Prof. Dr. Uwe Küchler Institut für Mathematik

Statistik stochastischer Prozesse

3. Übung, 30. 05. 2005

1. Es sei $(X(t), t \ge 0)$ ein reellwertiger Wienerscher Prozeß über einen Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ mit $EX(t) \equiv 0$ und $D^2X(t) = \sigma^2 t$ für ein $\sigma^2 > 0$. Weiterhin seien T > 0 und $\zeta_k := \{t_0^{(n)}, t_1^{(n)}, \dots, t_n^{(n)}\}$ mit $0 = t_0^{(n)} < t_1 < \dots < t_n^{(n)} = T < \infty$ eine Folge von Zerlegungen von [0, T] mit $\lambda(\zeta_n) := \max_{k=1,\dots,n} (t_k^{(n)} - t_{k-1}^{(n)}) \xrightarrow[n \to \infty]{} 0$

$$\lambda(\zeta_n) := \max_{k=1,\dots,n} (t_k^{(n)} - t_{k-1}^{(n)}) \underset{n \to \infty}{\longrightarrow} 0$$

Man zeige:

Die Folge der Zufallsgrößen

$$V_n^2 := \sum_{k=1}^n (X(t_k^{(n)}) - X(t_{k-1}^{(n)}))^2$$

konvergiert im L_2 -Sinne gegen die Zahl $\sigma^2 \cdot T$. Gilt $\sum_{n\geq 1} \lambda(\zeta_n) < \infty$, so erfolgt die Konvergenz auch P-fast sicher.

2. Es seien $X_n, n \geq 1$, reellwertige Zufallsgrößen über (Ω, \mathfrak{A}) und P, Q zwei Wahrscheinlichkeitsmaße auf \mathfrak{A} . Die Zufallsgrößen $X_n, n \geq 1$, mögen sowohl bez. P als auch bez. Q voneinander unabhängig sein und die Wahrscheinlichkeitsverteilungen F_n bzw. G_n besitzen:

 $F_n(B) := P(X_n \in B), \quad G_n(B) := Q(X_n \in B), B \in \mathfrak{B}_1.$

Es gelte $F_n \ll G_n, n \geq 1$, und mit f_n werde die Radon-Nikodym-Ableitung $\frac{dF_n}{dG_n}$ bezeichnet, $n \geq 1$.

Was ergibt sich für f_n , wenn $F_n = N(\mu_n, \sigma^2)$ und $G_n = N(0, \sigma^2)$ gilt?

Man zeige, daß die deterministische Likelihoodfunktion für die Stichprobe $X^{(n)}$:= (X_1, X_2, \ldots, X_n) gegeben ist durch

$$L^{X^{(n)}}(P,Q;x) = \prod_{k=1}^{n} f_k(x_k), \qquad x = (x_1, x_2, \dots, x_n).$$

Man berechne $L^{X^{(n)}}(P,Q;x)$ für $F_n = N(\mu_n, 1)$ und $G_n = N(0, 1).$

3. (Fortsetzung von 2.)

Wir setzen $\mathfrak{A}_n := \sigma(X_1, X_2, \dots, X_n)$, d.h. \mathfrak{A}_n ist die kleinste Teil- σ -Algebra von \mathfrak{A} , bez. der X_1, X_2, \dots, X_n meßbar sind.

Beweisen Sie: für die Einschränkungen $P_n:=P\mid_{\mathfrak{A}_n}$ und $Q_n:=Q\mid_{\mathfrak{A}_n}$ gilt $P_n\ll Q_n$. Weisen Sie nach, daß

$$L_n := \frac{dP_n}{dQ_n} = \prod_{k=1}^{n} f_k(X_k)$$

richtig ist.

Überzeugen Sie sich davon, daß $(L_n, \mathfrak{A}_n, n \geq 1)$ ein nichtnegatives Q-Martingal und $(L_n^{\frac{1}{2}}, \mathfrak{A}_n, n \geq 1)$ ein nichtnegatives Q-Supermartingal ist. Was läßt sich über Konvergenzeigenschaften von (L_n) für $n \to \infty$ aussagen?

Untersuchen Sie den Fall $F_n = N(\mu_n, 1), G_n = N(0, 1).$