµ(K) ≤ cν

(
m(K)

)
.

Proof. Note first thatm′ 6= 0 on [α,β ]. To be definite, we supposem′ > 0. Ac-
cording to theorem 3.6(1) and lemma 3.14, we have

µ(K) = lim
y→+0

y
π

∫

K

n2(x)
|ζ0−x|2 ‖

(
Q′(x)

)1/2(
A−m(x)− iym′(x)

)−1
h
∥∥2

dx.

Substitutingξ := m(x) and denotingτ(ξ ) := m′(m−1(ξ )
)

we arrive at

µ(K) = lim
y→+0

y
π

∫

m(K)

n
(
m−1(ξ )

)2

τ(ξ ) · |ζ0−m−1(ξ )|2

×
∥∥∥
(

Q′(ϑ−1(ξ )
))1/2(

A−ξ − iyτ(ξ )
)−1

h
∥∥∥

2
dξ .

Since

∫

m(K)

n
(
m−1(ξ )

)2

τ(ξ ) · |ζ0−m−1(ξ )|2
∥∥∥
(

Q′(ϑ−1(ξ )
))1/2(

A−ξ − iyτ(ξ )
)−1

h
∥∥∥

2
dξ ,

≤ c
∫

m(K)

∥∥(
A−ξ − iyτ(ξ )

)−1
h
∥∥2

dξ ,

wherec is independent ofK, we obtain the result with the help lemma 2.8.
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Here is the main result of the subsection.

Theorem 3.16.Assume that the term Q(z)−Λ in the Krein resolvent formula(3.1)
admits the representation(3.10), then for any x0 ∈ specHΛ ∩ (a,b) and any• ∈
{dis,ess,pp,p,ac,s,sc,c} the conditions

(•) x0 ∈ spec•HΛ,

(m–•) m(x0) ∈ spec•A

are equivalent.

Proof. For• = pp,dis,ess see theorem 3.3. Asm is a homeomorphism, the same
holds for specp ≡ specpp.

For• = ac use the following sequence of mutually equivalent assertions:

• m(x0) /∈ specacA,

• There is a neighborhoodV of m(x0) such thaty‖(A−ξ − iy)−1)h‖2 y→0+−→ 0
for all ξ ∈V andh∈ G (use item 1 of theorem 2.7),

• There is a neighborhoodW of x0 such thaty‖(Q(x+ iy)−Λ)−1)h‖2 y→0+−→ 0
for all ξ ∈W andh∈ G (use lemma 3.14 and replaceiym′(x) at any fixedx
by iy),

• x0 /∈ specacHΛ (proposition 3.10).

Assume nowm(x0) ∈ specscA. There exists a neighborhoodV of m(x0) such
that for someh∈ G we haveνac

h (V) = νp
h(V) = 0, whereν stands for the spectral

measure forA. Using lemma 3.14 and theorem 2.7 one can see that there exists a
neighborhoodW of x0 such that limy→+0y2‖(Q(x+ iy)−Λ)−1h‖2 = 0 for all x∈
W and limy→+0y‖(Q(x+ iy)−Λ)−1h‖2 = 0 for a.e.x∈W. By proposition 3.12
this means thatx0 ∈ specsc(HΛ). Hence, we prove (m-sc)⇒(sc). Since specsA =
specpA∪specscA, we prove also that (m-s)⇒(s).

Let nowm(x0) /∈ specsA. To show thatx0 /∈ specsHΛ it is sufficient to consider
the casem(x0)∈ specA\specsA. Then by theorem XIII.20 from [117], there exist
a dense subsetL ⊂ G and a neighborhoodV of m(x0) such that

sup
{∥∥(A−ξ − iy)−1h

∥∥ : 0 < y < 1, ξ ∈V
}

< ∞

for all h∈ L. We can assume without loss of generality thatm′(x0) > 0, then by
lemma 3.14 we have for a neighborhoodW of x0 and for somey0, y0 > 0,

sup
{√

y
∥∥(

Q(x+ iy)−Λ
)−1

h
∥∥ : 0 < y < y0, x∈W

}
< ∞,
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andx0 /∈ specsHΛ by proposition 3.9. Thus, the equivalence (s)⇔(m-s) is proven.
Now we prove the impication (sc)⇒(m-sc). Assume thatx0 ∈ specsc(HΛ) but

m(x0) /∈ specscA. Denote the spectral measure forA by ν and that forHΛ by
µ, then there is an intervalI containingx0 such that forJ = m(I) there holds:
νsc

h (J) = 0 for all h∈ G . According to lemma 3.15, ifX is a Borel subset ofI such
thatνh

(
m(X)

)
= 0 for all h, then alsoµϕ(X) = 0 for all ϕ ∈H1. In particular, let

X be a Borel subset ofI of zero Lebesgue measure and containing no eigenvalues
of HΛ. Thenm(X) is a Borel subset ofJ which contains no eigenvalues ofA
and also has the Lebesgue measure zero. Thereforeνh

(
m(X)

)
= 0, and hence

µϕ (X) = 0. We see, that the restriction ofµϕ to I is mutually singular with each
singular continuous measure onI . Hence, it is true forµϕ with eachϕ ∈H . This
contradicts to the assumptionx0 ∈ specscHΛ, and the implication (sc)⇒(m-sc) is
proven.

The equivalence (c)⇔(m-c) follows from (sc)⇔(m-sc) and (ac)⇔(m-ac).

We note that theorem 3.16 may be considered as an abstract version of the
dimension reduction: we reduce the spectrum problem for self-adjoint extensions
to a spectral problem “on the boundary”, i.e. in the spaceG .

3.5 Spectral duality for quantum and combinatorial graphs

We have already mentioned that the theory of self-adjoint extensions has obvious
applications in the theory of quantum graphs. Here we are going to develop the
results of the recent paper [109] concerning the relationship between the spectra
of quantum graphs and discrete Laplacians using theorem 3.16. Actually, this
problem was the starting point of the work.

Let G be a countable directed graph. The sets of the vertices and ofthe edges
of G will be denoted byV andE, respectively. We do not exclude multiple edges
and self-loops. For an edgee∈ E we denote byιe its initial vertex and byτe its
terminal vertex. For a vertexv, the number of outgoing edges (outdegree) will be
denoted by outdegv and the number of ingoing edges (indegree) will be denoted
by indegv. The degree ofv is degv := indegv+ outdegv. In what follows we
assume that the degrees of the vertices ofG are uniformly bounded, 1≤ degv≤ N
for all v∈V, in particular, there are no isolated vertices. Note that each self-loop
at v counts in both indegv and outdegv.

By identifying each edgee of G with a copy of the segment[0,1], such that 0
is identified with the vertexιe and 1 is identified with the vertexτe, one obtain a
certain topological space. A magnetic Schrödinger operator in such a structure is
defined as follows. The state space of the graph isH =

⊕
e∈E He, He = L2[0,1],

consisting of functionsf = ( fe), fe∈ He. On each edge consider the same scalar
potentialU ∈ L2[0,1]. Let ae ∈ C1[0,1] be real-valued magnetic potentials on
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the edgese∈ E. Associate with each edge a differential expressionLe := (i∂ +
ae)

2 +U . The maximal operator which can be associated with these differential
expressions acts as(ge) 7→ (Lege) on functionsg∈ ⊕

H2[0,1]. The integration by
parts shows that this operator is not symmetric, and it is necessary to introduce
boundary conditions at the vertices to obtain a self-adjoint operator. The standard
self-adjoint boundary conditions for magnetic operators are

ge(1) = gb(0) =: g(v) for all b,e∈ E with ιb = τe= v,

∑
e:ιe=v

(
g′e(0)− iae(0)ge(0)

)
− ∑

e:τe=v

(
g′e(1)− iae(1)ge(1)

)
= α(v)g(v),

whereα(v) are real numbers, the so-called coupling constants. The gauge trans-

formationge(t) = exp
(

i
∫ t

0
ae(s)ds

)
fe(t) removes the magnetic potentials from

the differential expressions,
(
(i∂ + ae)

2 +U
)
ge = − f ′′e +U fe, but the magnetic

field enters the boundary conditions through the parametersβ (e) =
∫ 1

0
ae(s)dsin

the following way:

eiβ (e) fe(1) = fb(0) =: f (v) for all b,e∈ E with ιb = τe= v, (3.12a)

f ′(v) := ∑
e:ιe=v

f ′e(0)− ∑
e:τe=v

eiβ (e) f ′e(1) = α(v) f (v). (3.12b)

The self-adjoint operator inH acting as( fe) 7→ (− f ′′e +U fe) on functions( fe) ∈⊕
H2[0,1] satisfying the boundary conditions (3.12a) and (3.12b) forall v ∈ V

will be denoted byH. This is our central object.
To describe the spectrum ofH let us make some preliminary construc-

tions. We introduce a discrete Hilbert spacel2(G) consisting of functions on
V which are summable with respect to the weighted scalar product 〈 f ,g〉 =

∑v∈V degv f (v)g(v). Consider an arbitrary functionβ : E → R and consider the
corresponding discrete magnetic Laplacian inl2(G),

∆Gh(v) =
1

degv

(
∑

e:ιe=v
e−iβ (e)h(τe)+ ∑

e:τe=v
eiβ (e)h(ιe)

)
. (3.13)

This expression defines a bounded self-adjoint operator inl2(G).
Denote byD the Dirichlet realtizetion of−d2/dt2+U on the segment[0,1],

D f = − f ′′+U f , domD = { f ∈ H2[0,1] : f (0) = f (1) = 0}. The spectrum ofD
is a discrete set of simple eigenvalues.

For anyz∈ C denote bys(·;z) and c(x;z) the solutions to−y′′ +Uy = zy
satisfyings(0;z) = c′(0;z) = 0 ands′(0;z) = c(0;z) = 1. Introduce an extension
of H, Π, defined by domΠ = { f ∈ ⊕

H2[0,1] : Eq. (3.12a) holds} andΠ( fe) =
(− f ′′e +U fe). The following proposition is proved in [109].
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Proposition 3.17.The operatorΠ is closed. For f∈ domΠ put

Γ1 f =
(

f (v)
)

v∈V , Γ2 f =
( f ′(v)

degv

)

v∈V

with f(v) and f′(v) given by(3.12), then
(
l2(G),Γ1,Γ2

)
is a boundary triple for

Π. The inducedΓ-field γ andQ-function Q are of the form

(
γ(z)h

)
e(x) =

1
s(1;z)

[
h(ιe)

(
s(1;z)c(x;z)−s(x;z)c(1;z)

)
+e−iβ (e)h(τe)s(x;z)

]
,

and

Q(z) f (v) =
1

degvs(1;z)

(
∆G−

[
outdegvc(1;z)+ indegvs′(1;z)

])
f (v).

Now let us make some additional assumptions. We will say thatthesymmetry
condition is satisfied ifat least oneof the following properties holds: indegv =
outdegv for all v∈V or U is even, i.e.U(x) = U(1−x).

The following theorem provides a complete description of the spectrum of the
quantum graphH outside specD in terms of the discrete Laplacian∆G.

Theorem 3.18.Let the symmetry condition be satisfied and the coupling constants

α(v) be of the formα(v) =
degv

2
α, then spec• Λ \ specD = η−1(spec•∆G) \

specD for • ∈ {dis,ess,pp,p,ac,s,sc,c}, where η(z) =
1
2

(
s′(1;z) + c(1;z) +

αs(1;z)
)

.

Proof. Let the symmetry conditions be satisfied. IfU is even, thens′(1;z) ≡
c(1;z). If outdegv = indegv for all v, then outdegv = indegv =

1
2

degv. In both

cases one hasQ(z) =
2∆G−s′(1;z)−c(1;z)

2s(1;z)
(see [109] for a more detailed dis-

cussion). The operatorH itself is the restriction ofΠ to the functionsf satisfying

Γ2 =
α
2

Γ1 f with Γ1,2 from proposition 3.17. The restrictionH0 of S to kerΓ1 is

nothing but the direct sum of the operatorsD over all edges. By theorem 1.29, the
resolvents ofH andH0 are related by the Krein resolvent formula and, in particu-

lar, the corresponding termQ(z)−Λ has the formQ(z)−Λ =
∆G−η(z)

s(1;z)
, and we

are in the situation of theorem 3.16.
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3.6 Array-type systems

Another situation in which theorem 3.16 becomes useful appears when theQ-
function is of scalar type [5], i.e. whenQ(z) is just the multiplication by a certain
complex function; such functions are of interest in the invesre spectral problem
for self-adjoint extensions [23]. In this case the representition (3.10) holds for any
self-adjoint operatorΛ, and one has

Proposition 3.19. Let Q be of scalar type, then for anyΛ there holdsspec•HΛ \
specH0 = Q−1(spec•Λ)\specH0 with • ∈ {dis,ess,pp,p,ac,s,sc,c}.

In other words, the nature of the spectrum of the “perturbed”operatorHΛ in
the gaps of the “unperturbed” operatorH0 is completely determined in terms of
the parameterΛ.

Scalar typeQ-functions arise, for example, as follows. LetH0 be a separable
Hilbert space andS0 be a closed symmetric operator inH0 with the deficiency
indices(1,1). Let (C,Γ0

1,Γ
0
2) be a boundary triple for the adjointS∗0, andγ0(z)

andq(z) be the inducedΓ-field andQ-function. LetD be the restriction ofS∗0 to
kerΓ0

1; this is a self-adjoint operator.
Let A be a certain countable set. Consider the operatorS:=

⊕
α∈A Sα in the

spaceH :=
⊕

α∈A He, whereHα ≃ H0 andSα = S0. Clearly,
(
l2(A ),Γ1,Γ2

)

with Γ1( fα) = (Γ0
1 fα) and Γ2( fα) = (Γ0

2 fα) becomes a boundary triple for
S∗. The inducedΓ-field is γ(z)(ξα) = (γ0(z)ξα) and theQ-function is scalar,
Q(z) = q(z)id. It is worthy to note that the corresponding operatorH0, which is
the restriction ofS∗ to kerΓ1, is just the direct sum of the copies ofD over the
setA and, in particular, specH0 = specD. Proposition 3.19 becomes especially
useful if the spectrum ofD is a discrete set, then the spectrum ofHΛ is (almost)
completely determined in terms of the parameterizing operator Λ.

The models of the above type can be used for the construction of solvable
models for array of quantum dots and antidots. One of pecularities of such arrays
is that they involve the miscroscopic properties of a singlepoint as well as the
macropscopic properties of the whole system. We consider for technical simplic-
ity two-dimensional periodic arrays in a uniform magnetic field orthogonal to the
plane of the system. For a large class of such models we refer to [64].

Let a1, a2 be linearly independent vectors ofR2 andA be the lattice spanned
by them,A := Za1 + Za2. Assume that each noteα of the lattice is occupied
by a certain object (quantum dot) whose state space isHα with a Hamiltonian
Hα (their concrete form will be given later). We assume that allquantum dots are
identical, i.e.Hα := H0, Hα = H0. The system is subjected to a uniform field
orthogonal to the plane.

In our case, the inner state spaceH0 will be L2(R2). The HamiltonianH0 will
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be taken in the form

H0 = −1
2

[( ∂
∂x

+π iξy
)2

+
( ∂

∂y
−π iξx

)2
]
+

ω2

2

(
x2 +y2).

Hereξ is the number of magnetic flux quanta thorugh a unit area segment of the
plane, andω is the strength of the quantum dot potential. Note that the spectrum
of H0 is pure point and consists of the infinite degenerate eigenvaluesEmn,

Emn=
1
2

(n+m+1)Ω+(n−m)ξ , Ω := 2
√

π2ξ 2+ω2, m,n∈Z, m,n≥ 0.

The HamiltonianH := ⊕α∈A Hα , describe the array of non-interacting quan-
tum dots. To take into account the interdot interaction we use the restriction-
extnesion procedure. Namely denote bySα the restriction ofHα to the functions
vanishing at the origin. As we have shown in subsubsection 1.4.3, these operators
are closed and have deficiency indices(1,1). Respectively, one can construct the
corrsponding boundary triples forS∗α . Namely, for fα ∈ domS∗α we denote

a( fα) := − lim
r→0

π
log|r| fα(r), b( fα) := lim

r→0

[
f (r)+a( fα)

1
π

log|r|
]
.

Accoriding to the constructions of subsubsection 1.4.3,(C,a,b) form a boundary
triple for S∗α , and the correspondingQ-function is

q(z) = − 1
2π

[
ψ

(1
2
− z

Ω
)
+ log

Ω
2π

+2CE

]
,

whereψ is the logarithic derivative of theΓ function andCE is the Euler constant.
Respectively, the triple

(
l2(A ),Γ1,Γ2

)
with

Γ1( fα) :=
(
a( fα)

)
, Γ2( fα) :=

(
b( fα)

)
,

is a boundary triple for the operatorS∗, S:=
⊕

Sα , and the inducedQ-function is
the multiplication byq(z).

The above defined operatorH corresponds exactly to the boundary condition
Γ1 f = 0. For a self-adjoint operatorL in l2(A ) denote byHL the self-adjoint
extension ofS corresponding to the boundary conditionsΓ2 f = LΓ1 f . This op-
erator will be considered as a Hamiltonian of interacting quantum dots, and the
way how different nodes interact with each other is determined by the operatorL.
To avoid technical difficulties we assume thatL is bounded. Furthermore,L must
satisfy some additional assumptions in order to take into account the nature of the
problem.
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First, any reasonable definition of a periodic system with magnetic field must
include the invariance under the magnetic translation group. In our case this
means that the matrix ofL in the standard basis ofl2(A ) satisfies

L(α,α +β ) = eπ iξα∧β L(0,β ) for any α,β ∈ A .

Second, we assume that only the nearest neighbors interact with each other, i.e.

L(α,0) =





λ1, α = ±a1,

λ2, α = ±a2,

0, otherwise,

λ1,λ2 ∈ R\{0}.

Roughly speaking, the above assumptions mean the following: each node interact
α with the four nearest nodesα±a j , j = 1,2, and the interaction is independent of
α. For further analysis it is useful to idenitfyl2(A ) with l2(Z2) by ( fn1a1+n2a2)∼(

f (n1,n2)
)
, n1,n2 ∈ Z. Then the operatorL acts as follows:

L f (n1,n2) ≡ L(η) f (n1,n2) = λ1
[
eiπηn2 f (n1−1,n2)+e−iπηn2 f (n1+1,n2)

]

+λ2
[
e−iπηn1 f (n1,n2−1)+eiπηn1 f (n1,n2+1)

]
, η = ξa1∧a2.

This operatorL(η) is well-known and is called thediscrete magnetic Laplacian,
and using proposition 3.19 we can transfer the complete spectral information for
L to the Hamiltonian of quantum dotsHL. One of interesting moments in the
spectral analysis ofL is the relationship with the almost Mathieu operator in the
spacel2(Z) [120],

M(η,θ) f (n) = λ1
[

f (n−1)+ f (n+1)
]
+2λ2cos

(
2πηn+θ

)
f (n), θ ∈ [−π,π).

In particular,

specL(η) =
⋃

θ∈[−π,π)

specM(η,θ).

Elementary constructions of the Bloch analysis show that the spectrum ofL(η) is
absolutely continuous and has a band structure. At the same time, for irrational
η the spectrum ofM(η,θ) is independent ofθ and hence coincides with the
spectrum ofL(η). It was shown only recently that the spectrum ofM(η,θ) is a
Cantor set for all irrationalη and non-zeroλ1, λ2, see [14]. Using our analysis
we can claim that, up to the discrete set{Em,n} (a more precise analysis shows
that these eigenvalues are all in the spectrum of the array) we can transfer the
spectral information forL(η) to the array of quantum dots; in particular, we obtain
a Cantor spectrum for irrationalη due to the analyticity of theQ-function.
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4 Isolated eigenvalues

4.1 Problem setting

In the previous sections we have analyzed the part of the spectrum of the “per-
turbed” operatorHΛ lying in the resolvent set of the “unperturbed” operator
H0. If E ∈ specH0, then, in general, it is difficult to determine whether or not
E ∈ specHΛ. Nevertheless, ifE is an isolated eigenvalue ofH0, then the question
whetherE in the spectrum ofHΛ becomes easier in comparison with the general
case. (Examples of subsections 3.5 and 3.6 show that this situation is rather typi-
cal for applications.) In this section we give a necessary and sufficient condition
for such anE to be an isolated eigenvalue ofHΛ and completely describe the cor-
responding eigensubspace ofHΛ (theorem 4.7). For simplicity, we consider only
the case ofboundedself-adjoint operatorΛ in G .

In addition to the notation given in subsection 3.1, in this sectionε0 denotes an
eigenvalue ofH0 with the eigensubspaceH 0 (which can be infinite-dimensional),
P0 denotes the orthoprojector onH 0. We denote byV (ε0) the set of all open balls
O centered atε0 and such that specH0∩O = {ε0}. By GL(G ) we denote the set
of bounded linear operators inG having a bounded inverse. IfO ∈ V (ε0), then
K(O ;G ) denotes the space of all analytic mappingsV : O → GL(G ) such that
V(ε0) = I andV∗(z̄) = V−1(z) (the latter condition is equivalent to the following
one:V(z) is a unitary operator forz∈ R∩O).

4.2 Auxiliary constructions

Further we need the following lemma.

Lemma 4.1. For any z,ζ ∈ resH0 there holds:

(1) P0Nz = P0Nζ ;

(2) H 0∩domHΛ = H 0∩N ⊥
z = H 0⊖ ranP0γ(ζ );

(3) kerγ∗(z)P0γ(z) = kerP0γ(ζ ), i.e., the restriction ofγ∗(z) to ranP0γ(ζ ) is
an injection. In particular,dimranγ∗(z)P0γ(z) = dimranP0γ(z).

Proof. (1) Recall thatP0 = −i limδ→+0 δR0(ε0+ iδ ) in the weak operator topol-
ogy. By (1.14b), for anyδ > 0 one has

γ(z)+(ε0+ iδ −z)R0(ε0+ iδ )γ(z)= γ(ζ )+(ε0+ iδ −ζ )R0(ε0+ iδ )γ(ζ ). (4.1)

Multiplying (4.1) with δ and sendingδ to 0 we arrive at

(ε0−z)P0γ(z) = (ε0−ζ )P0γ(ζ ). (4.2)
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Now it is sufficient to recall thatNz = ranγ(z) for all z∈ resH0.
(2) Letφ ∈H 0∩domHΛ andψ ∈Nz. As H0 andHΛ are disjoint,φ ∈ domS

andSφ = ε0φ . There holds(ε0−z)〈φ |ψ〉 =
〈
(S−z)φ

∣∣ψ
〉

=
〈
φ
∣∣(S∗−z)ψ

〉
= 0.

Henceφ ⊥ Nz.
Conversely, letφ ∈ H 0 ∩N ⊥

z . By (1.21d),γ∗(z)φ = 0. As follows from
the Krein resolvent formula (3.1),(ε0 − z̄)−1φ = R0(z̄)φ = RΛ(z̄)φ ∈ domHΛ.
Hence,φ ∈ domHΛ, and the first equality is proved. The second equality follows
immediately from the relations: (a) for anyφ ∈H 0 andψ ∈Nz one has〈φ |ψ〉=
〈φ ,P0ψ〉, (b) Nz = ranγ(z), (c) ranP0γ(z) = ranP0γ(ζ ).

(3) Let γ∗(z)P0γ(ζ )g = 0. By (1.21d),P0γ(ζ )g ⊥ Nz. According to (4.2),
P0γ(ζ )g ⊥ Nζ . It follows from the second equality in item (2) thatP0γ(ζ )g ⊥
ranP0γ(ζ ). HenceP0γ(ζ )g = 0.

The item (3) of lemma 4.1 can be generalized as follows.

Lemma 4.2. Let ε j , j = 1, . . . ,m, be distinct eigenvalues of H0, Pj be orthopro-
jectors on the corresponding eigensubspaces and

P :=
m

∑
j=1

Pj .

Then(I −P)γ(z) is an injection for any z∈ resH0.

Proof. Let (I −P)ψ = 0 whereψ = γ(z)φ for somez∈ resH0, φ ∈ G . Then
ψ = Pψ ∈ domH0 and, therefore,H0ψ = zψ. Henceψ = 0 andφ = 0.

In what followsz0 denotes a fixed number from resH0, x0 := Rez0, y0 := Imz0,
L := γ(z0). Recall thatL is a linear topological isomorphism on the deficiency
subspaceN := Nz0 ⊂ H .

Since, by definition,γ(z) = L+(z−z0)R0(z)L for anyz∈ resH0, the pointε0

is either a regular point forγ or a simple pole with the residue

Res[γ(z) : z= ε0] = (z0− ε0)P0L . (4.3)

Similarly, asQ(z) = C+(z−x0)L∗L+(z−z0)(z− z̄0)L∗R0(z)L, with a bounded
self-adjoint operatorC (see proposition 1.20), the pointε0 is either a regular point
for Q or a simple pole with the residue:

Res[Q(z) : z= ε0] = −|ε0−z0|2L∗P0L. (4.4)

From the equality‖P0Lφ‖2 = 〈L∗P0Lφ |φ〉 one easily sees that kerP0L =
kerL∗P0L (see also Lemma 4.1(3)). In particular,P0L = 0 if and only ifL∗P0L =
0, and there are simple examples whereP0L = 0. Moreover, the following lemma
holds.

63



Lemma 4.3. Let H1 and H2 be two Hilbert spaces and A: H1 → H2 be a
bounded linear operator. Then the two conditions below are equivalent:

(1) ranA is closed;

(2) ranA∗A is closed.

In particular, ranP0L is closed if and only ifranL∗P0L is closed.

Proof. Condition (1) is satisfied if and only if there is a constantc > 0 such that
‖Aφ‖ ≥ c‖φ‖ for all φ ∈ (kerA)⊥. On the other hand, condition (2) is satisfied
if and only if there is a constantc′ > 0 such that〈A∗Aφ |φ〉 ≥ c′‖φ‖2 for all φ ∈
(kerA∗A)⊥. Since kerA∗A = kerA, we get the result.

Now we denote byGr := kerL∗P0L ⊂ G , G1 := G⊥. The orthoprojectors of
G on Gr (respectively, onG1) are denoted byΠr (respectively, byΠ1). If A is a
bounded operator inG , then we writeAr := ΠrAΠr , and this will be considered
as an operator inGr . If z∈ resH0, thenγr(z) denotes the operator(I −P0)γ(z)Πr

acting fromGr to H (to avoid a confusion with the previous notation, we suppose
without loss of generalityG 6= H ). Further, we denote byHr the subspace(I −
P0)H and byH0

r the part ofH0 in Hr ; clearly,ε0∈ resH0
r , and both the mappings

γr andQr have analytic continuation toε0. Finally, denoteG3 = ker
(
Qr(ε0)−Λr

)
,

andG2 = Gr ⊖G3.

Lemma 4.4. There exists a closed symmetric densely defined restrictionSr of H0
r

such thatγr is a Krein Γ-field for the triple(Sr ,H0
r ,Gr), and Qr is a Krein Q-

function associated with this triple andγr .

Proof. We use proposition 1.18. SinceP0 andR0(z) commute for allz∈ resH0,
it is clear thatγr satisfies the condition (1.14b). Further,z0 belongs to resH0

r and
γr(z0) = (I −P0)LΠr .

Let us show that the subspaceN ′ := ranγr(z0) is closed. Let(φn) ∈ Gr

such thatψn := (I −P0)Lφn converge to someψ ∈ Hr . Sinceφn ∈ Gr , one has
L∗P0Lφn = 0, henceP0Lφn = 0. On the other hand,Lφn ∈ N by definition ofL.
Denote the orthoprojector ofH ontoN by P, then we havePψn = Lφn, hence
Lφn converge toPψ. Therefore, the sequence(L∗Lφn) converges toL∗Pψ in G .
SinceL∗L is a linear topological automorphism ofG , there exists limφn and this
limit belongs toGr becauseGr is closed. Thus,ψ ∈ N ′ andN ′ is closed.

By lemma 4.1(3),γr(z0) is injective. By the closed graph theorem,γr(z0) is a
linear topological isomorphism ofGr ontoN ′.

Now we show thatN ′ ∩ domH0
r = 0. It is sufficient to show that

(
(I −

P0)N
)
∩ domH0 = 0. Let ψ ∈

(
(I −P0)N

)
∩ domH0. As ψ ∈ (I −P0)N ,

we haveψ = φ −P0φ for someφ ∈ N . Sinceψ,P0φ ∈ domH0, φ ∈ domH0.
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Henceφ = 0 andψ = 0. Thus, by proposition 1.18, there exists a closed sym-
metric densely defined restriction ofH0

r such thatγr is a Γ-field for the triple
(Sr ,H0

r ,Gr).
SinceQ(z) =C− iy0L∗L+(z− z̄0)L∗γ(z) with a bounded self-adjoint operator

C in G (proposition 1.20), we have

Qr(z) = ΠrCΠr − iy0ΠrL
∗LΠr +(z− z̄0)ΠrL

∗γ(z)Πr

= ΠrCΠr − iy0ΠrL
∗(I −P0)LΠr

+(z− z̄0)ΠrL
∗(I −P0)γ(z)Πr − iy0ΠrL

∗P0LΠr

+(z− z̄0)ΠrL
∗P0γ(z)Πr .

Now we use the equations

ΠrL
∗P0LΠr = 0 ΠrL

∗P0γ(z)Πr = 0. (4.5)

The first one follows from definition ofΠr , to prove the second one we note that
γ(z) = L+(z−z0)R0(z)L, therefore

ΠrL
∗P0γ(z)Πr =

ε0−z0

ε0−z
ΠrL

∗P0LΠr = 0.

From (4.5) we obtain

Qr(z) = C′− iy0 γ∗r (z0)γr(z0)+(z− z̄0)γ∗r (z0)γr(z) ,

whereC′ = ΠrCΠr is a self-adjoint bounded operator inGr . Hence,Qr is the
Krein Q-function associated with theΓ-field γr .

To prove the main result of the section we need the following lemma.

Lemma 4.5. Let S be an analytic function in the diskD = {z∈ C : |z| < r} with
values in the Banach space of all bounded linear operatorsL(G ) such that there is
a bounded inverse S−1(z) for all z from the punctured diskD\{0} and the function
S−1(z) is meromorphic. IfkerS(0) = 0, then S0 := S(0) has the bounded inverse
(and, therefore, S−1 has an analytic continuation to the point0 of the disk). If S0
is self-adjoint and0 is a pole at most of first order for S−1(z), thenranS0 is closed,
i.e. there is a punctured neighborhood of0 which has no point ofspecS0.

Proof. Consider the Laurent expansion

S−1(z) =
∞

∑
n=−m

Tnzn .
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wherem is a natural number. Ifm≤ 0, the lemma is trivial. Supposem> 0. Since
S(z)S−1(z) = I for all z, we haveS0T−m = 0. Let kerS0 = 0, thenT−m = 0, and
by recursion,Tn = 0 for all n < 0. ThenS0T0 = T0S0 = I and the first part of the
lemma is proved.

Let nowm= 1. ThenS0T−1 = 0 andT−1S1+T0S0 = I , whereS1 = S′(0). This
implies S0T0S0 = S0. Let x ∈ ranS0, thenS0T0x = x. Since ranS0 ⊂ (kerS0)

⊥,
there is a linear operatorA : ranS0 → ranS0 such thatAS0x = x for all x∈ ranS0.
FromS0T0x= x we haveA= T0, i.e. A is bounded. Hence, there isc> 0 such that
‖x‖ ≤ c‖S0x‖ for all x∈ ranS0 and hence for allx∈ (kerS0)

⊥.

Remark 4.6. If 0 is a second order pole forS−1(z), then the range ofS0 can be
non-closed. For example, letA be a self-adjoint operator in a Hilbert spaceH
such that ranA is non-closed. LetG = H ⊕H , andS(z) is defined as follows

S(z) =

[
A z
z 0

]
.

Then

S−1(z) =
1
z2

[
0 z
z −A

]
.

4.3 Description of eigensubspace

Theorem 4.7.Letε0 be an isolated eigenvalue of H0 andranP0L be closed. Then
the following assertions are mutually equivalent.

(1) There exists a punctured neighborhood ofε0 that contains no point of
specHΛ (in particular, if ε0 ∈ specHΛ, thenε0 is an isolated point in the
spectrum of HΛ).

(2) The operator Q(z)−Λ has a bounded inverse for all z from a punctured
neighborhood ofε0.

(3) ran
(
Qr(ε0)−Λr

)
is closed.

(4) There is a punctured neighborhood of0 which contains no point from the
spectrum of the operator Qr(ε0)−Λr .

Let one of the condition(1)–(4) be satisfied. Then the eigensubspace
H 0

Λ := ker(HΛ−ε0) is the direct sum,H 0
Λ = Hold⊕Hnew, whereHold = H 0∩

domHΛ = H 0∩domS,Hnew = γr(ε0)ker
[
Qr(ε0)−Λr

]
anddimH 0⊖Hold =

dimG ⊖Gr . Therefore,ε0 ∈ specHΛ if and only if at least one of the following
two conditions is satisfied:
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• H 0∩domHΛ 6= {0},

• ker
[
Qr(ε0)−Λr

]
6= {0}.

Remark 4.8. Since H 0 ∩ domHΛ = H 0 ∩ domS, the componentHold of
ker(HΛ − ε0) is independent ofΛ, i.e. this part is the same for all extensions
of Sdisjoint toH0. On the other hand, the componentHnew depends onΛ.

Remark 4.9. Clearly, ranP0L is closed, if the deficiency index ofS or dimH 0

are finite (this simple case is very important in applications of theorem 4.7). To
show that the assumptions are essential for infinite deficiency indices, we provide
here an example when the range ofP0L is not closed.

Let Hk = l2(N) for k = 0,1, . . . and let(e(k)
n )n≥0 be the standard basis inHk:

e(k)
n = (δmn)m≥0. Denote byH0

k the self-adjoint operator inHk which is deter-

mined byH0
k e(k)

n = (n+1/2)e(k)
n . Choosea∈H0 such that‖a‖= 1, 〈a|e(0)

0 〉 = 0,
a /∈ D(H0

0), and seta(k) = a. Consider inHk the one-dimensional subspaceNk

generated bye(k)
0 +(k+ 1)a(k). Fix z0 ∈ C \R. By Proposition 1.18 there exists

a symmetric restrictionSk of H0
k such thatNz0(Sk) = Nk. Let nowH =

⊕
Hk,

H0 =
⊕

H0
k , S=

⊕
Sk. Then the eigensubspaceH 0 of H0 corresponding to the

eigenvalueε0 = 1/2 is the closed linear span of(e(k)
0 ), k = 0,1, . . ., andNz0(S) is

the closed linear span of(e(k)
0 +(k+1)a(k)), k= 0,1, . . .. We can chooseG :=Nz0,

γ(z0)= L = I whereI is the identical embedding ofNz0 intoH . It is clear, that the

image ofP0L is the setM of all vectorsx from H 0 having the formx = ∑λke
(k)
0

where∑(k+1)2|λk|2 < ∞. Obviously,M is dense inH 0 but M 6= H 0, henceM
is not closed.

Proof of theorem 4.7. The equivalence(1)⇔ (2) follows from theorem 3.2, and
the equivalence(3) ⇔ (4) is trivial.

Let us prove the implication(1) ⇒ (3). ChooseO ∈ V (ε0) such thatQ(z)−
Λ has a bounded inverse for allz∈ O \ {ε0} and forz∈ O \ {ε0} consider the
mappingT(z) = (z− ε0)

(
Q(z)−Λ

)
. Note that

• T has an analytic continuation toε0 by settingT(ε0) = −|ε0−z0|2L∗P0L,
see Eq. (4.4), and

• T has a bounded inverse inO \{ε0}.

Since the operatorL∗P0L has the closed range, we can apply a result of Kato ( [87],
Sections VII.1.3 and VII.3.1). According the mentioned result, there is a mapping
V, V ∈ K(O ; G ), such that the operatorV(z)T(z)V−1(z) has the diagonal matrix
representation with respect to the decompositionG = G1⊕Gr :

V−1(z)T(z)V(z) =

[
T̂11(z) 0

0 T̂rr (z)

]
. (4.6)
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Because the left-hand side of Eq. (4.6) has a bounded inversefor z∈ O \ {ε0},
the same is true, in particular for the operatorS(z) := (z− ε0)−1T̂rr (z) =
ΠrV−1(z)[Q(z)−Λ]V(z)Πr considered in the spaceGr .

Our next aim to prove that

‖S−1(z)‖ ≤ c|z− ε0|−1 (4.7)

with a constantc> 0 for all z in a punctured neighborhood ofε0. For this purpose
we consider together with the decompositionG = G1⊕Gr of the spaceG , the
decompositionH = H1⊕Hr , whereH1 = H 0, Hr = (I −P0)H 0. In virtue
of to the Krein resolvent formula (3.1),

(z− ε0)RΛ(z) = (z− ε0)R0(z)− (z− ε0)2γ(z)T−1(z)γ∗(z̄)
= (z− ε0)R0(z)− (z− ε0)2[γ(z)V(z)]V−1(z)T−1(z)V(z)[γ(z̄)V(z̄)]∗ .

Represent the operatorγ(z)V(z) according to the above mentioned representations
of H andG in the matrix form:

γ(z)V(z) =

[
γ̂11(z) γ̂1r(z)
γ̂r1(z) γ̂rr (z)

]
. (4.8)

Since(z−ε0)RΛ(z) and(z−ε0)R0(z) are analytic functions in a neighborhood of
ε0, all the matrix term in[γ(z)V(z)]V−1(z)T−1(z)V(z)[γ(z̄)V(z̄)]∗ are also analytic
in the same neighborhood. In particular, we can choseO in such a way that the
function

z 7→ (z− ε0)2(
γ̂r1(z)T̂

−1
11 (z)γ̂∗r1(z̄)+ γ̂rr (z)T̂

−1
rr (z)γ̂∗rr (z̄)

)

is analytic inO . SinceT̂11(ε0) ≡ −|z0− ε0|2L∗P0L has a bounded inverse inG1,
the functionT̂−1

11 (z) is analytic in a neighborhood ofε0. Therefore, we can chose
O such that(z−ε0)2γ̂rr (z)T̂−1

rr (z)γ̂∗rr (z̄) is analytic inO . Furtherγ̂rr (ε0) = γr(ε0).
In virtue of Lemma 4.4 and definition of theΓ-field, we can find a constantc′ > 0
such that‖γr(ε0)g‖ ≥ c′‖g‖ for all g ∈ Gr . Therefore we can choseO so small
that ‖γ̂rr (z)g‖ ≥ c′′‖g‖ for all z∈ O , g ∈ Gr with somec′′ > 0. Sinceγ̂∗rr (z̄) is
an isomorphism of ranγr(z̄) on Gr , we see that(z− ε0)2T̂−1

rr (z) is bounded in a
neighborhood ofε0. Hence, we obtain (4.7) in a punctured neighborhood ofε0.
By Theorem 3.13.3 from [76],S−1(z) has at pointε0 a pole of the order≤ 1.
Therefore,(1) ⇒ (3) by Lemma 4.5.

Now we prove(4) ⇒ (2). ChooseO ∈ V (ε0) such thatQ(z)−Λ has no
spectrum inO \{ε0}. Moreover, we can use again the representation (4.6). Since
V(z) = I + O(z− ε0), the functionS(z) := ΠrV−1(z)Πr [Q(z)−Λ]ΠrV(z)Πr has
an analytic continuation atε0 with the valueS(ε0) = Qr(ε0)−Λr . To proceed
further, we need the following auxiliary result.
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Lemma 4.10.The operator S′(ε0) is strictly positive onker[Qr(ε0)−Λr ].

Proof of lemma 4.10. SinceV−1(x) = V∗(x) for x∈ O ∩R, for the derivative of
Sone has:

S′(ε0) =Πr(V
′)∗(ε0)Πr [Q(ε0)−Λ]Πr

+Πr [Q(ε0)−Λ]ΠrV
′(ε0)Πr +ΠrQ

′(ε0)Πr
(4.9)

(note thatΠrQ(ε0) andQ(ε0)Πr are well defined). Let nowφ ∈ ker[Qr(ε0)−Λr ].
Then we have from (4.9) that〈φ |S′(ε0)φ〉 = 〈φ |Q′(ε0)φ〉. SinceS′(ε0) is a self-
adjoint operator, we have thatS′(ε0)φ = Q′(ε0)φ on ker[Qr(ε0)−Λr ]. Therefore,
by Lemma 4.4 and (1.22a),

S′(ε0)φ = γ∗r (ε0)γr(ε0)φ for all φ ∈ ker[Qr(ε0)−Λr ], (4.10)

henceS′(ε0) is strictly positive on ker[Qr(ε0)−Λr ].

To prove the required implication(4) ⇒ (2), it is now sufficient to show that
S(z) has a bounded inverse in a punctured neighborhood ofε0. SinceS(z) is
analytic, it suffice to prove that the operatorJ(z) := S(ε0)+S′(ε0)(z− ε0) has a
bounded inverse in a punctured neighborhood ofε0 with the estimate

∥∥J(z)−1
∥∥≤

c|z− ε0|−1. For this purpose we representS′(ε0) in the matrix form

S′(ε0) =

[
S′22 S′23
S′32 S′33

]

according to the representationGr = G2⊕G3. ThenJ has the matrix representation

J(z) =

[
S0+(z− ε0)S′22 (z− ε0)S′23

(z− ε0)S′32 (z− ε0)S′33.

]

whereS0 := S(ε0). By the assumption of item (4),S0 has a bounded inverse in
G2, and by (4.10) the operatorS′22 has a bounded inverse inG3. Now we use the
Frobenius formula for the inverse of a block-matrix [78]:

[
A11 A12

A21 A22

]−1

=

[
[A11−A12A

−1
22 A21]

−1 A−1
11 A12[A21A

−1
11 A12−A22]

−1

[A21A
−1
11 A12−A22]

−1A21A
−1
11 [A22−A21A

−1
11 A12]

−1

] (4.11)

which is valid if all the inverse matrices on the right-hand side exist. Using (4.11)
it is easy to see thatJ−1(z) exists for allz in a punctured neighborhood ofε0 and
obeys the estimate

∥∥J(z)−1
∥∥≤ c|z−ε0|−1 with somec> 0. Thus, the implication

(4) ⇒ (2) and, hence, the equivalence of all the items (1) – (4) are proven.
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Now suppose that the conditions of items (1) – (4) are satisfied. To determine
the eigenspaceH 0

Λ we find the orthoprojectorP0
Λ on this space calculating the

residue of the resolvent,P0
Λ = −Res[RΛ(z) : z= ε0] = P0 + Res[M(z) : z = ε0],

where
M(z) := γ(z)[Q(z)−Λ]−1γ∗(z̄) .

Using the conditions of item (4), we findO ∈ V (ε0) andV ∈ K(O ,G ) such that
for z in O \{ε0}

V−1(z)[Q(z)−Λ]V(z) =

[
S1(z) 0

0 Sr(z)

]
,

according to the decompositionG = G1⊕Gr whereS1 andSr have the following
properties:Sr is analytic inO with Sr(ε0) = Qr(ε0)−Λr and

S1(z) = −|ε0−z0|2
L∗P0L
z− ε0 +F1(z), whereF1 is analytic inO . (4.12)

Using Lemma 4.10, we find a functionW ∈ K(O ,Gr) such that forz in O \
{ε0} one has

W−1(z)Sr(z)W(z) =

[
S2(z) 0

0 S3(z)

]
,

according to the decompositionGr = G2⊕G3 whereS2 andS3 have the properties:

kerS2(ε0) = 0 andS2(ε0)φ = [Qr(ε0)−Λr ]φ for φ ∈ G2, (4.13)

S3 is analytic inO and has the formS3(z) = (z− ε0)T(z) where
T0 := T(ε0) is a strictly positive operator inG3.

(4.14)

Denote now

U(z) := V(z)

[
I1 0
0 W(z)

]
,

where the matrices are decomposed according to the representation G = G1 ⊕
Gr and I1 is the identity operator onG1. Further, denotêQ(z) = U−1(z)[Q(z)−
Λ]U(z), γ̂(z) = γ(z)U(z), thenM(z) = γ̂(z)Q̂−1(z)γ̂∗(z̄), and forz∈ O \{ε0} one
has

Q̂−1(z) =




S−1
1 (z) 0 0

0 S−1
2 (z) 0

0 0 S−1
3 (z)


 .

An important property of̂γ we need is follows

γ̂(z) =
z0− ε0

z− ε0 P0LU(z)+(I −P0)γ(z)U(z), (4.15)
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and(I −P0)γ is analytic inO . RepresentM as the sumM(z) = A1(z)+A2(z)+
A3(z), whereA j(z) = γ̂(z)Π jS

−1
j (z)Π j γ̂∗(z̄); hereΠ j denote the orthoprojectors

of G ontoG j , j = 1,2,3.
It is clear from (4.12)–(4.15) that at the pointz= ε0, the functionA j(z) has a

pole at most ofj-th order. Let

A j(z) = A(− j)
j (z− ε0)− j +A(− j+1)

j (z− ε0)− j+1+ . . .

be the Laurent expansion forA j at the pointε0. According to the definition of
A j(z) and formulas (4.12)–(4.15) we have

A(− j)
j = CjB jC

∗
j , A(− j+1)

j = CjB jD
∗
j +D jB jC

∗
j +CjB

′
jC

∗
j ,

where

Cj = (z0− ε0)P0LΠ j , B1 = |ε0−z0|−2(Π1L∗P0LΠ1)
−1,

B2 = (Π2S(ε0)Π2)
−1, B3 = (Π3T0Π3)

−1,

andB′
j , Cj , D j are some bounded operators (we need no concrete form of them).

By definition of the spacesG j , we haveΠ jL∗P0LΠ j = 0 for j = 2,3, and hence,
P0LΠ j = 0 for the samej ’s. As a result we have thatA2(z) has no pole atz= ε0,
i.e.,

Res[A2(z) : z= ε0] = 0, (4.16)

andA3(z) has at this point a pole at least of first order. Using (4.15) and taking
into considerationP0LΠ3 = 0, we obtain

Res[A3(z) : z= ε0] =: P3 = (I −P0)γ(ε0)Π3T−1
0 Π3γ∗(ε0)(I −P0)

= γr(ε0)Π3T−1
0 Π3γ∗r (ε0) .

(4.17)

Now we have according to (4.12) and (4.15)

Res[A1(z) : z= ε0] =: −P1 = −P0LΠ1(Π1L∗P0LΠ1)
−1Π1L∗P0 . (4.18)

As a result, we have from (4.16), (4.17), and (4.18)P0
Λ = P0−P1+P3.

Eq. (4.18) shows thatP1 is an orthoprojector with ranP1 ⊂ ranP0. Therefore,
P0−P1 is an orthoprojector on a subspace ofH 0. Eq. (4.17) shows that ranP3 ⊂
ran(I −P0), therefore(P0−P1)P3 = 0. SinceP3 is self-adjoint,P3(P0−P1) = 0.
Using(P0

Λ)2 = P0
Λ we see thatP2

3 = P3, henceP3 is an orthoprojector andP3 ⊥ P0.
By Lemma 4.1, ran(P0−P1) = H 0∩domHΛ ≡ Hold. The relation ranP3 =

γr(ε0)ker
[
Qr(ε0)−Λr

]
≡ Hnew follows from (4.17) and the definition ofG3.

Theorem 4.7 is proved.
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[65] Geyler, V. A. andŠ̌tovı́ček, P.:Zero modes in a system of Aharonov-Bohm
fluxes, Rev. Math. Phys.16 (2004) 851–907.

[66] Gesztesy, F., Kalton, N. J., Makarov, K. A., and Tsekanovskii, E.: Some
applications of operator-valued Herglotz functions, In: Alpay, D. et al.
(Eds.),Operator theory, system theory and related topics(Oper. Theory:
Adv. Appl., vol. 123, Birkhäuser, Basel, 2001) 271–321.
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