Stochastik I

Lösungsansätze zur 4. Zusatzübung

1) Es sei F eine Verteilungsfunktion auf R_1 . Wir definieren

$$F^{-1}(y) := \inf\{z \in R_1 : F(z) \ge y\}; \quad y \in (0,1).$$

Man beweise, dass gilt

- a) $F(x) \ge y \iff x \ge F^{-1}(y), y \in (0,1), x \in R_1,$
- b) $F(F^{-1}(y)) \ge y$, $y \in (0,1)$, $F^{-1}(F(x)) \le x$, falls 0 < F(x) < 1, $x \in R_1$
- c) wenn F stetig ist, so folgt $F(F^{-1}(y)) = y, y \in (0,1),$
- d) Ist X eine Zufallsgröße mit der stetigen Verteilungsfunktion F, so ist Y = F(X) gleichmäßig auf [0,1] verteilt.

Lösung: a) folgt aus der Definition von $F^{-1}(y)$.

- b) folgt aus a)
- c) Wenn F stetig ist, wird das infimum $\inf\{z \in R_1 : F(z) \ge y\}$ realisiert in einem Punkt x mit F(x) = y. Dann ist $F^{-1}(y) = x$ mit F(x) = y und $F(F^{-1}(y)) = F(x) = y$.
- d) F_Y bezeichne die Verteilungsfunktion von Y. Es gilt für $y \in (0,1)$:

$$F_Y(y) = P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y.$$

Damit ist F_Y die Verteilungsfunktion der gleichmäßigen Verteilung auf [0,1].

2) Es sei $F(x_1, x_2)$ eine Verteilungsfunktion auf R_2 mit einer stetigen Dichte $f(x_1, x_2)$ und stetigen Randdichten $f_1(x_1), f_2(x_2), (x_1, x_2) \in R_2$. Weiterhin mögen F_1 und F_2 die Randverteilungsfunktionen F bezeichnen.

Man beweise: Es gilt
$$F(x_1, x_2) = F_1(x_1)F_2(x_2), (x_1, x_2) \in R_2,$$

genau dann, wenn

$$f(x_1, x_2) = f_1(x_1)f_2(x_2), \quad (x_1, x_2) \in R_2$$

richtig ist.

Lösung: Die Äquivalenz folgt aus dem Zusammenhang zwischen Verteilungsfunktion und Dichte:

$$F_1(x_1) \cdot F_2(x_2) = \int_{-\infty}^{x_1} f_1(s_1) ds_1 \cdot \int_{-\infty}^{x_2} f_2(s_2) ds_2 = \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_1(s_1) f_2(s_2) ds_1 ds_2$$
$$F(x_1, x_2) = \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_1(s_1, s_2) ds_1 ds_2$$