Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal

Ronald B. Jensen

ii

Preface

Here are the first three chapters of a prospective book. It is intended to provide a detailed introduction to fine structure theory, ultimately leading up to a proof of the Covering Lemma for the Core Model under the assumption that there is no inner model with a Woodin cardinal.

I am grateful to various colleagues who have helped and encouraged me in this project. I especially want to thank Ralf Schindler, who has provided steadfast support at every stage. I am completely dependent on technical typing and, therefore, owe a special debt to Ms. Martina Pfeiffer, who typed the initial sections, and to Dr. Fabiana Castiblanco, who very competently continued this work.

A group of "anonymous donors", unknown to me, is helping to defray the cost of producing the manuscript. For this I am exceedingly grateful. Last but not least I thank my wife Hilde, who gives me the strength to continue.

Ronald Jensen

iv

Contents

0	Preliminaries					
1	Transfinite Recursion Theory					
	1.1	Admissibility		9		
		1.1.1	Introduction	9		
		1.1.2	Properties of admissible structures	11		
		1.1.3	The constructible hierarchy	19		
	1.2 Primitive Recursive Set Functions			22		
		1.2.1	PR Functions	22		
		1.2.2	PR Definitions	30		
	1.3	Ill four	nded ZF^- models	32		
	1.4 Barwise Theory		se Theory	35		
		1.4.1	Syntax	35		
		1.4.2	Models	40		
		1.4.3	Applications	42		
2	Bas	ic Fine	e Structure Theory	47		
	2.1 Introduction		uction	47		
	2.2	Rudin	nentary Functions	49		

CONTENTS

		2.2.1	Condensation
	2.3	The J_{c}	$_{\alpha}$ hierarchy
		2.3.1	The J^A_{α} -hierarchy
	2.4	J-moo	dels
	2.5	The Σ	$_1$ projectum $\ldots \ldots 83$
		2.5.1	Acceptability 83
		2.5.2	The projectum
		2.5.3	Soundness and iterated projecta
	2.6	Σ^* -the	eory
	2.7	Liftup	s
		2.7.1	The Σ_0 liftup
		2.7.2	The $\Sigma_0^{(n)}$ liftup
3	Mic		151
3	Mic		151
3	Mic 3.1		151 uction
3		Introd	
3	3.1	Introd	uction
3	3.1	Introd Exten	uction
3	3.1	Introd Extend 3.2.1	uction 151 ders 155 Extendability 163
3	3.1	Introd Extend 3.2.1 3.2.2	uction151ders155Extendability163Fine Structural Extensions165
3	3.1	Introd Extend 3.2.1 3.2.2 3.2.3 3.2.4	uction 151 ders 155 Extendability 163 Fine Structural Extensions 165 <i>n</i> -extendibility 170
3	3.1	Introd Extend 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	uction151ders155Extendability163Fine Structural Extensions165 n -extendibility170*-extendability174
3	3.1	Introd Extend 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Premie	uction151ders155Extendability163Fine Structural Extensions165 n -extendibility170*-extendability174Good Parameters177
3	3.13.23.3	Introd Extend 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Premie	uction 151 ders 155 Extendability 163 Fine Structural Extensions 165 <i>n</i> -extendibility 170 *-extendability 174 Good Parameters 177 ce 182

CONTENTS

	3.4.3	Padded iterations
	3.4.4	n-iteration
	3.4.5	Copying an iteration
	3.4.6	Copying an n -iteration
3.5	Iterabi	lity
	3.5.1	Normal iterability
	3.5.2	The comparison iteration
	3.5.3	n-normaliterability
	3.5.4	Iteration strategy and copying
	3.5.5	Full iterability
	3.5.6	The Dodd–Jensen Lemma
	3.5.7	Copying a full iteration
	3.5.8	The Neeman–Steel lemma
	3.5.9	Smooth iterability
	3.5.10	n-full iterability
3.6	Verifyi	ng full iterability 240
	3.6.1	Introduction
	3.6.2	Pseudo projecta
	3.6.3	Mirrors
	3.6.4	The conclusion
3.7	Smoot	h Iterability
	3.7.1	Insertions
	3.7.2	Reiterations
	3.7.3	A first conclusion

Table of contents

		3.7.4	Reiteration and Inflation	32
		3.7.5	Smooth Reiterability	349
		3.7.6	The final conclusion 3	57
	3.8	Uniqu	e Iterability	666
		3.8.1	One small mice	66
		3.8.2	Woodiness and non unique branches	68
		3.8.3	One smallness and unique branches	82
4	Pro	perties	s of Mice 3	89
4	Pro 4.1	-		
4		Solidit	s of Mice 3	89
4	4.1	Solidit Phala	y	89 00
4	4.1 4.2	Solidit Phala	y	89 00
4	4.1 4.2	Solidit Phala Solidit	ay	89 00 31

Chapter 0

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing $\{x|\varphi(x)\}$ for the class of x such that $\varphi(x)$. We also write:

$$\{ t(x_1, \dots, x_n) | \varphi(x_1, \dots, x_n) \}, \text{ (where e.g.}$$

$$t(x_1, \dots, x_n) = \{ y | \psi(y, x_1, \dots, x_n) \})$$

for:

$$\{y|\bigvee x_1,\ldots,x_n(y=t(x_1,\ldots,x_n)\wedge\varphi(x_1,\ldots,x_n))\}$$

We also write

$$\mathbb{P}(A) = \{z | z \subset A\}, A \cup B = \{z | z \in A \lor z \in B\}$$
$$A \cap B = \{z | z \in A \land z \in B\}, \neg A = \{z | \notin A\}$$

- (2) Our notation for ordered *n*-tuples is $\langle x_1, \ldots, x_n \rangle$. This can be defined in many ways and we don't specify a definition.
- (3) An *n*-ary relation is a class of *n*-tuples. The following operations are defined for all classes, but are mainly relevant for binary relations:

 $\begin{array}{l} \operatorname{dom}(R) \coloneqq \{x | \bigvee y \langle y, x \rangle \in R\} \\ \operatorname{rng}(R) \coloneqq \{y | \bigvee x \langle y, x \rangle \in R\} \\ R \circ P = \{\langle y, x \rangle | \bigvee z | \langle y, z \rangle \in R \land \langle z, x \rangle \in P\} \\ R \upharpoonright A = \{\langle y, x \rangle | \langle y, x \rangle \in R \land x \in A\} \\ R^{-1} = \{\langle y, x \rangle | \langle x, y \rangle \in R\} \end{array}$

We write $R(x_1, \ldots, x_n)$ for $\langle x_1, \ldots, x_n \rangle \in R$.

(4) A function is identified with its extension or field — i.e. an n-ary function is an n + 1-ary relation F such that

$$\bigwedge x_1 \dots x_n \bigwedge z \bigwedge w((F(z, x_1, \dots, x_n) \land F(w, x_1, \dots, x_n)) \to z = w)$$

 $F(x_1,\ldots,x_n)$ then denotes the value of F at x_1,\ldots,x_n .

(5) "Functional abstraction" $\langle t_{x_1,\dots,x_n} | \varphi(x_1,\dots,x_n) \rangle$ denotes the function which is defined and takes value t_{x_1,\dots,x_n} whenever $\varphi(x_1,\dots,x_n)$ and t_{x_1,\dots,x_n} is a set:

$$\begin{aligned} \langle t_{x_1,\dots,x_n} | \varphi(x_1,\dots,x_n) \rangle &=: \\ \{ \langle y, x_1,\dots,x_n \rangle | y = t_{x_1,\dots,x_n} \land \varphi(x_1,\dots,x_n) \}, \end{aligned}$$

where e.g. $t_{x_1,...,x_n} = \{z | \psi(z, x_1, \dots, x_n)\}.$

(6) Ordinal numbers are defined in the usual way, each ordinal being identified with the set of its predecessors: α = {ν|ν < α}. The natural numbers are then the finite ordinals: 0 = Ø, 1 = {0}, ..., n = {0, ..., n - 1}. On is the class of all ordinals. We shall often employ small greek letters as variables for ordinals. (Hence e.g. {α|φ(α)} means {x|x ∈ On ∧φ(x)}.) We set:</p>

$$\sup A :=: \bigcup (A \cap \operatorname{On}), \text{ inf } A :=: \bigcap (A \wedge \operatorname{On})$$
$$\operatorname{lub} A :=: \sup \{ \alpha + 1 | \alpha \in A \}.$$

(7) A note on ordered n-tuples. A frequently used definition of ordered pairs is:

$$\langle x, y \rangle =: \{\{x\}, \{x, y\}\}.$$

One can then define n-tuples by:

$$\langle x \rangle =: x, \langle x_1, x_2, \dots, x_n \rangle =: \langle x_1, \langle x_1, \dots, x_n \rangle \rangle.$$

However, this has the disadvantage that every n + 1-tuple is also an n-tuple. If we want each tuple to have a fixed length, we could instead identify the n-tuples with vector of length n — i.e. functions with domain n. This would be circular, of course, since we must have a notion of ordered pair in order to define the notion of "function". Thus, if we take this course, we must first make a "preliminary definition" of ordered pairs — for instance:

$$(x, y) =: \{\{x\}, \{x, y\}\}$$

and then define:

$$\langle x_0, \dots, x_{n-1} \rangle = \{ (x_0, 0), \dots, (x_{n-1}, n-1) \}.$$

If we wanted to form *n*-tuples of proper classes, we could instead identify $\langle A_0, \ldots, A_{n-1} \rangle$ with:

$$\{\langle x,i\rangle | (i=0 \land x \in A_0) \lor \ldots \lor (i=n-1 \land x \in A_{n-1})\}.$$

(8) Overhead arrow notation. The symbol x is often used to donate a vector ⟨x₁,...,x_n⟩. It is not surprising that this usage shades into what I shall call the *informal mode* of overhead arrow notation. In this mode x simply stands for a string of symbols x₁,...,x_n. Thus we write f(x) for f(x₁,...,x_n), which is different from f(⟨x₁,...,x_n⟩). (In informal mode we would write the latter as f(⟨x⟩).) Similarly, x ∈ A means that each of x₁,...,x_n is an element of A, which is different from ⟨x⟩ ∈ A. We can, of course, combine several arrows in the same expression. For instance we can write f(g(x)) for f(g₁(x₁,...,x_n),...,g_m(x₁,...,x_n)). Similarly we can write f(g(x)) or f(g(x)) for

$$f(g_1(x_{1,1},\ldots,x_{1,p_1}),\ldots,g_m(x_{m,1},\ldots,x_{m,p_m})).$$

The precise meaning must be taken from the context. We shall often have recourse to such abbreviations. To avoid confusion, therefore, we shall use overhead arrow notation *only* in the informal mode.

- (9) A model or structure will for us normally mean an n+1-tuple ⟨D, A₁,..., A_n⟩ consisting of a domain D of individuals, followed by relations on that domain. If φ is a first order formula, we call a sequence v₁,..., v_n of distinct variables good for φ iff every free variable of φ occurs in the sequence. If M is a model, φ a formula, v₁,..., v_n a good sequence for φ and x₁,..., x_n ∈ M, we write: M ⊨ φ(v₁,..., v_n)[x₁,..., x_n] to mean that φ becomes true in M if v_i is interpreted by x_i for i = 1,..., n. This is the satisfaction relation. We assume that the reader knows how to define it. As usual, we often suppress the list of variables, writing only M ⊨ φ[x₁,..., x_n]. We may sometimes indicate the variables being used by writing e.g. φ = φ(v₁,..., v_n).
- (10) \in -models. $M = \langle D, E, A_1, \ldots, A_n \rangle$ is an \in -model iff E is the restriction of the \in -relation to D^2 . Most of the models we consider will be \in -models. We then write $\langle D, \in, A_1, \ldots, A_n \rangle$ or even $\langle D, A_1, \ldots, A_n \rangle$ for $\langle D, \in \cap D^2, A_1, \ldots, A_n \rangle$. M is transitive iff it is an \in -model and D is transitive.
- (11) The Levy hierarchy. We often write $\bigwedge x \in y\varphi$ for $\bigwedge x(x \in y \to \varphi)$, and $\bigvee x \in y\varphi$ for $\bigvee x(x \in y \land \varphi)$. Azriel Levy defined a hierarchy of formulae as follows:

A formula is Σ_0 (or Π_0) iff it is in the smallest class Σ of formulae such that every primitive formula is in Σ and $\bigwedge v \in u\varphi$, $\bigvee v \in u\varphi$ are in Σ whenever φ is in Σ and v, u are distinct variables.

(Alternatively we could introduce $\bigwedge v \in u$, $\bigvee v \in u$ as part of the primitive notation. We could then define a formula as being Σ_0 iff it contains no unbounded quantifiers.)

The Σ_{n+1} formulae are then the formulae of the form $\bigvee v\varphi$, where φ is Π_n . The Π_{n+1} formulae are the formulae of the form $\bigwedge v\varphi$ when φ is Σ_n .

If M is a transitive model, we let $\Sigma_n(M)$ denote the set of realations on M which are definable by a Σ_n formula. Similarly for $\Pi_n(M)$. We say that a relation R is $\Sigma_n(M)(\Pi_n(M))$ in parameters p_1, \ldots, p_m iff

$$R(x_1,\ldots,x_n) \leftrightarrow R'(x_1,\ldots,x_n,p_1,\ldots,p_m)$$

and R' is $\Sigma_n(M)(\Pi_n(M))$. $\underline{\Sigma}_1(M)$ then denotes the set of relations which are $\Sigma_1(M)$ in some parameters. Similarly for $\underline{\Pi}_1(M)$.

(12) Kleene's equation sign. An equation $L \simeq R$ means: 'The left side is defined if and only if everything on the right side is defined, in which case the sides are equal'. This is of course not a strict definition and must be interpreted from case to case.

 $F(\vec{x}) \simeq G(H_1(\vec{x}), \ldots, H_n(\vec{x}))$ obviously means that the function F is defined at $\langle x_1, \ldots, x_n \rangle$ iff each of the H_i is defined at $\langle \vec{x} \rangle$ and G is defined at $\langle H_1(\vec{x}), \ldots, H_n(\vec{x}) \rangle$, in which case equality holds.

The recursion schema of set theory says that, given a function G, there is a function F with:

$$F(y, \vec{x}) \simeq G(y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle).$$

This says that F is defined at $\langle y, \vec{x} \rangle$ iff F is defined at $\langle z, \vec{x} \rangle$ for all $z \in y$ and G is defined at $\langle y, \vec{x}, \langle F(z, \vec{x}) | z \in y \rangle \rangle$, in which case equality holds.

(13) By the recursion theorem we can define:

$$TC(x) = x \cup \bigcup_{z \in x} TC(z)$$

(the transitive closure of x)

$$\operatorname{rn}(x) = \operatorname{lub}\{\operatorname{rn}(z) | z \in x\}$$

(the rank of x).

(14) By a normal ultrafilter on κ we mean an ultrafilter U on $\mathbb{P}(\kappa)$ with the property that whenever $f : \kappa \to \kappa$ is regressive modulo U (i.e. $\{\nu|f(\nu) < \nu\} \in U$), then there is $\alpha < \kappa$ such that $\{\nu|f(\nu) < \nu\} \in U$. Each normal ultrafilter determines an elementary embedding π of Vinto an inner model W. Letting

D = the class of functions f with domain κ ,

we can characterize the pair $\langle W, \pi \rangle$ uniquely by the conditions:

- $\pi: V \prec W$ and write $(\pi) = \kappa$
- $W = \{\pi(f)(\nu) | \kappa \in D\}$

•
$$\pi(f)(\nu) \in \pi(g)(\kappa) \leftrightarrow \{\nu | f(\nu) \in g(\nu)\} \in U.$$

U can then be recovered from π by:

$$U = \{ x \subset \kappa | \kappa \in \pi(x) \}.$$

We shall call $\langle W, \pi \rangle$ the extension of V by U. W can be defined from U by the well known ultrapower construction: We first define a "term model" $\mathbb{D} = \langle D, \cong, \tilde{\in} \rangle$ by:

$$f \cong g \leftrightarrow: \{\nu | f(\nu) = g(\nu)\} \in U$$
$$f \in g \leftrightarrow: \{\nu | f(\nu) = g(\nu)\} \in U.$$

 \mathbb{D} is an *equality model* in the sense that \cong is not the identity relation but rather a congruence relation for \mathbb{D} . We can then factor \mathbb{D} by \cong , getting an identity model $\mathbb{D} \setminus \cong$, whose are the equivalence classes:

$$[x] = \{y|y \cong x\}$$

 $\mathbb{D} \setminus \cong$ turns out to be isomorphic to an inner model W. If σ is the isomorphism, we can define π by:

$$\pi(x) = \sigma([\text{const}_x])$$

where const_x is the constant function x defined on κ . W is then called the *ultrapower of V by U*. π is called the *canonical embedding*.

(15) (Extenders) The normal ultrafilter is one way of coding an embedding of V into an inner model by a set. However, many embeddings cannot be so coded, since $\pi(\kappa) \leq 2^{\kappa}$ whenever $\langle W, \pi \rangle$ is the extension by U. If we wish to surmount this restriction, we can use *extenders* in place of ultrafilters. (The extenders we shall deal with are also known as "short extenders".)

An extender F at κ maps $\bigcup_{n < \omega} \mathbb{P}(u^n)$ into $\bigcup_{n < \omega} \mathbb{P}(\lambda^n)$ for $a\lambda > u$.

It engenders an embedding π of V into an inner model W characterized by:

- $\pi: V \prec W \operatorname{crit}(\pi = \kappa)$
- Every element of W has the form $\pi(f)(\vec{\alpha})$ where $\alpha_1, \ldots, \alpha_n < \lambda$ and f is a function with domain κ^n
- $\pi(f)(\vec{\alpha}) \in \pi(g)(\vec{\alpha}) \leftrightarrow \langle \vec{\alpha} \rangle \in \pi(\{\langle \vec{\xi} \rangle | f(\vec{\xi}) \in g(\vec{\xi})\})$

F is then recoverable from $\langle W, \pi \rangle$ by:

$$F(X) = \pi(X) \cap \lambda^n$$
 for $X \subset \kappa^n$.

The concept "F is an extender" can be defined in ZFC, but we defer that to Chapter 3. If $\langle W, \pi \rangle$ is as above, we call it the *extension* of V by F. We also call W the *ultrapower* of V by F and π the *canonical* embedding. $\langle W, \pi \rangle$ can be obtained from F by a "term model" construction analogous to that described above.

(16) (Large Cardinals)

Definition 0.0.1. We call a cardinal κ strong iff for all $\beta > \kappa$ there is an extender F such that if $\langle W, \pi \rangle$ is the extension of V by F, then $V_{\beta} \subset W$.

Definition 0.0.2. Let A be any class. κ is A-strong iff for all $\beta > \kappa$ there is F such that letting $\langle W, \pi \rangle$ be the extension of V by F, we have:

$$A \cap V_{\beta} = \pi(A) \cap V_{\beta}.$$

These concepts can of course be relativized to V_{τ} in place of V when τ is strongly inaccessible. We then say that κ is strong (or A-strong) up to τ .)

Definition 0.0.3. τ is *Woodin* iff τ is strongly inaccessible and for every $A \subset V_{\tau}$ there is $\kappa < \tau$ which is strong up to τ .

(17) (Embeddings)

Definition 0.0.4. Let M, M' be \in -structures and let π be a structure preserving embeddings of M into M'. We say that π is Σ_n -preserving (in symbols: $\pi : M \to_{\Sigma_n} M'$) iff for all Σ_n formulae we have:

$$M \models \varphi[a_1, \dots, a_n] \leftrightarrow M' \models \varphi[\pi(a_1), \dots, (a_n)]$$

for $a_1, \ldots, a_n \in M$. It is *elementary* (in symbols: $\pi : M \prec M'$ of $\pi : M \to_{\Sigma_{\omega}} M'$) iff the above holds for *all* formulae φ of the M-sprache. It is easily seen that π is elementary iff it is Σ_n -preserving for all $n < \omega$.

We say that π is cofinal iff $M' = \bigcup_{u \in M} \pi(u)$.

We note the following facts, which we shall occasionally use:

Fact 1 Let $\pi: M \to_{\Sigma_0} M'$ cofinally. Then π is Σ_1 -preserving.

Fact 2 Let $\pi : M \to_{\Sigma_0} M'$ cofinally, where M is a ZFC^- model. Then M' is a ZFC^- model and π is elementary.

Fact 3 Let $\pi : M \to_{\Sigma_0} M'$ cofinally where M' is a ZFC^- model. Then M is a ZFC^- model and π is elementary.

We call an ordinal κ the *critical point* of an embedding $\pi : M \to M'$ (in symbols: $\kappa = \operatorname{crit}(\pi)$) iff $\pi \upharpoonright \kappa = \operatorname{id}$ and $\pi(\kappa) > \kappa$.