Stochastik I

5. Zusatzübung

1) Es sei $x = (x_1, x_2, \dots, x_n)^T \in R_n$ und $p = (p_1, \dots, p_n)^T \in R_n^+, \sum_{k=1}^n p_k = 1$. Ist f eine konvexe Funktion auf einem Intervall (a, b) mit $x_k \in (a, b), k = 1, \dots, n$, so gilt

$$f\left(\sum_{k=1}^{n} p_k x_k\right) \le \sum_{k=1}^{n} p_k f(x_k). \tag{*}$$

Man beweise (*).

2) Es sei Ω eine abzählbare Menge und P eine Wahrscheinlichkeitsverteilung auf Ω . Durch

$$H(P):=-\sum_{\omega\in\Omega}\ P(\{\omega\})lnP(\{\omega\})$$

ist die sogenannte Entropie von P definiert.

- a) Man zeige, dass $H(P) \ge 0$ gilt. Wann gilt H(P) = 0?
- b) Es sei $\Omega = \{1, 2, \dots, n\}$ und Q die gleichmäßige Verteilung auf Ω . Man zeige, dass für jede andere Verteilung P auf Ω gilt H(P) < H(Q).
- 3) Es seien $n \geq 1$ und $p \in (0,1)$. Die Zufallsgröße S_n besitze eine Binomialverteilung mit den Parametern n und p.

a) Man zeige, dass für alle a > 0 gilt

$$P\left(\left|\frac{S_n}{n} - p\right| \ge a\right) \le \frac{1}{4na^2}$$

b) Es sei f eine stetige Funktion von [0,1] in R_1 . Man zeige, dass die Funktion $f_n(p) := \mathrm{E} f(\frac{S_n}{n})$ erweitert durch $f_n(0) = f(0), f_n(1) = f(1)$ für jedes n ein Polynom in p ist. Beweisen Sie, dass (f_n) gleichmäßig bez. $p \in [0,1]$ gegen f konvergiert (Weierstraßsches Approximationstheorem).