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Abstract

We give a self-contained presentation of the theory of aéjbint exten-
sions using the technique of boundary triples. A descriptbthe spectra
of self-adjoint extensions in terms of the correspondingiKmaps (Weyl
functions) is given. Applications include quantum grag¥nt interactions,
hybrid spaces, singular perturbations.
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O Introduction

In recent two decades, the field of applications of explicstblvable models of
guantum mechanics based on the operator extension teehtmiglbeen expanded
considerably. New scopes are presented e.g. in the Appéydix Exner [56]
to the second edition of the monograph [6], in the monograpl$ bAlbeverio
and P. Kurasov [9], and in the topical issue of the Journal lofskes A [44].
A review of papers dealing with the theory of Aharonov—Bohifeas from the
point of view of the operator methods is contained in [65,]10@&w methods
of analyzing singular perturbations supported by sets with-trivial geometry
are reviewed in [58]. In addition, one should mention the absuch mod-
els in the quantum field theory [70, 80], including stringdhe[86], quantum
gravity [123], and quantum cosmology (see S. P. Novikoviswoeent in [74] to
results from [73]). Here the two-dimensionallike potential, which is a point
supported perturbation, is of considerable interest tmrauthis case the Dirac
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o-function has the same dimension as the Laplacian, and togepy leads to
an effective non-perturbative renormalization proced@moving the ultravio-
let divergence [40, 82, 83]. Another peculiarity of the tdioaensional case —
so-called dimensional transmutation — was observed i4[B9,The operator ex-
tension technique allows to build “toy models” which helgtbeunderstanding
some phenomena in various fields of mathematics and thealrptiysics; as typ-
ical examples we mention here the spectral theory of autphiofunctions [32]
or renormalization group theory [3]. This technique is &addle not only to self-
adjoint operators, it can be used, e.g. in investigatingjpigive and accumulative
operators as well [85].

Very important applications of the operator extension thdmve been found
recently in the physics of mesoscopic systems like heterctstres [72], quantum
graphs [90, 91, 93, 106] and circuits [1], quantum wellssdand wires [81]. It
should be stressed that in this case, the correspondinigsrase not only of qual-
itative character, but allow to give a good quantitativelarption of experimental
data (see e.g. [28, 79]) or explain some discrepancy beterparimental data
and standard theories [29].

Among the most popular ways of using singular perturbatiortee physics
literature one should mention first of all various renormetiion procedures in-
cluding the Green function renormalization and cut-offgmiials in the position
or momentum representations (see [6] and an informatiadia@it list in [110]).
Berezin and Faddeev [20] were first who showed that the realoration ap-
proach to singular perturbations is equivalent to seagcfon self-adjoint exten-
sions of a symmetric operator related to the unperturbedatgrein question.
At the same time, the mathematical theory of self-adjoirteesions is reduced
as a rule to the classical von Neumann description througfamnyroperators in
deficiency spaces, which makes its practical use ratheculiffi In many cases
self-adjoint operators arise when one introduces somedasyrconditions for a
differential expression (like boundary conditions for ttegplacian in a domain),
and it would be useful to analyze the operators in terms ofilaty conditions
directly. Such an approach is common in the physics liteeafi5, 45]. In the
framework of the abstract mathematical theory of self-adj@r, more generally,
dissipative) extensions this approach is widely used indifferential operator
theory (see e.g., [53,71, 75] and the historical as well adbthliographical com-
ments therein). Moreover, there is a series of quantum nmechproblems related
to the influence of topological boundaries, and in this chseabove approach is
the most adequate [13].

On the other hand, Berezin and Faddeev pointed out that #melatd ex-
pressions for the Green functions of singularly perturbegnitonians obtained
by the renormalization procedure can be easy derived frasthcalled Krein
resolvent formula [20]. In the framework of the theory of kgitly solvable mod-
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els with an internal structure, an elegant way to get therkKresolvent formula
with the help of abstract boundary conditions has been meghby Paviov [111]
(see also [2]), which was applied to the study of numeroudicains, see
e. g.[61,94,99,102,112]. A machinery of self-adjoint e@siens using abstract
boundary condisitons is presented in a rather detailed iiothe monograph [71],
but only very particular questions of the spectral theogyaressed. A system-
atic theory of self-adjoint extensions in terms of boundawpditions, including
the spectral analysis, was developed by Derkach and Malamind found, in
particular, a nice relationship between the parameter&lffasjoint extensions
and the Krein resolvent formula, and performed the speatralysis in terms of
the Weyl functions; we refer to the paper [49] summarizing thachinery and
containing an extensive bibliography.

Nevertheless, one has to admit that the spectral analysifeddjoint exten-
sions in such terms is a rarely used tool in the analysis ohiguma-mechanical
Hamiltonians, especially for operators with infinite definty indices. On the
other hand, the authors’ experience show that the appicati the Krein resol-
vent formula in combination with the boundary values fof-seljoint extensions
can advance in solutions of some problems related to thécagiphs of singular
perturbations [30, 34, 35]. Therefore, it is useful to giveetf-contained exposi-
tion of the abstract technique of boundary value problentstaranalyze some
models of mathematical physics using this machinery. Thike first aim of the
present paper.

Using the Krein resolvent formula, it is possible often tduee the spectral
problem for the considered perturbed operator to a probfémading the kernel of
an analytic family of operators — so-called Krethfunction — with more simple
structure in comparison with the operator in question. @fuee, it would be
useful to find relations between various parts of the spetwiithe considered
operators and the corresponding parts of the spectru@ininctions. The second
aim of the paper is to describe these relations in a formIsleif@r applications.
Using the corresponding results, we obtain, in particulawy properties of the
spectra of equilateral quantum graphs and arrays of quadaim Of course,
we believe that the technique presented here can be usedli@zemuch more
general systems. It is worth noting that this problem wassiared in [24],
but the main results were obtained in a form which is diffidoltuse for our
applications.

In Section1l we describe the machinery of boundary triplektaeir appli-
cations to self-adjoint extensions. The most results ia faction are not new
(we give the corresponding references in the text), but weal&now any work
where this theory was presented with complete proofs, hexecgecided to do it
here. We also relate the technique of boundary triples wighso-called Krein
2-functions andl -fields. Some of our definitions are slightly different from
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the commonly used ones (although we show later that the betlkeguivalent);
this is motivated by applied needs. We conclude the seciiseberal examples
showing that the machinery of boundary triples include thedl Wnown situa-
tions like singular perturbations, point perturbationbhg spaces. Sectidn 2 is a
summary of a necessary information about the spectra amdrapmeasures of
self-adjoint operators. In Sectibh 3 we provide the spéatralysis of self-adjoint
extensions with the help of the Krei@-functions. In particular, we analyze the
discrete and essential spectra, and carry out a completéraipanalysis for a
special class of2-functions, which includes the recently introduced scatpe
functions [5]; these results are new. Using these resultavedyze two classes
of quantum-mechanical models: equilateral quantum grapdsarrays of quan-
tum dots, where we perform the complete dimension reducti@mhdescribe the
spectra of continuous models completely in terms of the@atad tight-binding
Hamiltonians. Sectiohl4 is devoted to the study of isolaigerevalues of self-
adjoint extensions and generalizes previously known tesolthe case of opera-
tors with infinite deficiency indices.

The second named author, Vladimir Geyler, passed away ot 2p2007,
several days after the completion and the submission of #reusctript. His un-
timely death has become a great loss for us.

1 Abstract self-adjoint boundary value problems

In this section we describe the theory of self-adjoint egiens using abstract
boundary conditions. Some theorems here are not new, bekibtng presenta-
tions are spread through the literature, so we decided togedere the key ideas
with complete proofs.

1.1 Linear relations

Here we recall some basic facts on linear relations. For @ mietailed discussion
we refer to [12]. Lets be a Hilbert space. Any linear subspacefof ¢ will be
called alinear relationin 4. For a linear relatio\ in ¢ the sets

domA: = {xe¥: 3dyec ¥ with (x,y) e \)},
ran/\: = {xe ¥ : dy € 4 with (y,x) € \)},
kerA:={x€ ¥ :(x,0) € A}



will be called thedomain therange and thekernelof A, respectively. The linear
relations

AN ={(xy) €GB (¥,X) €A},
N ={(x1,%) €4 DY 1 (x1]y2) = (Xely1) V(Yy1.Y2) €A}
are callednverseandadjointto A, respectively. Foo € C we put

al={(xay): (xy) €A}
For two linear relationg\', A" ¢ ¥ &% one can define thegum

N+N'={xy+Y"): (xY)eN, (xy') e N"};
clearly, one has do\’ +A”) = domN ndomA”. The graph of any linear oper-
atorL with domain in¢ is a linear relation, which we denote bylgrClearly, ifL
is invertible, then gt = (grL)~. For arbitrary linear operatots,L” one has
gr(aL) =agrL and grl’ +grL” = gr(L' +L"). Therefore, the set of linear op-
erators has a natural “linear” imbedding into the set ofdirrelations. Moreover,
if L is a densely defined closable operatot/inthen grL* = (grL)*, hence, this
imbedding commutes with the star-operation.

In what follows we consider mostly only closed linear redas, i.e. which are
closed linear subspaces#® ¢. Clearly, this generalizes the notion of a closed
operator. Similarly to operators, one introduces the motibthe resolvent set
resA of a linear relatiom\. By definition,A € resA\ if (A—A1)~1is the graph of
a certain everywhere defined bounded linear operator (hergr idy = {(x, X) :
Xe %}); this operator will be also denoted @ — A1)~1. Due to the closed graph
theorem, the conditioA € resA\ exactly means that is closed, kefA — A1) =0,
and rafA — Al) = ¢. Thespectrunsped\ of A is defined as

sped\ ;= C\ resA.

Alinear relation\ on¥ is calledsymmetridgf A C A* and is calledelf-adjoint
if A=A*. Alinear operatoL in ¢ is symmetric (respectively, self-adjoint) if and
only if its graph is a symmetric (respectively, self-adjpiimear relation. A self-
adjoint linear relation is always maximal symmetric, bud ttonverse in not true;
examples are given by the graphs of maximal symmetric opesratith deficiency
indices(n,0), n > 0.

To describe all self-adjoint linear relations we need théWwang auxiliary
result.

Lemma 1.1. Let U be a unitary operator it¥. Then the operator MY &% —
Y39,
~1/i(1+U) U-1
M‘é( 1-U i(1+U)) (1.1)
is unitary; in particular,0 € resM.



Proof. The adjoint operato¥* has the form

e L(-i+Un) 1-Ur
2\ U1 —ia+un)e

and it is easy to show by direct calculation thMit = M1, O

Theorem 1.2.A linear relationA in ¢ is self-adjoint iff there is a unitary operator
U in ¢ (called theCayley transformof A) such that

N={(x1,%) €E4®Y i(1+U)x1 = (1-U)x}. (1.2)

Writing U in the formU = exp(—2iA) with a self-adjoint operatoh one can
reformulate theorein 1.2 as follows:

Corollary 1.3. A linear relation/ in ¢ is self-adjoint iff there is a self-adjoint
operator A acting irn¢ such that\ = {(xl,xz) €EY DY COSAX = sinsz}.

To prove theorern 112 we need the following lemma.

Lemma 1.4. Let U be a unitary operator i and/\ be defined by1.2), then
A:{((l—U)x,i(l+U)x):xe%}. (1.3)

Proof of lemmal1.4. The linear relatiod\ given by [1.2) is closed as it is the null
space of the bounded operator

GPY > (X, %) —i(l+U)xp—(1-U)x e ¥.

Denote the set on the right-hand side[of(1.3)byClearly,l 1 C A. By lemmd1.1,

the operatoM™ adjoint toM from (1.1) maps closed sets to closed sets. In partic-
ular, the subspadé = M*(0© ¥) is closed. Assume that there exiggs, y,) € A
such that(ys,y2) L M. The condition(y1,y2) € A reads as(1+U)y; — (1 —
U)y, =0, and(y1,y2) L M means thaty;|(1—U)x) + (y2|i(1+U)x) = O for

all xe ¢, i.e. that(U —1)y; —i(14+U)y> = 0. This impliesM(y1,y2) = 0. By
lemmdI.ly; =y, = 0. The requested equality= I is proved. O

Proof of theorem[1.2. (1) LetU be a unitary operator i and/A be defined by
(@1.2). By lemma_1}4 one can represénin the form [1.8). Using this representa-
tion one easily concludes thatC A*, i.e. that/\ is symmetric.

Let (y1,Y2) € A*. The equality(x1|y2) = (X1]y2) for all (x1,X2) € A is equiva-
lentto((1—U)x|y2) = (i(1+U)x|ys) for all x € ¢, from which—i(1+U 1)y, =
(1-U Yy, andi(1+U)ys = (1—U)ys, i.e. (y1,y2) € A. Therefore A* C A,
which finally results in\ = A*.



(2) LetA be a self-adjoint linear relation . SetL, := {x1 X2 : (X1, %X2) €
A}. Assume that for soméxy,x2) and(y1,y2) from A one hasx +ixo = y; +
iy2, then (X1 —y1,x2 —y2) € A andxg —y1 = —i(x2 —y2). At the same time,
0= |m<X1 —y]_‘ X2 —y2> = |m<—i(X2 —y2)| (X2 —y2)) =Imi ||X2 —y2||2, therefore,
X2 = Yo andxy = y1. In the same way one can show that fram- ix, = y; —iyo,
(X1,%2), (Y1,Y2) € A\, it follows thatx; = y; andxz = y2. Forx; +ixz with (x1,X2) €
N setU (xg +ix2) = X3 —ixp. Clearly,U : L, — L_ is well-defined and bijective.
Moreover,||U (xg +ix2) || = [|x1]|? + [|X2]|? = ||x1 + ix2||?, i.e. U is isometric.

Show thatU is actually a unitary operator, i.e. that =<%. We consider
only L, ; the setL_ can be considered exactly in the same way. Assume that
y L Ly for somey € ¢, then(xq +ix2|y) = (x1]y) — (x2|ly) = O for all (x1,X2) €
A. It follows that (iy,y) € A* = A, which implies Iniy|y) = —Imi|ly||?> = 0,
i.e. y=0. ThereforeL, = %. To show that_, is closed we take an arbitrary
sequencéx),x3) € A with lim(x] +ix5) =y for somey € ¢, then automatically
lim(x] —ix3) =y for somey € ¢, and

. 1 . 1
lim> = 5 (y+Y) =ty and lmsd = = (y—) = ys.

2 2i
As we see, the sequenpd, x5) converges, and the limfyy,y») lies in A asA is
closed. Thereforeg;=y; +iy»s liesinL,, L, is closed, andl is unitary.
Clearly, by construction df), A is a subset of the subspace on the right-hand
side of [1.2). As shown in item (1), the latter is self-adjoais well asA is,
therefore, they coincide. O

Theoren 1.2 gives only one possible way for parameterizimgnl relations
with the help of operators. Let us mention some other ways this.

Proposition 1.5. Let A and B be bounded linear operatorsé Denote/ :=
{(xl,xz) EGDY Ay = sz}. N\ is self-adjoint iff the following two conditions
are satisfied:

AB* = BA, (1.4a)
A —B
ker(B A) =0. (1.4b)

Proof. Introduce operators: 4 ®¥% > (X1,X2) — Ay —Bx €4 andld: Y ¢ ¥ >
(X1,%2) = (—X2,X1) € 4D Y. There holdg\* = J(A+) andA = kerL.

Let us show first that the condition (1l4a) is equivalent itftlusion\* C A.
Note that this inclusion is equivalent 8A+) C A or, due to the bijectivity of,
to

At CIA. (1.5)



Clearly,\ = kerL is closed, therefore, by the well known relatién; = kerL- =
ranL*. As A is closed, the condition (1.5) is equivalent to

ranL* C J(kerL). (1.6)

Noting thatL* acts as/ > x— (A*x, —B*X) € ¥ & ¥, we see tha{ (116) is equiva-
lent to (1.44).

Now let A be self-adjoint, thed(A+) = A or, equivalently,J(A) = A+ =
kerL'. Therefore, the restriction df to J(A) is injective. This means that the
systems of equatioriz = 0, LJz= 0 has only the trivial solution, which is exactly
the condition[(T.4b).

On the other hand, if(1.4a) and_(1l4b) are satisfied, theshasn above,
AL CI(N). If A+ #£I(N), thend(A) contains a non-zero element@ ) =A =
kerL, i.e. there existg 0 withLz= 0 andLJz= 0, which contradict§(1.4b). ]

For a finite-dimensiona’ the condition[(1.4b) simplifies, and one arrives at

Corollary 1.6. Let¥ be finite dimensional, B be linear operators iry. The

linear relation/ := {(xl,xz) CYGDY: A= sz} is self-adjoint iff the following
two conditions are satisfied:

AB* = BA", (1.7a)

defAA"+BB") #0 <« the block matriXA|B) has maximal rank (1.7b)

The conditions[(I.4a)[ (1.4b), (117d), (1.7b) can be réanitn many equiva-
lent forms, see e.g. [4, Section 125], [31,47,107,118].

1.2 Boundary triples for linear operators

Definition 1.7. Let A be a closed linear operator in a Hilbert spa¢e with the
domain dormA. Assume that there exist another Hilbert sp&and two linear
mapsl 1,2 : domA — ¢ such that:

(f|Ag) — (Af|g) = (F1f|20) — (F2f| 1) for all f,g € domA, (1.8a)
the map(l"'1,2) : domA — 4 @ ¥ is surjective, (1.8b)
the set ke(l'1,I2) is dense in7. (1.8c)

Atriple (¢,I'1,2) with the above properties is calledaundary triplefor A.

Remark 1.8. This definition differs slightly from the commonly used ome[49,
71, 88] one defines boundary triple only for the case wiers a closed densely
defined symmetric operator; the propefty (1.8c) holds théamatically. In our
opinion, in some cases it is more convenient to find a bourtdigig than to check
whether the adjoint operator is symmetric. Below we will @beoreni 1.12) that
these definitions are actually equivalent if one deals wetfiadjoint extensions.
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In Definition[1.7, we do not assume any continuity propertiethe mapd 1
andl , but they appear automatically.

Proposition 1.9. Let A be a closed linear operator in a Hilbert spag€¢ and
(¢,I1,T2) be its boundary triple, then the mappingmS> g +— (19, 29) €
¢ ® ¥ is continuous with respect to the graph norm of S.

Proof. Suppose that a sequengec domA, n € N, converges in the graph norm.
As Ais closed, there holdg:= limg, € domA andAg = lim Ag,. Assume that
lim (I 109n, M 20n) = (u,V), where the limit is taken in the norm &f @ ¥. Let us
show that™ ;g = uandrl'2g = v; this will mean that the mappingd 1, ») is closed
and, therefore, continuous by the closed graph theorem.

For an arbitraryf € domA there holds

(F1f[F2g) — (M2f|T10) = (f|Ag) — (Af|Q)
=Ilim(f|Agn) — (Af|gn) =lim(T1f|T20n) — (F2f|10n)
= (Faf[v) — (T2f|u).

Therefore (1 f|F2g) — (F2f|F19) = (M1 f|v) — (F2f|u) and
(Faf|Fog—v) = (M2f[F10—u) (1.9)

for any f € domA. Using the property (1.8b) from definition 1.7, one can take
f € domA with 1 f =T>g—vandl,f =0, then [I.D) reads dd 29— V||>=0
andl2g = v. Analogously, choosindg € domAwithM1f =0andlr,f =ri;g—u
one arrives af 1g = u. O

Our next aim is to describe situations in which boundaryéspexist and are
useful. For a symmetric operatdrin a Hilbert space”” and forz € C, we denote
throughout the paperz(A) := ker(A* — zl) and write sometimes/; instead of
A7(A), if it does not lead to confusion.

Is is well known thatA has self-adjoint extensions if and only if dirff =
dim.#_j. The von Neumann theory states a bijection between theadg@int
extensions and unitary operators fromito .4_;. More precisely, itJ is a unitary
operator from.4; to .4_;, then the corresponding self-adjoint extensfgnhas
the domain{ f = fo+ fi+U fi : fop € domA, f; € .4{} and acts agp+ fi +U fj —
Afg+ifi — iU fi. This construction is difficult to use in practical applicais,
and our aim is to show that the boundary triples provide aulse&chinery for
working with self-adjoint extensions.

The following proposition is borrowed from [88].

Proposition 1.10. Let A be a densely defined closed symmetric operator in a
Hilbert spaces# with equal deficiency indice@,n), then there is a boundary
triple (4,1 1,I2) for the adjoint A with dim% = n.
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Proof. Itis well known that dom\* = domA+ 4 + .4, and this sum is direct.
Let Py; be the projector from dow* to .44; corresponding to this expansion.

Let f,g € domA*, thenf = fop+Rf+P_if, g=9go+Rg+P-ig, fo,q0 €
domA. Using the equalitied"P, = iP, andA*P_j = —iP_; one obtains

(f|A"g) — (A*f|g) = (fo+ R f+P_if|Ag+iPg—iP_ig)
=2i(Rf|Rg) —2i(P_if|P_jg). (1.10)

As the deficiency indices & are equal, there is an isomorphighfrom .4~
onto.4{. Denote¥ := .4#_; endowed with the induced scalar producti#i, and
setl1 =iUP_j—IiP, N, =R +UP_, then

(F1f|T29) —(M2f[T10) = 2i(Rf|Rg) — 2i(UP_ f[UP_ig)
— 2i(Rf|Rg)—2(P-if|P.ig). (111)
Comparing [(1.70) with[{I.11) one shows th&t,l1,I») satisfy the property
(1.8a) of definition[[1J7). Due to doAcC ker(P,P_j) C ker(I'1,I2) the prop-

erty (1.8¢) is satisfied too. To prove (118b) take &y, € 4~ = ¢ and show
that the system of equations

iUP_if —iPf=F, UP, f+Pf=F, (1.12)

has a solutiorf € domA*. Multiplying the second equation hyand adding it to
the first one one arrives al2?P_;f = F; +iF». In a similar way, 22 f = iFo — Fy.
Therefore, the funtcion

1. 1 .
f = = (iF2—F1) + —U Y(F+iF2) € A{(A") + A4 (A*) C domA*

2i 2
is a possible solution td (1.112), arid (1.8b) is satisfied.r@toee, (4,1, 2) is a
boundary triple forA*. O

Let A be a closed densely defined linear operatérhave a boundary triple
(¢,I'1,T2), \ be aclosed linear relation iA. By Ax in this subsectiomve mean
the restriction ofA* to the domain dorAy = {f € domA*: (1 f,I2f) € A}

The usefulness of boundary triples is described in theviolig proposition.

Proposition 1.11. For any closed linear relatiom\ in ¢ one has A = Ax+. In
particular, Ay is symmetric/self-adjoint if and only A is symmetric/self-adjoint,
respectively.
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Proof. Clearly, one ha#\ C Ay C A*. Therefore A C Ay C A*. Moreover, one
has

gr Ay = {(f,A"f): (f|A"g) = (A"f|g) Vge domAn}
= {(f,A"f) 1 (T1f[T2g) — (T2f[(1g) Vg e domAp}
= {(F,AF): (T1f|%0) — (Taf[x1)  V(x1,%) € A}
:{(f,A*f):(Flf,rzf)e/\*}:grA,\*,

This proves the first part of proposition. The part concegrtive self-adjointness
of Ax is now obvious, ag\\ C Ay if and only if A C AV. O

Theorem 1.12.Let A be a closed densely defined symmetric operator.

(1) The operator A has a boundary triple if and only if A admits self-adjoint
extensions.

(2) If (9,1, ) is a boundary triple for A, then there is a one-to-one cor-
respondence between all self-adjoint linear relatigven ¢4 and all self-
adjoint extensions of A given ldy<— Ax, where A is the restriction of A
to the vectors £ domA* satisfying(l'1f,I2f) € A.

Proof. (1) LetA* have a boundary triple amidl be any self-adjoint linear relation
in ¢, then according to proposition 1111 the operagris self-adjoint, and\y D
A. The converse is exactly proposition 1.10.

(2) If A\'is a self-adjoint linear relation i, then due to propositidn 1.111 the
corresponding operatay, is self-adjoint.

Now let B be a self-adjoint extension ok, then A C B ¢ A*. Denote
N={(T1f,I2f), f € domB*}, thenB = A,, andA is self-adjoint due to propo-
sition[1.11. O

Theorem 1.13.Let a closed linear operator B have a boundary trighe, "1, 2),
and A:= Blieqr, r,), then AC B*. Moreover, the following three conditions are
equivalent:

(1) B has at least one restriction which is self-adjoint,
(2) B* is symmetric;

(3) B* =A,

(4) A =B.
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Proof. By constructiorA is densely defined. By definitian 1.7 for afiy= domA
one hagf|Bg) — (Af|g) = 0, which meang\ C B*. In particular,B* is densely
defined. By proposition 1.9 is closed, therefore, (3) and (4) are equivalent.

(1)=(2). LetC be a self-adjoint restriction d8. FromC C B it follows
B* CC*=CcB=(B*")* i.e.B* is symmetric.

(2)=(3). LetD = B* be symmetric, the® C Bis closed and = D*.

Let f € domD. According to the definition 117 there exiggss domD* =
domBwithF1g= —I>f andlN',g=T1f. One has

0= (Df|g)—(Df|g) = (f|D"g) - (D*f|g)
= (f|Bg) — (Bf|g) = Mo f|*+[IF2f|1%,

from whichlT1f =T>f = 0. Therefore, dor® C ker(l'1,I2) = domA. At the
same time, as shown aboveC B*, which mean#\ = D = B*.

(4)=(1). LetB = A*. By theoreni_1.12(1) the operatér has self-adjoint
extensions, which are at the same time self-adjoint reéistns of A* = B. O

The proof of proposition_1.10 gives a possible constructba boundary
triple. Clearly, boundary triple is not fixed uniquely by dufion [1.7. For a
description of all possible boundary triple we refer to [L001]. We restrict
ourselves by the following observations.

Proposition 1.14. Let A be a closed densely defined symmetric operator with
equal deficiency indices. For any self-adjoint extension fHAdhere exists a
boundary triple(¢,I1,I ) for A* such that H is the restriction of ‘Ao kerT ;.

Proof. Let (¢4,I,T%) be an arbitrary boundary triple féx*. According to the-
orem[1.12(2), there exists a self-adjoint linear relatiom ¢ such that is the
restriction ofA* to the vectorsf € domA* satisfying(r'; f,I'5f) € A. LetU be
the Cayley transform oh (see theorern 11.2). Set

. } i / _ / . } _ I /
M= 2<|(1+U) 1+ (U 1)r2), o= 2((1 ) 1+|(1+U)I'2>.
By lemmd1.1 the mafi 1,I2) : domA* — 4 & ¥ is surjective and kéF 1,1 2) =
ker(ly,T'%). At the same time one ha§(f|[2g) — (M2f|M19) = (M f|T750) —
(% f|T9), which means that7, 1, 2) is a boundary triple foA*. It remains to
note that the conditiond™; f,I'5f) € A andl'1 f = 0 are equivalent by the choice
of U. O

Proposition 1.15. Let (¢4,I1,I2) be an arbitrary boundary triple for A and L
Qe a bounded linear self-adjoint operatord then(¢,1,I2) withl"1 =11 and
o =T2+LIis also a boundary triple for'S

13



Proof. The conditions of definition 117 are verified directly. d

An explicit construction of boundary triples is a ratheffidiilt problem, see
e.g. [124] for the discussion of elliptic boundary condiso In some cases there
are natural boundary triples reflecting some specific ptaseof the problem,
like in the theory of singular perturbations, see [114] anlisection 1.4]2 below.

1.3 Krein's resolvent formula

In this subsection, if not specified explicitly,

e Sis a densely defined symmetric operator with equal deficiendices
(n,n), 0<n < oo, in a Hilbert space?,

o N7 :=ker(S —2z),
e ¢ is a Hilbert space of dimensiat
¢ HOis a certain self-adjoint extension 8f
o for ze resH? denoteR’(z) := (H? — 2)~1, the resolvent oH°.
Forzi,z € resHY put
U(z21,2) = (H2—2)(H°—21) ' = 1+ (21— 2)R(20).

It is easy to show thad (z1,2) is a linear topological isomorphism g# obeying
the following properties:

U(zz2) =1, (1.13a)

U (Z]_, Zz)U (22, Zg) =U (Zl, 23), (1.13b)
U z1,22) =U (22, 22), (1.13c)
U'(z1,22) =U (71, 2), (1.13d)

U (z1,22) 42,(S) = A%(S). (1.13¢)

Definition 1.16. A map y : resH? — L(¥,.%#) is called aKrein -field for
(S,HY,9) if the following two conditions are satisfied:

y(2) is a linear topological isomorphism &f and.#; for all z € resH°, (1.14a)

for any z1,2 € resHC there holdsy(z) = U (z1,2)y(z) or, equiva- (1.14b)
lently, y(z1) - y(z2) = (z1 - 2)R(21)V(22) = (21— 22)R°(2) y(22). '

Let us discuss questions concerning the existence andemegs of -fields.
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Proposition 1.17. For any triple (S,NHO,%) there exists a Kreim'-fieNId y. If y(2)
is another Krein-field for (S H®, %) with a certain Hilbert space/, then there
exists a linear topological isomorphism N frd¢hto ¢4 such thaty(z) = y(z)N.

Proof. Fix anyzy € resH?, choose any linear topological isomorphism% —
Nz, and sely(zp) := L. Then property[(1.14b) forces to set

¥(z2) =U(z,20)L =L+ (z— 20)RP(2)L. (1.15)

On the other hand, the propertiés (1.13)fz;,2) show thaty(z) defined by
(@.I5) is ar-field for (S HO, ).

If V(z): 4 — #, z < resHO, is another -field for (S,H?,%), then setting
N = y(20) Y'Y (z0) wherey\ = (zo) is the inverse to/(z) : 4 — .A,, and using
(1.14b) again, we see thptz) = y(2)N for all z< resHC. O

The following propositions gives a characterization ofatin I'-fields.

Proposition 1.18. Let H° be a self-adjoint operator in a Hilbert spac#’, ¢ be
another Hilbert space, angbe a map fromesH® to L (¢, .5#), then the following
assertions are equivalent:

(1) there is a closed densely defined symmetric restrictiohts such thaty
is thel -field for (S H?,%).

(2) y satisfies the conditiofil.14b)above and the following additional condi-
tion:

for some ¢ resH® the mapy({) is a linear topological
isomorphism of/ on a subspace/” C 2 such that /" N (1.16)
domH? = {0}.

Proof. Clearly, anyl -field satisfies[(1.16).

Conversely, let the conditions (1]16) arid (1]14b) be felfilfor a mapy :
resH? — L(%,.5). Then, in particulary(z) is a linear topological isomorphism
on a subspace o for anyz c resH®. DenoteZ, = kery*(z)(H®—Z). According
to (I.14b) we have for arg, z, € resH®

V'(22) = V' (@)U (22,2) = V' () (H* - 21) (H° — ) *.

Hencey*(z)(H® — 2) = y*(z1)(H® — z1), thereforeZ, is independent of. De-
note 2 := 2, and defineS as the restriction ofi® to 2. Show thatZ is dense in
H. Letdp L 9. Since? = 7; =RO({)(#1), this means thatR({)¢|y) =0
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for eachy € /4, i.e. we haveR’({)¢ € .#. Hence,RO({)¢ = 0, therefore
¢ = 0. Thus,Sis densely defined. Let us show that

ran(S—z) = kery*(2) (1.17)

for anyz e resHO. Lety*(2)¢ = 0; sety := (HY —2)~1¢, theny € domS= 2,
therefore ¢ € ran(S—2z). Conversely, ifp € ranS—2), theng = (S—2z)y where
y*(2)(H® — Z)y = 0, and [(T.I7) is proven. In particular, (1117) implies tBas
closed. Moreover, we have frof (1117)

Ny =ranS—2)* = kery*(2)* = rany(z) = rany(z).
Thus,y is al -field for (S H?,¥). O

Let now the triple(S H% ¥) be endowed with d -field y, y: resH? —
L(%, ).

Definition 1.19. A map Q : resH® — L(¥4,9) is called aKrein 2-functionfor
(SH%.9,y), if

Q(z1) — Q' () = (z1—2)V' (Z2) Y(z1) for anyzy, 2, € resH®. (1.18)

Proposition 1.20. For any (S, H?, %) endowed with a Kreif -field y there exists
a Krein 2-function Q: resH® — L(¥.9). If Q(2) : 4 — ¢, ze resH?, is another
2-function for(S,H®, ¢, y), thenQ(z) = Q(z) + M, where M is a bounded self-
adjoint operator in¥.

Proof. Fix as anyz € resH® and denoteg := Rezg, Yo :=Im 29, L := ¥(20). Ifa
2-function exists, then by (1.18) one h@éz) = Q*(2) + (z— Zo)L*y(2). On the
other hand Q) Q' (2)  Qzo)—Q'(20)

. + k _ &

Clearly,Q(z) + Q*(20) is a bounded self-adjoint operator# denote it by £Z.
According to [1.1B)Q(z0) — Q*(20) = 2iyoL*L, and therefore

Q@) =C—iyol"L+ (- B)LY(2). (1.19)

We have from[(1.19) that iQ)(2) is another2-function for (SH® ¥, y), then
Q(z) —Q(z) = M whereM is a bounded self-adjoint operator which is independent
of z

It remains to show that a function of the form (1.19) obéy48§). Take arbi-
trary z;, > € resH®. We haveQ*(z) = C+iyoL*L + (z2 — 20)y*(z2)L. Therefore,

Qz)-Q(2) = (n—2)L'L+(z—2)LY(21) + (20— )Y (2)L.  (1.20)

16



By (LI4B) L = y(20) = Y(z2) + (20— 20)R(20)Y(z1) andL* = y*(20) = y*(22) +
(0 — 22)y* (22)R%(29). Substituting these expressions[in (1.20) we obtain
Qz) - Q'(2) = (- 2)y (2)V(2)
+v'(2){ (- 2) (- 2)R®) + (- 2)R(2)

+(20-2) (20— 2)R(2)R(2)] + (21— 2) (2~ 2)R(20)
+ (20— 2)(20 - 2)R20) | V()

The expression in the curly brackets is equal to

(- 20)(—2)R(B) + (21— %) (20— 2)R ()
+(20—21) (20— 2)R(20) + (20— 20) (20— 21)R°(20)
+(20—22) (20— 21)R(20) — (20— 22) (20— 21)R(20) .
Itis easy to see that the latter expression is equal to zedoya get the result. [

Below we list some properties btfields and2-functions which follow easily
from the definitions.

Proposition 1.21. Let y be a Kreinl -field for (S, H®, #), theny is holomorphic
in resH? and satisfies

% v2) =Ry, (1.21a)

S'y(2) = zy(2), (1.21b)

y*(2) is a bijection from.4; onto ¥, (1.21¢)

y'(29f =0iff f L .47 (1.21d)

V' (2)Y(2) =y (22)V(z), (1.21¢€)

ran|y(z1) — y(z)] € domH® for any z,2 < resH®. (1.21f)

Let in addition Q be a Krein2-function for(S,H® ¢) andy, then Q is holomor-
phic inresH?, and the following holds:

d
@ =Y 2y, (1.22a)
Q' (9 =Q(2), (1.22b)
for any ze C\ R there is ¢ > O with ml]rg<zZ) > Cy. (1.22c)
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Remark 1.22. The property[(1.22c) means th&t-function is an operator-valued
Nevanlinna function (or Herglotz function). This impliesnamber of possible
relations to the measure theory, spectral theory etc., aod fnctions appear
in many areas outside the extension theory, see e.g. [466488, 104, 105] and
references therein.

Our next aim is to relate boundary triples in definition] 1. 7Ki@in’s maps
from definition 1.16.

Theorem 1.23.Let S be a closed densely defined symmetric operator in attilbe
spacesZ with equal deficiency indices.

(1) Forany self-adjoint extension H of S and anyesH there holddomS* =
domH + .45, and this sum is direct.

(2) Let(¥,I1,I») be a boundary triple for Sand H° be the restriction of S
to kerl; which is self-adjoint due to theordm 1112. Then:

(2a) for any ze resH? the restriction off 1 to .45 has a bounded inverse
¥(z): 9 — A, C A defined everywhere,

(2b) this map z— y(z) is a KreinT -field for (S H?, %),

(2c) the mapgesH® 5 z— Q(2) = My(2) € L (¥4,%9) is a Krein 2-function
for (S HY %) andy.

(2d) for any fe domH® and z< resH® there holdsy*(Z)(H? — 2) f = I'»f.

Proof. (1) Letf € domS, Denotefy:= (H—2)~1(S* —2)f. Clearly, fo € domH.
Forg:=f —foone has(S' —2)g= (S —2)f — (S —2)(H -2 }(S - 2)f =
(S*—2)f —(H—2)(H—2"Y(S" —2)f =0, thereforeg € ker(S* — z) = .45.

Now assume that for sonzec resH one hasg+go = f1+ g1 for somefy, f; €
domH andgp,g; € 47, thenfo— fi =091 —go € Azand(H —z)(fo— f1) = (S" —
z)(fo— f1) = 0. AsH —zis invertible, one hasy = f1; andgp = 0.

(2a) Due to condition{L.8b);1(domS") = ¢. Due tol';(domH®) = 0 and
item (1) one had 1(.47) = ¥. Assume that 1f = 0 for somef € .47, then
f € domH%N .45 and f = 0 by item (1). Thereforel'1 : .A4; — ¢ is a bijection
and, moreovell ; is continuous in the graph norm &f by propositior. 1.9. At
the same time, the graph norm$&fon .43 is equivalent to the usual norm i#”,
which means that the restriction bf to .4; is a bounded operator. The graph of
this map is closed, and the inverse map is bounded by thedctpaph theorem.

(2b) The property[(1.14a) is already proved in item (2a).€Tatbitraryz;, z, €
resH? and& € ¢. Denotef = y(z)& andg=U (z,21)f = f + (22— 21)R% () f.
As R(z)f € domH?, there holdd 1R%(z)f = 0 andlryg =T f. Clearly, f ¢
A7, and to prove property (1.14b) it is sufficient to show th&t— z)g = 0.
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But this follows from the chaitS* —z)g= (S"—2)f + (22— 21)(S" — zz)(HO—
2) = (S -2)f+(22-2)H'-2)(H'-2) 'f = (S —z)f =
Therefore y satisfies both properties (1.14a) ahd (1]14b) in defln_'L
(2c) As y(z) is bounded by item (2a) and, is bounded by propositidn_ 1.9,
the mapQ(z) is a bounded linear operator &r{%,%). To prove property (1.18)
take arbitraryz;, z, € resH, @, € ¢4, and seff := y(z2) ¢, g:= y(z1) . Clearly,

(f[S'9) - (f[S'9) — (zn—2)(f[g)
= (f[(S'-z)9) - (S —2)f|g) =0. (1.23)

At the same time one has

(flg) = (V(2) ol Y(z)¥) = (9l V' (22)V(22) Y). (1.24)

Moreover, using the equality1y(2)§ = &, which holds for all§ € 4 andz e
resHY, one obtains

(f|S'g) — (f|S'g) = (F1f|T2g) — (M2f|10)
= (My(Z) oI T2y(z)Y) — (M2y(Z2) @I T1y(z1) )
= (0| Q(z1)Y) — (QZ2) ol Y) = (9] [Q(zr) — Q" ()| ).

Therefore, Eqs[(1.23) and (1124) read as

(¢ [Qz) — Q" (2)]W) = (9l (- 2)Y (2)V(2) ),
which holds for anyp, ¢ € 4. This implies [1.1B).
(2d) For anyp € 4 one has

(@Y (D(H—2)f) = (Dol (H*—2)f) = (V(Z)9| S'T) — 2(y(Z) 9| f)
= (S'Y(@)ol f) —Zy(@¢| T) + (F1y(D@|T2f) — (T2v(Z) | 1 )

= (S =2)¥(2e|f) + (@|T2f) = (@|T2f),

i.e.Mof = y*(2)(H°—2)f. O

Definition 1.24. The Kreinl -field and 2-function defined in theorem 1.23 will
be callednducedby the boundary tripl¢¥, 1,1 >).

Remark 1.25. The 2-function induced by a boundary triple is often called the
Weyl functior5, 49].

Conversely, starting with given Krein maps one can constauboundary
triple.
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Proposition 1.26. Let y be a KreinT-field for (S;HY,%). For any ze resH?°,
represent f€e domS" as
f=f,+y(2)F, (1.25)

where § € domH?, F € 4. For afixed z € resH? define

Mf=F o= (Y @H -2y @H-31,),
then(¥¢,1,I») is a boundary triple for § andy(z) is the induced -field.

For further references we formulate a simplified version rojppsition[1.26
for the case wher? has gaps.

Corollary 1.27. Lety be a Kreinl-field for (S,H?,%). Assume that Aihas a gap,
andA €resH°NR. Represent £ domS* as f= ) +y(A)F, where § € domH?°,
F €4. Define

Mf:=F, Taf =y A)(H°=-A)fy,
then(¥,I1,I2) is a boundary triple for S
Proof of proposition[1.28. First of all note that the componehtin (1.23) is in-
dependent of. To see that it is sufficient to writé as f,+ (y(z) — y(A))F +
y(A)F and to use the uniqueness of this expansion and the inclygian —
Y(A))F € domH® following from (L.ZIf).

The property[(1.8b) of boundary triples is obvious. Fromeheality (HO —
z)domS* = ker(S* — Z) and [L.211) it follows that do® C ker(I'1,I"2), which

proves[(1.8c). To shov(1.Ba) we write

2(f|S'g) —2(S'f|g)
=(f|(S —2)9) +{f|(S —2)9) — (S —2)f|g) — (S - f[g)
= (fz+ Y@ 1f| (H°=2)g;) + (f+ (21| (HO - Z)gz)
—((H°=2)f g7+ y(ZIT19) — (H° =2 f;| g, + V(2)T 10)
= (fh (H2=2)gz) + (| (H*—Z)gz) — (H°— T gz) — (H° -2 T/ gz)
+(M1f |y (D(H—2)g7) + (M1 f |y (D (H° - Dgz)
— (V' (Z(H° =2, T19) — (V' (2)(H° =D ,,T10)
=2(1f[T20) —2(T2f[10).
To show that this boundary triple inducek is sufficient to note that1y(z) = idy
andy(z)l'1 = idgoms: - O

Proposition[1.26 does not use any information @hfunctions, and.2-
functions can be taken into account as follows.
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Proposition 1.28. Let y be al-field for (S;HY,%) and Q be an associate®-
function, then there exists a boundary trigl¢,"1,I2) for S* which inducesy
and Q.

Proof. Let (¢,I],I}) be the boundary triple foB* defined in proposition 1.26
and Q be the induced2-function. By propositiorh_1.20, there exists a bounded
self-adjoint operatoM on ¢ with Q(z) = Q(z) + M. Clearly, (¢,I1,I2) with

[ =T} andlM, =%+ Ml is another boundary triple f@&" by proposition 1.15.
On the other hand;is still thel -field induced by this new boundary triple, and the
induced2-function, which is™2y(2) = Myy(2) + MI,y(2) = Q(2) + M, coincides
with Q(2). ]

One of the most useful tools for the spectral analysis ofadjbint extensions
is the Krein resolvent formula described in the followingdinem.

Theorem 1.29.Let S be a closed densely defined symmetric operator with equa
deficiency indices in a Hilbert spac#’, (¢,1,I2) be a boundary triple for §

HO be the self-adjoint restriction of*3o kerl1, y and Q be the Kreir -field

and 2-function induced by the boundary triple. LAtbe a self-adjoint linear
relation in%¢ and Hy be the restriction of Sto the functions £ domS* satisfying
(r]_f, sz) e N

(1) For any ze resH? there holdsker(Hp — 2) = y(z) ker(Q(z) — A\).

(2) For any ze resH%NresH, there hold9 € res(Q(z) — A) and
(HO=2 '~ (HA -2 =¥ Q@) -N) 'y (.

(3) There holdsped, \ spedH® = {ze resH?: 0 € spedQ(z) —A) }.

Proof. (1) Assume thatp € ker(A — Q(2)) then there existay € ¢4 such
that (@, ) € A and ¢ — Q(z)¢p = 0. This means the inclusiofp, Q(2)¢) €
A. Consider the vectoF = y(z)@. Clearly, (S*—2zF = 0. The condition
(F1F,M2F) = (9,Q(2) @) € A means thaF € domHx and(Hp —2z)F = 0. There-
fore, y(z) ker(Q(z) — A\) C ker(Ha — 2).

Conversely, lefF € ker(Ha —2), z < resH®. Then also(S* — z)F = 0 and
by theoreni1.23(1) there exisgse & with F = y(2)@. Clearly, (¢,Q(2)¢) =
(T1F,T2F) € A, i.e. there existy € 4 with (@, ) € A andQ(z)¢ = . But this
meansp € ker(Q(z) — A).

(2) Letz € resH?NresHA. Take anyh € . and denotef := (Ha —2)~1h;
clearly, f € domHx, and by theorerin 1.23(1) there exist uniquely determined-fun
tions f, € domH® andg, € .45 with f = f,+g,. There holdsh= (Hx —2)f =
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(S —2)f =(S'—2)f;+(S' —2)g,= (S —2) f,= (HO—2) f,andf, = (HO—2)1h,
Moreover, fromr1f,=0one had'1f =T10;, 9, = y(2)l'1f, and, therefore,

(HA—2)"*h= (H°—2)"th+ y(2)I . f. (1.26)

Applying to the both sides of the equalify= f,+ y(z)['1 f the operatoil »
one arrives afof =T2f,+Q(z)l1f and

Mof —Q(z)F1f =Tafy. (1.27)

Whenh runs through the whole spac#, then f, runs through dorii® and the
valueds ;> f, cover the whole spacé. At the same time, if runs through dorhix,
then the valuegl, f,I'>f) cover the whole\. It follows then from [(1.2]7) that
ran(A — Q(z)) =¢. On the other hand, by (1) one has k&r— Q(z)) = 0 and
0 € res(A—Q(2)). From [1.27) one obtains

rif = (A—Q(2) afy (1.28)

By theorem"1.23(2d) there holds f, = y*(z)h. Substituting this equality into
(1.28) and then intd_(1.26) one arrives at the conclusion.
The item (3) follows trivially from the item (2). O

Remark 1.30. Note that the operatords andH® satisfy dormHa NdomH® =
domSiff Ais a self-adjoint operator (i.e. is a single-valued); ongsshatH, and

HO aredisjoint extensions oB. In this case the resolvent formula conains only
operators and has the direct meaning. As we will see belothjsncase one can
obtain slightly more spectral information in comparisonhathe case when is

a linear relation, so it is useful to understand how to redheayeneral case to the
disjoint one.

Let T be the maximal common part &f° andHp, i.e. the restriction 08" to
domH%NdomH,. Clearly, T is a closed symmetric operator,

domT ={f edomS" :1f=0, TIfe.Z} (1.29)
where.Z = ker(A~1) is a closed linear subspace®f

Lemma 1.31.Let.Z be a closed linear subspaceéfand T be defined bfZ.29),
thendomT* = {f € domS*: ', f € £},

Proof. It is clear that bothT andT* are restrictions o6". Hence, for anyf
domT andg € domS* one has

W(f,g) := (f|S'g) — (T f|g) = (M1 f|T20) — (M2 |T19) = (F2f[M19).
AsT>(domT) =2, one hasV(f,g) =0 for all f iff F1g L .Z. O
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Now one can construct a boundary triple fbt starting from the boundary
triple for S'.

Theorem 1.32. Let the assumptions of theorém 1.29 be satisfied. £dte a
closed subset ¥ and an operator T be defined K{§£.29) Then(¥,I'1,T2)
is a boundary triple for T, where? := #L with the induced scalar product,
F, =Prj, j=1,2, and P is the orthogonal prolectlon ontin ¢. The induced

r-fieldy and 2- functlonQ arey(z) := y(2)P, Q(2) := PQ(2)P considered as maps
from to .#; and in¥, respectively.

Proof. Direct verification. O

Returning to the operatots® andHx one sees that, by construction, they are
disjoint extensions of , and in the notation of theordm 1132 they are given by the
boundary condltlonﬁlf = 0andl,f =L f, respectively, wherg is a certain
self-adjoint operator 1:2 Using theorerh 1.29 one can relate the resolvenitt’of
andHa by

(H -2 1~ (HA -2 '=V(2(Q@) —L) 'V (@
— Y(2P(PQ2P—L) Py’ (7, (1.30)

and spetip \ sped® = {ze resH®: 0 € spedPQ(z)P—L)}.

The operatot. can be calculated, for example, starting from the Caylay-tra
form of A (see proposition 112). Namely, Iefy be the Cayley transform of,
then, obviously = ker(1—Ux)+. The Cayley transform df is then of the form
Uy := PUAP considered as a unitary operatodnandL = i(1—U.) " 1(1+Uy).
Remark 1.33. For the case of aimplesymmetric operator (that is, having no
nontrivial invariant subspaces) one can describewthele spectrum in terms of
the limit values of the Weyl function, and not only the speuatrlying in gaps of a
fixed self-adjoint extensions, see [17,24] for discussWa.note that, neverthless,
the simplicity of an operator is a quite rare property in naithensional problems
which is quite difficult to check.

Remark 1.34. It seems that the notion of boundary value triple apperetifithe
papers by Bruk [27] and Kochubei [88], although the idea dumek to the paper
by Calkin [38]. The notion of & -field and a2-function appeared firstin [92,98],
where they were used to describe the generalized resolvesedf-adjoint exten-
sions. The relationship between the boundary triples amdesolvent formula in
the form presented in theorems 1.23 and11.29 was found byaber&nd Mala-
mud, but it seems that the only existing discussion was i jp8ich is hardly
available, so we preferred to provide a complete proof hEne. same scheme of
the proof works in more abstract situations, see e.g. [46¢ forumulal(1.30) is
borrowed from [115], but we give a different proof.
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Remark 1.35. Theoreni 1.219 shows that one can express the resolvealissetf-
adjoint extensions of a certain symmetric operator thrabgtresolvent of éixed
extension, more precisely, of the one corresponding to thendbary condition
1 f = 0. On the other hand, propositibn 1l.14 shows that by a seitetbice of
boundary triple one start with any extension. Formulas esging2-functions
associated with different extensions of the same operatorbe found e.g. in
[49,67,96].

In view of proposition 1.5 on the parameterization of lineslations it would
be natural to ask whether one can rewrite the Krein resofeentula completely
in terms of operators without using linear relations. Naméla self-adjoint
linear relation\ is given in the form\ = {(x1,%2) € 4 ®¥; Axy = Bxo}, whereA
andB are bounded linear operators satisfying (IL.4a) and (1cém one write an
analogue of the Krein resolvent formula fdy in terms ofA andB? We formulate
only here the main result referring to the recent work [1@r]the proof.

Theorem 1.36. Let the assumptions of theorém 1.29 be satisfied and A, B be
bounded linear operators i satisfying(L.4a) and (I.40) Denote by KB

the self-adjoint extension of S corresponding to the boogndanditions A1 f =
BIr,f, then

(1) For any ze resH there holdsker(HAB — 2) = y(z) ker(BQ(z) — A).

(2) For any zc resH?NresH”B the operator BQz) — A is injective and
(HO-2) 1= (H*B-2) 1= y(»)(BQAD) -A) 'BY'(D.  (1.31)

(3) If A and B satisfy additionally the stronger condition

A —B
Oeres(B A)’ (1.32)

thenO € res(BQ(z) — A) for all z resH? N resHAB, and, respectively,
spedH”B\ spetH® = {z€ resH?: 0 € spedBQ(z) — A) }.

Note that the conditior (1.82) is satisfied if one uses thampaterization by
the Cayley transform (theorem1.2), iA=i(1+U), B=1—U with a unitary
U, see proposition 1l1. Therefore, one can perform a “unifanalysis of all
self-adjoint extensions using the single unitary paramigteNote that the above
normalization condition is trivial for finite deficiency imgks, hence the Krein
formula has a particularly transparent form [10].

We note in conclusion that the resolvent formulas(11.30) @n8l) provide
two different ways of working with non-disjoint extensiqramd thay can be ob-
tained one from another [115].
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1.4 Examples

Here we consider some situations in which boundary triplsea

1.4.1 Sturm-Liouville problems

A classical example comes from the theory of ordinary déffeial operators. Let

Ve L%C(O,oo) be real valued and, for simplicity, semibounded below. Dertxy
2

d : : :
S the closure of the operate%w +V with the domainCg (0, ) in the space

A :=12(0,). It is well-known that the deficiency indices & are(1,1). Us-
ing the integration by parts one can easily show that for thjeiat S:= §; as
a boundary triple one can taK€,I1,I"2), M1 f = f(0), M'>f = f/(0). Denoting
for z# C by (), the uniqueL?-solution to— s +V s, = zip, with ¢;(0) = 1 we
arrive to the induced Kreif -field, y(z) = &, and the induced2-function
Q(z2) = Yj(0), which is nothing but the Weyl-Titchmarsh function. Det@ring
the spectral properties of the self-adjoint extension§ofvith the help of this
function is a classical problem of the spectral analysis.

An analogous procedure can be done for Sturm-Louville dpesan a seg-
ment. InJ# = L?[a,b], —o < a < b < « consider an operatds acting by
the rulef — —f” +V f with the domain dor§= H?[a, b]; here we assume that
V € L?[a, b is real-valued. It is well-known thais closed. By partial integration
one easily sees th&¥,I'1,I»),

- ea-(18). ea-(4),

is a boundary triple foS. The distinguisged extensid#® corresponding to the
boundary conditior1 f = 0 is nothing but the operatord?/dx? +V with the
Dirichlet boundary conditions.

Let two functionss(+; z), c(+; z) € ker(S— z) solve the equation

—f"+Vvi=2zf zecC, (1.33)
and satisfys(a;z) = ¢/(a;z) = 0 ands'(a;z) = c(a;z) = 1. Clearly,s, c as well as
their derivatives are entire functionsnpfthese solutions are linearly independent,
and their Wronksiaw(z) = s'(x;z)c(x;z) — s(x;2)c/(x; 2) is equal to 1. Foe ¢
sped® one hass(b; z) # 0, and any solutiori to (I.33) can be written as

fx2) = f(b) — f(a)c(b;2)
s(b; 2)
which means that the-field induced by the above boundary triple is

v(2) (2) - %;Cz(;);z)s(x; 2) + &16(x; 2).

s(x;z) + f(a)c(x; 2), (1.34)
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The calculation off’(a) and—f’(b) gives

() -0a (5) on-aam (77 o)

andQ(z) is the induced2-function.

A number of examples of boundary triples in problems conoerordinary
differential equations as well as their applications tatecang problems can be
found e.g. in [18,49].

The situation becomes much more complicated when dealitigeNiptic dif-
ferential equations on domains (or manifolds) with bougddn this case the
construction of a boundary triple involves certain infotroa about the geom-
etry of the domain, namely, the Dirichlet-to-Neumann mae 8.g. the recent
works [16, 115] and the classical paper by Vishik [124], amel question on ef-
fective description of all self-adjoint boundary value lplems for partial differen-
tial equations is still open, see the discussion in [54, 5] laistorical comments
in [75]; an explicit construction of boundary triples foethaplacian in a bounded
domain is presented in Example 5.5 in [115]. We remark thaindary triples
provide only one possible choice of coordinates in the defelbspaces. Another
possibility would be to use some generalization of boundapies, for example,
the so-called boundary relations resulting in unboundedl Wmctions [26, 48],
but it seems that this technique is rather new and not degdlepough for appli-
cations.

1.4.2 Singular perurbations

Here we discuss the construction of self-adjoint exterssiarthe context of the
so-called singular perturbations; we follow in part the stoigtion of [114].

Let HC be a certain self-adjoint operator in a separable Hilbeatep?’; its
resolvent will be denoted big°(z), z € resH®. Denote by the domain dorklg
equiped with the graph nornii,f||2 = ||HOf |2+ | f||%; clearly, /7 is a Hilbert
space. Let be another Hilbert space. Consider a bounded linearmaffi —
¢. We assume thatis surjective and that keris dense in77.

By definition, by a singular perturbation ¢1° supported byr we mean
any self-adjoint extension of the operat®mwhich is the restriction oH° to
domS:= kert. Due to the above restrictionS,is a closed densely defined sym-
metric operator.

It is wortwhile to note that singular perturbations justyde another language
for the general theory of self-adjoint extensions. Namkdy,S by any closed
densely defined symmetric operator with equal deficiencigesindH® be some
its self-adjoint extension. Construct the spa€eas above. Clearly? .= domS
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is a closed subspace @1, therefore /4 = ¥ © £*. Denoting.Z* by ¢4 and
the orthogonal projection from#; to £~ by 1, we see the self-adoint extensions
of Sare exactly the singular perturbationg-tft supported byr. At the same time,
knowing explicitly the mag gives a possibility to construct a boundary triple for
S

Proposition 1.37. The maps/(2), y(z) = (TR%(2))", z€ resH?, form a Kreinr -
field for (S,HO,%).

Proof. Note that the operatoh := TR%(2) : # — ¢ is surjective, therefore,
ranA* = kerA'’. In other words,

rany(z) = kertR(2)* = {f e 7 : TIR(2)f =0}
= {( Ho—zg. 1g=0}" = {(S—2)g: g domS} "
—ranS—2)t =kerS' —z) =: .45 (1.36)
Let us show that/(z) is an isomorphism of/ and.4;. First note thaty(z) is
bounded and, as we have shown above, surjective. More@r{zx = ranA*- =
= {0}. Thereforey(z) : 4 — .#; has a bounded inverse defined everywhere

by the closed graph theorem, and the condition (1.14a) isfisak
The condition[(1.14b) is a corollary of the Hilbert resolvatentity. O

Now one can construct a boundary triple for the oper&tor

Proposition 1.38. Take any{ < resH® and represent any & domS' in the form
f = f,+y({)F, f, € domH®, F € ¢, wherey is defined in proposition L.37.
Then(4,M1,I2), M1 f =F, Mof = %r(fz + f?), is a boundary triple for S The
inducedr -field isy(z), and the induced?-function Qz) has the form

Q2) = 57R (17) +¥(Q)) ~ 5 TR (N +INQ)).

Proof. The major part follows from propositidn 1J26. To obtain tloenfiula for
Q(2) it is sufficient to see that for the functioh= y(z)¢, ¢ € ¢, one hasf, =

(v(2) — ¥({)) ¢ and to use the property (1.14b). O

Let us consider in greater detail a special type of the abowsteuction, the
so-called finite rank perturbations [8].

Let HC be as above. Fomr > 0 denote by, the domain of the operator
((H%)2+1)9/2 equiped with the norm f || ¢ = || ((H°)2+1)a/2f | The spacer;
becomes a Hilbert space, and this notation is compatibletivé above definition
of /4, i.e. /4 is the domain oH® equiped with the graph norm, andg = 7.
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Moreover, fora < 0 we denote the completion o¥ with respect to the norm
1 flla = ||(H®)2+1)2/2f||. Clearly, G C A3 if a > B.

Takey; € 7 1, j =1,...,n. In many problems of mathematical physics one
arrives at operators given by formal expressions of the form

H=H%+ ; A (Wil Wi, (1.37)
k=1

whereajy are certain numbers (“‘coupling constants”). This sum isdefined
directly, as genericallyy; ¢ 2. At the same time, the operatét given by
this expression is usually supposed to be self-adjoint {aed one has formally
ajk = Okj). Denote bySthe restriction oHP to the functionsf € domH® with

(Y| f) =0 for all j; we additionally assume thdgy; are linearly indepedent mod-
ulo 27 (otherwiseS might become nondensely defined). Clearly, for any rea-
sonable definition, the operato® andH must coincide on the domain &
Therefore, by definition, under an operator given by thetrltggnd side of((1.37)
we understand the whole family of self-adjoint extensioh&.o The boundary
triple for S* can be easily obtained using the above constructions ifehe s

((Lﬂlf))
Tf = e C.
(Yn|T)

The corresponding-field from propositio 1.37 takes the form
n
V@€ =Y &hi(2, hi(@:=R@yjen, &=(&,. &) eC",
=1

and the boundary triples and ti&-function are obtained using the formulas of
propositiori 1.38.

Unfortunately, the above construction has a severe disaalya, namely, the
role of the coefficientsrj, in (1.37) remains unclear. The definition ldf using
self-adjoint extensions involves self-adjoint lineaat@ns inC", and it is difficult
to say what is the relationship between these two types @hpeters. In some
cases, if bottH andH® have certain symmetries, this relationship can be found
using a kind of renormalization technique [95, 97]. Theaiton becomes more
simple if in the above construction one hfise 777 > andHO is semibounded.
In this case one can properly defiregiven by [1.3V) using the corresponding
quadratic form,

h(f.g) = h°(f.g) + ; el (0adg),
=
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whereh? is the quadratic form associated witt?, see [89]. Also in this case
one arrives at boundary triples and resolvent formulas. ¥ detailed analysis
of rank-one perturbations of this kind with an extensivdibgraphy list is given

in [121].

We also remark that one can deal with operator of the form/jlirBthe so-
called supersingular cagg ¢ .7#”1; the corresponding operatdfsmust be con-
structed then in an extended Hilbert or Pontryagin spaeeg $¢ [51,95,119] and
references therein.

1.4.3 Point interactions on manifolds

Let X be a manifold of bounded geometry of dimensigrv < 3. LetA= A dxi

be a 1-form orX, for simplicity we suppose her; € C*(X). The functionsA,
can be considered as the components of the vector potehtaiagnetic field
on X. On the other handA defines a connectionlp in the trivial line bundle
X x C — X, Oau = du+iuA; by —Ax = OA0a we denote the corresponding
Bochner Laplacian. In addition, we consider a real-valumdas potentialJ of
an electric field onX. This potential will be assumed to satisfy the following
conditions:

U :=maxU,0) € L%(X), U_:=max-U,0)¢e ini (X),

2<pi<oo, 0<i<m

we stress thap; as well a are not fixed and depend @h The class of such po-
tentials will be denoted by?(X). For the cas&X = R" one can study Schrodinger
operators with more general potentials from the Kato class]22].

We denote byHay the operator acting on functionge C7'(X) by the rule
Hau® = —Aa@+U @. This operator is essentially self-adjointlif(X) and semi-
bounded below [36]; its closure will be also denotedHpyy . Itis also known [36]
that

domHay C C(X). (1.38)

In what follows, the Green functioBay (x,y; {) of Hau, i.e. the integral kernel
of the resolvenRa y () := (Hau — A= resHau, will be of importance.
The most important its properties for us are the followingsin

forany € resHay, Gay is continuous irK x X forv =1
and inX x X\ {(x,x),xe X} forv =2,3;

for { € resH? andy € X one haGay (+,Y; {) € L2(X); (1.39b)
for any f € LZ(X) and { € resHay, the functionx —

(1.39a)

| Gaulxy:0) t(y)dyis continuous. (1.39)
X

29



We remark that for anyf € domHay and { € resHay one hasf =
Rau({)(Hau — ¢)f. Using the Green function we rewrite this as

X)Z/XGA,U(X,V;Z)(HA,U—Z)f(y)dy a.e.;

by (1.39¢) and[(1.38) the both sides are continuous funstdr, therefore, they
coincide everywhere, i.e.

:/GA7U(x,y;Z)(HA7U—Z)f(y)dy, f € domHay, for all xe X. (1.40)
X

Fix pointsay,...,an € X, aj # a If j # k, and denote by the restriction of
Hau on the functions vanishing at aj, j = 1,...,n. Clearly, due to[(1.38) this
restriction is well defined, an8is a closed densely defined symmetric operator.
By definition, by a point perturbation of the operaktyy supported by the points
aj, ] =1,...,n, we mean any self-adjoint extension &f Now we are actually
in the situation of subsubsectién 1J4.2. To simplify natafiwe denoteH? :=
Hau and change respectively the indices for the resolvent amGtken function.

Denote byr the map
f(aa)
T:domH®> f— | ... | ecCm

f(an)

By (L.20) and[(1.39b)r is bounded in the graph norm &f°. Now let us use
propositio 1.37. The mapR°(2) is of the form

/ GO a17y1 dy

/GO an, Y; )f(y>dy

Calculating the adjoint operator and taking into accouatittentityG®(x,y; z) =
GO(y,x;2) we arrive at

Lemma 1.39. The map
V(§):C" 3 (8r,... &) — z &G’ ) CL2(X) (1.41)

is a Kreinl-field for (S HO,C").
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Let us construct a boundary triple corresponding to the lprob Use first
corollary[T.2Y. Choos€ € resH® c R; this is possible becaudd® is semi-
bounded below. For any € domS' there areF; € C such thatf, ;= f —
3 FiG°(-,aj;{) € domH?. The numbers; are -independent, and by corol-
lary[1.27, the maps

Fif = (Fi,....Fn), T2f = (fz(a1),..., fz(an)) (1.42)

form a boundary triple fo6*. Nevertheless, such a construction is rarely used in
practice due to its dependence on the energy parameter. \iiyrthe above
considerations using some information about the on-diakjoehavior ofGP°.

Consider the case = 2 or 3. As shown in [37], there exists a function
F (x,y) defined forx # y such that for any, € resH® there exists another function
G%(x,y; ) continuous inX x X such that

Go(x,Y; ) =F(xy) + Gen(x,Y: {), (1.43)

and we additionally request(x,y) = F(y,X). It is an important point that un-
der some assumptions the functiércan be chosen independent of the magnetic
potentialA; and the scalar potentiél. For example, ifv = 2 one can always

setF(xy) = Iogd(x v In the casev = 3 the situation becomes more compli-
cated. For examplé, for two scalar potentldlandV satisfying the above condi-
tions one can take the same funct®ror the operator$iay andHay provided

U-Ve Lﬂ)C(X) for someq > 3. In paritucular, for anyJ satisying the above

conditions and, additionally) € L%C(X), for the operatoHpy one can always

1
tF =
For the Schrodinger operator with a uniform magnetic fialg?, H® = (i0 +
) einy/2 _
A)?, wherell x A=: Bis constant, one can pBt(X,y) := pr—vh For a detailed

discussion of on-diagonal singularities we refer to ourgodp7].

Let us combine the representation (1.43) for the Greenilmmeind the equal-
ity domS* = domH°+JI/Z. Near each poiraj, any functionf € domS* has the
following asymptotics:

f(x) = fj+FjF(x,aj)+0(1), fj,FjeC.

Proposition 1.40.The triple(C", 1, 2) with 1 f = (Fq,...,Fy) € C"andlMaf =
(f1,...,fn) € C"is a boundary triple for S

Proof. Let us fix somel resH?NR. Comparing the mapi; with the maps:j
from (1.42) one immediately ség =I"1. Furthermorel > f =T>f +BI"1, where
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B is an x n matrix,

B — Gaj,a;) if j#£k
Ik G%n(aj,aj;{) otherwise.

As B = B*, it remains to use proposition 1]15. O

Clearly, the map[(1.41) is the Krein-field induced by the boundary triple
(C",I'1,I2). The calculation of the corresponditg-functionQ({) gives

0/m . -
ij(z) _ {g()(ah_ak,_z_) if J 7A k7

ren(@j,aj;{) otherwise.
We note that the calculating of th@-function needs priori the continuity of the
Green function (otherwise the values of the Green functiangle points would
not be defined). A bibliography concerning the analysis @rajors of the above
type for particular Hamiltoniansl©® can be found e.g. in [6].

The above construction can generalized to the case of paiturpations sup-
ported by non-finite (but countable) sets provided someoumifdiscreteness, we
refer to [63] for the general theory, to [7, 33, 69] for the lgs& of periodic con-
figurations, and to [22,52, 77, 116] for multidimensionaldals with random in-
teractions.

For analysis of interactions supported by submanifoldsighiér dimension
we refer to [19,42,43,59, 60, 113] and references therein.

1.4.4 Direct sums and hybrid spaces

Assume that we have a countable family of closed linear ¢pex&, in some

Hilbert spaces;, o € </, having boundary triple$4“,I'{,I'g). Denote by

HO the corresponding distinguished extensidh®,;= S, |kerr‘1’- We impose some
additional regularity conditions, namely, that:

¢ there exist constantsandb such that for anyr € .« andf, € domS, there
holds||T'{ , fall < &[|Su fall + bl fall,

e for any( 01,/2) € Pucy 9 thereis(fy) € Bgcy Ha, fa € domSy, with
o 1/2
rl/zfa = Ea .

The above conditions are obviously satisfied if, for examible operator§, are
copies of a finite set of operators, and the same holds for dnedary triples.
Another situation where the conditions are satisfied, isigex by the operators
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d? o : . .
S = 52 +Uq acting inL?[ag, by] with the domaindd?[ay, by] provided that
there are constants, |2, C such that, < |ag —bg| < |2 and||Uq|| 2 < C and that
the boundary triples are taken as in subsection1.4.1, §8¢ {dr details.
Under the above conditions, the opera®r= @, So acting in 77 :=
Dac. 74 is closed and has a boundary triié, M1, 2),

G =P %, T=rf, ji=12

aca aca

Moreover, the corresponding distinguished exten$iSrand the induced Krein
mapsy andQ are also direct sums, i.e., at least

HO = P H, V=P V(@ QA= P Q.

aca aca aca

Note thaty(z) andQ(z) are defined only foz ¢ spedH® = |, ., spedHy. Let us
show how this abstract construction can be used to definé&iciger operators
on hybrid spaces, i.e. on configurations consisting of giedaifferent dimen-
sions.

LetMg, a € &7, be a countable family of manifolds as in subsubsectior81.4.
Fix several pointsngj € .#qy, j =1,...,nq. We interpret these points as points of
glueing. More precisely, we consider a matffixith the entried4)gx) such that
Tiaj)(p) = 1 if the pointmgj is identified withmgy (i.e. pointmy;j of Mg is glued
to the pointmg, of Mg), andT4j)gk) = O otherwise. The obtained topological
space is not a manifold as it has singularities at the poihtgueing; we will
refer it to as ehybrid manifold Our aim is to show how to define a Schrodinger
operator in such a structure.

On of the manifolddM, consider Schrodinger operatdily as in subsubsec-
tion[1.4.3. To satisfy the above regularity conditions wguest that these opera-
tors are copies of a certain finite family. Forc < denote byS, the restriction
of Hq to the functions vanishing at all the points,j and construct a boudary
triple (C™e,I41,T ¢2) for S as in in subsubsection 1.4.3. Clearly, as a boundary
triple for the operatof’, S:= Pgec.y S, in the space?(M) := Bqe.y L2(Mg)
one take(¥,lM1,M2) with & = @qc,, C™, Tj(fa) = (Fajfa), j =1,2. Un-
der a Schrodinger operator af(M) one can mean any self-adjoint extension
of S, To take into account the way how the manifolds are glued w#bh
other, one should restrict the class of possible boundangitons. A reason-
able idea would be to consider boundary conditions of thef&F 1 = B> such
thatA(aj)(Bk) = B(Cr])(Bk) =0if T(Cr])(Bk) =0,ie. assuming that each boundary
condition involves only points glued to each other.

The analysis of generic Schrodinger operators on hybridiiolas is hardly
possible, as even Schrodinger operators on a single nhéfonot admit the
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complete analysis. One can say some more about particutdigaaation, for
example, if one has only finitely many piecels, and they all are compact [57].
Some additional information can be obtained for periodiefigurations [30, 32].

One can extend the above construction by combining oper&étam subsec-
tion[1.4.1 and1.413; in this way one arrive at a space withsists of manifolds
connected with each other through one-dimensional segment

One can also take a direct sum of operators from subsubsHcHdl to define
a Schrodinger operator on a configuration consisting ofinsgrgs and halflines
connected with each other; such operators are usuallyreeféo asquantum
graphs and their analysis becomes very popular in the last decade<.g. [21]
for the review and recent developments.

2 Classification of spectra of self-adjoint operators

2.1 Classification of measures

Here we recall briefly some concepts of the measure theory.
Let Z be the set of all the Borel subsets of a locally compact separaetric
spaceX. A mappingu : # — [0,+o]| is called apositive Borel measuren X

if it is o-additive (i.e. u((_J Bx) = Z H(Byg) for every countable familyBy) of
k
mutually not-intersecting sets frogd) and has the following regularity properties:
e LU(K) < o for every compacK C X;

e for everyB € 4 there holdsu(B) = sup{u(K) : K C B, K is compac} =
inf{u(G): Go> B, Gis oper}.

A complex valued Borel measure ohis a o-additive mappingu : 8 — C
such that the variatiofu| of i defined on# by

|u[(B) =sup |u(B)l,

where the supremum is taken over all finite famili@) of mutually non-
intersecting setBy from 4 such that JBy C B, is a Borel measure. For a positive
measureu one hadu| = p. If |u|(X) < o, thenpu is calledfinite (or boundegl
and|u|(X) is denoted also byju||. We will denote by.# (X) (respectively, by
AT (X)) the set of all complex Borel measures (respectively, thefall pos-
itive Borel measures) oKX; if X =R we write simply.# and.#Z". Itis clear
that.# (X) is a complex vector space (even a complex vector latticejtandub-
set.#"(X) of all bounded measures from# (X) is a vector subspace o# (X)
which is a Banach space with respect to the n@rm.
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Ona says that a measyueis concentratedn a Borel seS e 4, if u(B) =
u(BNS) for all Be £. Let y; andup be two measures; they are calldidjoint
or mutually singular if there exists two disjoint Borel s& and$, such thaty;
is concentrated o6; (j = 1,2); we will write py L if 1y and i are disjoint.
The measurey; is said to besubordinatedo u» (or absolutely continuous with
respect toup) if every |Lz|-negligible Borel set is simultaneoudly |-negligible.
According to the Radon—Nikodym theorem, the following aises are equiva-
lent: (1) pp is subordinated tqi; (2) there exists a Borel functioh such that
U1 = f o (in this casef € Lﬁ)c(x, H2) andf is called theRadon—Nikodym deriva-
tive of L1 with respect tquy). If w1 is subordinated tp, and simultaneouslys; is
subordinated tqu (i.e., if yy anduz have the same negligible Borel sets), than
andp, are calledequivalent(in symbols:py ~ o). For a subseM C .7 (X) we
denoteM* = {u € .#Z(X): ulvvv € M}; Mt is a vector subspace o# (X).
A subspace M- . (X) is called aband(or acomponentin . (X), if M = M++,
For every subsdt € .7 (X) the set.* is a band; the band"+ is called theband
generated by LIn particular, ifu € .#(X), then the bandu}*+ consists of all
v which are subordinated to. Moreover,u; is subordinated tgi, if and only if
{3+ € {up}+; in particular,uy ~ o if and only if {ug 3+ = {1+, The
bandsM andN are calledisjoint, if p_Lv for every pairu € M andv € N.

1
The family (Lg)sc= of bands in.# (X) such thatu € ( U Lg) implies
{e=

u = 0 is calledcomplete Let a complete family of mutually disjoint bandlg,

¢ € =, is given. Then for everyt € .# (X), u > 0, there exists a unique family

(Mg)ee=, Mg € Lg, such thatu = suppg, where the supremum is taken in the
ée=

vector lattice.# (X); g is called thecomponenbf u in L. If, in addition, the

family (L¢) is finite, then# (X) is the direct sum ofL) andu is the sum of its

componentsgis .

In particular, ifL is a band, then the paiiL,L") is a complete family of
mutually disjoint bands; the component of a meagune L coincides in this case
with the projection ofu ontoL parallel toL- and denoted by‘. The measure
u is completely characterized by the following two propestie

o utel;
o (M—p)LL.

A Borel measuret is called gpointor atomicmeasure, if it is concentrated on
a countable subs&c X. A pointse Ssuch thafu({s}) # 0 is called an atom for
u. For every seB € £ there holds

HB)= 3 w((s).
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The set of all complex point Borel measures)Xmwe will denote by.#,(X), this
is a band inZ (X).

A Borel measureu is called acontinuousmeasure, ifu({s}) = 0 for every
se X. The set of all continuous Borel measuresXomwe will denote by.#:(X).
Itis clear that#;-(X) = .#,(X), ///pi(X) = M:(X),and.# (X) is the direct sum
of the bands#(X) and.Z(X).

Let now X be a locally compact separable metric group with the coptisu
Haar measure. We fix the left Haar measlire X is a compact space, we choose
A to be normalized, in the cagée= R we choose\ to be the Lebesgue measure.
A measureu on X is calledabsolutely continuoysf it is subordinated to\ and
singular, if it is disjoint to A (it is clear that these definitions are independent on
the particular choice of). The set of all absolutely continuous Borel measures
on X (respectively, the set of all singular Borel measureXdwill be denoted by
Ma(X) (respectively, by#s(X)). In particular, #y(X) C .#s(X). Itis clear that
MG (X) = Mad(X), M5(X) = M(X), and.# (X) is the direct sum of the bands
Mad(X) and.(X).

A Borel measurgu on X is called asingular continuousneasure, if it is si-
multaneously continuous and singular. The set of all seagabntinuous Borel
measures oX we will denote by.Zs(X); this is a band in# (X). By definition
u € #scif and only if u is concentrated on a Borel set of zero Haar measure and
U (S) = 0 for every countable s&

According to thelebesgue decomposition theoreach Borel measung on
the groupX is decomposable in a unique way into the sum

H= P+ e+ e,

where P € (X)), ¢ e MadX), u¢ e Ms(X). We will denote alsqu® =
e+ psCandps = uP + psC ltis clear thatu® € Z:(X), us € #5(X).

2.2 Spectral types and spectral measures

In this sectionA denotes a self-adjoint operator in a Hilbert spateresAis the
resolvent set oA, sped := C\ resAis the spectrum oA. Forz € resA we denote
R(zA) := (A—2)~1 (the resolvent o).

The first classification of spectra is related to the stabilihder compact
perturbations ofA. By definition, thediscretespectrum ofA (it is denoted by
speg;sA) consists of alisolatedeigenvalues ofinite multiplicity, and theessen-
tial spectrum ofA, speg A, is the complement of the discrete spectrum in the
whole spectrum: spggA = sped \ speg;A. By the famous Weyl perturbation
theorem, for a pointy € spedA the following assertions are equivalent

o { €spegsA
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o for every compact operatdt in .#” there holds € spegs{A+K).

The second classification is related to the transport anitiesicey properties
of a quantum mechanical system with the Hamiltortias A. ForQ € 2 denote
Pa(A) = Xa(A), wherexq is the indicator function of the subs@tC R; Po(A)
is the spectral projector fok on the subse®. The mappingZ > Q — Pq(A) is
called the projection valued measure associatedAvfthe resolution of identity).
For every pai, ¢ € 57, the mapping

B35 Q— ($[Pa(A) ) = (Pa(A)¢ [Pa(A)¢)

is a complex Borel measure on the real [idevhich is called thespectral measure
associated with the tripleA, ¢, ) and denoted byiy o (or more precisely, by
Ho.w (-3 A)). If ¢ =, thenuy = Uy ¢ is a bounded positive Borel measurelon

%> Q— ($|Pa(A)$) = |Pa(A)1?,
with the norm||uy || = ||¢|%. Thereforeyy  is bounded and

Ho.](Q) < [Ho (Q) ()] 2.

Moreover, supply y C SPedA.
According to the Riesz—Markov theorem, for a bounded cormplarel mea-
sureu onR the following three conditions are equivalent:

o U=y y forsomed,y € 7,

e for every continuous functiofi on R with compact support
@11 A) = [ 109au00);

e for every bounded Borel functiohonR
@11 A) = [ T09au00.

The following proposition is obvious.
Proposition 2.1. For a Borel subsef) C R the following assertions hold:
(1) up(Q)=0ifandonly if Ry¢ = 0.
(2) Uy is concentrated o if and only if Ry¢ = ¢.
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Proposition 2.2. The following assertions take place.
(1) Uy, and gy are subordinated tqty + Ly;
(2) Hap = |a|?uy for every ac C;

(3) if up Luy, theng L y;

(4) if yp Luy, and B= f(A) where f is a bounded Borel function, then
Heg L Hy;

(5) if ug, Ly for a sequence, from.7, and¢gn — ¢ in 7, thenpy Ly,

Proof. (1) ForB € 4 we have:

1p.51(B) < [[Ps(d)]l[IPs(w)].
s+ w(B)] ™ = Pa(d + w)]| < |Pe(d] + | Ps(w)]],

hencelpp y|(B) = Hp+y(B) =0, if tpy(B) =0.

(2) Trivial.

(3) LetST € #,SNT =0, uy be concentrated oBandpy, be concentrated
onT. Then, according to proposition 2.4, ¢) = (Ps¢, Pry) = (¢, PsPry) =0.

(4) LetSandT be asinitem (3). TheRsp = ¢, Pry = . HencePsf (A) ¢ =
f(A)Psp = f(A)¢ and we can refer to proposition 2.1

(5) LetS,, Th € &, S$i\N'Th = 0, Uy, be concentrated o8, and iy be concen-
trated onT,. SetT =Ty, S=R\T. Thenpy, is concentrated of for every
n and iy is concentrated ofi. By propositiof ZLPspn = ¢n, Priy = . As a
result, we hav@sp = ¢, henceuy Lty by proposition Z.11. d

LetL be a band in#. Denotes{ = {{ € 7 : uy € L}. Then by proposi-
tion[2.2.74 is a closedA-invariant subspace of””. Moreover, let(Ls)s-= be a
complete family of bands in#Z. Then.7 is the closure of the linear span of the
family of closedA-invariant subspace,%s. If, in addition,L; are mutually dis-

jointthen.”#’ is the orthogonal sum of{ .. In particular, s~ = J# . . Moreover,
the following proposition is true.

Proposition 2.3. Let ¢ € 27 and ¢ is the orthogonal projection ap onto 7 .
Then

(1) Uy — Uy, > 0andis subordinated tpiy_g, ;

(2) Uy, = U!ﬁ-
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Proof. (1) First of all we show thapiy — ug, > 0. Let B € &, then (ugy —
Hp)(B) = |Peg | — [PeP |2 Since. 1 is Ainvariant, PsPyq = Py Ps,
therefore( iy — iy, ) (B) = [|Pa |2 — | P P |> > 0.

Further we have foB € #

(Hp — Mg, )(B)
= [|Pso||®— |[PeL||* = (|[Psd || + [[PsdL|) (| Ps || — || Psbe])

< 2]10[l[IPa(¢ — d0)| = 2/ 91l [Hs—0 (B)]2,

and the proof of the item is complete.
(2) 4y, €L, and according to item (IDy — Uy, € Lt O

Since7{ is Ainvariant, the restriction oA to .74 is a self-adjoint operator in
2 . The spectrum of this restriction is denoted by speand is called_-part of
the spectrum oA.

It is clear that for a poinkg € R the following assertions are equivalent:

o Xp € Sped;;
o for anye > O there exist® € . such thatug (Xo — &,%0— €) > 0.
Therefore, we have
Proposition 2.4. The following assertions are equivalent:
® Xp € SpPE¢A;
o for anye > Othere existg) € 77 with L5 (xo— £,X0 — €) > O;
e for anye > O there existsh € 74 with tg(Xo—&,X —€) > 0.
Let (Lg)sc= be a complete family of mutually disjoint bands.ua. Then
SpeA = UTecEZA.
Ee=z

LetL be a band in#Z, N =L+ andQ € 4. If Bnspeg, A= 0, then we say
thatA has onlyL-spectrum o2 (or the spectrum oA on Q is purelyL).

Denote nows, where je {p, ac sc s, c}, the subspace? = %@,4 Then the
spectrum of the restriction &fto 7] is denoted speé. In particular,

o I = Hp® Hac® Hsc, therefore spek = speg AUspeg.AUSpeg.A. The
part spegA is called thepoint spectrum ofA, speg.A is called theabso-
lutely continuouspectrum ofA and speg.A is called thesingular continu-
ousspectrum ofA.
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o ' = Hp® I, therefore spek = speg AUspegA. The part spedA is
called thecontinuousspectrum ofA.

o ' = D I, therefore spel = speg.AUspecA. The part sped is
called thesingularspectrum ofA.

Consider the point part of the spectrum in detail. The setl@igenvalues of
Ais denoted by spggA and is calledpure pointspectrum ofA. In particular, for
a pointxg € R the following assertions are equivalent:

® X0 € Speg,A;
o Uy ({Xo}) > O for somep € 2.

Proposition 2.5. Let 8,, where ac R, be the Dirac measure concentrated on a.
Then for ac R and ¢ € 77 the following conditions are equivalent

(1) Payo=9¢;
(2) Hy = [191°3;
(3) Ap =ad.
Proof. (1)=(2). ForQ € # we havepy (Q) = [|[Pa¢||? = ||PoPay¢[|2. There-

fore, tg (Q) = ||¢||%, if a€ Q and iy (Q) = 0 otherwise.
(2)=(3). We have for Z € reqA)

d 2
GIRz A = [ L 0T
R
hence, by polarizatiorR(z,A)¢ = (a—2z)~1¢.
(3)=(1). IndeedPq = X(a}(A) andx(a (a) = 1. O

As a corollary we have that & is an atom for a spectral measuyug, then
a € speg,A. Indeed, ifpy({a}) > 0, theng = P, # 0. On the other hand,

Pay¢ =9.

Proposition 2.6. 77 is the orthogonal direct sumpp of the eigensubspaces of
A, andspeg A = speg,A.

Proof. Itis clear that’Zpp C 4. To show that’Zpp D 7 it is sufficient to prove
that if ¢ L 7pp, thenpy has no atoms. Suppose thatl .7, but iy ({a}) > 0.
Theng =P # 0. Furtherg = P, ¢, thereforep € 7. On the other hand
(W,¢) = (¥,Pay¥) = py({a}) > 0.

Itis clear that speg A C spegA. Suppose tha € spegA. Takee > 0, then
Hy(a—eg,a+¢€) > 0 for somey € J7%,. Hence, there is an atosfor Ly, such that
s€ (a—¢,a+¢€). ltremains to remark thate speg,A. O
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The considered classifications of spectra are related lasvil

® spegjsA C spegpA;
e Speg A is the union of the following three sets:
(1) speeA,

(2) {xeR: xis alimiting point of speg,A},
(3) {x € spegpA: xis of infinite multiplicity}.

2.3 Spectral projections

Letx,y € R. In what follows we will use often the identities

I (§[Rx+iy;A)) = 5 [(9IROCH iy A)8) — (Roct i A1)

= 2 (][ROct iy, A) ~ Rx—iy;A)|) 2.1)
— y (¢ RO~ iy; AR+ iy A)]9)
:yHR(eriy;A)csz.

The following Stone formulas for spectral projections v very useful, cf.
Theorem 42 in [84]. Let-o < a< b < 4w and¢ € 7, then

%[a@b]wp(ab = Jim 2—/ R(x+iy;A) = R(x—iy; A)| ¢ dx

1
:yl—lmoﬁa/[lm R(x+iy; A)] ¢ dx (2.2)

.y (P . .
= | = [ R(x—1iy;AR A dx.
Jmo ) (x=1y; A)R(X+ly; A)¢ dx

Sincepy (Q) = (9|Pa(A)9) = [|Pa(A)$|%, we have fom,b € R\ spegy(A)
1 /b
o ((2.b)) = pg(([a,bl) = im = [im (6 |ROc+iy; A)g) dx
yI_|>n107—Tlm/ (¢|R(x+1iy;A)p)dx  (2.3)
= lim —/ IR(X+iy; A)p||?dx.

Cy—H0 T
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If ac R and ¢ € 77, then Py (A)p = —i IirEOyR(a+ iy;A)¢, therefore
y—

Ho({a}) = [IPay (A)9]1% = lim y*[R(a+iy; A)g1%
The following statement is known [11, 84]

Theorem 2.7.Let¢ € 7. For Lebesgue a.e. xR there exists the limit

(PIRX+10:A)9) = lim (§IR(x+1y:A)d);

this limit is is finite and non-zero a.e. and, additionallging (2.1),

(1) pgc=m1Fydx, where

Fp() = Im (§[R(x+10;A)9) = lim YIR(x+iy)|*.

(2) pg is concentrated on the sgx € R : Im (¢ |R(x+i0;A)¢) = oo}
Additionally, for—o < a < b < 4 one has:
(3) u3([a,b]) = Oif and only if for some p) < p < 1,

b

Jim [ im (6 [ROx+iy;A)9) P o= 0.

(4) Assume that for some p< p < « one has
sup{[[Im(¢[R(- +iy; A)$)[[p: 0 <y <1} <o,

where || - ||p stands for the standard norm in the spac®[l,b]). Then
u3((a.b) =0.

(5) Let(a,b)nspecA = 0. Then there is a dense subsetds# such that
sup{[[Im(¢|R(- +iy; A)p)|lp: 0 <y < 1} < oo for every p,1 < p < oo,
and everyp < D.

(6) up((a,b))=0ifand only if

b
Jim y [ im (9 IROc+iy; A)9) P dx= 0.
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Lemma 2.8. Let 6 be a smooth strictly positive function da,b] and ab ¢
speg,A. Then

1 b .
Jim = m [ (9IR(x+iy:A)9) dx

1 b : .
zylﬂoglm A (| R(X+iyB(x); A)¢) dx

2
= im % / IRO-+iy8(x); A)p[28(x) dx. (2.4)

Proof. The second equality in.(2.4) follows fromn (2.1), so its isfeignt to prove
the first equality only.
Rewrite the left-hand side df (2.4) as

b
| @R+ A dx= | (BIREAIP) L. @25)
a £(y)

where the patl(y) is given in the coordinateé = & +in by the equationsé =t,

n =y,t € [abl|. Consider another path(y) given byé =t, n =y6(t),t € [a,b]
and two vertical intervalsz (y): £ = a, n betweery andy8(a) andv,(y): & = b,

n betweeny andy8(b). Since the integrand in_(2.5) is an analytic function, we
can choose the orientation of the interval§y) andv,(y) in such a way that

[ @IRGARI= [ @IRGAS)C
Ty PIREGAS AL | (GIREGA)P)AT. (26)

Supposed(a) > 1 (the opposite case is considered similarly). Then

y6(a) )
| (#IRGA)A = [ (gIR@+in:Ag)dn.
va(y) y

Let vy be the spectral measure associated witmd¢, then by Fubini

yO(a) y6(a dV¢
Im/ (p|R(a+in;A)¢)dn = Im/ / Indn
R —

yo(a dvg (t) +y29()
_/ dn/ (t—a)2+n? 2/ a)?+y? dve(t).

Using the estimate

(t—a)>+y*6(a)* _ y*(6(a)?—1)
In Catiy In (1+ m) <2Inf(a).
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and the boundedness af we obtain by the Lebesgue majorization theorem
lim Im (¢|R(;A)9)d =0. (2.7a)

y—0+ va(y)

Exactly in the same way there holds

lim y | (¢[R({;A)¢$)dl =0. (2.7b)

y—0+ " Jvo(y)

On the other hand,
m [ (BIREGA9) A
b
= Im [ (9IRX-+1y0(; A)9) (1+1y8/(¥)dx=11(y) +iylz(y). (28)
where, by[(2.11),
b
l1(y) ::Im/ (@|R(X+iyB(x); A)¢)dx
—y/ IR+ iy8(x); A)¢ | 2dlx
lo(y) ::Im/ (BIR(X+iyB(x): A)p) 8'(x) dx
—y/ |R(x+iy6(x) q)H 0'(x

Denotingc = maxc(a \9’(x)} one immediately obtaing(y)| < c|l1(y)|. There-
fore, passing to the limig — 0+ in (2.8) we arrive at

im 12(y) = lim 1m [ | BIRGA) .

y—0+

Substituting the latter equality, (Z]7a), abd (2.7b]i®)2esults in[(2.4). O
3 Spectra and spectral measures for self-adjoint ex-
tensions

3.1 Problem setting and notation

In this section we return to self-adjoint extensions. Below
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Sis a densely defined symmetric operatoti#fi with equal deficiency in-
dices in a Hilbert space?’,

Ny = ker(S —2z),

(¢4,I1,I2) is a boundary triple fof&*,

A is a self-adjoinbperatorin ¢,

HO is the self-adjoint restriction & to kerT 1,

Hp is the self-adjoint restriction d* to kerl'; — Al'1); due the the condi-
tion on/A, Hy andH? are disjoint, see Remark 1]30.

e R(2):=(H®—2)~1forzeresH",

e RA(2) := (Hr—2) "1 for z€ resHp,

e yis the Kreinl'-field induced by the boundary triple,

e Qis the Krein's2-function induced by the boundary triple.

Recall that the resolvent are connected by the Krein resbfeemula (theorem
[1.29): .

Ra(2) =R(2 - v(2[Q(2 - A] v (2. (3.1)
We are interested in the spectrumtgf assuming that the spectrum B is
known. Theorem 1.23 and E@. (B.1) above show the equality

sped—|,\\sped-|° = {E cresH’: 0¢ speo(Q(E) —/\)}. (3.2)

We are going to refine this correspondence in order to digisigbetween dif-
ferent spectral types dfiy in gaps ofH®. Some of our results are close to that
obtained in [24] for simple operators, but are expressedfierdnt terms.

3.2 Discrete and essential spectra

The aim of the present subsection is to relate the discretessential spectra for
Ha with those forQ(z) — A.

Lemma 3.1. Let A and B be self-adjoint operators #, and A be bounded and
strictly positive, i.e{¢@,Ap) > c(@, @) for all ¢ € domA with some ¢> 0. ThenO
is an isolated eigenvalue of B if and only0ifs an isolated eigenvalue of ABA.
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Proof. DenoteL := ABA Let 0 is a non-isolated point of the spectrumBf
Then there isgh € domB such thatBg, — 0 and distkerB, @) > € > 0. Set
h=A"1@. ThenLyy, — 0. Suppose that liminfdigterL, y,) = 0. Then there
are Yy, € kerL such that liminf|yn — || = 0. Itis clear thaty, = Ay}, € kerB
and liminf||g, — @|| = liminf ||Ayn — A/ || = 0. This contradiction shows that
dist(kerL, yrn) > € > 0 and 0 is a non-isolated point of the spectruni.of
The converse follows by symmetry, As?! is also positive definite. O

Theorem 3.2. For E € resH the following assertions are equivalent:

(1) E is anisolated point of the spectrum of H

(2) Ois an isolated point of the spectrum of E) — A.
Moreover, if one of these conditions is satisfied, then fer @ punctured neigh-
borhood of E there holds

H (Q(2) —A)_lH < for some c> 0. (3.3)

c
lz—E|
Proof. Clearly, one can assume tHais real. Denot&)y := Q(E), Q1 := Q' (E).

Both Qp and Q; are bounded self-adjoint operators. By (1]22a) there holds
Q1 = y*(E) y(E), thereforeQ; is positive definite. Take any< dist(E,spedH®U
spedia \ {E}). For|z—E| < r we have an expansion

Q(2) = Qo+ (z—E)Q1+ (z— E)?Y(2), (3.4)

whereSis a holomorphic map from a neighborhoodofo L (¥4,%9).

(1) = (2). Let E be an isolated point of the spectrumtéf. SinceE is an
isolated point in the spectrum bfy, the resolvenRy(z) = (HA — E) 1 has a first
order pole az = E, therefore, as follows from the resolvent formula13.1kg th
functionz— (Q(z) — /\)_1 also has a first order pole at the same point. Hence,
we can suppose that forQ|z— E| < r there exists the bounded inverg@(z) —

/\)_1 and, moreover(z— E)(Q(2) — A)7Y|| < c for some constant > 0. This
implies the estimate (3.3). By (3.4) we can choosamall enough, such that
Qo — AN\ +(z—E)Qq has a bounded inverse foxO|z— E| < r. Representing

Qo—A+(z-E)Q = Q1 *(Q*(QE) - N)Q, 2+ (2 )1 ) Q1

1/2

we see that 0 is an isolated point in the spectrur@p*/z(Q(E) —N\)Q;7“ and

hence ofQ(E) — A in virtue of lemma31l.
(2) = (1). Conversely, let 0 be an isolated point of the spectru@) — A\

or, which is equivalent by lemmnia_3.1, in the spectrumrof= QIl/z(Q(E —
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N) Ql_l/z. For sufficiently small and 0< |z— E| < r the operatoM(z) := T +
(z—E)I is invertible, and||(z— E)M~(2)|| < ¢ for thesez for some constant
c. For the same, the operatoiQy — A+ (z— E)Q1 = Qi/ZM(z)Qi/2 is also
boundedly invertible, anH!(z— E)(Qo—A+(z— E)Ql)_lH <c”. Hence, we can
choser such thalQ(z) —A = Qo — A+ (z— E)Q1 + (z— E)?S(2) is invertible for
0 < |z—E| < r, which by [3.2) means that¢ resHx. ]

Now we are able to refine the relationsHip (3.2) between teetspofH® and
Ha. This is the main result of the subsection.

Theorem 3.3. The spectra of H and klare related by
speg Ha \ spedH® = {E c resH?: 0 € speg (Q(E) —/\)} (3.5)

with e € {pp,dis,esg.

Proof. By theorem 1.23(1), Eq.[(3.5) holds fer= pp, moreover, the multi-
plicities of the eigenvalues coincide in this case. Themsfby theorem 3]2, the
isolated eigenvalues of finite multiplicities féty correspond to the isolated zero
eigenvalues foQ(z) — E, which proves[(3)5) fos = dis. By duality this holds for
the essential spectra too. O

It is also useful to write down the spectral projector ki corresponding to
isolated eigenvalues lying in reg.

Proposition 3.4. Let E € resH? be an isolated eigenvalue of\HThen the eigen-
projector R\ for HA corresponding to E is given by

Pa=VE)(Q(E) NQ®) "y ()
whererl is the orthoprojector orker(Q’(E))_l/z(Q(E) —N) (Q’(E))_l/2 in®.

Proof. Follows from the equalitf’n = —Res|Ra(2); z=E]. O

3.3 Estimates for spectral measures

In this subsection we are going to obtain some informatiotherabsolutely con-
tinuous, singular continuous, and point spectradgfusing the asymptotic be-

havior of (Q(x+iy) — /\)_1 for x € R andy — O+. To do this, we need first an
expression for the resolveR}, on the defect subspaces®f

Lemma 3.5. Let {,ze C\R, z# {, and ge domA. For ¢ = y({)g there holds
1 _
RA(2)8 = 7= |4 —¥(2(Q(2) ~A) (Q0) ~N)g].
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Proof. Substituting identities (1.14b) and (1.21e) irito {3.1) vieéain:

RA(2¢ = R(2v(0)g-v(2)[Q@) — AV (Dv(0)g
=R@2y()9- 2 [QD) ~A v (y2g
_ V(z)z :gm o v2[0@ A i _?m ]
— ey i~ [ A
«(Q@-A+A-Q0) gl
— [0 - v@@2 - N QD) - Mgl

Theorem 3.6.Fix {g € C\R. Let ge domA; denote hi= (Q({o) —A)g, ¢ :=
¥({0)g, and letuy be the spectral measure foHissociated withp.

(1) If [a,b] c resH°"R and ab ¢ spegpHa, then

up ([a,b]) = || Pag (Ha) ¢H2

B )Y 1,02
y|—|>+07T/ 1{o— x|ZH (Q(x+iy) —A)”"hl||“dx.

(2) For a.e. xe resH?N R there exists the limit

2

Y

f00 1= Jim ][ (@09)*(Qux-+iy) ~A)

and the function Fx) := f(x) is the Lebesgue density of the mea-

_1
_ 1Mo — X2
surepsS, i.e. ug® = F(x)dx.

(3) For ac resHYNR the limit
lim y2H )M2( (a+iy)—/\)‘1hH2

y—+0

exists and is equal tpp ({a}).
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Proof. We start with proving item (2). Using lemrha B.5 we getyas O:

RAXH )0 = 58— 5 V) [Qxiy) = A]
therefore
|vomnixry ¢H_Hz 5l

m Hy X+iy) (Q(x+1iy) — _1hH

< VIR )8 + 7Sl
Hence, if\/y||RA(X+1y)¢|| has a limit (finite or infinite) ay — +0, then also

WH y(x+iy) (Q(x+iy) — A) _1hH does, and in this case
yirQOWHRA(HWH

lim VIlyx+iy) (Qx-+iy) —A) il (3.6)

\Z —X| y—
Let us show that, at fixed the finiteness of the limif (316) is equivalent to
sup \fyH (Q(x+iy) —/\)_1hH < o0, (3.7)
O<y<1

Indeed, sincg(2) is a linear topological isomorphism on its image and is ana-
lytic, for a givenx € resH? there existg > 0 such that1||g|| < SUR-y<1 | y(x+
iy)g|| < c||g|| for all g € &. This shows that the conditions

. -1
Jim vYlIv9 (QEx-+iy) —A) hl| = e

and

Jim  lvOctiy) (QUx+iy) ~A) th|| =

are equivalent. Assume now I;ero\ﬁHy(qu iy) (Q(x+iy) —A)_th < +o0o,
then for all 0< y < 1 one has

Vllyxc+iy) (@t iy) = A) hl = vyl veo (Quectiy) — A) |

< VY]l iy) (QUx-+iy) = A) = y(x) (Q(x-+iy) —A) Th|
< ¢f|y(x+iy) — y(¥)||,
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wherec = sugy_y-1 /Y| (Q(x+ iy) —/\)_1hH < o, Thus, we have

I|m \/yHR,\ X+ 1y q)H = \[yHy x+iy)—/\)_1hH. (3.8)

X| y—>+0

On the other hand there holds

|voor@ix-+iy)— )|
= (Y0909 (Que+iy) = A) [ (QUeriy) —A) ),

and, due to identitiey(x)y(x) = Q'(x) and ||y(x)(Q(x+iy) — A) *h|]” =

1 (Q’(x))l/2 (Q(x+iy) —A)_thZ, item (2) follows from proposition 217.
The proof of items (1) and (3) is completely similar to thatitem (2); in the
case of (1) one should use the norm

I1l2= ([ If012ax) "

on the spacé?([a, b];.7#) in the above estimates. O
Below we will use the notation
= L
U kets—q)) . A=t
ImZ+40

For a subspacke C ¢ we write (L) := Ujm¢.20 Y({) Xz With Xz (L) = (Q(Z) -

/\)_1L. Note that if spah is dense ir7, then alsoX; (L) is, and the linear hull of
U (L) is dense ing?.

If Y € 7, theny* ()Y =0forall { € C\R. By (3.1), it followsRa({)Y =
RO(Z)y, and henceiy (Q) = 0 for all Borel set€ € resHYNR, wherepy, is the
spectral measure fot, associated withy.

Proposition 3.7(cf. Theorem 2 from [62]) Let a b € resH®. Suppose that there
exists a subset £ ¢ with densespari such that

sup{\\(Q(x+iy)—A)_1h\} ra<x<bO0<y< 1} <o

forall h € L. Then(a,b) Nspeds = 0.
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Proof. We can assume thatb ¢ speg,Ha; otherwise we consid€, b) as the
union of a increasing sequence of intervas, b,), wherea,, b, ¢ spegpHA.

Itis sufficient to show thal 5, (HA)##1(L) = 0. Let¢ € (L), then there
isge Land{ € C\R such thath = y()(Q({) —A)_lg. Using lemma 3]5 with
z=Xx+1y we get

RAXH )8 = 5 [8—vor ) (Qx+iv) —N) ] (39)
Using (2.3) we arrive a5, (Ha)¢ = 0. O

Proposition 3.8. For any » e resH? N R the following two assertions are equiv-
alent:

(1) xo ¢ speda;

(2) there exist > 0and a subset I ¢ with densesparl such thai{xp— &, X+
g) C resH% and

. Xo+€
lim y

: L
Jmey [ ] (@ucriv)—) Pl ax=o.

forallh e L.

Proof. The implication(1) = (2) is trivial. Let us prove2) = (1).

It is sufficient to show thaMP(XO_&XOH)(H’\)qb |=0forall¢ € 7 (L). Fora
giveng € y({)X; (L) with Im { # 0 we takeh € L such thah= (Q({) —A)g, ¢ =
y({)g for someg € domA. Then the equalityiPy, ¢« (H")¢|| = O follows
from theorent 316(1). O

Proposition 3.9. Let a b € resH. Suppose that there exists a subset ¥ with
densesparl such that for all he L and x< (a, b) there holds

sup{\/yH(Q(ijiy) —A)_th 0<y< 1} < o,

Then(a,b) NspegHA = 0.
Proof. Let Ly be the spectral measure associated wiindH,. Itis sufficent to
show thag (a,b) = 0 for all ¢ € 7 (L). Writing any¢ € (L) in the form¢ =

¥(0)(Q(Q)—A) “Lgwith g€ L and Im + 0 one arrives again 4£(3.9). Therefore,
for anyx € (a,b) one has sup ¢ 1) /YIIRA(X+iy) @] < o, and suppig N (a,b) =
0 by theoren 2]7(2). O

51



Proposition 3.10. Let % € reH?NR. Then the following assertions are equiva-
lent:

(1) % ¢ spegcH”;

(2) there exist > 0and a subset I ¢ with densesparl such thaixg—&,x0+
g) C resH® andlimy_ o /¥(Q(x+iy) —/\)_1h =0for all h € L and for
a.e. Xe (xo—&,Xo+€).

Proof. The proof of the implication{2) = (1) is completely similar to that for
propositiori 3.8, cf. theorem 3.6(1)

To prove(1) = (2) we takee > 0 such tha{xp — €,X0 + €) N speg.HA = 0.
According to theorermn 316(2) we have

Jim A @) (@) -) [ =0

for all h € ¢, and it is sufficient to note tha(tQ’(x))l/2 is a linear topological

isomorphism. O

Proposition 3.11. Let % € resH®. Then the following assertions are equivalent:
(1) % ¢ spegHa;

(2) there existe > 0 and a subset IC ¢ with densesparL such that(xy —
€,%+¢€) C resH? andlimy_..oy(Q(x+iy) —A)_lh =0forallheL and
for every xe (Xo— €,X0+€).

Proof. Similar to the proof of proposition 3.10 using theoriem 3)6(3 O
Using propositions 3.10 and 3111 we get immediately

Proposition 3.12. Let X € resH?Nsped,. If for everye > 0 there exists k& ¢
such that

e limy_,;oy(Q(x+iy) —A)_lh =0forallx € (xo—€&,% +¢€) and

e limy_,10/¥(Q(Xx+iy) —A)_lh =0fora.e. xe (xo—&,X+ €),
then % € speg.Ha.
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3.4 Special2-functions

In this subsection we assume that the expresQi@) — A in the Krein forumula
(3.3) has the following special form:

Q2 —-N= , (3.10)

where
e mandn are (scalar) analytic functions at leastin R,
e Alis a self-adjoint operator i#.

We assume thain and n admit analytic continuation to some interv@, b) C
resHY R, moreover, they both are real ang 0 in this interval.

Below, in subsectioris 3.5 ahd B.6 we provide examples whte & situation
arises. Our aim is to relate the spectral propertied oin (a,b) to the spectral
properties ofA. In what follows we denote by# := (infspecA, supsped).

Lemma 3.13.If n is constant, then m is monoton(ia b). If n is non-constant and
m (x) = 0 for some x (a,b), then either nix) < infspecA or m(x) > sup speé.

: . 1
Proof. For anyf € domA consider the functioas (x) := W<f)(A— m(x)) f>.

Using (1.22h) we write

% = =2~ 5% (1] (- mio) )

with some constart > 0 which is independent df.

m' (x)

ol f1* < (flQ(x)f)

For constanh one hasY =0 and—W >c,i.e.m #0.
/
If ' £ 0 andn(x) =0, then:%(xx))<f}(A— m(x)) f> > ¢||f|| for any f, i.e.
the operatoA — m(x) is either positive definite or negative definite. O

Lemma 3.14.Let K be a compact subset(@,b) nm=1(_#), then there isy> 0
such that for xc K and0 < y < yp one has

(Q(x+iy) — /\)_1 = n(x-+iy) L(x,y) [A—m(x) —iym( (x)] _1, (3.11)

where L(x,y) is a bounded operator anfL(x,y) — I || — 0 uniformly with respect
toxe Kasy— 0.
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Proof. We have(Q(x+iy) — )_1 = n(x+iy)(A— m(x+iy))_1 Further,A —
m(x+iy) = A—m(x) —iym (x) +B(x,y), where||B(x,y) || = O(y?) uniformly with
respect tox € K. Sincent(x) # 0 forx € K by lemma 3.1B, the operatér— m(x) —
iym/(x) has a bounded inverse defined everywhere, and

A—m(x+iy) = (A—m(x) —iyn(x)) [l+ (A—m(x) — iyrr{(x))_lB(x,y)] .

Itis easy to see that(A—m(x) — iyn’{(x))_lH = O(ly| 1) uniformly with respect
to x € K. Therefore, for sufficiently smaj,

(A—m(x+ iy))_1 = (1+Ba(x, y))_1 [A—m(x) —iym/(x)] -
with ||B1(x,y)|| = O(|y|) uniformly with respect tex € K. O

Lemma 3.15. Fix {o with Im{o # 0 and let he ¢, ¢ = y({o) (Q(Zo) —/\)_1h.

Denote byu the spectral measure for the pafHa,¢) and byv the spectral
measure for the paifA, h). There is a constants 0 with the following property:
for any segment K= [a, 8] C (a,b)N m‘l(?) such thator, 3 ¢ speg,Hx there
holdsu(K) < cv(m(K)).

Proof. Note first thatm’ # 0 on[a, B3]. To be definite, we supposg > 0. Ac-
cording to theorermn 316(1) and lemina 3.14, we have

2
40 = Jm [ o2 Q09 *(A =m0 —iyml0) "

Substitutingé := m(x) and denoting (&) := n'(m~%(&)) we arrive at

p(K) = lim —/ )>2
IZo—m‘ (&)[2

x H(Q (974(&)) " (A= & —iyr(@) | ae.

Since

—1(8))? 1/2 _ 102
Lo e el (@10 H€0) “a ) e
< C/m(K) | (A— & —iyz(£))*h][*de,

wherec is independent ok, we obtain the result with the help lemmal2.8. [J
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Here is the main result of the subsection.

Theorem 3.16.Assume that the term(@ — A in the Krein resolvent formul¢8.1)
admits the representatio.10) then for any ¥ € spedHa N (a,b) and anye €
{dis,esspp,p,acs,scc} the conditions

(®) Xo € spegHa,
(m—e) M(xo) € SpegA
are equivalent.

Proof. Fore = pp,dis,ess see theorem 8.3. Asis a homeomorphism, the same
holds for speg= speg,
For e = ac use the following sequence of mutually equivalent aissext

M(Xo) & SPEGAA,

e There is a neighborhood of m(xg) such that||(A— & —iy) 1)h||2"— =%

forall £ €V andh € ¢ (use item 1 of theoren 2.7),
e There is a neighborhodd¥ of X such thay||(Q(x+iy) —A)~H)h||2°"— ey
for all € e W andh € ¢4 (use lemm&a3.14 and replaiga (x) at any flxedx

by iy),
e Xy ¢ speg:Ha (propositior:3.10).

Assume nown(Xp) € speg.A. There exists a neighborhodtof m(xg) such
that for soméh € ¢ we havev@“(V) = v2(V) = 0, wherev stands for the spectral
measure foA. Using lemma 3.14 and theorém12.7 one can see that there axist
neighborhoo® of xg such that ling_, o y?| (Q(x+iy) —A)~th||2 =0 for allx €
W and limy_ 1 oV||(Q(x+iy) — A)~1h||2 = 0 for a.e.x € W. By propositior 3.12
this means thatg € speg.(Ha). Hence, we prove (m-se}(sc). Since spe@ =
spegAUspegA, we prove also that (m-s)(s).

Let nowm(xp) ¢ specA. To show thakg ¢ spegHa it is sufficient to consider
the casen(Xp) € spedd\ specA. Then by theorem XII1.20 from [117], there exist
a dense subsétC ¢ and a neighborhood of m(xp) such that

sup{[[(A—& —iy)th||: 0<y<1 EeV} <o

for all h € L. We can assume without loss of generality thafxy) > 0, then by
lemmd3.14 we have for a neighborhdadof xo and for somey, yo > 0,

sup{ /|| (Q(x+iy) — )_1hH: 0<y<Yo, XEW} <o,
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andxg ¢ spegHa by propositiori3.9. Thus, the equivalence£gn-s) is proven.

Now we prove the impication (se}(m-sc). Assume tha{ € speg.(Ha) but
m(Xo) ¢ speg.A. Denote the spectral measure #rby v and that forHp by
U, then there is an interval containingxg such that forJ = m(l) there holds:
VaJ) =0for allhe ¢. According to lemm&a3.15, K is a Borel subset dfsuch
thatvn(m(X)) = 0 for all h, then alsqug (X) = 0 for all ¢ € 7. In particular, let
X be a Borel subset dfof zero Lebesgue measure and containing no eigenvalues
of Hx. Thenm(X) is a Borel subset o8 which contains no eigenvalues Af
and also has the Lebesgue measure zero. Theref¢ng(X)) = 0, and hence
Hg (X) = 0. We see, that the restriction g to | is mutually singular with each
singular continuous measure brHence, it is true fopy with eachg € 7. This
contradicts to the assumptiop € speg.Ha, and the implication (se}-(m-sc) is
proven.

The equivalence (€)}(m-c) follows from (sc(m-sc) and (agy(m-ac). [

We note that theorem 3.16 may be considered as an abstraarverf the
dimension reduction: we reduce the spectrum problem férasbint extensions
to a spectral problem “on the boundary”, i.e. in the spéce

3.5 Spectral duality for quantum and combinatorial graphs

We have already mentioned that the theory of self-adjoitdresions has obvious
applications in the theory of quantum graphs. Here we aregotm develop the
results of the recent paper [109] concerning the relatignisbtween the spectra
of quantum graphs and discrete Laplacians using thebrefh 3Attually, this
problem was the starting point of the work.

Let G be a countable directed graph. The sets of the vertices athé edges
of G will be denoted by andE, respectively. We do not exclude multiple edges
and self-loops. For an edge= E we denote bye its initial vertex and byre its
terminal vertex. For a vertex the number of outgoing edges (outdegree) will be
denoted by outdegand the number of ingoing edges (indegree) will be denoted
by indegv. The degree of is degv := indegv + outdegs. In what follows we
assume that the degrees of the verticeS afe uniformly bounded, £ degv <N
for all ve V, in particular, there are no isolated vertices. Note thahezlf-loop
atv counts in both indegand outdeg.

By identifying each edge of G with a copy of the segmei®, 1|, such that O
is identified with the vertexe and 1 is identified with the vertewe, one obtain a
certain topological space. A magnetic Schrodinger operatsuch a structure is
defined as follows. The state space of the graphfis- Qe g #2, 7 = L?[0,1],
consisting of functiong = (fe), fe € #%. On each edge consider the same scalar
potentialU € L?[0,1]. Let ac € C'[0,1] be real-valued magnetic potentials on

56



the edge® € E. Associate with each edge a differential expressipn= (id +
ae)2+U. The maximal operator which can be associated with thegerelittial
expressions acts 4ge) — (Lege) 0N functionsy € @ H?[0,1]. The integration by
parts shows that this operator is not symmetric, and it issary to introduce
boundary conditions at the vertices to obtain a self-adgperator. The standard
self-adjoint boundary conditions for magnetic operatoes a

ge(1) = gp(0) =: g(v) forallb,ec Ewithib=rte=y,
> (9(0) —iae(0)ge(0)) = 5 (Ge(1) —iae(1)ge(1)) = a(v)g(v),

ele=v ere=v
wherea (v) are real numbers, the so-called coupling constants. Thgegaans-
formationge(t) = exp(i /o t ae(s)ds> fe(t) removes the magnetic potentials from
the differential expressiong(id + ac)?+U)ge = — f +U fe, but the magnetic

1

field enters the boundary conditions through the paramgte)s= / ag(s)dsin
0

the following way:

dP@fy(1) = fy(0) =: f(v) forallbec Ewithib=T1e=v, (3.12a)
fv:i= 5 10— Y PR =aWwfW). (3.12b)

elre=v ere=v

The self-adjoint operator ig#” acting ag fe) — (—fZ +U fe) on functiong( fe) €
@ H?[0,1] satisfying the boundary conditioris (3.12a) and (3.12b)albr € V
will be denoted byH. This is our central object.

To describe the spectrum d¢f let us make some preliminary construc-
tions. We introduce a discrete Hilbert spdééG) consisting of functions on
V which are summable with respect to the weighted scalar mtodiug) =

Svev degv f(v)g(v). Consider an arbitrary functiofi : E — R and consider the
corresponding discrete magnetic Laplaciat?iiG),

AGh(v):i< S ePhre+ ¥ éﬁ<e>h(:e>). (3.13)

d gV ele=v ere=v

This expression defines a bounded self-adjoint operatdy @).

Denote byD the Dirichlet realtizetion of-d?/dt?> +U on the segmen, 1],
Df = —f”4+Uf,domD = {f € H?[0,1] : f(0) = f(1) = 0}. The spectrum ob
is a discrete set of simple eigenvalues.

For anyz € C denote bys(-;z) and c(x; z) the solutions to—-y’ + Uy = zy
satisfyings(0;z) = ¢/(0;2) = 0 ands'(0;z) = ¢(0;z) = 1. Introduce an extension
of H, M, defined by doml = {f € @H?[0,1] : Eq. (3.12h) holdsand(fe) =
(—fJ +Ufe). The following proposition is proved in [109].
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Proposition 3.17. The operatof1 is closed. For fe domll put

Faf = (f(v)yoy, Taof= <;e(g\g/\)/>vev

with f(v) and f(v) given by(3.12) then(IZ(G),Fl, [2) is a boundary triple for
. The induced -field y and 2-function Q are of the form

(y(2)h) (x) = s(ll;z) [h(le) (s(1;2)c(%2) — s(x2)c(1;2)) + e F@h(Te)s(x; z)],
and
Q(2)f(v) = Wi(l;Z) (AG — [outdeg/c(1;2) + indegv§(1;z)]> f(v).

Now let us make some additional assumptions. We will sayttregymmetry
conditionis satisfied ifat least oneof the following properties holds: indeg=
outdeg/forallve V or U is even, i.eU(x) =U(1—X).

The following theorem provides a complete description efspectrum of the
guantum graphd outside speb in terms of the discrete Laplacidys.

Theorem 3.18.Let the symmetry condition be satisfied and the couplingtaois

a(v) be of the forma(v) = d%va, thenspeg A\ sped = n—1(spegAc) \

sped for e € {dis,esspp,p,acs,scc}, wheren(z) = %(s’(l;z) +c(1;2) +
as(l;z)).

Proof. Let the symmetry conditions be satisfied. Ufis even, thers(1;z) =

c(1;z). If outdegv = indegv for all v, then outdeg = indegv = % degv. In both

cases one had(z) = e _5,2(;12)2)_ c(1:2) (see [109] for a more detailed dis-

cussion). The operatdft itself is the restriction of1 to the functionsf satisfying

a . . . :
o= §r1f with I 2 from propositiori 3.17. The restrictidn® of Sto ker 1 is
nothing but the direct sum of the operat@rsver all edges. By theorelm 1129, the

resolvents oH andHg are related by the Krein resolvent formula and, in particu-

lar, the corresponding ter@(z) — A has the formQ(z) — A\ = AC;(;Z)(Z)

are in the situation of theorem 3]16.

, and we
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3.6 Array-type systems

Another situation in which theorem 3116 becomes useful afgpehen the2-
function is of scalar type [5], i.e. wheQ(2) is just the multiplication by a certain
complex function; such functions are of interest in the smeespectral problem
for self-adjoint extensions [23]. In this case the représen (3.10) holds for any
self-adjoint operatoA\, and one has

Proposition 3.19. Let Q be of scalar type, then for arythere holdsspeg Ha \
spedH® = QY(speg )\ sped® with e € {dis, esspp,p,acs,scc}.

In other words, the nature of the spectrum of the “perturbmguiratorH, in
the gaps of the “unperturbed” operatdf is completely determined in terms of
the parameteA.

Scalar type2-functions arise, for example, as follows. L& be a separable
Hilbert space an& be a closed symmetric operator. i with the deficiency
indices(1,1). Let (C,I'%,r9) be a boundary triple for the adjoi;, andyy(2)
andq(z) be the induced -field and 2-function. LetD be the restriction of] to
kerr‘l); this is a self-adjoint operator.

Let .o/ be a certain countable set. Consider the opef@ter® ., Sy in the
space’ = @qe.s He Wherety ~ g andSy = S. Clearly, (12(«7),I1,T2)
with T1(fg) = (M9fy) and M2(fq) = (M9f4) becomes a boundary triple for
S'. The induced -field is y(z)(¢q) = (W(2)€x) and the2-function is scalar,
Q(2) = q(2)id. It is worthy to note that the corresponding operatd; which is
the restriction ofS* to kerl 4, is just the direct sum of the copies Dfover the
setes and, in particular, spad® = sped. Propositior 3.19 becomes especially
useful if the spectrum dD is a discrete set, then the spectruntyf is (almost)
completely determined in terms of the parameterizing dpera

The models of the above type can be used for the constructisoleable
models for array of quantum dots and antidots. One of petesof such arrays
is that they involve the miscroscopic properties of a simget as well as the
macropscopic properties of the whole system. We considaeedtnical simplic-
ity two-dimensional periodic arrays in a uniform magnetadiorthogonal to the
plane of the system. For a large class of such models we eféd}.

Let a1, a» be linearly independent vectors &f and.«7 be the lattice spanned
by them, o/ := Za; + Zap. Assume that each note of the lattice is occupied
by a certain object (quantum dot) whose state spac&zjswith a Hamiltonian
Hq (their concrete form will be given later). We assume thagaintum dots are
identical, i.e. 7%, := 7%, Hqo = Ho. The system is subjected to a uniform field
orthogonal to the plane.

In our case, the inner state spa#@ will be L2(R?). The HamiltoniarHg will
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be taken in the form

1 (9 6 . 2 wz 2
Ho= — [(6x+ igy)? +(W_mfx) } +7(x +Y).
Here¢ is the number of magnetic flux quanta thorugh a unit area segai¢he
plane, andw is the strength of the quantum dot potential. Note that tleetspm
of HC is pure point and consists of the infinite degenerate eidees&m,

1
Emnzé(n+m+1)Q+(n—m)f, Q:=2y/m2&2+w? mneZ, mn>0.

The HamiltoniarH := &4 .sHq, describe the array of non-interacting quan-
tum dots. To take into account the interdot interaction we e restriction-
extnesion procedure. Namely denoteSythe restriction oH, to the functions
vanishing at the origin. As we have shown in subsubseCtidi3 1these operators
are closed and have deficiency indi¢ésl). Respectively, one can construct the
corrsponding boundary triples f&,. Namely, forf, € domS;, we denote

m 1
afa) i= —lim oot fa(r), b(fa) = nmo[f(r)+a(fa)7—1|og|r|}.
Accoriding to the constructions of subsubseciion 1.4C3a, b) form a boundary
triple for S, and the corresponding-function is

a2) = -

21

[L,U(; Q) +Iog— +ZCE]

wherey is the logarithic derivative of the function andCg is the Euler constant.
Respectively, the triplél?(.=7),[1,[2) with

Fi(fa) = (alfa)), T2(fa):= (b(fa)),

is a boundary triple for the operat6f, S:= P S, and the induced?-function is
the multiplication byg(z).

The above defined operatbr corresponds exactly to the boundary condition
r1f = 0. For a self-adjoint operatdr in 1%(«7) denote byH, the self-adjoint
extension ofS corresponding to the boundary conditidnsf = L1 f. This op-
erator will be considered as a Hamiltonian of interactingrqum dots, and the
way how different nodes interact with each other is deteetiny the operatdr.

To avoid technical difficulties we assume that bounded. Furthermorg,must
satisfy some additional assumptions in order to take intoaat the nature of the
problem.

60



First, any reasonable definition of a periodic system witlynagic field must
include the invariance under the magnetic translation grotn our case this
means that the matrix dfin the standard basis tf(.«7) satisfies

L(a,a+B) =€e"BL(0,B) forany a,Bc .
Second, we assume that only the nearest neighbors intetactach other, i.e.

Al; a =+ay,
L(a,0)=q A2, a==a, A;,A2€R\{0}.
0, otherwise,

Roughly speaking, the above assumptions mean the follow#ch node interact
a with the four nearest nodes+ aj, j = 1,2, and the interaction is independent of
a. For further analysis it is useful to idenitfy(.«7) with 12(Z2?) by ( fna, +na,) ~
(f(n1,n2)), n1,n2 € Z. Then the operatdr acts as follows:

Lf(ny,n2) = L(N)f(ng,np) = A [€7M2F (ng — 1,np) + € ™2 (ng + 1, np)]
+A2[e7 MM (ng, g — 1) + €™M f (ng, 2+ 1)], N =EarAap.
This operatoiL(n) is well-known and is called thdiscrete magnetic Laplacian
and using proposition 3.119 we can transfer the completetigpéaformation for
L to the Hamiltonian of quantum dotd;.. One of interesting moments in the

spectral analysis df is the relationship with the almost Mathieu operator in the
spacd?(Z) [120],

M(n,6)f(n)=A1[f(n—1)+ f(n+1)] +2A,cos(2nn+06) f(n), 6€[—m,m).

In particular,

sped.(n)= |J spedv(n,).

fe[—m,m)

Elementary constructions of the Bloch analysis show thasgectrum ok (n) is
absolutely continuous and has a band structure. At the samee for irrational

n the spectrum oM(n, 0) is independent o and hence coincides with the
spectrum ofL(n). It was shown only recently that the spectrumMfn, 0) is a
Cantor set for all irrational) and non-zera\1, A, see [14]. Using our analysis
we can claim that, up to the discrete $&,} (a more precise analysis shows
that these eigenvalues are all in the spectrum of the arrayam transfer the
spectral information fok(n) to the array of quantum dots; in particular, we obtain
a Cantor spectrum for irrationgl due to the analyticity of the?-function.
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4 Isolated eigenvalues

4.1 Problem setting

In the previous sections we have analyzed the part of therspeof the “per-
turbed” operatorH, lying in the resolvent set of the “unperturbed” operator
HO. If E € sped?, then, in general, it is difficult to determine whether or not
E € spedH. Nevertheless, iE is an isolated eigenvalue bf°, then the question
whetherE in the spectrum oHa becomes easier in comparison with the general
case. (Examples of subsectidns 3.5 3.6 show that thatism is rather typi-
cal for applications.) In this section we give a hecessadysufficient condition
for such ark to be an isolated eigenvalueldf, and completely describe the cor-
responding eigensubspacehf (theorem_ 4.17). For simplicity, we consider only
the case oboundedself-adjoint operatoA in ¢.

In addition to the notation given in subsectionl3.1, in tleist®ns® denotes an
eigenvalue oH° with the eigensubspac#’® (which can be infinite-dimensional),
PY denotes the orthoprojector o#°. We denote by (£°) the set of all open balls
0 centered at® and such that spét®n ¢ = {€°}. By GL (¥) we denote the set
of bounded linear operators i having a bounded inverse. df € 7 (£9), then
K(0;%) denotes the space of all analytic mappidMys & — GL(¥¢) such that
V(£9) =1 andV*(z) = V~(2) (the latter condition is equivalent to the following
one:V(z) is a unitary operator far e RN &).

4.2 Auxiliary constructions
Further we need the following lemma.

Lemma 4.1. For any zZ € resH? there holds:
(1) PPz =POrz;
(2) #°ndomHp = #°N A, = #° o ranPOy(Q);

(3) kery*(2)PPy(z) = kerP%/(), i.e., the restriction ofy*(2) to ranPyy({) is
an injection. In particulardimrany*(z)P°y(z) = dimranP®y(z).

Proof. (1) Recall thaP® = —ilims_, .o 6R°(¢°+i6) in the weak operator topol-
ogy. By (1.14b), for any) > 0 one has

Y(2)+ (9410 —2)R(e2+id)y(2) = y(Q) + (°+i6— )RP(e°+id) y(2). (4.1)
Multiplying (1)) with & and sendin@ to O we arrive at
(2 2)P°(2) = (e°— O)P°¥(Q). (4.2)
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Now it is sufficient to recall that#; = rany(z) for all z € resH°.

(2) Letp € #°NdomHp andy € .45. AsH andHp are disjointp € domS
andSp = €%¢. There holdge® — 2)(g|y) = ((S—2)9|Y) = (¢|(S" —2)¢) = 0.
Hencep 1 .A45.

Conversely, letp € #°n .4+, By (I.2ZId),y*(z2)¢ = 0. As follows from
the Krein resolvent formuld (3.1)£° — 2)1p = R°(Z)@ = R (Z)@ € domH,.
Hence,p € domHx, and the first equality is proved. The second equality faflow
immediately from the relations: (a) for agye .#°° andy € .#; one haso|y) =
(¢, P°Y), (b) A7 = rany(2), (c) ranP°y(z) = ranP°y({).

(3) Let y*(2)P°y({)g = 0. By (I.21dl),P°y({)g L .45 According to [4.2),
POy({)g L A;. It follows from the second equality in item (2) thefy({)g L
ranP%y(Z). HenceP%/({)g=0. O

The item (3) of lemm&a4l1 can be generalized as follows.

Lemma 4.2. Letegj, j =1,...,m, be distinct eigenvalues of’HP! be orthopro-
jectors on the corresponding eigensubspaces and

m
P:.= Z Pj.
=

Then(l —P)y(2) is an injection for any z resH©.

Proof. Let (I — P)y = 0 wherey = y(2)@ for somez c resH®, ¢ € 4. Then
WY = Py € domH? and, thereforeH%y = zy. Hencey = 0 andg = 0. O

In what followszo denotes a fixed number from fé8, xo := Rezg, yo := Imzo,
L := y(20). Recall thatL is a linear topological isomorphism on the deficiency
subspacet” ;= A5, C .

Since, by definitiony(z) = L + (z— z0)R°(2)L for anyz ¢ resH?, the pointe®
is either a regular point foy or a simple pole with the residue

Regy(z): z= &% = (z— °)POL. (4.3)

Similarly, asQ(z) = C+ (z—xo)L*L + (z— 20)(z— 20)L*R°(2)L, with a bounded
self-adjoint operato€ (see proposition 1.20), the poiel is either a regular point
for Q or a simple pole with the residue:

RegQ(2) : z= €% = —|% — z|°L*POL. (4.4)

From the equality||P°L¢||> = (L*P°L¢| @) one easily sees that KetL =
kerL*POL (see also Lemma4.1(3)). In particulRPL = 0 if and only if L*POL =
0, and there are simple examples whe?e = 0. Moreover, the following lemma
holds.
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Lemma 4.3. Let 777 and % be two Hilbert spaces and A7 — 7 be a
bounded linear operator. Then the two conditions below ar@\ealent:

(1) ranAis closed,;
(2) ranA*Ais closed.
In particular, ranPOL is closed if and only ifanL*P°L is closed.

Proof. Condition (1) is satisfied if and only if there is a constant 0 such that
|A@|| > c|@|| for all @ € (kerA)*. On the other hand, condition (2) is satisfied
if and only if there is a constamt > 0 such that A*Ag| @) > ¢'||@||? for all ¢ €
(kerA*A)+L. Since keA*A = kerA, we get the result. O

Now we denote by4 := kerL*POL C ¢, % := ¢~*. The orthoprojectors of
¢ on%, (respectively, or#;) are denoted by, (respectively, by1;). If Ais a
bounded operator iff, then we writeA, := N, All,, and this will be considered
as an operator i%. If z< resH?, theny (z) denotes the operator — PO)y(z)MN,
acting from; to s (to avoid a confusion with the previous notation, we suppose
without loss of generalityy # J¢). Further, we denote by7; the subspacé —
PY).s# and byH? the part oH in ., clearly,£0 € resH?, and both the mappings
¥ andQ, have analytic continuation &f. Finally, denotes = ker (Q; (€%) — A, ),
and¥%, = % © 9.

Lemma 4.4. There exists a closed symmetric densely defined restrigtiohH?
such thaty is a Krein I'-field for the triple(S,H?,%), and Q is a Krein 2-
function associated with this triple angl.

Proof. We use proposition 1.18. Sin& andR°(z) commute for allz € resH®,
it is clear thaty satisfies the conditiof (1.1#b). Furthas,belongs to rekl® and
¥ (20) = (I — Ro)LM,.

Let us show that the subspacé¢” := rany(z) is closed. Let(g) € %
such thati, := (I — P9)Lg, converge to some € J%. Sincegh € %, one has
L*POLg = 0, henceP’Lg, = 0. On the other hand,gh € .4 by definition ofL.
Denote the orthoprojector ofZ onto.4" by P, then we havéy, = L@,, hence
L@, converge tdPy. Therefore, the sequen€e*Lg,) converges td"Py in ¢.
SinceL*L is a linear topological automorphism @f, there exists ling, and this
limit belongs to% becaus¢; is closed. Thusy € .4 and. 4" is closed.

By lemma4.1(3)y; (20) is injective. By the closed graph theorepn(z) is a
linear topological isomorphism &; onto.4".

Now we show that#” NndomH? = 0. It is sufficient to show thaf (1 —
PY).#)NndomH? = 0. Lety € ((I —P%.#)ndomH® As y € (I — P°).+,
we havey = ¢ — P for someg € .. Sincey,P°p € domH?, ¢ € domH?°.
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Hencegp = 0 andy = 0. Thus, by proposition_1.18, there exists a closed sym-
metric densely defined restriction &f° such thaty is a-field for the triple

(S’) Hlpvgr)
SinceQ(z) =C—iyoL*L+ (z— Zp)L*y(z) with a bounded self-adjoint operator
Cin ¢ (propositioi 1.20), we have
= M,CN, —iyoM,L*(1 — PO)LM,
+(z—20)M,L* (1 = P2)y(2) My —iyoM, L*POLI,
+(z—20)NL*Poy(2)M; .

Now we use the equations
MLPLM, =0  M,L*PYy(2)N, = 0. (4.5)

The first one follows from definition dfl;, to prove the second one we note that
¥(2) = L+ (z— 20)R°(2)L, therefore

9— 2z
-z

N, L*PPy ()M, = M, L*POLM, = 0.

From (4.5) we obtain

Qi (2) =C' —iyo ¥ (20) ¥ (20) + (z— 20) ¥ (20) % (2)

whereC’ = IN,CI1; is a self-adjoint bounded operator #). Hence,Q; is the
Krein 2-function associated with the-field y. O

To prove the main result of the section we need the followamgrha.

Lemma 4.5. Let S be an analytic function in the diBk= {z€ C: |z < r} with
values in the Banach space of all bounded linear operdt@#§) such that there is
a bounded inverse $(z) for all z from the punctured didR \ {0} and the function
S1(2) is meromorphic. Iker§(0) = 0, then $ := S(0) has the bounded inverse
(and, therefore, S! has an analytic continuation to the poidiof the disk). If §

is self-adjoint and is a pole at most of first order for$(z), thenranS is closed,
I.e. there is a punctured neighborhoodivhich has no point aépecS,.

Proof. Consider the Laurent expansion

Sz = i ThZ".

n=—m

65



wheremis a natural number. I < 0, the lemma is trivial. Suppose > 0. Since
S(z2)SY(z) = | for all z, we haveSyT 1, = 0. Let kerS = 0, thenT_,, = 0, and
by recursionT, = 0 for alln < 0. ThenSTp = TopS = | and the first part of the
lemma is proved.

Letnowm= 1. Then§T_1 =0andT_1S + TpS = |, whereS; = S(0). This
implies SToS = S. Let x € ranSy, thenSTox = x. Since rarg C (kerS)+,
there is a linear operatdy: rang — rang such thatASx = x for all x € ranS,.
FromSTox = xwe haveA = T, i.e. Ais bounded. Hence, thereds> 0 such that
|X|| < c||Sox|| for all x € ranS and hence for akk € (kerS)*. ]

Remark 4.6. If 0 is a second order pole f@& 1(z), then the range o can be

non-closed. For example, I8&tbe a self-adjoint operator in a Hilbert spagé
such that ra is non-closed. Le¥ = .77 & .77, andS(z) is defined as follows
A z

s2-|% o]

Then

5Fl(z):z_12[g —ZA]'

4.3 Description of eigensubspace

Theorem 4.7.Let % be an isolated eigenvalue oftndranPCL be closed. Then
the following assertions are mutually equivalent.

(1) There exists a punctured neighborhood&8fthat contains no point of
speda (in particular, if €9 € sped,, thene? is an isolated point in the
spectrum of K).

(2) The operator @z) — A\ has a bounded inverse for all z from a punctured
neighborhood o£°.

(3) ran(Qr (€% —Ar) is closed.

(4) There is a punctured neighborhood®fvhich contains no point from the
spectrum of the operator, Q%) — A;.

Let one of the conditior{1)—(4) be satisfied. Then the eigensubspace
0 = ker(Hp — €°) is the direct sSumy#¥ = 14 ® Hews Where st = 7#°N
domHp = #°NdomS, Hew = % (€°) ker[Qr (€°) — Ar] anddim 70 & 4 =
dim¥% & %,. Therefore® € sped, if and only if at least one of the following
two conditions is satisfied:
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e 79NdomH, # {0},

o ker[Qr(e%) —Ar] # {0}.

Remark 4.8. Since 7% NndomHy = #° N domS, the component#yyy of
ker(Hx — £9) is independent of\, i.e. this part is the same for all extensions
of Sdisjoint toH?. On the other hand, the componeifhe depends on.

Remark 4.9. Clearly, rarP°L is closed, if the deficiency index & or dim.#°
are finite (this simple case is very important in application theoreni_ 4]7). To
show that the assumptions are essential for infinite defigierdices, we provide
here an example when the rangeP8t. is not closed.

Let 4 =1%(N) fork=0,1,... and Iet(eﬁk))nzo be the standard basis i#f:
e(q() = (dmn)m=0- Denote byHE the self-adjoint operator i%; which is deter-
mined byHEe((\k) = (n+1/2)el’. Choosea € .74 such thatlal| = 1, (a] eéo)) =0,
a¢ 2(HY), and sea®) = a. Consider in# the one-dimensional subspalsg
generated bl + (k+ 1)a¥. Fix zp € C\R. By Propositior .18 there exists
a symmetric restrictioig of H,? such that47,(S) = Nk. Let now.Z = @ 74,
HO = @HQ, S= @S Then the eigensubspace&® of Hy corresponding to the
eigenvaluee® = 1/2 is the closed linear span (é(()k)), k=0,1,...,and.4%(S) is
the closed linear span 66 + (k+1)a), k=0,1,.... We can choos# := .43,
y¥(Zo) =L =1 wherel is the identical embedding o3, into /7. Itis clear, that the
image ofPOL is the seM of all vectorsx from .#° having the formx = z)\ke(()k)
wherey (k+1)?|Ax|? < . Obviously,M is dense in7#° butM # #°, henceM
IS not closed.

Proof of theorem[4.7. The equivalencél) < (2) follows from theoreni 312, and
the equivalencé3) < (4) is trivial.

Let us prove the implicatiofil) = (3). Chooser € ¥ (£9) such thaQ(z) —
A has a bounded inverse for alkc ¢\ {€°} and forze ¢\ {€°} consider the
mappingT (z) = (z—€°)(Q(2) — A). Note that

e T has an analytic continuation &9 by settingT (£°) = — |0 — zo|?L*P°L,
see Eq.[(4}4), and
e T has a bounded inverse i\ {£°}.

Since the operatdr*PyL has the closed range, we can apply a result of Kato ( [87],
Sections VII.1.3 and VI1.3.1). According the mentioneduleghere is a mapping
V,V € K(0; %), such that the operatdt(2)T(z)V—1(z) has the diagonal matrix
representation with respect to the decomposi#os ¢ & %

V12T (2V(2) = { T110(Z) frr()(z) } , (4.6)
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Because the left-hand side of EQ. (4.6) has a bounded inferses ¢\ {£°},
the same is true, in particular for the opera®i) := (z— £°)1T,(2) =
M,V ~1(2)[Q(2) — A]V(2)M, considered in the spac.

Our next aim to prove that

IS @)l < clz—e° (4.7)

with a constant > 0 for all zin a punctured neighborhood &%. For this purpose
we consider together with the decompositién= 4 & % of the space?, the
decomposition? = A4 ® 4, wheres#q = #°, #; = (I — P%)#0. In virtue
of to the Krein resolvent formul&(3.1),

(- €)Rn(2) = (z- OR(D) — (- )y T 2y (7
=(z-)R(2) ~ (=)’ [VAV @V QT @V VIV ()"

(
Represent the operatp(z)V (z) according to the above mentioned representations
of 7 and¥ in the matrix form:

avia=[ 315 e | o

Since(z— £%)Rp(2) and(z— £%)RP(2) are analytic functions in a neighborhood of
g0, all the matrix term ify(2)V (2)]V~1(2 T~ 1(2V(2)[y(2V (2)]* are also analytic
in the same neighborhood. In particular, we can ch@se such a way that the
function

2 (z— 92 (1 (2T @%@ + 2T 1@ ¥ (D)

is analytic in@. SinceTy1(£%) = —|z — £%2L*POL has a bounded inverse 4,
the functionT,;}(2) is analytic in a neighborhood @f. Therefore, we can chose
0 such tha(z— €)% (2) Ty 1 (2) ¥ (2) is analytic ing. Furtherf, (€°) = v (£9).

In virtue of Lemma 4.4 and definition of tHefield, we can find a constant > 0
such that]|y (¢°)g|| > ¢||g|| for all g € %. Therefore we can chos€ so small
that ||V (2)g9|| > c”||g|| for all ze &, g € % with somec” > 0. Sincey;(2) is
an isomorphism of rap(z) on %, we see thatz— £2)27,71(z) is bounded in a
neighborhood o£°. Hence, we obtaid{4.7) in a punctured neighborhood®f
By Theorem 3.13.3 from [76]S %(z) has at poiniz® a pole of the ordex 1.
Therefore (1) = (3) by Lemmd4.b.

Now we prove(4) = (2). Choose¢ € ¥ (&%) such thatQ(z) — A has no
spectrum inZ \ {€°}. Moreover, we can use again the representafion (4.6). Since
V(2) = | +0(z— £9), the functionS(z) := M,V ~1(2)N;[Q(2) — A]M;V(2)M, has
an analytic continuation a&° with the valueS(£°) = Q; (% — A;. To proceed
further, we need the following auxiliary result.
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Lemma 4.10. The operator §£9) is strictly positive orker[Q, (£%) — A;].

Proof of lemmal4.10. SinceV ~1(x) = V*(x) for x € ¢ NR, for the derivative of
Sone has:

S (€% =N (V')*(e”)Me[Q(%) — AN,

FIQE) ANV ()N, 1,

(note that1,Q(%) andQ(&%)M; are well defined). Let now < ker[Q; (%) — A/].
Then we have fron (419) thatp|S (%)) = (|Q'(£°) ). SinceS () is a self-
adjoint operator, we have th&t %)@ = Q/(£°) @ on ker[Q; (¢°) — A;]. Therefore,
by Lemmd 4.4 and (1.2Pa),

S(e9¢ =y (")y(e)pforall e ker[Q(e) - A, (4.10)
henceS (£0) is strictly positive on kdQ; () — A;]. O

To prove the required implicatiofd) = (2), it is now sufficient to show that
S(z) has a bounded inverse in a punctured neighborhoogf ofSince S(z) is
analytic, it suffice to prove that the operattiz) := S(£°) 4+ S(£°%)(z— ) has a
bounded inverse in a punctured neighborhooeakith the estimatéJ(2) || <
c|z— &°~L. For this purpose we represesite®) in the matrix form

g(£0) — {5’22 5’23}
=g, <,
according to the representati@h= 4% & %. ThenJ has the matrix representation

[t (z-e9S, (293,
‘”Z)‘[ (208, <z—e°>%ﬂ

whereS, := §(€0). By the assumption of item (4% has a bounded inverse in
%>, and by [(4.1D) the operat&,, has a bounded inverse #. Now we use the
Frobenius formula for the inverse of a block-matrix [78]:

—1
Air A
Axr Ax

(A1 — AroA 3 A L AL AL AIA ALz — Agg] 1
[A21ATL AL — Ago] TTANATT (Ao — A1 AL AL 1

(4.11)

which is valid if all the inverse matrices on the right-haidksexist. Using[(4.11)
it is easy to see that 1(z) exists for allzin a punctured neighborhood ef and
obeys the estimatg)(z) || < ¢|z— £°~! with somec > 0. Thus, the implication
(4) = (2) and, hence, the equivalence of all the items (1) — (4) aregorov
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Now suppose that the conditions of items (1) — (4) are satisfie determine
the elgenspaceﬁfo we find the orthoprOJectoP0 on this space calculating the
residue of the resolvenE,Q = —RegR\(2): z= so] PO+ RegM(2) : z= &,

where
M(2) == ¥(2)[Q(2) — A V(2.

Using the conditions of item (4), we fin@ € 7 (£°) andV € K (¢,%) such that
forzin 0\ {0}

according to the decompositieh= 4 ¢ % whereS; andS have the following
properties:§ is analytic in& with S (£°) = Q,(£%) — A, and

0
Si(z2) = —|€° |2 L'P Ig + F1(2), whereFy is analytic in¢ . (4.12)

Using Lemmd4.70, we find a functidhl € K(&,%;) such that forzin &'\
{£9) one has

wi@s@we - | =P 0]

according to the decompositiéh = ¥4 & %3 whereS, andS; have the properties:

kerS(e9) = 0 andS(£°) @ = [Qr (£°) — Ar]@ for @ € %, (4.13)

Sz is analytic in& and has the forn$s(z) = (z— £°)T(2) where

To := T(£9) is a strictly positive operator ifa. (4.14)

Denote now
U(2):=V(2) { Ié W?z) } ,

where the matrices are decomposed according to the repateary = ¢ &
% andl; is the identity operator of#;. Further, denot€)(z) = U ~1(2)[Q(z) —
AU (2), #(2) = v(2U(2), thenM(2) = 7(2)Q ()7 (2), and forze &\ {€°} one

has
Stz 0 0
Ql(z)—[ 0 S o ]
0 0 Y2

An important property o we need is follows

2080

W(2) = ——PLU(2) + (I - P)y(2U (2), (4.15)
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and(l — P%)y is analytic in&. RepresenM as the sunM(z) = Ay(2) + Ax(2) +
As(z), whereAj(z) = V(Z)rljsj_l(Z)rlek(Zj; herel; denote the orthoprojectors
of 4 onto¥j, j =1,2,3.

Itis clear from [4.1R)-£(4.15) that at the point= €2, the functionAj(2) has a
pole at most ofj-th order. Let

A2 = AV (z— 60T 4 AT (g g0) it

be the Laurent expansion féy; at the pointe®. According to the definition of
Aj(z) and formulas[(4.12)E(4.15) we have

—i * —j+1 * ¥ ¥
AE J):CijCj, AE J+):CijDj+Dijcj+CjB/jcj’

where
Cj= (20— €%PLN;j, By= %~z 2(ML*POLMy) Y,
Ba = (M2S(e%M2) ™, Bz=(MaToM3) 7,
andBj, Cj, D are some bounded operators (we need no concrete form of.them)
By definition of the spacej, we havel1;L*P°LM; = 0 for j = 2,3, and hence,
POLM; = O for the samg’s. As a result we have th@t(z) has no pole at = €°,

ie.,
ResAx(2): z=£€% =0, (4.16)

andAgz(z) has at this point a pole at least of first order. Using (4.1%) taking
into consideratiofP°LIM3 = 0, we obtain

RegA3(2) : z= €% = Py = (I — PO)y(e°)M3T, tMay* (€°) (1 — P)
= % (e9N3T; N3y (€9).
Now we have according t6 (4.112) arid (4.15)

(4.17)

RegA(2) : z= &% =: —Py = —POLMy(M1L*POLMy) 1ML PO, (4.18)

As a result, we have from (416, (4117), ahd (4.B8)= P° — P, + P.

Eq. (4.I8) shows thd®, is an orthoprojector with raPy, C ranP®. Therefore,
P — P, is an orthoprojector on a subspace#®. Eq. [4.17) shows that rd® C
ran(l — PY), therefore(P° — P;)P; = 0. SincePs is self-adjoint,P;(P° — Py) = 0.
Using (P{)2 = P? we see thaPZ = Ps, henceP; is an orthoprojector anis L PP.

By Lemma 4.1, ra(P® — P) = #°ndomHp = 4. The relation rai; =
Vi (%) ker [Qr (€°) — Ar] = Hew follows from (Z.I7) and the definition o¥.
Theoreni 4.7 is proved. O
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