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1 Introduction

Range-based parameter estimation methods are developed for diffusion processes. Ex-
isting inference methods for parameterized stochastic differential equations almost ex-
clusively rely on (equidistant) discrete observations of the underlying process, whereas
in real world applications sometimes additional information – such as the maximum or
the minimum on disjoint intervals – is available. Financial assets for example are usu-
ally traded at an extremely high frequency and hence the aforementioned statistics can
easily be determined. It is not trivial to incorporate the maxima and minima into the
analysis, though. For the basic case of Brownian motion with drift several range-based
estimators for the diffusion coefficient have already been proposed in the literature: for
example the Parkinson estimator, see [15], the Rogers and Satchell estimator, see [16]
and the Garman-Klass estimator, see [5]. These estimators have in common that they
are moment-type estimators that rely on elementary properties of Brownian motion.
Magdon-Ismail and Atiya [14] made use of an explicit representation of the joint density
of the running maximum, the running minimum and the terminal value, that was origi-
nally derived by Dominé [3], to simulate the maximum likelihood estimator (MLE) and
compared it to the aforementioned moment estimators.

When it comes to models other than Brownian motion, a range-based ansatz is partic-
ularly challenging because for more general processes the joint distributions is usually
not known explicitly. Indeed only few properties of the required joint distribution or
the joint density for diffusions are known at all. It is noteworthy that, apart from
Dominé’s result, a closed form expansion of the joint density can also be calculated for
the Ornstein-Uhlenbeck process, see Sweet and Hardin [20]. In our analysis we will
consider a diffusion model defined by

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dBt, X0 = U, t ≥ 0, (1)

where B denotes the Brownian motion of R and U denotes the initial distribution.
Moreover, µ : R×Θ→ R and σ : R×Θ→ R+ are supposed to be sufficiently smooth
functions parameterized by θ ∈ Θ ⊂ R. Although our upcoming results can easily be
proved for multi-dimensional parameters, for the ease of presentation, we will stick to
the one-dimensional case throughout this paper.

It is straightforward to generalize existing results for martingale estimating functions
(MEF) constructed from equidistant observations of the process X proposed by the
authors Hansen and Scheinkmann [7], Kessler [13] and especially Sørensen [18]. One
obtains results about consistency and asymptotic normality for estimators inferred from
MEFs that are constructed from the sample(

H̄(i∆), L̄(i∆), Xi∆

)
i=1,...,n

=

(
sup

(i−1)∆≤t≤i∆
Xt, inf

(i−1)∆≤t≤i∆
Xt, Xi∆

)
i=1,...,n

, (2)

on equidistant intervals ((i − 1)∆, i∆], ∆ > 0, as the number of observations n ∈ N
tends to infinity – see Section 2. However, these findings are highly theoretical for the
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calculation of the asymptotic variance still requires the knowledge of the joint moments.
Of course, in a diffusion model the joint densities can always be approximated by means
of numerical methods for PDEs with boundary conditions or simply by extensive sim-
ulations of the underlying diffusion. But both methods are quite computer intensive.
This is why further simplifications are desirable. The means of choice in our analysis will
be a small-∆-approach similar to the one of Jacobsen, see [9] and [10]. For an overview
of the existing methods concerning martingale estimating functions and the relation to
small-∆-optimality, we suggest [1].

It turns out that for certain diffusion processes it is possible to derive a second order
expansion of the expression Ex[g(H∆, L∆, X∆)] with respect to

√
∆, where

(H∆, L∆, X∆) =

(
sup

0≤t≤∆
Xt, inf

0≤t≤∆
Xt, X∆

)
, (3)

and g : R3 → R must be a sufficiently smooth function that does not grow too fast.
This expansion, which entirely relies on elementary estimates, is sufficient to establish
the asymptotic theory for martingale estimating functions that are based on a fixed num-
ber of observations of the triplet (3) when the parameter ∆ tends to 0. In particular,
this proceeding helps us to avoid the complexity issues that arise when dealing with the
MLE or even standard MEFs. Nevertheless our results imply that in the limit the sim-
plified small-∆-optimal estimators experience no loss in efficiency. It is remarkable that
for parameter-dependent diffusion coefficients σ(·; θ) the range-based approach yields a
significant improvement, up to 80% for the mean squared error. The drift estimation
µ(·; θ), however, does not benefit from the generalization and small-∆-optimal general-
ized martingale estimating functions reduce to the ordinary case.

This paper is structured as follows: In Section 2 we describe the model we intend to work
with and quote some theoretical foundations that we are going to use in the subsequent
sections. In Section 3 and Section 4 we present the main small-∆-optimality results
for generalized martingale estimating functions. A simulation study in Section 5 cor-
roborates our theoretical findings. Lastly, in Section 6 we concisely prove the technical
results fundamental to the analysis of the Sections 3 and 4.

2 Theoretical Foundations for generalized small-∆-optimal
MEFs

2.1 Martingale Estimating Functions for Diffusion Processes

Let us consider a process of the form (1). Formally, the diffusion X is defined on a fil-
tered probability space (Ω,F ,Ft) with U F0-measurable. We assume that, for any θ ∈ Θ
and any probability measure ν on R, there is a probability measure Pν,θ on (Ω,F), with
respect to which the σ-algebra F0 and the Brownian motion B are independent and
such that, for the prescribed θ-value, the equation (1) has a unique strong solution with
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ν being the distribution of U . Accordingly, for X0 = x ∈ R, i.e. if ν equals the Dirac
measure δx, we will denote the corresponding Markov measure with Px,θ.

First we specify some regularity assumptions for the coefficients µ and σ.

Assumption 2.1.1. For all θ ∈ Θ, µ(x; θ) is continuous in x and, for each x ∈ R,
µ(x; θ) is continuously differentiable in θ. The function σ(x; θ) is supposed to be contin-
uously differentiable in (x, θ) and to be uniformly bounded away from 0 in (x, θ).

The theory of generalized martingale estimating functions extends the concept of the
maximum likelihood estimator (MLE). The MLE solves the score equation Un(θ) = 0,
where

Un(θ) =
n∑
i=1

∂θ log f
(
∆i, X(i−1)∆, H̄(i∆), L̄(i∆), Xi∆; θ

)
. (4)

Here, (h, l, y) 7→ f(∆, x, h, l, y; θ) denotes the joint density of the vector (3) conditional
on X0 = x with H̄(i∆) and L̄(i∆), i = 1, . . . , n, defined as in (2). From the Markov
property it can be inferred that, on mild regularity assumptions, Un(θ) is a martingale
with respect to the filtration Fn = σ(X∆, . . . , Xn∆).

The idea behind MEFs is to replace Un(θ) by another martingale

Gn(θ) =
n∑
i=1

g
(
∆i, X(i−1)∆, H̄(i∆), L̄(i∆), Xi∆; θ

)
, (5)

where

g(∆, x, h, l, y; θ) =
J∑
j=1

aj(∆, x; θ)kj(∆, x, h, l, y; θ), (6)

and the real valued functions kj , j = 1, . . . , J , must satisfy

Ex,θ

[
kj(∆, X0, H∆, L∆, X∆; θ)

]
= 0, ∀x ∈ R, (7)

in order to make Gn(θ) a martingale. The associated estimator θ̂n is given by any
root of Gn(θ). We will usually refer to estimating functions of the type (6) as general-
ized martingale estimating functions, whereas functions that are constructed from the
equidistant observations (Xi∆, i = 1, . . . , n) alone will be called ordinary martingale es-
timating functions.

In generalization of the ordinary case (Theorem 3.6 in [19]), Theorem 4.2.1.7 in [8] states
that for regular functions g and on the additional assumption of ergodicity an estimator
θ̂n for θ, inferred from a generalized martingale estimating function (5), is consistent
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and asymptotically normally distributed as the number of observations n → ∞; more
specifically under the true measure Pν,θ0 we have

√
n(θ̂n − θ0) d−→ N

(
0,
v(θ0)
ξ2(θ0)

)
, n→∞. (8)

In this context, ν denotes the invariant measure and

v(θ0) = Eν,θ0
[
g(∆, X0, H∆, L∆, X∆; θ0)2

]
, (9)

ξ(θ0) = Eν,θ0
[
∂θg(∆, X0, H∆, L∆, X∆; θ0)

]
. (10)

In the framework of (ordinary or generalized) martingale estimating functions, one
chooses optimal weights (a∗1, . . . , a

∗
J) according to the optimality criteria of Godambe

and Heyde [6] such that the asymptotic variance

Varν,∆,θ(g) :=
v(θ)
ξ2(θ)

, (11)

is minimized for a fixed ∆ > 0. By contrast, for the discussion of small-∆-optimality,
one considers Varν,∆,θ for a fixed sample size and for ∆→ 0. We will show that

Var∆,ν,θ(g) =
1
∆
V−1,θ(g) + V0,θ(g) + o (1) , ∆→ 0, (12)

and we will call an estimating function g small-∆-optimal within a class of estimating
functions Gθ if the first term in this expansion, V−1 or V0, is minimized over Gθ. De-
pending on the structure of the diffusion model, we will distinguish two cases in our
analysis:

(1) minimizing V−1: σ(·; θ) = σ(·) does not depend on θ,

(2) minimizing V0 with V−1 ≡ 0: σ(·; θ) depends on θ.

Consequently, for both the drift and the volatility estimation, in the limit a universal
lower bound for the asymptotic variance can be obtained. This implies that, for small
values of ∆, an estimator obtained from a small-∆-optimal estimating function is in
practice as good as the maximum likelihood estimator. To sum up, small-∆-optimality
is a global optimality criterion and, although small-∆-optimality refers explicitly to the
limit ∆→ 0, for any fixed ∆ > 0 the estimator is still

√
n-consistent and asymptotically

Gaussian for n→∞. Of course, there is no guarantee that the aforementioned estima-
tors for fixed ∆ are Godambe and Heyde optimal, but for ∆ not too large, they should
still behave well.

2.2 Notation and assumptions

Assumption 2.2.1.
(i) We assume that, if the coefficient σ depends on θ, then

σ(x; θ) = r(θ) · σ(x) ∀θ ∈ Θ, ∀x ∈ R, (13)
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where r : Θ → R+ is a once and σ : R → R+ is a twice continuously differentiable
function.

(ii) For each θ ∈ Θ, the function µY (·; θ) : R → R defined by the mapping y 7→
µY (y; θ) = (µ/σ − σ′/2)(y; θ), satisfies a global Lipschitz condition. Moreover, for all
x ∈ R, µY (x; θ) is continuously differentiable in θ.

Assumption 2.2.1 (i) allows to consider the Lamperti transform of X given by

Yt = σ(X0; θ)
∫ Xt

y0

1
σ(u; θ)

du = σ(X0)
∫ Xt

y0

1
σ(u)

du, (14)

for some value y0 ∈ R, independently from the parameter θ. Let F denote the primitive∫ ·
y0

1/σ(u)du of 1/σ(·). Without loss of generality, let us assume that the starting point
of integration y0 in (14) satisfies

y0 = F−1

(
F (X0)− X0

σ(X0)

)
. (15)

Then, the Lamperti transform Y of the process X starting in X0 = x starts in x as well
and it satisfies the following stochastic differential equation

dYt = σ(X0; θ)
(
µ(Yt; θ)
σ(Yt; θ)

− 1
2
∂

∂y
σ(y; θ)

∣∣∣
y=Yt

)
dt+ σ(X0; θ)dBt, t ≥ 0, Y0 = x.

(16)

Moreover, we define

HY
t = sup

0≤s≤t
Ys, and LYt = inf

0≤s≤t
Ys, t ≥ 0. (17)

For a sufficiently smooth function g : R4 → R and for a multi-index α = (α1, . . . , α4) ∈
N

4
0 we set |α| = α1 + . . .+ α4 and

gα(x1, . . . , x4) =
∂|α|

∂xα1
1 · · · ∂x

αd
d

g(x1, . . . , x4). (18)

Let g ∈ C0,2,2,4(R4, R) such that g all of its partial derivatives satisfy a polynomial
growth condition. One of our key tools in the upcoming analysis is the following expan-
sion:

Ex,θ

[
g
(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= g(x) +

√
∆A( 1

2
)

θ g(x) + ∆A(1)
θ g(x) +O(∆3/2), (19)

where x = (x, x, x, x) and the operators A(1/2)
θ and A(1)

θ are given by

A( 1
2

)

θ g(x) = σ(x; θ)
2√
2π
g0,1,0,0(x)− σ(x; θ)

2√
2π
g0,0,1,0(x) (20)
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and

A(1)
θ g(x) = g0,1,0,0(x)

1
2

(
µ(x; θ)− 1

2
σ(x; θ)

∂

∂x
σ(x; θ)

)
+ g0,2,0,0(x)

1
2
σ2(x; θ)

+ g0,0,1,0(x)
1
2

(
µ(x; θ)− 1

2
σ(x; θ)

∂

∂x
σ(x; θ)

)
+ g0,0,2,0(x)

1
2
σ2(x; θ)

+ (1− 2 log 2)g0,1,1,0(x)σ2(x; θ) +
1
2
g0,1,0,1(x)σ2(x; θ) +

1
2
g0,0,1,1(x)σ2(x; θ)

+ g0,0,0,1(x)
(
µ(x; θ)− 1

2
σ(x; θ)

∂

∂x
σ(x; θ)

)
+

1
2
g0,0,0,2(x)σ2(x; θ). (21)

This formula is derived in Chapter 5 of [8], some intuition is given in Section 6.1 below.
The expansion can only be proved for diffusions with constant diffusion coefficient. This
is why Assumption 2.2.1 (i) and the Lamperti transform (14), respectively, are required.
Likewise, Assumption 2.2.1(ii) is necessary since, for (19) to hold, µY must satisfy a
global Lipschitz condition with respect to the state variable x.

In its previous from, (19) is a result for functions g : R4 → R that are independent of the
time variable ∆. However, in our analysis we wish to consider flows Gθ = (g∆,θ)∆≥0,θ∈Θ,
i.e. families of functions g∆,θ : R4 → R, parameterized by (∆, θ) ∈ R+ × Θ. Formula
(19) indicates that different square root terms in the time variable ∆ are involved when
one deals with running maxima and minima of diffusions. To come to grips with this
additional difficulty, we introduce a particular notation: for g ∈ Gθ and for n ∈ N, we
set

g̃
(n)
0,θ (x, h, l, y) = lim

s→0

1√
sn

gs,θ(x, h, l, y)−
n−1∑
j=0

sj/2g̃
(j)
0,θ(x, h, l, y)

 , (22)

where g̃(0)
0,θ = g0,θ and provided that the limits exists. We will sometimes simply write

g̃0,θ for g̃(1)
0,θ and ˜̃g0,θ instead of g̃(2)

0,θ . In essence, our strategy will be to apply (19) to

the functions g0,θ, g̃0,θ, ˜̃g0,θ in order to obtain the necessary expansions of the estimating
functions.

We now formulate precise conditions about the classes of estimating functions Gθ.

Assumption 2.2.2. The class of flows Gθ consists of functions of the form (6), for
which g̃0,θ and g̃

(2)
0,θ exist and such that, for all (x, h, l, y) ∈ R4, the following expansion

holds

g∆,θ(x, h, l, y)

= g0,θ(x, h, l, y) +
√

∆ g̃0,θ(x, h, l, y) + ∆ g̃
(2)
0,θ(x, h, l, y) +O

(
∆3/2; θ, x, h, l, y

)
. (23)

The notation O
(
∆3/2; θ, x, h, l, y

)
means that the remainder term belongs to O

(
∆3/2

)
for

fixed
(
θ, x, h, l, y

)
and has polynomial growth in the variables x, h, l and y. We assume

that, for all θ ∈ Θ and ∆ ≥ 0, the function g∆,θ(x, h, l, y) is continuous in x and 3 times
continuously differentiable with respect to each variable h, l and y.
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In the sequel, we will – among other things – be interested in estimating functions that
consist of linear and quadratic terms. This approach can be considered as a generaliza-
tion of the method of moments, for we will use the following set of functions:

κh(∆, x, h, y; θ) = h−Ex,θ[H∆],

κl(∆, x, h, y; θ) = l −Ex,θ[L∆],

κy(∆, x, h, y; θ) = y −Ex,θ[Y∆],

κhh(∆, x, h, y; θ) =
{
h−Ex,θ[H∆]

}2 − Covx,θ[H∆, H∆ ],

κll(∆, x, h, y; θ) =
{
l −Ex,θ[L∆]

}2 − Covx,θ[L∆, L∆ ],

κyy(∆, x, h, y; θ) =
{
y −Ex,θ[Y∆]

}2 − Covx,θ[Y∆, Y∆ ],

κhl(∆, x, h, y; θ) =
{
h−Ex,θ[H∆]

}{
l −Ex,θ[L∆]

}
− Covx,θ[H∆, L∆ ],

κhy(∆, x, h, y; θ) =
{
h−Ex,θ[H∆]

}{
y −Ex,θ[Y∆]

}
− Covx,θ[H∆, Y∆ ],

κly(∆, x, h, y; θ) =
{
l −Ex,θ[L∆]

}{
y −Ex,θ[Y∆]

}
− Covx,θ[L∆, Y∆ ]. (24)

3 Linear estimators for the drift

3.1 Ordinary vs. generalized linear MEFs for the drift

First, by the statement of Proposition 6.2.3,

Eν,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
=
√

∆Eν,θ[Zlin(Y0)U (1/2)
lin (Y0)T ] + ∆Eν,θ[Zlin(Y0)U (1)

lin (Y0)T ] + o(∆)

= Eν,θ[ZlinUTlin(∆, Y0)] + o(∆), (25)

where the vector Zlin, x ∈ R, is defined via

Zlin(x) =
(
∂

∂h
g0,θ(x, h, x, x)

∣∣∣
h=x

,
∂

∂l
g0,θ(x, x, l, x)

∣∣∣
l=x

,
∂

∂y
g0,θ(x, x, x, y)

∣∣∣
y=x

)
. (26)

and where we set

Ulin(∆, x) =
√

∆U (1/2)
lin (x) + ∆U (1)

lin (x), x ∈ R, (27)

with the vector

U
(1/2)
lin (x) =

(
U

(1/2)
lin,1 (x), U (1/2)

lin,2 (x), U (1/2)
lin,3 (x)

)
=

∂

∂θ
σ(x; θ)

2√
2π

(
1,−1, 0

)
(28)

and the vector U (1)
lin (x), whose entries are defined by

U
(1)
lin,1(x) = U

(1)
lin,2(x) =

1
2
U

(1)
lin,3(x) =

1
2

(
∂

∂θ
µ(x; θ)− 1

2
∂

∂θ

{
σ(x; θ)

∂

∂x
σ(x; θ)

})
. (29)
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Finally, note that U (1/2)
lin is zero if the diffusion coefficient of the underlying process X

given by (1) does not depend on θ. Secondly, according to Proposition 6.2.5,

Eν,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆Eν,θ[Zlin(Y0)S−1

lin (Y0)Zlin(Y0)T ] + o(∆), (30)

where we used the additional notation

S−1
lin (x) = σ2(x; θ)

 1− 2
π

2
π + (1− 2 log 2) 1

2
2
π + (1− 2 log 2) 1− 2

π
1
2

1
2

1
2 1

 , x ∈ R. (31)

The matrix S−1
lin is positive definite for all x ∈ R. This follows since (up to the factor

σ2(x; θ)) S−1
lin equals the covariance matrix

Cov
[(

sup
0≤t≤1

Bt, inf
0≤t≤1

Bt, B1

)T ]
. (32)

The formula

E

[(
sup

0≤t≤1
Bt

)(
inf

0≤t≤1
Bt

)]
= 1− 2 log 2 (33)

was proved by Rogers [17]. The remaining moments can be calculated directly since by
Lévy’s formula the joint density of the running maximum and the terminal value on an
interval is explicitly known in the Brownian case, see e.g. (106) below. But the relation
between S−1

lin and (32) is already clear from the fact that we approximate the moments of
the diffusion by its expansion with respect to

√
∆. As we will briefly explain in Section

6, usually the first coefficients in the expansion coincide with the respective moments of
the triplet

(
sup0≤t≤1Bt, inf0≤t≤1Bt, B1

)
.

The above expansions enable us to state our first result.

Theorem 3.1.1. Let X be a diffusion process whose Lamperti transform Y satisfies
Assumption 2.2.1 and suppose we are given a class of flows Gθ that satisfies Assumption
2.2.2.
(i) If both coefficients µ and σ of the underlying process X depend on θ, then for all
g ∈ Gθ,

Var∆,ν,θ(g) = V0,θ(g,∆) + o (1) , ∆→ 0, (34)

where

V0,θ(g,∆) ≥ ∆
(
Eν,θ

[
Ulin(∆, Y0)Slin(Y0)Ulin(∆, Y0)T

] )−1

= ∆

(
Eν,θ

[
∆

(
∆U (1)

lin (Y0)2 +
πU

(1/2)
lin (Y0)2

π log 2− 2

)])−1

. (35)

8



In (35) equality holds, and consequently g is small-∆-optimal if there is a scalar K ∈ R,
possibly depending on θ, such that

Zlin = K Ulin(∆, ·)Slin. (36)

(ii) If σ does not depend on θ, then for all g ∈ Gθ,

Var∆,ν,θ(g) =
1
∆
V−1,θ(g) + o

(
1
∆

)
, ∆→ 0, (37)

where

V−1,θ(g) ≥
(
Eν,θ

[
U

(1)
lin (Y0)Slin(Y0)U (1)

lin (Y0)T
] )−1

=

(
Eν,θ

[
∂
∂θµ(Y0, θ)
σ2(Y0)

])−1

. (38)

In this case an estimating function g ∈ Gθ is small-∆-optimal if there is a constant K
possibly depending on θ such that

Zlin = K U
(1)
linSlin = K

(
0, 0,

∂
∂θµ(·, θ)
σ2(·)

)
. (39)

Proof. Lemma 2 in [9] states that for integrable random variables UZT , ZS−1ZT with
U ∈ R1×b, Z ∈ R1×b, S ∈ Rb×b, b ∈ N, and such that E(USUT ) and E(UZT ) are
non-zero, the following inequality is satisfied:

E[ZS−1ZT ] ·
(
E[UZT ]

)−2 ≥ (E[USUT ])−1. (40)

Moreover, Jacobsen shows that in (40) there is equality if for some non-random, non-zero
value K ∈ R, U = KZS−1, equivalently if Z = KUS.

(i) Recall the definition of Var∆,ν,θ(g) in (11). Applying inequality (40) to the quotient
of the first term in the expansion (30) and the first terms of (25) squared yields

∆Eν,θ[Zlin(Y0)S−1
lin (Y0)Zlin(Y0)T ](

Eν,θ[ZlinUTlin(∆, Y0)]
)2 ≥ 1

Eν,θ[Ulin(∆, Y0)S−1
lin (Y0)UTlin(∆, Y0)]

, (41)

which is precisely (35). According to Jacobsen’s result, in formula (41) equality holds if
there is a constant K such that Zlin = K Ulin(∆, ·)Slin. Hence, the statement about the
small-∆-optimality becomes obvious.

(ii) If the diffusion coefficient σ does not depend on the parameter θ, the vector U (1/2)
lin

vanishes identically and U
(1)
lin (x) becomes

U
(1)
lin (x) = (U (1)

lin,1(x), U (1)
lin,2(x), U (1)

lin,3(x)) =
∂

∂θ
µ(x; θ)

(
1
2
,
1
2
, 1
)
, x ∈ R. (42)
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We consequently find the following lower bound for the first term V−1,θ(g) of the variance:

V−1,θ(g) =
Eν,θ[Zlin(Y0)S−1

lin (Y0)Zlin(Y0)T ](
Eν,θ[Zlin(Y0)U (1)

lin (Y0)T ]
)2 ≥

(
Eν,θ

[
U

(1)
lin (Y0)Slin(Y0)U (1)

lin (Y0)T
] )−1

=

(
Eν,θ

[
∂
∂θµ(Y0, θ)
σ2(Y0)

])−1

. (43)

Equality holds if there is a constant K such that Zlin = K U
(1)
linSlin. Thus, the statement

about the small-∆-optimality is obvious.

Let us briefly outline the situation for the linear estimating function, i.e. for the function
glin which is defined by

glin(∆, x, h, l, y; θ) =
∑

j∈Mlin

alinj (∆, x; θ)κj(∆, x, h, l, y; θ), (44)

where the index set is given by Mlin = {h, l, y} and the respective functions κh(·), κl(·),
κy(·) are described in (24). If both µ and σ depend on θ the lower bound (35) is not
very handy. Thus, the interesting case is the case where σ is independent of θ. By the
above statements, in this situation, (44) is small-∆-optimal if the weights (alinh , alinl , aliny )
satisfy

alinh (∆, x; θ) = 0, alinl (∆, x; θ) = 0, aliny (∆, x; θ) =
∂

∂θ
µ(x, θ)

/
σ(x)2. (45)

3.2 Assessment of the results for linear MEFs

Let us focus on the case where σ does not depend on θ. If (44) in turn does not depend
on h and l, that means if we neglect the observations H∆ and L∆ in our analyis, the
small-∆-asymptotic lower bound of the variance Var∆,ν,θ(g) is given by

1
∆
·

(
Eν,θ

[
∂
∂θµ(·, θ)
σ2(·)

])−1

. (46)

Jacobsen already encountered this result when dealing with ordinary MEFs. Especially,
compare Theorem 1 (i) in [9]. Formula (46) implies that the variance of an estimating
function, inferred from the equidistant discrete sample X0, . . . , XT , with n fixed and
T = n∆, explodes as ∆→ 0. Also, incorporating the maximum and the minimum over
the observation intervals does not lower the variance – formula (38) shows that the first
term in the expansion of Var∆,ν,θ(g) remains the same.

An explanation for this phenomenon can be obtained by the following deliberations: if
t > 0 is small and if X starts in x we have

∫ t
0 µ(Xs)ds+ σBt ≈ µ(x)t+ σBt. Therefore,

on small intervals, Itô-diffusions are very well approximated by a Brownian motion with

10



drift. Without loss of generality let us consider the example (Xt = µt + Bt, 0 ≤ t ≤ 1)
with µ ∈ R. From Girsanov’s Theorem we infer that the Log-likelihood is

logL(µ) = µX1 −
1
2
µ2. (47)

Thus a sufficient statistic for the parameter µ is already given by X1. In a nutshell, in
a Brownian model, all the information about the drift is contained in one single point,
namely the endpoint X1 of the trajectory (Xt, 0 ≤ t ≤ 1).

4 Estimators for the diffusion coefficient

4.1 A special quadratic estimator for the diffusion coefficient

First we want to consider the case where the estimating function g is independent of the
minimum variable l. In Proposition 6.2.5 we will prove the following approximation:

Eν,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
= ∆Eν,θ

[
ASg0,θ(Y0)

]
+O

(
∆3/2

)
, (48)

where the operator AS is given by (131) below. If

∂

∂h
g0,θ(x, h, x)

∣∣∣
h=x

= 0 and
∂

∂y
g0,θ(x, x, y)

∣∣∣
y=x

= 0, (49)

a further expansion of Eν,θ
[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
is required, since in this case the expres-

sion Eν,θ
[
ASg0,θ(Y0)

]
on the right hand side of (48) identically equals 0. This becomes

evident by the fact that, basically, (49) means that we deal with estimating functions
consisting of terms that are at least quadratic. Consequently, the respective expansion
of (48) w.r.t.

√
∆ starts with a term proportional to ∆2 in this particular situation.

This, in turn, follows from the estimate

Ex,θ

( sup
0≤t≤∆

Yt − x

)k
(Y∆ − x)l


= σ(x; θ)k+l

E

( sup
0≤t≤∆

Bt

)k
·Bl

∆

+O(∆(k+l+1)/2)

= σ(x; θ)k+l ·O(∆(k+l)/2) +O(∆(k+l+1)/2), (50)

where k, l ∈ N. Formula (50) is a consequence of Doob’s inequality and it also allows to
calculate the coefficients belonging to ∆2. According to Proposition 6.2.6 we have

Eν,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
= ∆2

Eν,θ[Zqua(Y0)S−1
qua(Y0)Zqua(Y0)T ] +O(∆5/2), (51)
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where for x ∈ R we set

Zqua(x) = (Zqua,1(x), Zqua,2(x), Zqua,3(x))

=
(
∂2

∂h2
g0,θ(x, h, x)

∣∣∣
h=x

,
∂2

∂y2
g0,θ(x, x, y)

∣∣∣
y=x

,
∂

∂h

∂

∂y
g0,θ(x, h, y)

∣∣∣
y=x

)
, (52)

and

S−1
qua(x) = σ4(x; θ)


1
2 −

4
π2

1
2

(
1
2 −

2
3π

)
1
2

(
7
4 −

4
π

)
1
2

(
1
2 −

2
3π

)
1
2

1
2

1
2

(
7
4 −

4
π

)
1
2

7
4 −

10
3π

 . (53)

Note that analogously to formula (32) it can be shown that

S−1
qua(x) = σ4(x; θ) Cov

(( sup
0≤t≤1

Bt −
2
π

)2

,

(
inf

0≤t≤1
Bt +

2
π

)2

, B2
1

)T , (54)

and, hence, S−1
qua is a covariance matrix. For more details we make reference to Sec-

tion 6, but we emphasize that the proof of Proposition 6.2.6 does not work any more
for martingale estimating functions that have both linear and quadratic terms, since
in this case condition (49) is violated. To capture the particularities of such a model,
a sophisticated expansion of Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
with respect to

√
∆ is nec-

essary. To exemplify, let us consider the expression γ(∆) = HY
∆ + Y 2

∆. Obviously,
E0,θ[γ(∆)2] = E0,θ[(HY

∆)2] + 2E0,θ[Y 2
∆H

Y
∆ ] + ... = O(∆) + O(∆3/2) + ... . According to

(50), the first term in the expansion of E0,θ[Y 2
∆H

Y
∆ ] is of the order ∆3/2. Also, we are

able to determine the coefficient that belongs to ∆ in the expansion of E0,θ[(HY
∆)2], but

not the coefficient that belongs to ∆3/2.

The result concerning the expansion of the derivative with respect to θ remains unaffected
by (49). Let us define the vector

Uqua(x) =
(
Uqua,1(x), Uqua,2(x), Uqua,3(x)

)
=

1
2
∂

∂θ
σ(x; θ)2

((
2
π
− 1
)
,−1,−1

)
, x ∈ R, (55)

then we are able to write

Eν,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , Y∆

)]
= ∆Eν,θ[Zqua(Y0)Uqua(Y0)T ] +O(∆3/2), (56)

compare Proposition 6.2.6 in Section 6. Overall, we find the following expansion of
the variance of an estimator derived from a strictly quadratic generalized martingale
estimating function g.
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Theorem 4.1.1. Let X be a diffusion process whose Lamperti transform Y satisfies
Assumption 2.2.1 and suppose we are given a class of flows Gθ that satisfies Assumption
2.2.2. We assume that, for each g ∈ Gθ, the function

(x, h, l, y) 7−→ g∆,θ(x, h, l, y) (57)

is independent of l, for all θ ∈ Θ and for all ∆ ≥ 0. Moreover, we assume that any
g ∈ Gθ satisfies (49). Let us assume that the coefficient µ of the underlying process X
does not depend on θ. Then, for all g ∈ Gθ,

Var∆,ν,θ(g) = V0,θ(g) + o(1), ∆→ 0, (58)

where the first term on the right hand side of (58) is lower bounded by

V0,θ(g) ≥
(
Eν,θ

[
Uqua(Y0)Squa(Y0)Uqua(Y0)T

])−1

=
r(θ)2

r′(θ)2

(
6 +

96(28− 9π)
3π(56 + 3π)− 608

)−1

≈ r(θ)2

r′(θ)2
· 0.33983, (59)

provided that r′(θ) does not vanish. Moreover, small-∆-optimality holds for g ∈ Gθ if
there is a scalar K ∈ R, possibly depending on θ, such that

Zqua = KUquaSqua. (60)

Proof. By definition of Var∆,ν,θ(g) in (11) one obtains the result by dividing (51) by
formula (56) squared, in combination with the estimates in Lemma 2 of [10].

Now, let g denote the particular quadratic martingale estimating function

gqua(∆, x, h, l, y; θ) =
∑

j∈Mqua

aquaj (∆, x; θ)κj(∆, x, h, l, y; θ) (61)

with the index set Mqua = {hh, hy, yy}. According to our analysis, the small-∆-optimal
weights for the function (61) can be chosen as

aquahh (∆, x; θ) = − aquahy (∆, x; θ) = 6.2355
/
σ(x)2,

aquayy (∆, x; θ) = 2.3232
/
σ(x)2. (62)

4.2 A more general quadratic estimator for the diffusion coefficient

Let us assume that g depends on all variables and that it satisfies

∂

∂h
g0,θ(x, h, x, x)

∣∣∣
h=x

=
∂

∂l
g0,θ(x, x, l, x)

∣∣∣
l=x

=
∂

∂y
g0,θ(x, x, x, y)

∣∣∣
y=x

= 0. (63)

We consider the vector Zaqua(x) defined in formulae (157). In this case we are able to
write

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆2 Zaqua(x) ·

(
Saqua

)−1(x) ·
(
Zaqua(x)

)T +O
(
∆5/2

)
, (64)
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where a simulation of Cov[SBH,L,X ], with SBH,L,X defined by (159), shows that the matrix(
Saqua

)−1 is approximately given by

(
Saqua

)−1(x) = σ4(x; θ)



0.095 0.144 0.259 0.057 0.01 0.059
0.144 0.499 0.5 0.143 0.144 0.499
0.259 0.5 0.8 0.174 0.059 0.261
0.057 0.143 0.174 0.082 0.057 0.174
0.01 0.144 0.059 0.057 0.094 0.259
0.059 0.499 0.261 0.174 0.259 0.799

 , x ∈ R, (65)

compare the statement of Proposition 6.2.7. The simulation can be avoided for there
seems to be a closed form expansion of the moment generating function, see Garman
and Klass [5]. Consequently, not only (33) but also the other relevant moments of the
pair (sup0≤t≤1Bs, inf0≤t≤1Bs) can be derived. However, we decided to simulate because
of the missing proof and because of the alleged generating function’s complexity. Our
simulations included 5 · 105 independent trajectories of the standard Brownian motion
on the interval [0, 1] and each trajectory was computed with an accuracy of 106 steps.

Moreover, we define the vector Uaqua(x), x ∈ R, by the entries

Uaqua,1(x) = Uaqua,5(x) =
1
2

(
2
π
− 1
)
∂

∂θ
σ(x; θ)2,

Uaqua,2(x) = Uaqua,3(x) = Uaqua,6(x) = −1
2
∂

∂θ
σ(x; θ)2,

Uaqua,4(x) =
(
− 2
π
− 1 + 2 log 2

)
∂

∂θ
σ(x; θ)2. (66)

According to Proposition 6.2.3 we are able to write

Eν,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆Eν,θ[Zaqua(Y0)Uaqua(Y0)T ] +O(∆3/2). (67)

With these expressions at hand we are able to determine the small-∆-optimal lower
bound and the small-∆-optimal weights for the most general strictly quadratic estimating
functions.

Theorem 4.2.1. Suppose we are given a class of flows Gθ that satisfies Assumption
2.2.2. We assume that any g ∈ Gθ satisfies for all x ∈ R and for all θ ∈ Θ the additional
condition (63). Moreover, let us assume that the coefficient µ of the underlying process
X does not depend on θ. Then, for all g ∈ Gθ,

Var∆,ν,θ(g) = Va0,θ(g) + o(1), ∆→ 0, (68)

where the first term on the right hand side of (68) is lower bounded by

Va0,θ(g, θ̂) ≥
(
Eν,θ

[
Uaqua(Y0)Saqua(Y0)Uaqua(Y0)T

])−1

≈ 0.1228 · r(θ)
2

r′(θ)2
, (69)
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provided that r′(θ) does not vanish. Moreover, small-∆-optimality holds for g ∈ Gθ if
there is a scalar K ∈ R, possibly depending on θ, such that

Zaqua = KUaquaS
a
qua. (70)

Proof. Again, by definition of Var∆,ν,θ(g) in (11), the expansion in formulae (64) and (67)
which are proved in Proposition 6.2.3 and Proposition 6.2.7, respectively, in combination
with the simulated matrix (65) and the inequality of Lemma 2 in [9] gives the assertion.

We consider a concrete example. Let

gaqua(∆, x, h, y; θ) =
∑

j∈Ma
qua

aqua,aj (∆, x; θ)κj(∆, x, h, y; θ), (71)

with the index-set Ma
qua = {hh, ll, yy, hy, ly, hl}. A set of small-∆-optimal weights is

given by

aqua,ahh (∆, x; θ) = aqua,all (∆, x; θ) = 5.436
/
σ(x)2,

aqua,ayy (∆, x; θ) = 11.056
/
σ(x)2,

aqua,ahy (∆, x; θ) = aqua,aly (∆, x; θ) = −16.304
/
σ(x)2,

aqua,ahl (∆, x; θ) = 21.756
/
σ(x)2. (72)

4.3 Assessment of the results for quadratic martingale estimating functions

One important fact to state is that the lower bounds we found in (59) and (69) are
independent of the initial distribution. This is due to the fact that we imposed a special
structure for σ(·; θ) = r(θ) · σ(·), see Assumption 2.2.1. The respective moments of the
function σ(·) can be canceled out and we are left with a term that depends on r(θ) alone.

Furthermore, we stress that, if the martingale estimating function g does not depend on
h and l, the lower bound for the first term V0,θ(g) in the expansion of the variance equals
0.5 · r(θ)2/r′(θ)2. This result can easily be obtained as a special case of our analysis.
Jacobsen already stated this fact in Theorem 1 (ii) of his paper [9]. A comparison with
the formulae (59) and (69) shows that, in contrast to the case of linear MEFs, we benefit
from using generalized martingale estimating functions.

4.4 Range based estimators for the diffusion coefficient

In this section we finally want to consider martingale estimating functions g that are
independent of the variable y that corresponds to the end point Y∆. By the Propositions
6.2.3 and 6.2.5 we have the following expansions:

Eν,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆)
]

=
√

∆Eν,θ[Zrange(Y0)Urange(Y0)T ] + o(
√

∆) (73)
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and

Eν,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆

)]
= ∆Eν,θ[Zrange(Y0)S−1

range(Y0)Zrange(Y0)T ] + o(∆), (74)

where

Zrange(x) =
(
∂

∂h
g0,θ(x, h, x)

∣∣∣
h=x

,
∂

∂l
g0,θ(x, x, l)

∣∣∣
l=x

)
, x ∈ R, (75)

and Urange is the vector

Urange(x) =
(
U

(1/2)
lin,1 (x), U (1/2)

lin,2 (x)
)

=
(
∂

∂θ
σ(x; θ)

2√
2π
,− ∂

∂θ
σ(x; θ)

2√
2π

)
, x ∈ R. (76)

The matrix S−1
range is defined by

S−1
range(x) = σ2(x; θ)

(
1− 2

π
2
π + (1− 2 log 2)

2
π + (1− 2 log 2) 1− 2

π

)
, x ∈ R. (77)

Again, we have S−1
range(x) = σ2(x; θ) Cov

[(
sup0≤t≤1Bs, inf0≤t≤1Bs

)T ]. We find an
overall expansion of the variance of a range based estimating function grange in the
following theorem.

Theorem 4.4.1. Suppose we are given a class of flows Gθ that satisfies Assumption
2.2.2. We assume that Gθ is such that, for each g ∈ Gθ, the function

(x, h, l, y) 7−→ g∆,θ(x, h, l, y) (78)

is independent of y, for all θ ∈ Θ and for all ∆ ≥ 0. If the coefficient σ of the underlying
process X depends on θ, then, for all g ∈ Gθ,

Var∆,θ(g) = V0,θ(g) + o(1), ∆→ 0. (79)

The first term in the expansion is lower bounded by

V0,θ(g) ≥
(
Eν,θ

[
Urange(Y0)Srange(Y0)Urange(Y0)T

])−1

=
r(θ)2

r′(θ)2
·
(

2
π log 2− 2

)−1

≈ r(θ)2

r′(θ)2
· 0.088793, (80)

provided that r′(θ) does not vanish. And finally, equality holds in (80) and g ∈ Gθ is
small-∆-optimal if there is a scalar K ∈ R, possibly depending on θ, such that

Zrange = KUrangeSrange. (81)

Proof. Recall the definition of Var∆,ν,θ[g, θ̂] in (11). If one divides (74) by (73) squared,
the result follows by means of Lemma 2 in [9].
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In order to prove Theorem 4.4.1 it is not necessary to work with the Lamperti transform
of X and thus Assumption 2.2.1 is redundant. A first order expansion (with respect to√

∆) of the expression

Ex,θ

[
∂

∂θ
g∆,θ

(
X0, H∆, L∆

)]
(82)

and a second order expansion of

Ex,θ

[
g2

∆,θ

(
X0, H∆, L∆

)]
, (83)

are sufficient to determine the asymptotic lower bounds for the variance of strictly range
based martingale estimating functions. Ceteris paribus, such expansions can be obtained
for any diffusion process of the type (1). In the sequel, we will give a short heuristic why
this is the case. For a sufficiently smooth function γ : R→ R we have

Ex,θ

[
γ

(
sup

0≤s≤t
Xs

)]
= γ(x) + γ′(x)Ex,θ

[(
sup

0≤s≤t
Xs − x

)]
+

1
2
γ′′(x)Ex,θ

[(
sup

0≤s≤t
Xs − x

)2
]

+
1
6
Ex,θ

[
γ′′′(ξ)

(
sup

0≤s≤t
Xs − x

)3
]
, (84)

where ξ is between x and sup0≤s≤tXs. If γ′′′(y) has polynomial growth, by Doob’s
inequality, it can be derived that

Ex,θ

[(
sup

0≤s≤t
Xs − x

)2
]

= O(∆), and Ex,θ

[
γ(ξ)

(
sup

0≤s≤t
Xs − x

)3
]

= O(∆3/2). (85)

And, if one replaces Y with X, formula (50) remains valid. It might be a bit surprising
that the estimates are identical for the process (1) and for the model based on the
Lamperti transform (14), but this fact becomes obvious when taking into account that
(14) is rescaled by σ(X0; θ). By means of (50), it is always possible to derive a first
order expansion of (82) and one can show that it has the same form as (73). Also
compare Remark 6.2.4 below. On the other hand, the martingale condition (7) implies
g0,θ(x, x, x) ≡ 0. It follows directly that the term associated with the first derivative in
the expansion of (83) vanishes – recall that (g2)′ = 2g g′. It remains a second order
expansion w.r.t.

√
∆, which formally coincides with the expansion (74). Again, this is

due to the estimate (50).
To sum up, we are able to work with any diffusion model (1) that satisfies the remaining
assumptions of Section 2 and we find the lower bound

V0,θ(g) ≥
(
Eν,θ

[
Urange(Y0)Srange(Y0)Urange(Y0)T

])−1

=
(

2
π log 2− 2

)−1
(
Eν,θ

[(
∂
∂θσ(Y0; θ)

)2
σ(Y0; θ)2

])−1

. (86)
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To underpin its importance, let us state this result in a corollary.

Corollary 4.4.2. We assume that we are given a stochastic differential equation of the
type (1), whose coefficients µ(·; θ) and σ(·; θ) satisfy 2.1.1, but not necessarily Assump-
tion 2.2.1. Let Gθ be a class of flows that satisfies Assumption 2.2.2. We assume that
Gθ is such that, for each g ∈ Gθ, the function

(x, h, l, y) 7−→ g∆,θ(x, h, l, y) (87)

is independent of y for all θ ∈ Θ and for all ∆ ≥ 0. Set v(θ) = Eν,θ[g2
∆,θ(X0, H∆, L∆)]

and ξ(θ) = Eν,θ[∂θg∆,θ(X0, H∆, L∆)]. If the coefficient σ of the process X depends on θ,
then the variance Var∆,ν,θ(g) = v(θ)

/
ξ(θ)2 satisfies, for all g ∈ Gθ, the expansion

Var∆,θ(g) = V0,θ(g) + o(1), ∆→ 0, (88)

where the first term V0,θ(g) satisfies the inequality (86) provided that r′(θ) does not
vanish. Finally, equality holds in (86) and g ∈ Gθ is small-∆-optimal if there is a scalar
K ∈ R, possibly depending on θ, such that

Zrange = KUrangeSrange. (89)

Proof. According to our above discussions, the proof follows from formulae (73) and (74)
in combination with Lemma 2 in [9].

We end our analysis of the range based case by examining the concrete estimating
function

g(∆, x, h, l, y; θ) =
∑

j∈Mrange

arangej (∆, x; θ)κj(∆, x, h, l, y; θ), (90)

with the index-set Mrange = {h, l}. Small-∆-optimal weights for (90) are clearly given
by

arangeh (∆, x; θ) =
∂

∂θ
σ(x; θ) and arangel (∆, x; θ) = − ∂

∂θ
σ(x; θ). (91)

4.5 Assessment of the results for range based MEFs

The factor
(

2
π log 2−2

)−1
≈ 0.088793 appearing in the asymptotic lower bounds of the

variance for the class of range based estimating functions we displayed in formula (80)
and formula (86) coincides with the variance of the expression√

π

2

(
HB

∆ − LB∆
)

∆
, (92)
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which is an unbiased estimator for the diffusion coefficient in the Brownian model without
drift. As above HB

∆ and LB∆ stand for HB
∆ = sup0≤t≤∆Bt and LB∆ = inf0≤t≤∆Bt,

respectively. Consequently, we infer that

Var

[√
2
π

(
HB

∆ − LB∆
)

∆

]
=
π

2

E[(HB
∆)2] +E[(LB∆)2]− 2E

[
HB

∆ · LB∆
]

∆
− 1 =

π log 2
2
− 1.

(93)

A comparison of formula (80), which states that the first term in the expansion of the
variance is lower bounded by 0.088793 · r(θ)2/r′(θ)2, with the lower bound for the or-
dinary martingale estimating function, which is given by 0.5 · r(θ)2/r′(θ)2 , shows that
there is a gain in efficiency of about 82 %. The asymptotic lower bound for the variance
in the strictly range-based model is even lower than the one for the variance of the gener-
alized quadratic martingale estimating function, which is given by 0.1228 · r(θ)2/r′(θ)2 ,
see formula (69) and also the discussion in Paragraph 4.3. This result is particularly
interesting because it shows that in our model the linear estimator constructed from the
ranges

(
H̄(i∆)− L̄(i∆)

)
i=1,...,n

is more efficient than the quadratic estimator inferred from

the samples
(

(H̄(i∆) − L̄(i∆))2
)
i=1,...,n

.

Small-∆-optimality of strictly range-based martingale estimating functions cannot only
be stated in a model where the underlying process has the structure of a properly rescaled
Lamperti transform, but for fairly general diffusions as well – see Corollary 4.4.2. A
comparison of this refined result with the corresponding result for ordinary martingale
estimating functions is not possible in general. Both lower bounds depend on σ(·; θ) in
a different way. Compare formula (86) and the respective formula in Theorem 1 (ii) in
[9].

5 Case study

We consider an Ornstein-Uhlenbeck process defined by the following stochastic differen-
tial equation

dXt = −µXtdt+ σdBt, X0 = x, t ≥ 0. (94)

Simulations were performed for for µ ≡ 1 and σ ≡ 1 with the values ∆ = 0.5, 0.1, 0.01
based on n+ 1 = 501 observations. For each value of ∆, 1000 trajectories were created
according to an Euler-scheme such that there are at least 1000 simulated values of X
in each observation interval ((i − 1)∆, i∆], for i = 1, . . . , 500 and for every value of
∆ = 0.5, 0.1, 0.01.

We will only consider estimators of the diffusion parameter σ = 1, where we assume
that the parameter µ = 1 is known. We do not conduct a simulation study for the drift
parameter µ since the generalized martingale estimating functions coincides with the or-
dinary martingale estimating function in this case, see Section 3. A simulation study for
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Estimation method ∆ mean std. dev. max min
Ordinary MEF: σ̂2

ord 0.5 0.392 0.027 0.478 0.319
0.1 0.854 0.054 1.032 0.700
0.01 0.983 0.062 1.203 0.807

Generalized MEF: σ̂2
qua 0.5 0.68 0.03 0.781 0.594

0.1 0.917 0.047 1.072 0.798
0.01 0.992 0.054 1.19 0.853

Gen. MEF – all quad. terms: (σ̂aqua)
2 0.5 0.555 0.063 1.00 0.372

0.1 0.908 0.038 1.028 0.788
0.01 0.989 0.04 1.114 0.862

Range Based MEF: σ̂2
range 0.5 0.914 0.024 0.997 0.844

0.1 0.974 0.026 1.068 0.902
0.01 0.988 0.026 1.08 0.921

Table 1: Estimators of the diffusion parameter σ2 from 1000 trajectories

the drift estimation with ordinary martingale estimating functions can be found in [11].
The mean value and the standard deviation of the different estimators are given in Table
1. The columns labeled ”min” and ”max” indicate the range of the 1000 estimators we
calculated.

In the sequel, we display the different types of martingale estimating functions for the
diffusion coefficient that were used to generate Table 1. First, we compare the estimator
inferred from the ordinary martingale estimating function to the one inferred from a
generalized martingale estimating function. Then, we compare the ordinary estimator
to a range based estimator.

5.1 Ordinary vs. Generalized Martingale Estimating Functions

We assume that µ ≡ 1 is known and we compare different estimators of σ2. We compare
the ordinary martingale estimating function

gord(∆, x, h, l, y; θ) = aord(∆, x; θ)κyy(∆, x, h, l, y; θ) (95)

with the generalized MEFs

gqua(∆, x, h, l, y; θ) =
3∑

j∈Mqua

aquaj (∆, x; θ)κj(∆, x, h, l, y; θ), (96)

and

gaqua(∆, x, h, l, y; θ) =
∑

j∈Ma
qua

aqua,aj (∆, x; θ)κj(∆, x, h, l, y; θ), (97)
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respectively, where the functions κj are the functions described in (24). The relevant
index sets are defined by Mqua = {hh, hy, yy} and Ma

qua{hh, ll, yy, hl, hy, ly}.

We do not only replace the weights by their small-∆-optimal analogue, but we ap-
proximate the complete martingale estimating functions (95)–(97) by their second order
expansion with respect to

√
∆. The concrete expansions we take into account are(

y −Ex,θ[X∆]
)2 −Varx,θ[X∆]

= y2 − 2y(x+ µ(x)∆) + 2(x2 + 2xµ(x)∆)− (x2 + 2xµ(x)∆ + σ2∆) +O(∆2),(
h−Ex,θ[H∆]

)2 −Varx,θ[H∆]

= h2 − 2h

(
x+

√
2
π
σ
√

∆ +
1
2
µ(x)∆

)

+ 2

(
x2 +

2
π
σ2∆ + 2x

√
2
π
σ
√

∆ + xµ(x)∆

)

−

(
x2 + 2x

√
2
π
σ
√

∆ + xµ(x)∆ + σ2∆

)
+ O(∆3/2) (98)

and (
h−Ex,θ[H∆]

)
(y −Ex,θ[X∆]

)
− Covx,θ[H∆, X∆]

= hy − y

(
x+

√
2
π
σ
√

∆ +
1
2
µ(x)∆

)
− 2h(x+ µ(x)∆)

+ 2

(
x2 + x

√
2
π
σ
√

∆ +
3
2
µ(x)∆

)

−

(
x2 + x

√
2
π
σ
√

∆ +
3
2
µ(x)∆ +

1
2
σ2∆

)
+O(∆3/2). (99)

For the estimating functions including the random variable L∆ one obtains similar ex-
pression. The small-∆-optimal weights for the generalized martingale estimating func-
tion gqua and gaqua can be chosen according to (62) and to (72), respectively.

Comparing the lines for ∆ = 0.01 in Table 1, we see that the estimator σ̂2
qua inferred

from the generalized martingale estimating function (96) has slightly smaller bias and
significantly smaller standard deviation than the estimator σ̂2

ord inferred from the ordi-
nary martingale estimating function (95). Let us compare the mean squared errors of
σ̂2
qua and σ̂2

ord for ∆ = 0.01. The quotient of both quantities is

E[(σ̂2
qua − σ2)2]

E[(σ̂2
ord − σ2)2]

= 0.833752. (100)
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The standard deviation of the estimator
(
σ̂aqua

)2, inferred from the martingale estimating
function (97) that consists of all quadratic terms, is even smaller. We obtain the quotients

E[(
(
σ̂aqua

)2 − σ2)2]
E[(σ̂2

ord − σ2)2]
= 0.414096 (101)

and

E[(
(
σ̂aqua

)2 − σ2)2]
E[(σ̂2

qua − σ2)2]
= 0.496667. (102)

Evidently, both generalized martingale estimating functions are superior to the ordinary
martingale estimating function, even though we do not exactly discover the gain in ef-
ficiency that was predicted by our theoretical results – see Paragraph 4 above. This
mismatch between theory and practice might be due to the discretization of the trajec-
tories. Consequently, the suprema are underestimated and the infima are overestimated.
Another source of inaccuracy is the simulation of the matrix (65) and the weights (72).
As a result, the lower bound on the right hand side of (69) might be too low. Alter-
natively, with more accurately calculated weights aqua,a1 , . . . , aqua,a6 in (72) the standard
deviation in Table 1 for the estimator derived from the generalized martingale estimating
function gaqua might be smaller.

5.2 Ordinary vs. Range Based Martingale Estimating Functions

Again, we assume that µ ≡ 1 is known. Here, we compare the ordinary quadratic mar-
tingale estimating function gord given by (95) to the range based martingale estimating
function

grange(∆, x, h, l, y; θ) =
∑

j∈Mrange

arangej (∆, x; θ)κj(∆, x, h, l, y; θ), (103)

where the functions κj are defined by (24) and the index set is given by Mrange = {h, l}.
Again, the range-based martingale estimating function is approximated by its second
order expansion with respect to

√
∆, cf. (6.181) and (6.182) in [8]. Moreover, the small-

∆-optimal weights can be chosen according to (91). The results for the range based
estimators for the true parameter σ2 = 1 for different values of ∆ are displayed in the
last block of Table 1. We compare them to the estimators inferred from the ordinary
martingale estimating function. As we expected, for small values of ∆, the range based
estimator has smaller variance than the estimator inferred from the ordinary quadratic
estimating function gqua,ord. It is also superior to the estimator inferred from the gen-
eralized quadratic martingale estimating function gqua,gen. Concretely, a comparison of
the biases and the standard deviations for ∆ = 0.01 in Table 1 shows that

E[(σ̂2
range − σ2)2]

E[(σ̂2
ord − σ2)2]

= 0.20778, (104)
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where σ̂range denotes the estimator inferred from (103). This means that the mean
squared error for the range-based model is about 80 % lower than the mean squared
error for the ordinary estimating function. This almost corresponds to the theoretical
values we discovered in Section 4.

It would be interesting to know if this effect carries over to martingale estimating function
constructed with triplets of observations (H∆, L∆, X∆). We conjecture that the lower
bound of the variance of such an estimating function is even smaller than the one of the
range-based martingale estimating function obtained from the pair (H∆, L∆).

5.3 Annotations

In our simulation study we did not only replace the optimal weights a1(∆, x; θ),
a2(∆, x; θ) and a3(∆, x; θ) by the respective small-∆-optimal weights, but we also ap-
proximated the expectations

Ex,θ[H∆], Ex,θ[L∆] and Ex,θ[X∆], (105)

and the respective covariances by their second order approximations with respect to√
∆. As we saw above, the resulting estimators were biased. This is due to the fact

that the martingale property of the estimating functions is destroyed by the additional
approximation. In order to analyse the theoretical behavior of such two-fold approxi-
mated MEFs requires to consider the simultaneous asymptotics ∆n → 0 and n∆n →∞
for n → ∞. For ordinary estimating functions, consistency of the resulting estimators
is proved in the article of Florens-Zmirou [4] in this scenario. Moreover, asymptotic
normality can be stated on the further condition n∆3

n → 0. Related results were also
proved by Yoshida [21]. And finally, Kessler [12] used higher order expansions of the
moments of the transition distribution to obtain estimators that are asymptotically nor-
mal, even when ∆n tends more slowly to zero as n tends to ∞. Analogous results for
our generalized martingale estimating functions remain to be studied.

6 Technical Results

6.1 Foundations

We give a brief heuristic of how to prove formula (19). Let x ∈ R, ∆ > 0, and, for
the time being, let us assume that µ and σ are real valued constants. Moreover, let Z
denote the Brownian motion with drift Zt = µt+ σBt, 0 ≤ t ≤ ∆. The joint density of
the process (sup0≤t≤∆ Zt, Z∆), starting in (x, x), is given by

f(µ,σ)(∆, x, h, y) =
2(2h− x− y)√

2π∆3σ3
exp

(
µ

σ2
(y − x)− (2h− x− y)2

2∆σ2
− µ2

2σ2
∆
)
. (106)
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See e.g. [2]. ¿From this density it can be inferred that, for a sufficiently smooth function
g : R→ R that does not grow too fast,

Ex

[
g

(
sup

0≤t≤∆
Zt

)]
=g(x) + σ

√
2∆
π

∂

∂x
g(x) + ∆

(
1
2
µ
∂

∂x
g(x) +

1
2
σ2 ∂

2

∂x2
g(x)

)
+O

(
∆3). (107)

Now, let us consider the process Y defined by (16). From the estimate

Ex,θ

[
sup

0≤t≤∆

∣∣∣Yt − σ(x; θ)
{
µY (x)t+Bt

}∣∣∣2]

≤ σ(x; θ)2
Ex,θ

[
sup

0≤t≤∆

∣∣∣ ∫ t

0

{
µY (Xs)− µY (x)

}
ds
∣∣∣2]

≤ const. σ(x; θ)2∆3, (108)

which is a direct consequence of the Lipschitz property of µY (recall Assumption 2.2.1)
and Cauchy-Schwarz’ inequality, in combination with (107) it follows easily that

Ex

[
g

(
sup

0≤t≤∆
Yt

)]

= x+ σ(x; θ)

√
2∆
π

∂

∂x
g(x)

+ ∆
(

1
2

{
µ(x; θ)− 1

2
σ(x; θ)

∂

∂x
σ(x; θ)

}
∂

∂x
g(x) +

1
2
σ2(x; θ)

∂2

∂x2
g(x)

)
+O

(
∆3/2). (109)

From this expansion, one can easily infer equation (19).

6.2 Expansions

The aim of the present paragraph is to find formulae analogous to (46) and (47) in
Proposition 5 in [9] for generalized martingale estimating functions. Concretely, we
derive expansion for both the expressions (9) and (10) with respect to

√
∆ in different

classes of estimating functions and for the process Y . We start with a simple statement
that will turn out to be crucial in the sequel.

Proposition 6.2.1. Let Y denote the process defined by the stochastic differential equa-
tion (16) and let Gθ be a class of flows that satisfies Assumption 2.2.2. Then, for g ∈ Gθ,
we have

0 = Ex,θ
[
g∆,θ

(
Y0, H

Y
t , L

Y
t , Yt

)]
= g0,θ(x) +

√
∆A( 1

2
)

θ g0,θ(x) +
√

∆g̃0,θ(x) + ∆A( 1
2

)

θ g̃0,θ(x)

+ ∆A(1)
θ g0,θ(x) + ∆˜̃g0,θ(x) +O(∆3/2), (110)
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where the operators A( 1
2

)

θ and A(1)
θ are given by (20) and (21), respectively.

Proof. By Assumption 2.2.2 the function g has an expansion with respect to
√

∆ of the
following form

g∆,θ(x, h, l, y)

= g0,θ(x, h, l, y) +
√

∆g̃0,θ(x, h, l, y) + ∆˜̃g0,θ(x, h, l, y) +O
(
∆3/2; θ, x, h, l, y

)
. (111)

In view of the fact that the rest term O
(
∆3/2; θ, x, h, l, y

)
behaves like a polynomial in

h, l and y, the result can be inferred by an expansion of each of the terms

Ex

[
g̃

(k)
0,θ

(
Y0, H

Y
t , L

Y
t , Yt

)]
, k = 0, 1, 2. (112)

A comparison with Corollary 5.2.3.6 in [8] yields the result.

Before we proceed, let us introduce the following notation

Dh g0,θ(x) =
∂

∂h
g0,θ(x, h, x, x)

∣∣∣
h=x

and Dhh g0,θ(x) =
∂2

∂h2
g0,θ(x, h, x, x)

∣∣∣
h=x

. (113)

The expressions Dl g0,θ(x), Dy g0,θ(x) and the terms Dhl g0,θ(x), Dhy g0,θ(x), ... etc. are
defined in an analogous way.

An immediate consequence of the previous proposition is displayed in the following
corollary.

Corollary 6.2.2. Let the assumptions of Proposition 6.2.1 be satisfied. Then

0 = Ex,θ
[
g∆,θ

(
Y0, H

Y
t , L

Y
t , Yt

)]
= g0,θ(x) +

√
∆A( 1

2
)

θ g0,θ(x) +
√

∆g̃0,θ(x)−∆
(
A( 1

2
)

θ

)2

g̃0,θ(x)

+ ∆A(1)
θ g0,θ(x) + ∆˜̃g0,θ(x) +O(∆3/2). (114)

where the operator
(
A( 1

2
)

θ

)2

is given by

(
A( 1

2
)

θ

)2

g0,θ(x) = σ(x; θ)2 2
π
Dhh g0,θ(x) + σ(x; θ)2 2

π
Dll g0,θ(x)− σ(x; θ)2 4

π
Dhl g0,θ(x) .

(115)

Proof. Formula (110) shows that, by letting ∆ → 0, g0,θ(x) = 0. Moreover, one infers
that

A( 1
2

)

θ g0,θ(x) + g̃0,θ(x) = 0, (116)

A( 1
2

)

θ g̃0,θ(x) +A(1)
θ g0,θ(x) + ˜̃g0,θ(x) = 0. (117)
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Note that equation (117) is equivalent to

−
(
A( 1

2
)

θ

)2

g0,θ(x) +A(1)
θ g0,θ(x) + ˜̃g0,θ(x) = 0, (118)

where one can easily see that the operator
(
A( 1

2
)

θ

)2

coincides with the operator (115).

This follows directly by means of equation (116). The result now follows directly from
formulae (116) and (118).

We are now in a position to derive our first expansion. The next proposition states the
analogue of formula (46) in [9] for generalized martingale estimating functions.

Proposition 6.2.3. Let the assumptions of Proposition 6.2.1 be satisfied. Then

Ex,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
=−
√

∆ Ȧ( 1
2

)

θ g0,θ(x) + ∆
˙(

A( 1
2

)

θ

)2

g0,θ(x)

−∆Ȧ(1)
θ g0,θ(x) +O

(
∆3/2

)
, (119)

where the operators Ȧ( 1
2

)

θ and
˙(

A( 1
2

)

θ

)2

are given by

Ȧ( 1
2

)

θ g0,θ(x) =
∂

∂θ
σ(x; θ)

2√
2π

Dh g0,θ(x)− ∂

∂θ
σ(x; θ)

2√
2π

Dl g0,θ(x), (120)

and
˙(

A( 1
2

)

θ

)2

g0,θ(x) =
1
2
∂

∂θ
σ(x; θ)2 2

π
Dhh g0,θ(x) +

1
2
∂

∂θ
σ(x; θ)2 2

π
Dll g0,θ(x)

− ∂

∂θ
σ(x; θ)2 2

π
Dhl g0,θ(x), (121)

respectively. Finally, Ȧ(1) is given by

Ȧ(1)
θ g0,θ(x) =

1
2

(
∂

∂θ
µ(x; θ)− 1

2
∂

∂θ

{
σ(x; θ)

∂

∂x
σ(x; θ)

})
Dh g0,θ(x)

+
1
2

(
∂

∂θ
µ(x; θ)− 1

2
∂

∂θ

{
σ(x; θ)

∂

∂x
σ(x; θ)

})
Dl g0,θ(x)

+
1
2
∂

∂θ
σ2(x; θ)Dhh g0,θ(x) +

1
2
∂

∂θ
σ2(x; θ)Dll g0,θ(x)

+ (1− 2 log 2)
∂

∂θ
σ2(x; θ)Dhl g0,θ(x)

+
1
2
∂

∂θ
σ2(x; θ)Dhy g0,θ(x) +

1
2
∂

∂θ
σ2(x; θ)Dly g0,θ(x)

+
(
∂

∂θ
µ(x; θ)− 1

2
∂

∂θ

{
σ(x; θ)

∂

∂x
σ(x; θ)

})
Dy g0,θ(x)

+
1
2
∂

∂θ
σ(x; θ)2Dyy g0,θ(x) . (122)
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Proof. Clearly, the following expansion holds

Ex,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
=
{
∂

∂θ
g0,θ +

√
∆A( 1

2
)

θ

∂

∂θ
g0,θ +

√
∆
∂

∂θ
g̃0,θ

+∆A( 1
2

) ∂

∂θ
g̃0,θ + ∆A(1)

θ

∂

∂θ
g0,θ + ∆

∂

∂θ
˜̃g0,θ

}
(x) +O(∆3/2). (123)

Now, ∂
∂θg0,θ(x) ≡ 0 and

0 =
∂

∂θ

(
A( 1

2
)

θ g0,θ(x) + g̃0,θ(x)
)

=
(
A( 1

2
)

θ

∂

∂θ
g0,θ(x) +

∂

∂θ
g̃0,θ(x)

)
+ Ȧ( 1

2
)

θ g0,θ(x), (124)

where Ȧ( 1
2

)

θ is the operator (120). Analogously, we find that

0 =
∂

∂θ

{
−
(
A( 1

2
)

θ

)2

g0,θ(x) +A(1)
θ g0,θ(x) + ˜̃g0,θ(x)

}

=

{
−
(
A( 1

2
)

θ

)2 ∂

∂θ
g0,θ(x) +A(1)

θ

∂

∂θ
g0,θ(x) +

∂

∂θ
˜̃g0,θ(x)

}

−
˙(

A( 1
2

)

θ

)2

g0,θ(x) + Ȧ(1)
θ g0,θ(x),

(125)

where Ȧ(1) is given by (122). Since

−
˙(

A( 1
2

)

θ

)2

g0,θ(x) = Ȧ( 1
2

)

θ g̃0,θ(x), (126)

inserting (124) and (125) into equation (123) yields the result.

Remark 6.2.4. If the diffusion coefficient σ of the diffusion (1) does not depend on the

parameter θ, the operator Ȧ( 1
2

)

θ vanishes, and we have the following result

Ex,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆Ȧ(1)

θ g0,θ(x) +O
(
∆3/2

)
. (127)

The operator Ȧ(1) also takes a simple form in this case, namely

Ȧ(1)
θ g0,θ(x)

=
1
2
∂

∂θ
µ(x; θ)Dh g0,θ(x) +

1
2
∂

∂θ
µ(x; θ)Dl g0,θ(x) +

∂

∂θ
µ(x; θ)Dy g0,θ(x). (128)

A similar result can be stated if µ does not depend on θ. In any case, we have the first
order expansion

Ex,θ

[
∂

∂θ
g∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
=
√

∆Ȧ( 1
2

)

θ g0,θ(x) +O
(
∆
)
. (129)
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The next result states the analogue of formula (47) in [9].

Proposition 6.2.5. Let the assumptions of Proposition 6.2.1 be satisfied. Then

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆ASg0,θ(x) +O

(
∆3/2

)
, (130)

where the operator AS is defined via

ASg0,θ(x) =
(

1− 2
π

)
(Dh g0,θ(x))2 σ(x; θ)2 +

(
1− 2

π

)(
Dl g0,θ(x)

)2
σ(x; θ)2

+
(

4
π

+ 2 (1− 2 log 2)
)(

Dh g0,θ(x)Dl g0,θ(x)
)
σ(x; θ)2

+
(
Dh g0,θ(x)Dy g0,θ(x)

)
σ(x; θ)2 +

(
Dl g0,θ(x)Dy g0,θ(x)

)
σ(x; θ)2

+
(
Dy g0,θ(x)

)2
σ(x; θ)2. (131)

Proof. Because g0,θ(x) = 0, we have

Dh g
2
0,θ(x) = 2g0,θ(x)Dh g0,θ(x) = 0. (132)

And similarly, we have

Dl g
2
0,θ(x) = Dy g

2
0,θ(x) = 0. (133)

It remains to show that

g̃2
0,θ(x) = 0. (134)

But this is evident, since

∂

∂s
g2
s,θ(x) = 2gs,θ(x)

∂

∂s
gs,θ(x), (135)

which implies

g̃2
0,θ(x) = 2g0,θ(x)g̃0,θ(x) = 0. (136)

Therefore, the
√

∆-term in the expansion of Ex,θ
[
g2

∆,θ

]
vanishes and the ∆-term becomes

−
(
A( 1

2
)

θ

)2

g2
0,θ(x) +A(1)

θ g2
0,θ(x) +

˜̃
g2

0,θ(x)

= −σ(x; θ)2 2
π

{
Dhh g

2
0,θ(x) + Dll g

2
0,θ(x)

}
+
{ 4
π

+ 1− 2 log 2
}
σ(x; θ)2Dhl g

2
0,θ(x)

+
1
2
σ(x; θ)2

{
Dhh g

2
0,θ(x) + Dll g

2
0,θ(x) + Dhy g

2
0,θ(x) + Dly g

2
0,θ(x) + Dyy g

2
0,θ(x)

}
+
˜̃
g2

0,θ(x, x, x, x). (137)
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It remains to calculate the derivatives on the right hand side of (137). First,

Dh g
2
0,θ(x) = 2g0,θ(x)Dhh g0,θ(x) + 2 (Dh g0,θ(x))2 = 2 (Dh g0,θ(x))2 . (138)

The last equality in the previous equation (138) follows because g0,θ(x) = 0. Analogously,
we find

Dll g
2
0,θ(x) = 2 (Dl g0,θ(x))2 , Dyy g

2
0,θ(x) = 2 (Dy g0,θ(x))2 . (139)

For the first cross-term, we have

Dhl g
2
0,θ(x) = 2g0,θ(x)Dhl g0,θ(x) + 2Dhg0,θ(x)Dlg0,θ(x) = 2Dhg0,θ(x)Dlg0,θ(x). (140)

And analogously, one obtains

Dhy g
2
0,θ(x) = 2Dhg0,θ(x)Dyg0,θ(x), Dly g

2
0,θ(x) = 2Dlg0,θ(x)Dyg0,θ(x). (141)

Finally, let us consider the term
˜̃
g2

0,θ(x). By (23), we obtain the following equation

g2
∆,θ(x, h, l, y) =

(
g0,θ(x, h, l, y) +

√
∆g̃0,θ(x, h, l, y) + ∆˜̃g0,θ(x, h, l, y) +O(∆3/2)

)2

= g2
0,θ(x, h, l, y) + 2

√
∆g0,θ(x, h, l, y)g̃0,θ(x, h, l, y)

+ ∆
{(

g̃0,θ(x, h, l, y)
)2

+ 2g0,θ(x, h, l, y)
}

+O(∆3/2). (142)

By the definitions of the square-root-derivatives in formula (22), the ∆-term in (142)

corresponds to
˜̃
g2, which shows that

˜̃
g2

0,θ(x) =
(
g̃0,θ(x)

)2
+ 2g0,θ(x). (143)

By the fact that g0,θ(x) = 0 and by the definition of A( 1
2

), we obtain the final equation

˜̃
g2

0,θ(x) =
(
g̃0,θ(x)

)2
=
(
−A( 1

2
)g0,θ(x)

)2
=

(
σ(x; θ)

√
2
π

{
−Dh g0,θ(x) + Dl g0,θ(x)

})2

= σ(x; θ)2 2
π

{(
Dh g0,θ(x)

)2 +
(
Dl g0,θ(x)

)2 − 2Dh g0,θ(x)Dl g0,θ(x)
}
. (144)

Inserting the above terms for the derivatives of g2
0,θ and for

˜̃
g2

0,θ into (137), we obtain
the operator AS . This completes the proof of the proposition.

The special form of our martingale estimating functions allows us to determine a fourth
order expansion if condition (49) or condition (63), respectively, holds. For the sake of
simplicity it will first be derived for the case, where the martingale estimating function
g depends on the variables h, y and is independent of the minimum variable l.
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Proposition 6.2.6. Let Y denote the process defined by the stochastic differential equa-
tion (16). We assume that Gθ is a class of flows that satisfies Assumption 2.2.2. Then
for any g ∈ Gθ, (h, l, y) 7→ g∆,θ(x, h, l, y) that is independent of l for all (∆, θ, x) ∈
(R+,Θ,R) and that satisfies the additional assumption (49), the following expansion
holds:

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
= ∆2AS2 g0,θ(x) +O

(
∆5/2

)
, (145)

where the operator AS2 is defined via

AS2 g0,θ(x) = σ(x; θ)4

{(
1
2
− 4
π2

)(
Dhh g0,θ(x)

)2
+

1
2

(
Dyy g0,θ(x)

)2

+ Dhy g0,θ(x)Dyy g0,θ(x) +
(

7
4
− 4
π

)
Dhy g0,θ(x)Dhh g0,θ(x)

+
(

7
4
− 10

3π

)(
Dhy g0,θ(x)

)2
+
(

1
2
− 2

3π

)
Dhh g0,θ(x)Dyy g0,θ(x)

}
.

(146)

Proof. For convenience, let us assume that the martingale estimating function depends
on h alone. This means, we assume that g∆,θ has the following form

g∆,θ(x, h, y) = a(∆, x; θ)
(
κ
(
h− FH(∆, x; θ)

)
−Ex,θ

[
κ
(
HY

∆ − FH(∆, x; θ)
)])

. (147)

In order to satisfy Assumption 2.2.2 the function κ must be three times continuously
differentiable and κ′′′ must have polynomial growth near infinity. Condition (49) is
equivalent to κ′(0) = 0. We expand the expression κ

(
h − FH(∆, x; θ)

)
around 0 in

order to obtain

κ
(
h− FH(∆, x; θ)

)
= κ(0) +

κ′′(0)
2

(
h− FH(∆, x; θ)

)2
+

k′′′(ξ)
6

(
h− FH(∆, x; θ)

)3
,

(148)

where ξ is between 0 and h−FH(∆, x; θ). Due to the assumption that κ′′′ has polynomial
growth, we find

Ex,θ

[
κ
(
HY

∆ − FH(∆, x; θ)
)]

= κ(0) +
1
2
κ′′(0)Ex,θ

[{
HY

∆ − FH(∆, x; θ)
}2
]

+O(∆3/2).

(149)

By the same argument, an expansion of g2
∆,θ gives the estimate

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
=
κ′′(0)

4
a(∆, x; θ)2

Ex,θ

[{(
HY

∆ − FH(∆, x; θ)
)2
−Ex,θ

[(
HY

∆ − FH(∆, x; θ)
)2]}2

]
+O(∆5/2). (150)
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Formula (50), which is concisely proved in Lemma 5.2.1.4 in [8], in combination with
the scaling property of Brownian motion shows that

Ex,θ

[{(
HY

∆ − FH(∆, x; θ)
)2
−Ex,θ

[(
H∆ − FH(∆, x; θ)

)2]}2
]

= ∆2σ(x; θ)4
E

[ (
(HB

1 −EHB
1 )2 −Var(HB

1 )
)2 ]

+O(∆5/2). (151)

Here, for standard one-dimensional Brownian motion (Bs, 0 ≤ s ≤ 1), HB
1 denotes the

random variable HB
1 = sup0≤s≤1Bs. Obviously,

∂2

∂h2
g0,θ

(
x, h, x)

∣∣∣
h=x

= Dhhg0,θ(x) = a(∆, x; θ)2κ′′(0), (152)

and consequently it remains to state that

E
[
((HB

1 −EHB
1 )2 −Var(HB

1 ))2
]

= E
[
(HB

1 −EHB
1 )4
]
−Var(HB

1 )2 = 2− 16
π2
. (153)

Altogether, for the function g∆,θ defined by formula (147), we have proved that

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , Y∆

)]
= σ(x; θ)4

(
1
2
− 4
π2

)(
Dhhg0,θ(x)

)2
+O(∆5/2). (154)

More general functions that depend on both variables h and y, are treated in the same
way. One just has to consider all possible partial derivatives of g∆,θ(x, h, y) with respect
to h and y separately. The basic ideas behind the proof remain the same as above. We
omit the details here. A list of the remaining relevant moments of (HB

1 , B1) can be found
in formulae (10.60)-(10.64) in [8]. These moments are easily calculated by means of the
joint density of (HB

1 , B1), which is displayed in formula (106). Altogether, this proves
the result.

For a class of flows that depends on all variables (h, l, y) a result similar to the one of
Proposition 6.2.6 can be found, provided condition (63) is satisfied. We can state the
following proposition.

Proposition 6.2.7. Let Y denote the process defined by the stochastic differential equa-
tion (16). We assume that Gθ is a class of flows that satisfies Assumption 2.2.2. Then
for any g ∈ Gθ, that satisfies the additional assumption (63), the following expansion
holds:

Ex,θ

[
g2

∆,θ

(
Y0, H

Y
∆ , L

Y
∆, Y∆

)]
= ∆2AS,a2 g0,θ(x) +O

(
∆5/2

)
, (155)

where the operator AS,a2 is defined via

AS,a2 g0,θ(x) = Zaqua(x) ·
(
Saqua

)−1(x) ·
(
Zaqua(x)

)T
, (156)

31



with

Zaqua(x)

=
(
Zaqua,1(x), Zaqua,2(x), Zaqua,3(x), Zaqua,4(x), Zaqua,5(x), Zaqua,6(x)

)
=
(
Dhh g0,θ(x),Dyy g0,θ(x),Dhy g0,θ(x),Dhl g0,θ(x),Dll g0,θ(x),Dly g0,θ(x)

)
. (157)

Moreover, for x ∈ R, the matrix
(
Saqua

)−1(x) is defined by(
Saqua

)−1(x) = σ4(x; θ) ·A · Cov[SBH,L,X ] ·A. (158)

Here, A = diag(1/2, 1/2, 1/2, 1, 1, 1) and the entries of the column-vector SBH,L,X are
given by

SBH,L,X;1 =
(
HB

1 −EHB
1

)2 −E[(HB
1 −EHB

1

)2]
,

SBH,L,X;2 = B1 −E
[
B2

1

]
,

SBH,L,X;3 =
(
HB

1 −EHB
1

)
·B1 −E

[(
HB

1 −EHB
1

)
·B1

]
,

SBH,L,X;4 =
(
HB

1 −EHB
1

)(
LB1 −ELB1

)
−E

[(
HB

1 −EHB
1

)(
LB1 −ELB1

)]
,

SBH,L,X;5 =
(
LB1 −ELB1

)2 −E[(LB1 −ELB1 )2],
SBH,L,X;6 =

(
LB1 −ELB1

)
·B1 −E

[(
LB1 −ELB1

)
·B1

]
, (159)

with (Bs, 0 ≤ s ≤ 1) being standard Brownian motion of R and HB
1 = sup0≤s≤1Bs,

LB1 = inf0≤s≤1Bs.

Proof. The proof follows the same procedure as the proof of Proposition 6.2.6.
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