Statistik stochastischer Prozesse

5. Übung, 18. 06. 2008

- 5.1 Es sei $(X_1, X_2, ..., X_n)$ eine mathematische Stichprobe mit $X_k \sim U[0, \vartheta]$ (gleichmäßige Verteilung auf $[0, \vartheta]$). Man zeige, dass $M_n := \max(X_1, ..., X_n)$ eine minimal suffiziente und vollständige Statistik ist und berechne die erwartungstreue Schätzung für ϑ mit minimaler Varianz.
- 5.2 Es sei $X:=(X_1,X_2,\ldots,X_n)$ eine mathematische Stichprobe aus einer auf $[\vartheta-\frac{1}{2},\vartheta+\frac{1}{2}]$ -gleichmäßig verteilten Grundgesamtheit. Zeigen Sie, dass mit

$$M_n := \max(X_1, X_2, \dots, X_n) \text{ und } m_n := \min(X_1, X_2, \dots, X_n)$$

die Verteilung der Zufallsgröße $M_n - m_n$ nicht von ϑ abhängt und dass (m_n, M_n) minimal suffizient aber nicht vollständig ist.

5.3 Es sei $(X_n, n \ge 0)$ ein autoregressiver Prozess erster Ordnung mit Gaußschem Rauschen, d. h. es gelte

$$X_{n+1} = \alpha X_n + \varepsilon_{n+1}, n \ge 0$$

mit $X_0 \sim N(\mu, \sigma_0^2)$, (ε_n) unabhängig identisch $N(0, \sigma^2)$ -verteilt, $X:=(X_1, X_1, \ldots, X_n)$.

Man bestimme eine suffiziente Statistik für α , als Funktion von X.