Prof. Dr. Uwe Küchler Dipl.Math. Hagen Gilsing

Risikotheorie

3. Übungsserie

- 3.1 (3 Punkte) Es seien X_1, X_2, \cdots eine Folge nichtnegativer, unabhängiger, identisch verteilter Zufallsgrößen sowie N eine von X_1, X_2, \cdots unabhängige Zufallsgröße mit Werten in $\{0, 1, 2, \cdots\}$ und der Verteilung $(p_k)_{k=0,1,\cdots}$.
 - a) Man bestimme die Laplace-Transformierte L_Z der Zufallsgröße

$$Z = \sum_{k=1}^{N} X_k$$

mit Hilfe der Laplace-Transformierten L_X von X_1 und der erzeugenden Funktion φ_N von N.

- b) Es seien die Momente EX_1^2 und EN^2 als endlich vorausgesetzt. Man bestimme den Erwartungswert und die Streuung von Z.
- c) Was ergibt sich in a) und b), falls N eine Poissonverteilung besitzt?
- 3.2 (4 Punkte) Eine Zufallsgröße X heißt Pareto-verteilt mit den Parametern λ und α ($\lambda, \alpha > 0$), falls sie die Dichte

$$f(x) = \frac{\alpha}{\lambda} \left(\frac{\lambda}{x}\right)^{\alpha+1} \mathbb{1}_{[\lambda,\infty)}(x)$$

besitzt.

- a) Für welche $k \geq 1$ ist das k-te Moment EX^k endlich?
- b) Sei Z eine exponential verteilte Zufallsgröße mit einem Parameter $\mu > 0$, der wiederum eine von Z unabhängige, Gamma-verteilte Zufallsgröße mit den Parametern ist.

Man zeige, dass dann Z Pareto-verteilt mit den Parametern λ und α ist.

- c) Mit X ist auch aX Pareto-verteilt, falls a > 0 gilt.
- d) Man zeigen $P(X > x) = \mathcal{O}(x^{-\alpha})$ und vergleiche diese Eigenschaft mit normal und mit Gamma-verteilten Zufallsgrößen.
- 3.3 (3 Punkte) Es seien x_1, x_2, \ldots, x_m verschiedene reelle Zahlen und N_1, N_2, \ldots, N_m unabhängige Zufallsgrößen, wobei $N_i, i = 1, \ldots, m$, mit dem Parameter λ_i Poissonverteilt sei.

Welche Verteilung besitzt die Zufallsgröße

$$X = x_1 N_1 + x_2 N_2 + \ldots + x_m N_m$$
?

Hinweis: Man berechne zunächst die charakteristische Funktion von X und forme sie so um, dass sie für ein geeignetes $\lambda > 0$ von der Gestalt $\exp[\lambda(\psi(t)) - 1)]$ ist.