Stochastik I

4. Zusatzübung

1) Es sei F eine Verteilungsfunktion auf R_1 . Wir definieren

$$F^{-1}(y) := \inf\{z \in R_1 : F(z) \ge y\}; \quad y \in (0,1).$$

Man beweise, dass gilt

- a) $F(z) \ge y \iff z \ge F^{-1}(y), \quad y, z \in R_1,$
- b) $F(F^{-1}(y)) \ge x$, $y \in (0,1)$, $F^{-1}(F(x)) \le x$, falls $0 < F(x) < 1, x \in R_1$
- c) wenn F stetig ist, so folgt $F(F^{-1}(y)) = y$, $y \in (0, 1)$,
- d) Ist X eine Zufallsgröße mit der stetigen Verteilungsfunktion F, so ist Y = F(X) gleichmäßig auf [0,1] verteilt.
- 2) Es sei $F(x_1, x_2)$ eine Verteilungsfunktion auf R_2 mit einer stetigen Dichte $f(x_1, x_2)$ und stetigen Randdichten $f_1(x_1), f_2(x_2), (x_1, x_2) \in R_2$. Weiterhin mögen F_1 und F_2 die Randverteilungsfunktionen F bezeichnen.

Man beweise:

Es gilt

$$F(x_1, x_2) = F_1(x_1)F_2(x_2), \quad (x_1, x_2) \in R_2,$$

genau dann, wenn

$$f(x_1, x_2) = f_1(x_1) f_2(x_2), \quad (x_1, x_2) \in R_2$$

richtig ist.