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Abstract

Statistical inference for discrete time observations of an affine stochastic delay dif-
ferential equation is considered. The main focus is on maximum pseudo-likelihood esti-
mators, which are easy to calculate in practice. Also a more general class of prediction-
based estimating functions is investigated. In particular, the optimal prediction-based
estimating function and the asymptotic properties of the estimators are derived. The
maximum pseudo-likelihood estimator is a particular case, and an expression is found
for the efficiency loss when using the maximum pseudo-likelihood estimator rather than
the computationally more involved optimal prediction-based estimator. The distribu-
tion of the pseudo-likelihood estimator is investigated in a simulation study. For models
where the delay measure is concentrated on a finite set, an estimator obtained by dis-
cretization of the continuous-time likelihood function is presented, and its asymptotic
properties are investigated. The estimator is very easy to calculate, but it is shown
to have a significant bias when the sampling frequency is low. Two examples of affine
stochastic delay equation are considered in detail.
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1 Introduction

In the last decade statistical inference for stochastic delay differential equations (SDDEs)
has been studied from various view points. Early work on maximum likelihood estimation
was done by Küchler & Mensch (1992). Gushchin & Küchler (1999) and Küchler & Kutoy-
ants (2000) determined the non-standard asymptotic properties of the maximum likelihood
estimator for SDDEs, while Küchler & Vasil’jev (2005) constructed sequential procedures
with a given accuracy in the L2-sense. Nonparametric estimators for affine SDDEs were
investigated by Reiß (2002a). All these studies were concerned with continuous observation
of the solution process.

As opposed to the situation for ordinary stochastic differential equation, observations at
discrete time points have so far been studied very little for SDDEs. Reiß (2002b) has studied
nonparametric estimation. In this paper we make a first attempt at investigating parametric
inference for affine stochastic delay equations observed at discrete time points. To apply
the methods in practice it is often necessary to be able to simulate solutions of SDDEs.
This problem has been studied by e.g. Küchler & Platen (2000) and Buckwar (2000). For
a practical application of one of the simplest SDDEs, discussed in Example 2.1 below, see
Küchler & Platen (2007).

We consider the model given by the stochastic differential equation

dX(t) =
∫ 0

−r
X(t + s)aα(ds)dt + σdW (t), (1.1)

where aα is a measure on [−r, 0] such that (1.1) has a unique stationary solution (for a
given initial condition). Conditions under which (1.1) has a unique stationary solution
were given by Gushchin & Küchler (2000). We assume that the measure aα depends on a
parameter α. The parameter about which inference is to be drawn is θ = (α, σ) ∈ Θ ⊆ IRp

(σ > 0). The process W is a Wiener process. The initial condition is that the distribution
of {X(s) | s ∈ [−r, 0]} is the stationary distribution, which has always expectation zero. The
data are observations at discrete time points X(∆), X(2∆), . . . , X(n∆).

An interesting particular case of (1.1) is

dX(t) =
N
∑

k=1

αkX(t − rk)dt + σdW (t). (1.2)

Here the measure aα is concentrated in the discrete points −r1, . . . ,−rN , (ri ≥ 0). The
vector (r1, · · · , rN) can be among the parameters to be estimated. The particular case where
N = 2 and r1 = 0 is considered in detail in Example 2.1.

In Section 2 we discuss how to calculate the likelihood function for discrete time observa-
tions, and we propose a pseudo-likelihood function that approximates the likelihood function
well and is considerably easier to calculate. Two examples are considered in detail. In Sec-
tion 3 we present prediction-based estimating functions for affine stochastic delay equations
and show that the pseudo-likelihood estimator is a particular case of a prediction-based
estimator. Thus the prediction-based estimating functions provide a good framework for
discussing the asymptotics of the pseudo-likelihood estimator and in particular the efficiency
loss compared to the optimal prediction-based estimating function. This is done in Section
4, where conditions ensuring consistency and asymptotic normality are given. In Section
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5 we study the asymptotic properties of the estimator that is obtained by discretizing the
likelihood function for continuous time observations of the model (1.2). It is shown to be
asymptotically normal with an asymptotic bias of order ∆, where ∆ is the time between
observations. Finally, properties of the pseudo-likelihood estimator are investigated in a
simulation study presented in Section 6.

2 The likelihood and the pseudo-likelihood function

Since the data are in fact a Gaussian time series with expectation zero, the likelihood func-
tion can in principle be calculated if we can determine, analytically or numerically, the
autocovariances

Kθ(t) = Eθ(X(0)X(t)), t ≥ 0. (2.1)

The autocovariance function, Kθ(t), satisfies the differential equation

∂tKθ(t) =
∫ 0

−r
Kθ(t + s)aθ(ds), t ≥ 0, (2.2)

with ∂tKθ(0+) = −1
2
σ2, provided that we define Kθ(−t) = Kθ(t) for t ≥ 0, see Gushchin &

Küchler (2003). The condition ∂tKθ(0+) = −1
2
σ2 can also be written in the form

2
∫ 0

−r
Kθ(s)aθ(ds) = −σ2.

The equation (2.2) is a continuous time analogue of the Yule-Walker equation known from
time-series analysis, and we will refer to (2.2) as the delay Yule-Walker equation of (2.1). In
general, this equation must be solved numerically, but below we shall consider two particular
examples, where it can be solved explicitly.

To calculate the likelihood function, define for every ℓ = 1, . . . , n the ℓ-dimensional vector
κℓ(θ) = (Kθ(∆), . . . , Kθ(ℓ∆))T and the ℓ×ℓ-matrix Kℓ(θ) = {Kθ((i−j)∆)}i,j=1,...,ℓ. Here and
later T denotes transposition of vectors and matrices. The matrix Kℓ(θ) is the covariance
matrix of the vector of the first ℓ observations X(∆), . . . , X(ℓ∆).

The conditional distribution of the observation X((i + 1)∆) given the previous observa-
tions X(∆), . . . , X(i∆) is the Gaussian distribution with expectation φi(θ)

T Xi:1 and vari-
ance vi(θ), where φi(θ) is the i-dimensional vector given by φi(θ) = Ki(θ)

−1κi(θ), vi(θ) =
Kθ(0) − κi(θ)

TKi(θ)
−1κi(θ), and Xi:j = (X(i∆), . . . , X(j∆))T , i > j ≥ 1. The vector

φi(θ) = (φi,1(θ), . . . , φi,i(θ))
T and the conditional variance vi(θ) can be found by means of

the Durbin-Levinson algorithm, see e.g. p. 169 in Brockwell & Davis (1991). Specifically,
φ1,1(θ)) = Kθ(∆)/Kθ(0) and v0(θ) = Kθ(0), while

φi,i(θ) =



Kθ(i∆) −
i−1
∑

j=1

φ(i−1),j(θ)Kθ((i − j)∆)



 vi−1(θ)
−1,









φi,1(θ)
...

φi,i−1(θ))









=









φi−1,1(θ)
...

φi−1,i−1(θ))









− φi,i(θ)









φi−1,i−1(θ)
...

φi−1,1(θ))








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and
vi(θ) = vi−1(θ)

(

1 − φi,i(θ)
2
)

.

The likelihood function based on the data X(∆), . . . , X(n∆) is

Ln(θ) =
1

√

2πv0(θ)
exp

(

− 1

2v0(θ)
X(∆)2

)

(2.3)

×
n−1
∏

i=1





1
√

2πvi(θ)
exp

(

− 1

2vi(θ)

(

X((i + 1)∆) − φi(θ)
T Xi:1

)2
)



 .

This expression quickly gets very complicated as the sample size n increases. In particular,
φi(θ) and vi(θ) must be calculated for every observation time-point. However, the autoco-
variances Kθ(i∆) decrease exponentially with i, see Diekmann et al. (1995) (p. 34). It is not
difficult to see, using the Durbin-Levinson Algorithm, that this implies that the quantities
φi,j(θ) decreases exponentially with j. Hence the conditional distribution of X((i + 1)∆)
given X(∆), . . . , X(i∆) depends only very little on observations in the far past.

We therefore propose to use instead a pseudo-likelihood function obtained by replacing
in the likelihood function the conditional density of X((i + 1)∆) given X(∆), . . . , X(i∆)
by the conditional density of X((i + 1)∆) given X((i + 1 − k)∆), . . . , X(i∆), where k will
typically be relatively small. This pseudo-likelihood function was proposed by H. Sørensen
(2003) in connection with stochastic volatility models, but the idea is widely applicable. The
pseudo-likelihood is given by

L̃n(θ) =
n−1
∏

i=k





1
√

2πvk(θ)
exp

(

− 1

2vk(θ)

(

X((i + 1)∆) − φk(θ)
T Xi:i+1−k

)2
)



 . (2.4)

We have not included the density of Xk:1. Note that the computational gain is large because
to calculate (2.4) we only need to find φk(θ) and vk(θ) once. The number k will be called
the depth of the pseudo-likelihood function.

Example 2.1 Consider the equation

dX(t) = [aX(t) + bX(t − r)] dt + σdW (t), (2.5)

where r > 0, σ > 0. This is a particular case of the model (1.2). The real parameters a
and b are chosen such that a stationary solution of (2.5) exists. This is the case exactly
when a < r−1 and −a/ cos(ξ(ar)) < b < −a if a 6= 0, and −π/2 < br < 0 if a = 0. Here
the function ξ(u) ∈ (0, π) is the root of ξ(u) = u tan(ξ(u)) if u 6= 0, and ξ(0) = π/2. The
stationary solution is unique if it exists. For details, see Küchler & Mensch (1992). In that
paper the covariance function of the stationary solution is explicitly found by solving the
Yule-Walker delay differential equation (2.2):

∂tKθ(t) = aKθ(t) + bKθ(t − r), t ≥ 0.
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It is found that

Kθ(0) =















































σ2(b sinh(λ(a, b)r) − λ(a, b))
2λ(a, b)[a + b cosh(λ(a, b)r)]

when |b| < −a

σ2(br − 1)/(4b) when b = a

σ2(b sin(λ(a, b)r) − λ(a, b))
2λ(a, b)[a + b cos(λ(a, b)r)]

when b < −|a|,

(2.6)

where λ(a, b) =
√

|a2 − b2|, and that for t ∈ [0, r] the covariance function is

Kθ(t) =































Kθ(0) cosh(λ(a, b)t) − σ2(2λ(a, b))−1 sinh(λ(a, b)t) when |b| < −a

Kθ(0) − 1
2 tσ

2 when b = a

Kθ(0) cos(λ(a, b)t) − σ2(2λ(a, b))−1 sin(λ(a, b)t) when b < −|a|.

(2.7)

Because Kθ(t) is known in [0, r], the Yule-Walker equation turns into an ordinary differential
equation for Kθ(t) in [r, 2r], which is solved by

Kθ(t) = b
∫ t

r
ea(t−s)Kθ(s − r)ds + ea(t−r)Kθ(r), t ∈ [r, 2r]. (2.8)

Thus it is possible to determine Kθ(t) explicitly in this interval too. In a similar way, Kθ(t)
can be determined iteratively in each of the intervals t ∈ [nr, (n+1)r], n ≥ 2. Note that the
covariance function depends on σ and r in a simple and smooth way, so these parameters
can also be estimated by maximizing the pseudo-likelihood function (2.4).

For b = 0 the model (2.5) is the Ornstein-Uhlenbeck process, for which (2.6) and (2.7)
simplifies to the well-known result that Kθ(t) = −(σ2/(2a))eat (t ≥ 0) in the stationary case
a < 0. For a = 0, we obtain the model

dX(t) = bX(t − r)dt + σdW (t). (2.9)

This process is stationary when br ∈ (−π/2, 0), and by (2.6) and (2.7) the autocovariance
function is given by

Kθ(t) = −σ2

2b

(

1 − sin(br)

cos(br)
cos(bt) + sin(bt)

)

(2.10)

when t ∈ [0, r]. By (2.8) we find that

Kθ(t) = −σ2

2b
[2 + cos(bt){(tan(bt) − tan(br))(1 − 2 sin(br)) − 1/ cos(br)}] (2.11)

for t ∈ [r, 2r].
2

5



Example 2.2 Consider the equation

dX(t) = −b
∫ 0

−r
X(t + s)easds dt + σdW (t), (2.12)

where r > 0, σ > 0. The set of values of the parameters a and b for which a unique stationary
solution of (2.12) exists was studied by Reiß (2002b). This set is rather complicated and
irregular. For instance, it is not convex. However, it contains the region {(a, b) | a ≥ 0, b >
0, b(1 + e−ar) < max(π2/r2, a2(ear − 1)2)}. For a = 0, corresponding to a uniform delay
measure, a stationary solution exists exactly when 0 < b < 1

2
π2/r2. When r = ∞, the

situation is much simpler. In this case a stationary solution exists for all a > 0 and b > 0.
When a = 0 (and r is finite),

Kθ(t) =
σ2 sin

(

r
√

2b(1
2
− t)

)

2r
√

2b cos
(

r
√

b/2
) +

σ2

2br2
, 0 ≤ t ≤ r.

For a > 0, an explicit expression for Kθ(t) involving trigonometric functions exists too, see
p. 41 in Reiß (2002b), but it is somewhat complicated and is therefore omitted here.

2

3 Prediction-based estimating functions

In the following we discuss the pseudo-likelihood estimator in the framework of prediction-
based estimating functions. This class of estimating functions was introduced by Sørensen
(2000) as a generalization of the martingale estimating functions that is applicable also to
non-Markovian processes such as solutions to stochastic delay differential equations. For
an application of the methodology to observations of integrated diffusion processes, see
Ditlevsen & Sørensen (2004). We show that the pseudo-likelihood estimator is a prediction-
based estimator and find the optimal prediction-based estimating function, which turns out
to be different from the pseudo score function. Optimality is in the sense of Godambe &
Heyde (1987), see Heyde (1997). We impose the following condition that is satisfied for the
models considered in Examples 2.1 and 2.2.

Condition 3.1 The function Kθ(t) is continuously differentiable with respect to θ.

Under this assumption, we find the following expression for the pseudo score function:

∂θ ℓ̃n(θ) := ∂θ log(L̃n(θ)) (3.1)

=
n−1
∑

i=k

∂θφk(θ)
T Xi:i+1−k

vk(θ)

(

X((i + 1)∆) − φk(θ)
T Xi:i+1−k

)

+
∂θvk(θ)

2vk(θ)2

n−1
∑

i=k

[

(

X((i + 1)∆) − φk(θ)
T Xi:i+1−k

)2 − vk(θ)
]

.

The derivatives ∂θφk(θ) and ∂θvk(θ) exist when Kθ(t) is differentiable and can be found by
the following algorithm that is obtained by differentiating the Durbin-Levinson algorithm:

∂θφi,i(θ) =







∂θKθ(i∆) −
i−1
∑

j=1

(

∂θφ(i−1),j(θ)Kθ((i − j)∆) + φ(i−1),j(θ)∂θKθ((i − j)∆)
)



 vi−1(θ)
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+



Kθ(i∆) −
i−1
∑

j=1

φ(i−1),j(θ)Kθ((i − j)∆)



 ∂θvi−1(θ)



 vi−1(θ)−2,









∂θj
φi,1(θ)
...

∂θj
φi,i−1(θ))









=









∂θj
φi−1,1(θ)

...
∂θj

φi−1,i−1(θ))









−∂θj
φi,i(θ)







φi−1,i−1(θ)
...

φi−1,1(θ))






−φi,i(θ)









∂θj
φi−1,i−1(θ)

...
∂θj

φi−1,1(θ))









,

for j = 1, . . . , p, and

∂θvi(θ) = ∂θvi−1(θ)
(

1 − φi,i(θ)
2
)

− 2vi−1(θ)φi,i(θ)∂θφi,i(θ).

Since the minimum mean square error predictors of X((i + 1)∆) and (X((i + 1)∆) −
φk(θ)

T Xi:i+1−k)
2 given Xi:i+1−k are φk(θ)

T Xi:i+1−k and vk(θ), respectively, the pseudo score
function is a prediction-based estimating function in a slightly more general sense than in the
original paper, Sørensen (2000), as here the second predicted function of the data depends on
the parameters and previous observations. It is therefore of interest to explore the relations of
the pseudo score function to the optimal estimating function based on these predictors. We
shall see that neither the expression for the optimal estimating functions nor the asymptotic
theory is changed by the fact that the prediction-based estimating functions considered here
are slightly more general than those considered previously.

We start by introducing terminology like that in Sørensen (2000). Define the 2(k+1)×2-
matrices

Z(i) =

(

1 XT
i:i+1−k 0 · · · 0

0 · · · 0 1 XT
i:i+1−k

)T

, i = k, . . . , n − 1,

and the 2(k + 1)-dimensional vectors

Hi(θ) = Z(i)

(

X((i + 1)∆) − φk(θ)
T Xi:i+1−k

(X((i + 1)∆) − φk(θ)
T Xi:i+1−k)

2 − vk(θ)

)

, i = k, . . . , n − 1.

Then the full class of prediction-based estimating function to which (3.1) belongs is given
by

Gn(θ) = A(θ)
n−1
∑

i=k

Hi(θ), (3.2)

where A(θ) is a p × 2(k + 1)-matrix of weights that can depend on the parameter, but not
on the data. The pseudo score function (3.1) is obtained if the weight matrix A(θ) is chosen
as

Ã(θ) =
(

0p,1
∂θφk(θ)T

vk(θ)
∂θvk(θ)
2vk(θ)2

Op,k

)

,

with Oj1,j2 denoting here and later the j1×j2-matrix of zeros. Within the class of estimators
obtained by solving the estimating equation Gn(θ) = 0 for some choice of A(θ), the estimator
with the smallest asymptotic variance is obtained by choosing the optimal weight matrix
A∗(θ). The optimal estimating function is the one that is closest to the true score function
in an L2-sense, for details see Heyde (1997).

Let us find the optimal weight matrix A∗(θ). The covariance matrix of the p-dimensional
random vector

∑n−1
i=k H(i)(θ)/

√
n − k is

M̄n(θ) = M (1)(θ) + M (2)
n (θ), (3.3)
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where

M (2)
n (θ) =

n−k−1
∑

j=1

(n − k − j)

(n − k)

[

Eθ(Hk(θ)Hk+j(θ)
T ) + Eθ(Hk+j(θ)Hk(θ)

T
]

and

M (1)(θ) = Eθ

(

Hk(θ)Hk(θ)
T
)

=







vk(θ)K̄k(θ) Ok+1,k+1

Ok+1,k+1 2vk(θ)
2K̄k(θ)





 ,

with

K̄k(θ) =













1 0 · · · 0
0
... Kk(θ)
0













,

and with Kk(θ) denoting the covariance matrix of X(∆), . . . , X(k∆) defined in Section 2.
To find the optimal estimating function we also need the p×2(k +1) sensitivity-matrix S(θ)
given by

S(θ)T = Eθ(∂θT Hi(θ)) = −



























0 · · · 0

Kk(θ)∂θT φk(θ)

∂θT vk(θ)

Ok,p



























. (3.4)

For the derivation of the expression for the lower half of S(θ)T it is crucial that the model
is Gaussian so that φk(θ)

T Xi:i+1−k is the conditional expectation and not just a minimum
mean squares linear predictor as it is in the general theory of prediction-based estimating
functions.

By arguments similar to those in Sørensen (2000), the optimal weight-matrix is given by

A∗

n(θ) = −S(θ)M̄n(θ)−1.

The pseudo score function, ∂θ ℓ̃n(θ), is not equal to the optimal prediction-based estimating
function. In fact,

Ã(θ) = −S(θ)M (1)(θ)−1,

so
A∗

n(θ) = Ã(θ)[I − A#
n (θ)].

where I denotes the identity matrix and

A#
n (θ) = M (2)

n (θ)M̄n(θ)−1.

The magnitude of the difference between the two estimating functions depends on how small
the entries of M (2)

n (θ) are relative to the entries of M (1)(θ). Since correlations decrease
exponentially with the distance in time, the terms in the sum defining M (2)

n (θ) can be small
compared to the entries of M (1)(θ), but when this happens and exactly how small the terms
are depend on θ, ∆ and k.
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In the next section we shall see that the limit

M (2)(θ) = lim
n→∞

M (2)
n (θ) =

∞
∑

j=1

[

Eθ(Hk(θ)Hk+j(θ)
T ) + Eθ(Hk+j(θ)Hk(θ)

T
]

(3.5)

exists. Therefore, we can define the following weight matrix that does not depend on n:

A∗(θ) = S(θ)M̄(θ)−1, (3.6)

where
M̄(θ) = lim

n→∞
M̄n(θ) = M (1)(θ) + M (2)(θ). (3.7)

The estimating function

G∗

n(θ) = A∗(θ)
n−1
∑

i=k

Hi(θ), (3.8)

is asymptotically optimal and is easier to handle theoretically than A∗

n(θ)
∑n−1

i=k Hi(θ). In
practice, the weight matrix A∗

n(θ) must often be calculated by simulation, and to reduce
the amount of computation it is advisable to use the approximation to G∗

n(θ) obtained by
replacing A∗(θ) or A∗

n(θ) by the matrix obtained from (3.6) and (3.7) if M (2)(θ) is replaced
by a suitably truncated version of the series in (3.5). This does not make much difference
because the terms in the sum (3.5) decreases exponentially fast.

4 Asymptotics of the pseudo-likelihood estimator

In this section we will study the asymptotic properties of estimators obtained by solving the
estimating equation G(θ̂) = 0, where G is given by (3.2). Important particular cases are
the maximum pseudo-likelihood estimators obtained by maximizing (2.4) and the optimal
prediction-based estimator obtained by solving G∗

n(θ̂n) = 0 with G∗

n given by (3.8). The
asymptotic properties are proven for a solution to the general equation (1.1) under the
following assumption.

Condition 4.1 The functions Kθ(t) and A(θ) are twice continuously differentiable with re-
spect to θ.

If A equals Ã corresponding to the pseudo score function or A∗ corresponding to the
optimal prediction-based estimating function, then Condition 4.1 is satisfied if Kθ(t) is three
times continuously differentiable, which is the case for the models considered in Examples
2.1 and 2.2.

From now on, let θ0 denote the true parameter value. The expectation of Gn(θ0) is zero,
and its covariance matrix is

Vn(θ0) = (n − k)A(θ0)M̄n(θ0)A(θ0)
T , (4.1)

with M̄n(θ) given by (3.3). We also need the derivative of Gn(θ)

∂θT Gn(θ) = ∂θT A(θ)
n−1
∑

i=k

Hi(θ) + A(θ)
n−1
∑

i=k

∂θT Hi(θ)

and
U(θ0) = Eθ0

(∂θGn(θ0)
T )/(n − k) = S(θ0)A(θ0)

T , (4.2)

where S(θ) is the sensitivity matrix given by (3.4).
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Theorem 4.2 Suppose Condition 4.1 is satisfied, and that the matrices A(θ0) and S(θ0)
have full rank. Then for every n an estimator θ̂n exists that solves the estimating equation
Gn(θ̂n) = 0 with a probability tending to one as n → ∞. Moreover,

θ̂n

Pθ0−→ θ0

and √
n(θ̂n − θ0)

D−→ Np

(

0, U(θ0)
−1V (θ0)(U(θ0)

−1)T
)

as n → ∞, where V (θ0) = A(θ0)M̄(θ0)A(θ0)
T with M̄(θ0) given by (3.7).

Remark: Note that a necessary condition that S(θ0) has full rank is that k + 1 ≥ p.

Proof: Under our general assumption that X is stationary, Reiß (2002b) has shown that X
is exponentially β-mixing (see p. 25), and hence that the process {Hi(θ0)} is exponentially
α-mixing. Since the process X is Gaussian, Hi(θ) has moments of all orders. It therefore
follows from Theorem 1 in Section 1.5 of Doukhan (1994) that (3.5) converges, and that

Gn(θ0)√
n

D−→ N (0, V (θ0))

as n → ∞. Now the theorem follows by a proof that is analogous to the proof of Theorem 6.2
in Sørensen (2000), in which conditions in Sørensen (1999) were shown to hold. That U(θ0)
is invertible follows from the assumptions that A(θ0) and S(θ0) have full rank. At first glance
it seems to be a problem that the estimating functions considered here are more general than
those in Sørensen (2000) in that the term [X((i + 1)∆) − φk(θ)

T Xi:i+1−k]
2 appears in the

definition of Hi(θ). However, by the multinomial formula

[X((i + 1)∆) − φk(θ)
T Xi:i+1−k]

2 =

X((i + 1)∆)2 +
∑

ν1,...νk

(

2

κ1, . . . , κM

)

φk,1(θ)
ν1 · · ·φk,k(θ)

νkX(i∆)ν1 · · ·X((i − k + 1)∆)νk

− 2
k
∑

j=1

φk,j(θ)X((i + 1)∆)X((i − j + 1)∆),

where the first sum is over all 0 ≤ ν1, . . . , νk ≤ 2 such that ν1 + · · · + νk = 2. Thus Hi(θ)
has a form similar to that in Sørensen (2000), and the ergodic theorem can be applied in the
same way as in the proof of Theorem 6.2 in that paper.

2

Corollary 4.3 Suppose the function Kθ(t) is three times continuously differentiable with re-
spect to θ, and that the matrices A∗(θ0), Ã(θ0) and S(θ0) have full rank. Then the asymptotic
distribution of the optimal prediction-based estimator, θ̂∗n, is

√
n(θ̂∗n − θ0)

D−→ Np

(

0,
(

S(θ0)M̄(θ0)
−1S(θ0)

T
)−1

)

.

and the asymptotic distribution of the pseudo-likelihood estimator, θ̃n, is

√
n(θ̃n − θ0)

D−→ Np

(

0, W (θ0)
−1 + W (θ0)

−1B(θ0)W (θ0)
−1
)

,
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where

W (θ) = S(θ)M (1)(θ)−1S(θ)T =
∂θφk(θ)

TKk(θ)∂θT φk(θ)

vk(θ)
+

∂θvk(θ)∂θT vk(θ)

2vk(θ)2

and
B(θ) = Ã(θ)M (2)(θ)Ã(θ)T = S(θ)M (1)(θ)−1M (2)(θ)M (1)(θ)−1S(θ)T .

Proof: The result for θ̂∗n follows since

−S(θ0)A
∗(θ0)

T = A∗(θ0)M̄(θ0)A
∗(θ0)

T = S(θ0)M̄(θ)−1S(θ0)
T ,

and the result for θ̃n follows because

−S(θ0)Ã(θ0)
T = S(θ0)M

(1)(θ0)
−1S(θ0)

T

and
Ã(θ0)M̄(θ0)Ã(θ0)

T = S(θ0)M
(1)(θ0)

−1S(θ0)
T + Ã(θ0)M

(2)(θ0)Ã(θ0)
T .

2

According to the general theory of estimating functions (see e.g. Heyde (1997)) the matrix
S(θ0)M̄(θ0)

−1S(θ0)
T − (W (θ0)

−1 + W (θ0)
−1B(θ0)W (θ0)

−1)−1 is positive definite, so that the
asymptotic covariance matrix of θ̃n is larger than that of θ̂∗n (in the usual ordering of positive
semi-definite matrices). Thus the asymptotic variance of f(θ̃n) is larger than that of f(θ̂∗n)
for any differentiable function f : IRp 7→ IR. If B(θ0) is invertible,

[W (θ0)
−1 + W (θ0)

−1B(θ0)W (θ0)
−1]−1 = W (θ0) − [B(θ0)

−1 + W (θ0)
−1]−1,

and if M (2)(θ0) is invertible,

M̄(θ0)
−1 = M (1)(θ0)

−1 − M (1)(θ0)
−1[M (1)(θ0)

−1 + M (2)(θ0)
−1]−1M (1)(θ0)

−1,

where we have used twice that (I+A)−1 = I−A(I+A)−1 for a matrix A. Thus the difference
between the two inverse asymptotic covariance matrices can be expressed as

S(θ0)M̄(θ0)
−1S(θ0)

T − [W (θ0)
−1 + W (θ0)

−1B(θ0)W (θ0)
−1]−1 = (4.3)

[B(θ0)
−1 + W (θ0)

−1]−1 − S(θ0)M
(1)(θ0)

−1[M (1)(θ0)
−1 + M (2)(θ0)

−1]−1M (1)(θ0)
−1S(θ0)

T

=
[

(

Ã(θ0)M
(1)(θ0)Ã(θ0)

T
)−1

+
(

Ã(θ0)M
(2)(θ0)Ã(θ0)

T
)−1

]−1

− Ã(θ0)
[

M (1)(θ0)
−1 + M (2)(θ0)

−1
]−1

Ã(θ0)
T .

This is an expression of how much the optimal prediction-based estimator is better than the
pseudo-likelihood estimator.

It is considerably easier to calculate the pseudo-likelihood function (2.4) than the op-
timal estimating function (3.8) because the latter involves derivatives with respect to θ of
the covariance function and higher order moments of X. In particular in cases where the
covariance function is not explicitly known and must be determined by simulation, it is much
easier to calculate (2.4) than (3.8). Therefore it is in practice preferable to use the maximum
pseudo-likelihood estimator. The formula (4.3) can then be used to asses whether the loss
of efficiency relative to the optimal estimator is acceptable.
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5 Discretization of the continuous-time likelihood func-

tion.

In this section we will discuss simpler estimators of the parameters for the model given by
(1.2). When the process is observed continuously in the time-interval [0, t], the likelihood
function is (see Gushchin & Küchler (2003))

Lc
t(θ) = exp

(

θT Ac
t − 1

2 θT Ic
t θ
)

with θ = (α1, . . . , αN),

Ac
t =

(∫ t

0
X(s − r1)dX(s), . . . ,

∫ t

0
X(s − rN)dX(s)

)T

, (5.1)

and where Ic
t is the Fisher information matrix

Ic
t =

{∫ t

0
X(s − ri)X(s − rj)ds

}

. (5.2)

This is an exponential family of stochastic processes in the sense of Küchler & Sørensen
(1997). The maximum likelihood estimator of θ is

(Ic
t )

−1Ac
t . (5.3)

The Fisher information matrix is almost surely invertible, see Reiß (2002b) (p. 75).
When the data are discrete time observations X(∆), X(2∆), . . . , X(n∆), a simple esti-

mator of θ is obtained by discretizing the integrals in Ac
t and Ic

t , i.e.

θ̌n = I−1
n An, (5.4)

where

An =

(

n−1
∑

m=m0

X(m∆ − r1)δX(m∆), . . . ,
n−1
∑

m=m0

X(m∆ − rN)δX(m∆)

)T

(5.5)

and

In =

{

∆
n−1
∑

m=m0

X(m∆ − ri)X(m∆ − rj)

}

(5.6)

with δX(m∆) = X((m + 1)∆) − X(m∆) and m0 = [max{r1, . . . , rN}/∆] + 1. Here [x]
denotes the integer part of a real number x. We refer to the estimator θ̌n as the discretization
estimator. As earlier θ0 denotes the true value of θ.

Theorem 5.1 The discretization estimator, θ̌, tends Pθ0
−almost surely to the limit

θ0 + ∆−1I(θ0)
−1R(θ0)θ0

as n → ∞, where I(θ) and R(θ) are the N × N-matrices with entries

I(θ)ij = Kθ(|ri − rj|).

and

R(θ)ij =
∫ ∆

0
[Kθ(|s + ri − rj |) − Kθ(|ri − rj |)]ds.

12



Proof: By (1.2)
An = Inθ0 + Rnθ0 + Zn (5.7)

where

Rn =

{

n−1
∑

m=m0

X(m∆ − ri)
∫ (m+1)∆

m∆
[X(t − rj) − X(m∆ − rj)]dt

}

.

and

Zn = σ

(

n−1
∑

m=m0

X(m∆ − r1)δW (m∆), . . . ,
n−1
∑

m=m0

X(m∆ − rN)δW (m∆)

)T

,

with δW (m∆) = W ((m + 1)∆) − W (m∆). By the ergodic theorem (X is strongly mixing)

n−1In → ∆ I(θ0), n−1Rn → R(θ0) and n−1Zn → 0,

Pθ0
−almost surely. Hence

θ̌n = I−1
n An = θ0 + I−1

n Rnθ0 + I−1
n Zn → θ0 + ∆−1I(θ0)

−1R(θ0)θ0,

2

Remark: The asymptotic bias of the discretization estimator θ̌n is

∆−1I(θ0)
−1R(θ0)θ0 = 1

2∆I(θ0)
−1I ′(θ0)θ0 + O(∆2),

where
I ′(θ) = {K ′

θ(|ri − rj|)} .

with K ′

θ(t) = ∂tKθ(t). Obviously, in an asymptotic scenario where ∆ goes to zero as n → ∞,
the estimator θ̌n is asymptotically unbiased. As one would expect, the estimator θ̌n works
best when ∆ is small, whereas the bias can be very considerable when ∆ is large.

2

Example 5.2 We simplify the model (2.5) by considering the cases a = 0 and b = 0
separately. Thus the parameter is a scalar, and I(θ) = Kθ(0) is the variance of the stationary
process.

b0 = 0: In this case the process is the Ornstein-Uhlenbeck process with true drift param-
eter a0 < 0, and from (2.7) we obtain the well-known results

Kθ(t) = −σ2

2a
eat, K ′

θ(t) = −σ2

2
eat, t ≥ 0,

so the asymptotic bias of the discretization estimator is

1
2∆a2

0 + O(∆2),

which is a well-known result for the Ornstein-Uhlenbeck process.
a0 = 0: This model is stationarity when −π/2 < rb0 < 0, and the covariance function

Kθ(t) is given by (2.10) and

K ′

θ(t) =
σ2

2

(

1 − sin(br)

cos(br)
sin(bt) − cos(bt)

)

t ∈ [0, r].
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Hence

Kθ(0) = −σ2(1 − sin(br))

2b cos(br)
, K ′

θ(0) = −σ2

2
,

and the asymptotic bias of the discretization estimator is given by

1
2∆b2

0

cos(b0r)

1 − sin(b0r)
+ O(∆2).

The case a · b 6= 0 can, in principle, be treated analogously, but the expressions for the
matrices I(θ) and I ′(θ) are complicated, and there is no point in giving the explicit formula.

2

Finally we consider the asymptotic distribution of the discretization estimator, θ̌n.

Theorem 5.3 The distribution of
√

n
(

θ̌n − θ0 − ∆−1I(θ0)
−1R(θ0)θ0

)

tends to a centered regular N-dimensional normal distribution.

Proof: By (5.7)

√
n
(

θ̂n − θ0 − ∆−1I(θ0)
−1R(θ0)θ0

)

=
√

n
(

(I−1
n Rn − ∆−1I(θ0)

−1R(θ0))θ0 + I−1
n Zn

)

= (In/n)−1Rn − nR(θ0)√
n

θ0 +
√

n
[

(In/n)−1 − ∆−1I(θ0)
−1
]

R(θ0)θ0 + (In/n)−1 Zn√
n

= (In/n)−1Rn − nR(θ0)√
n

θ0 − ∆−1I(θ0)
−1 In − n∆I(θ0)√

n
(In/n)−1R(θ0)θ0 + (In/n)−1 Zn√

n
,

where we have used that B−1 = A−1 − A−1(B − A)B−1 for two matrices A and B. This
random variable has the same asymptotic distribution as

∆−1I(θ0)
−1

[

Rn − nR(θ0)√
n

θ0 −
In − n∆I(θ0)√

n
∆−1I(θ0)

−1R(θ0)θ0 +
Zn√

n

]

.

Since the process X is exponentially β-mixing (Reiß (2002b)), Rn − nR(θ0), In − n∆I(θ0),
and Zn are sums of centered exponentially β-mixing sequences. All moments are finite, so it
follows from the central limit theorem for mixing sequences (see e.g. Theorem 1 in Section
1.5 of Doukhan (1994)) that the estimator θ̂n is asymptotically normal. The process Zn

is a martingale, so the asymptotic covariance matrix of the term Zn/
√

n is proportional
to the covariance matrix of (X(m0∆ − r1), . . . , X(m0∆ − rN )), which is regular (r1, . . . , rN

are assumed to be different). The other two terms in the expression above are linearly
independent of Zn, so the regularity of the limiting covariance matrix of θ̌n follows from the
regularity of asymptotic covariance matrix of the term Zn/

√
n.

2

The expectation of the asymptotic distribution differs from the true parameter value θ0 by
the bias found previously. The expression for the asymptotic covariance matrix is extremely
complicated and is best determined by simulation. Methods for simulating solutions of
SDDEs can be found in the references mentioned in the introduction.
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6 Simulation study

In this section we shall in a simulation study investigate some properties of the pseudo-
likelihood estimator introduced in Section 2. We restrict ourselves to the model considered
in Example 2.1 and to estimating the parameters a and b. The delay time r is chosen equal
to one, and σ2 is fixed at one. This is not intended as a complete simulation study, rather the
intention is to illustrate some important properties of the estimator. The simulations give a
first impression of how the joint distribution of the two-dimensional estimator θ̃n = (ãn, b̃n)
depends on the time between observations ∆, the depth k of the pseudo-likelihood function,
and the true parameter value θ. The simulations have been done for three values of θ:
θ = (−1, 0.95) near the upper boundary of the domain of stationarity, θ = (−1,−1/e2) =
(−1,−0.1353) which is the parameter value with the highest possible mixing rate for the
stationary solution X when a = −1, and θ = (−1,−2.1) near the lower boundary of the
domain of stationarity. For each parameter value four sampling frequencies were considered
with the same number of observation time points, 200. Specifically, the observation time
points were i∆, i = 1, . . . , 200 with ∆ = 0.05, 0.1, 0.5, 1. The simulations of the SDDE
were made with a step size of 0.001. In all cases 1000 data sets were simulated and thus
1000 estimates were generated. For each data set a new trajectory of the driving Wiener
process was generated. The tables below report the mean values, standard deviations and
empirical correlations of the simulated estimates of a and b. The dependence of the standard
deviations on the time between observations and the depth of the pseudo-likelihood function
is also summarized in the plots below.

The following observations from the simulations seem remarkable.

• For a fixed number of observation time-points, the bias and standard deviation of
the estimators get worse as the time between observations ∆ decreases, at least when
∆ ≤ r. For ∆ > r the quality does not change much with ∆, and it depends on the
parameter value whether the bias and variance increases or decreases with ∆.

• The smaller ∆ is, the more the choice of the depth k of the pseudo-likelihood functions
influences the quality of the estimators when ∆ ≤ r. For ∆ > r the importance of k
increases again for some parameter values.

• It is surprising that a similar pattern is seen when the length of the observation interval
n∆ is fixed so that the sample size goes down as ∆ increases. Here there is, however,
a clearer tendency that the estimators deteriorate when ∆ > r so that there is an
optimal value of ∆ which seems to be around r.

• The absolute value of the correlation between ã and b̃ decreases for increasing depth k
to a limit, which is strongly dependent on the true parameter value. Near the upper
boundary of the stability region the estimators are highly correlated. A high absolute
value of the correlation indicates that it is difficult to distinguish between the effect of
the lagged and the non-lagged term in the drift, so it is not surprising that the absolute
correlation is large when the depth is small.

• For small values of the depth k, the joint distribution of the estimators of a and b can
deviate from a two-dimensional normal distribution by being crescent shaped.
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k
∆ 1 3 5 7 9 13 20

0.05 -3.07 -1.39 -1.11 -1.07 -1.05 -1.03 -1.02
4.96 1.85 0.30 0.22 0.19 0.16 0.15

0.1 -1.94 -1.10 -1.04 -1.03 -1.03 -1.02 -1.02
2.95 0.29 0.16 0.16 0.15 0.15 0.14

0.5 -1.04 -1.01 -1.01 -1.02 -1.01 -1.12 -1.01
0.18 0.12 0.12 0.12 0.11 0.11 0.12

1.0 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02
0.12 0.11 0.12 0.11 0.11 0.12 0.11

2.0 -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02
0.25 0.13 0.15 0.13 0.13 0.13 0.13

Table 6.1: Mean and standard deviation of the pseudo-likelihood estimator of a for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = −0.1353.

k
∆ 1 3 5 7 9 13 20

0.05 1.60 0.17 -0.08 - 0.11 -0.12 -0.13 0.14
5.41 2.06 0.55 0.39 0.32 0.23 0.15

0.1 0.62 -0.09 -0.15 -0.13 -0.13 -0.14 -0.14
3.28 0.50 0.29 0.18 0.17 0.15 0.14

0.5 -0.12 -0.14 - 0.14 -0.13 -0.13 -0.14 -0.13
0.34 0.12 0.13 0.13 0.12 0.13 0.13

1.0 -0.13 -0.14 -0.13 -0.13 -0.14 - 0.13 -0.13
0.16 0.14 0.14 0.14 0.13 0.14 0.14

2.0 -0.17 -0.14 -0.15 -0.14 -0.14 -0.13 -0.14
0.38 0.18 0.20 0.17 0.18 0.16 0.16

Table 6.2: Mean and standard deviation of the pseudo-likelihood estimator of b for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = −0.1353.

k
∆ 1 3 5 7 9 13 20

0.05 -0.96 -0.96 -0.72 -0.63 -0.54 -0.39 -0.28
0.1 -0.96 -0.73 -0.47 -0.46 -0.38 -0.32 -0.29
0.5 -0.70 -0.38 -0.39 -0.35 -0.36 -0.32 -0.40
1.0 -0.55 -0.44 -0.51 -0.52 -0.44 -0.47 -0.45
2.0 0.77 -0.27 0.03 -0.25 -0.11 -0.51 -0.37

Table 6.3: Empirical correlation between the the pseudo-likelihood estimators of a and b
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = −0.1353.
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Figure 6.1: Standard deviation of the pseudo-likelihood estimator of a (upper) and b (lower)
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = −0.1353.
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k
∆ 1 3 5 7 9 13 20

0.05 -1.94 -1.54 -1.32 -1.14 -1.10 -1.03 -1.03
2.88 1.87 1.24 0.59 0.47 0.25 0.15

0.1 -1.90 -1.23 -1.09 -1.04 -1.03 -1.03 -1.03
2.53 0.98 0.40 0.22 0.16 0.14 0.14

0.5 -1.09 -1.02 -1.02 -1.03 -1.02 -1.02 -1.02
0.58 0.11 0.14 0.16 0.14 0.16 0.15

1.0 -1.02 -1.03 -1.09 -1.09 -1.08 -1.07 -1.09
0.18 0.17 0.26 0.25 0.24 0.24 0.25

2.0 -1.02 -1.01 -1.00 -1.01 -1.01 -1.01 -1.01
0.15 0.13 0.13 0.14 0.13 0.13 0.13

Table 6.4: Mean and standard deviation of the pseudo-likelihood estimator of a for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = 0.95.

k
∆ 1 3 5 7 9 13 20

0.05 1.89 1.46 1.23 1.06 1.02 0.95 0.95
2.91 1.89 1.26 0.93 0.49 0.26 0.14

0.1 1.81 1.15 1.01 0.97 0.95 0.96 0.95
2.55 1.00 0.41 0.22 0.16 0.13 0.14

0.5 1.01 0.95 0.96 0.96 0.96 0.96 0.96
0.60 0.14 0.15 0.16 0.15 0.16 0.15

1.0 0.95 0.97 1.04 1.03 1.02 1.02 1.03
0.18 0.18 0.27 0.27 0.25 0.25 0.27

2.0 0.96 0.95 0.95 0.96 0.95 0.95 0.95
0.15 0.13 0.13 0.14 0.14 0.14 0.14

Table 6.5: Mean and standard deviation of the pseudo-likelihood estimator of b for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = 0.95.

k
∆ 1 3 5 7 9 13 20

0.05 -0.999 -0.999 -0.987 -0.992 -0.988 -0.964 -0.891
0.1 -0.999 -0.997 -0.988 -0.966 -0.904 -0.907 -0.885
0.5 -0.996 -0.942 -0.954 -0.956 -0.949 -0.961 -0.957
1.0 -0.984 -0.982 -0.993 -0.993 -0.991 -0.991 -0.990
2.0 -0.987 -0.983 -0.982 -0.984 -0.984 -0.982 -0.982

Table 6.6: Empirical correlation between the the pseudo-likelihood estimators of a and b
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = 0.95.
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Figure 6.2: Standard deviation of the pseudo-likelihood estimator of a (upper) and b (lower)
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = 0.95.
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k
∆ 1 3 5 7 9 13 20

0.05 -1.02 -1.01 -1.01 -1.00 -1.01 -1.01 -1.01
0.26 0.12 0.09 0.08 0.08 0.08 0.07

0.1 -1.02 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01
0.19 0.09 0.08 0.07 0.07 0.07 0.07

0.5 -1.00 -1.00 -1.00 -1.01 -1.00 -1.01 -1.00
0.06 0.06 0.05 0.05 0.05 0.05 0.05

1.0 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
0.05 0.04 0.05 0.05 0.04 0.05 0.04

2.0 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
0.08 0.06 0.04 0.04 0.04 0.04 0.04

Table 6.7: Mean and standard deviation of the pseudo-likelihood estimator of a for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = −2.1.

k
∆ 1 3 5 7 9 13 20

0.05 -2.09 -2.08 -2.08 -2.08 -2.08 -2.08 -2.09
0.22 0.11 0.09 0.09 0.09 0.08 0.07

0.1 -2.10 -2.09 -2.08 -2.09 -2.08 -2.09 -2.09
0.16 0.09 0.08 0.08 0.07 0.07 0.07

0.5 -2.09 -2.09 -2.09 -2.09 -2.09 -2.09 -2.09
0.06 0.05 0.05 0.05 0.05 0.05 0.05

1.0 -2.10 -2.10 -2.09 -2.09 -2.09 -2.09 -2.09
0.04 0.04 0.05 0.05 0.04 0.05 0.05

2.0 -2.09 -2.09 -2.10 -2.10 -2.10 -2.10 -2.10
0.08 0.05 0.04 0.04 0.04 0.04 0.04

Table 6.8: Mean and standard deviation of the pseudo-likelihood estimator of b for various
values of the the depth k and the time between observations ∆. The number of observations
is 200, and the true parameter values are a = −1 and b = −2.1.

k
∆ 1 3 5 7 9 13 20

0.05 0.92 0.69 0.53 0.49 0.49 0.39 0.32
0.1 0.88 0.57 0.39 0.44 0.37 0.25 0.24
0.5 0.51 0.41 0.34 0.33 0.40 0.30 0.40
1.0 0.44 0.39 0.43 0.40 0.44 0.40 0.40
2.0 0.90 0.72 0.51 0.50 0.51 0.51 0.46

Table 6.9: Empirical correlation between the the pseudo-likelihood estimators of a and b
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = −2.1.
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Figure 6.3: Standard deviation of the pseudo-likelihood estimator of a (upper) and b (lower)
for various values of the the depth k and the time between observations ∆. The number of
observations is 200, and the true parameter values are a = −1 and b = −2.1.
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k
∆ n 1 3 5 7 9 13 20

0.05 4000 -1.73 -1.07 -1.04 -1.02 -1.02 -1.01 -1.01
2.32 0.21 0.14 0.11 0.11 0.10 0.09

0.1 2000 -1.27 -1.03 -1.03 -1.01 -1.01 -1.01 -1.01
0.83 0.13 0.10 0.09 0.09 0.09 0.09

0.5 400 -1.04 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01
0.14 0.10 0.09 0.09 0.10 0.09 0.10

1.0 200 -1.02 -1.01 -1.01 -1.02 -1.02 -1.01 -1.02
0.12 0.11 0.11 0.11 0.11 0.11 0.12

2.0 100 -1.10 -1.04 -1.03 -1.03 -1.04 -1.04 -1.04
0.43 0.21 0.19 0.18 0.21 0.19 0.17

Table 6.10: Mean and standard deviation of the pseudo-likelihood estimator of a for various
values of the the depth k, the time between observations ∆, and the number of observations
n. In all cases n∆, the length of the observation interval, is 200, and the true parameter
values are a = −1 and b = −0.1353.

k
∆ n 1 3 5 7 9 13 20

0.05 4000 0.42 -0.09 -0.11 -0.15 -0.13 -0.14 -0.14
2.66 0.44 0.31 0.23 0.19 0.14 0.09

0.1 2000 0.08 -0.13 -0.14 -0.14 -0.14 -0.13 -0.13
1.14 0.27 0.18 0.13 0.11 0.09 0.09

0.5 400 -0.12 -0.14 -0.14 -0.13 -0.14 -0.14 -0.14
0.28 0.10 0.11 0.11 0.11 0.11 0.10

1.0 200 -0.14 -0.14 -0.14 -0.13 -0.14 -0.13 -0.13
0.16 0.13 0.13 0.13 0.13 0.13 0.14

2.0 100 -0.26 -0.15 -0.14 -0.13 -0.15 -0.14 -0.14
0.65 0.29 0.27 0.25 0.30 0.27 0.24

Table 6.11: Mean and standard deviation of the pseudo-likelihood estimator of b for various
values of the the depth k, the time between observations ∆, and the number of observations
n. In all cases n∆, the length of the observation interval, is 200, and the true parameter
values are a = −1 and b = −0.1353.

k
∆ n 1 3 5 7 9 13 20

0.05 4000 -0.96 -0.76 -0.72 -0.55 -0.55 -0.43 -0.27
0.1 2000 -0.91 -0.64 -0.50 -0.39 -0.33 -0.32 -0.33
0.5 400 -0.69 -0.32 -0.39 -0.37 -0.35 -0.34 -0.31
1.0 200 -0.56 -0.48 -0.47 -0.44 -0.44 -0.50 -0.51
2.0 100 0.86 0.18 0.10 -0.11 0.18 -0.10 -0.23

Table 6.12: Empirical correlation between the the pseudo-likelihood estimators of a and b
for various values of the the depth k and the time between observations ∆, and the number
of observations n. In all cases n∆, the length of the observation interval, is 200, and the
true parameter values are a = −1 and b = −0.1353.
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Figure 6.4: Standard deviation of the pseudo-likelihood estimator of a (upper) and b (lower)
for various values of the the depth k, the time between observations ∆, and the number of
observations n. In all cases n∆, the length of the observation interval, is 200, and the true
parameter values are a = −1 and b = −0.1353.
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driven by a Lévy process”. Stochastic Proc. Appl., 88:195–211.
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