Prof. Dr. Uwe Küchler

Institut für Mathematik

Statistik stochastischer Prozesse

5. Übung, 27. 06. 2005

1. Es sei $(X_n, n \geq 0)$ ein autoregressiver Prozeß erster Ordnung mit Gaußschem Rauschen, d.h. es gelte

 $X_{n+1} = \alpha X_n + \varepsilon_{n+1}, n \ge 0$

mit $X_0 \sim N(\mu, \sigma_0^2)$, (ε_n) unabhängig identisch $N(0, \sigma^2)$ -verteilt, $X = (X_0, X_1, \dots, X_n)$. Man bestimme eine suffiziente Statistik für α , als Funktion von X.

2. Es sei $(\Omega, \mathfrak{A}, \mathcal{P}, X)$ ein statistisches Modell mit $\mathcal{P} = (P_{\vartheta}, \vartheta \in \Theta)$ und es sei H(X) eine erwartungstreue Schätzung für $\gamma(\vartheta)$:

 $E_{\vartheta}H(X) = \gamma(\vartheta), \ \vartheta \in \Theta.$

 ${\mathcal H}$ sei eine suffiziente $\sigma\text{-Algebra für }{\mathcal P}$ bez. ${\mathfrak A}^X.$

Man zeige, daß $H_1 = E_{\vartheta}(H(X)|\mathcal{H})$ eine erwartungstreue Schätzung für $\gamma(\vartheta)$ ist, deren Varianz die von H(X) nicht übersteigt.

- 3. Ist $PP(\lambda)$ eine Poissonverteilung mit dem Parameter $\lambda > 0$ und $X = (X_1, X_2, \dots, X_n)$ eine mathematische Stichprobe vom Umfang n aus einer $PP(\lambda)$ -verteilten Grundgesamtheit, so gebe man eine suffiziente Statistik T = T(X) für λ hinsichtlich X an und wende Aufgabe 3. auf $H(X) = 1 \mathbb{I}_{\{0\}}(X_1)$ an.
- 4. Es seien $(\Omega, \mathfrak{A}, \mathcal{P})$ ein statistischer Grundraum mit $\mathcal{P} = (P_{\lambda}, \lambda > 0)$ und $(N_t, t \geq 0)$ unter P_{λ} , ein Poissonscher Prozeß mit dem Parameter λ . Man zeige, daß für jedes T > 0 die letzte Beobachtung N(T) suffizient ist für \mathcal{P} hinsichtlich $\mathfrak{A}_t = \sigma(N_s, s \leq t)$.