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7.1 a) (1 point) Let (X,)nen be an adapted integrable stochastic process
on some probability space (Q2,.A, P) with the filtration (A,)nen.
Show that (X,,, A, )nen is a martingale if and only if F[X,,.1|A,] =
X,, for all n € N.
b) (3 points) Let (X, A,)nen be a martingale such that X,, > 0 P-
a.s.. Prove that for P-almost all w € €2 it holds

X,(w)=0 forsomen = X,(w)=0 forallk=0,1,....

72 Let T = Ny or T = [0,00) and let (A;)ier be a filtration on some
probability space (€2, .4, P). Assume further that 7 and o are stopping
times with respect to (Ag)ier. We define

AT::{A€A|AO{T§t}EAt foralltET}.

a) (1 point) Show that 7 A ¢ := min(7,0) and 7V 0 := max(7,0) are
stopping times with respect to (A;)er.

b) (2 points) Let ¢ : T — T be an increasing function such that
o(t) > t for all t € T. Show that ¢(7) is a stopping time with
respect to (A )ier.

¢) (2 points) Show that if ¢ < 7 we have A, C A, .

7.3 (4 points) Let (X,)n=01,.. and (Y},)n—01.. be two martingales on some
probability space (€2, A, P) with the filtration (A,)nen, and let 7 be a
stopping time such that X, =Y, P-a.s. on the set {7 < co}. Prove that
the process

Lp = XnI{T>n}+Yn[{T§n}7 n=20,1,...

is again a martingale.



7.4 Let (X;,i € I) be a family of random variables on (9, A4, P).

a) (3 points) Let g : [0,00) — R be an increasing function such that

Prove that (X, € I) is uniformly integrable if

sup E[g(|X3])] < oo.

el
b) (1 point) Show that (X, € I) is uniformly integrable if

sup E[|X,}7] < o0
i€l

for some p > 1.

The problems 7.1 -7.4. should be solved at home and delivered at Wednesday,
the 5th December, before the beginning of the tutorial.



