Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal

Ronald B. Jensen

Preface

Here are the first three chapters of a prospective book. It is intended to provide a detailed introduction to fine structure theory, ultimately leading up to a proof of the Covering Lemma for the Core Model under the assumption that there is no inner model with a Woodin cardinal.

I am grateful to various colleagues who have helped and encouraged me in this project. I especially want to thank Ralf Schindler, who has provided steadfast support at every stage. I am completely dependent on technical typing and, therefore, owe a special debt to Ms. Martina Pfeiffer, who typed the initial sections, and to Dr. Fabiana Castiblanco, who very competently continued this work.

A group of "anonymous donors", unknown to me, is helping to defray the cost of producing the manuscript. For this I am exceedingly grateful. Last but not least I thank my wife Hilde, who gives me the strength to continue.

Contents

0 Preliminaries 1
1 Transfinite Recursion Theory 9
1.1 Admissibility 9
1.1.1 Introduction 9
1.1.2 Properties of admissible structures 11
1.1.3 The constructible hierarchy 19
1.2 Primitive Recursive Set Functions 22
1.2.1 $P R$ Functions 22
1.2.2 PR Definitions 30
1.3 Ill founded $Z F^{-}$models 32
1.4 Barwise Theory 35
1.4.1 Syntax 35
1.4.2 Models 40
1.4.3 Applications 42
2 Basic Fine Structure Theory 47
2.1 Introduction 47
2.2 Rudimentary Functions 49
2.2.1 Condensation 63
2.3 The J_{α} hierarchy 64
2.3.1 The J_{α}^{A}-hierarchy 70
$2.4 J$-models 74
2.5 The Σ_{1} projectum 83
2.5.1 Acceptability 83
2.5.2 The projectum 86
2.5.3 Soundness and iterated projecta 93
$2.6 \Sigma^{*}$-theory 99
2.7 Liftups 126
2.7.1 The Σ_{0} liftup 126
2.7.2 The $\Sigma_{0}^{(n)}$ liftup 132
3 Mice 151
3.1 Introduction 151
3.2 Extenders 155
3.2.1 Extendability 163
3.2.2 Fine Structural Extensions 165
3.2.3 n-extendibility 170
3.2.4 *-extendability 174
3.2.5 Good Parameters 177
3.3 Premice 182
3.4 Iterating premice 201
3.4.1 Introduction 201
3.4.2 Normal iteration 204
CONTENTS vii
3.4.3 Padded iterations 211
3.4.4 n-iteration 213
3.4.5 Copying an iteration 215
3.4.6 Copying an n-iteration 220
3.5 Iterability 221
3.5.1 Normal iterability 221
3.5.2 The comparison iteration 223
3.5.3 n-normaliterability 227
3.5.4 Iteration strategy and copying 227
3.5.5 Full iterability 227
3.5.6 The Dodd-Jensen Lemma 231
3.5.7 Copying a full iteration 233
3.5.8 The Neeman-Steel lemma 234
3.5.9 Smooth iterability 238
3.5.10 n-full iterability 238
3.6 Verifying full iterability 240
3.6.1 Introduction 240
3.6.2 Pseudo projecta 241
3.6.3 Mirrors 260
3.6.4 The conclusion 276
3.7 Smooth Iterability 282
3.7.1 Insertions 282
3.7.2 Reiterations 302
3.7.3 A first conclusion 327
3.7.4 Reiteration and Inflation 332
3.7.5 Smooth Reiterability 349
3.7.6 The final conclusion 357
3.8 Unique Iterability 366
3.8.1 One small mice 366
3.8.2 Woodiness and non unique branches 368
3.8.3 One smallness and unique branches 382
4 Properties of Mice 389
4.1 Solidity 389
4.2 Phalanx Iteration 400
4.3 Solidity and Condensation 431
4.3.1 Solidity 432
4.3.2 Soundness and Cores 438
4.3.3 Condensation 442

Chapter 0

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing $\{x \mid \varphi(x)\}$ for the class of x such that $\varphi(x)$. We also write:

$$
\begin{aligned}
& \left\{t\left(x_{1}, \ldots, x_{n}\right) \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\}, \text { (where e.g. } \\
& \left.t\left(x_{1}, \ldots, x_{n}\right)=\left\{y \mid \psi\left(y, x_{1}, \ldots, x_{n}\right)\right\}\right)
\end{aligned}
$$

for:

$$
\left\{y \mid \bigvee x_{1}, \ldots, x_{n}\left(y=t\left(x_{1}, \ldots, x_{n}\right) \wedge \varphi\left(x_{1}, \ldots, x_{n}\right)\right)\right\}
$$

We also write

$$
\begin{aligned}
& \mathbb{P}(A)=\{z \mid z \subset A\}, A \cup B=\{z \mid z \in A \vee z \in B\} \\
& A \cap B=\{z \mid z \in A \wedge z \in B\}, \neg A=\{z \mid \notin A\}
\end{aligned}
$$

(2) Our notation for ordered n-tuples is $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. This can be defined in many ways and we don't specify a definition.
(3) An n-ary relation is a class of n-tuples. The following operations are defined for all classes, but are mainly relevant for binary relations:

$$
\begin{aligned}
& \operatorname{dom}(R)=:\{x \mid \bigvee y\langle y, x\rangle \in R\} \\
& \operatorname{rng}(R)=:\{y \mid \bigvee x\langle y, x\rangle \in R\} \\
& R \circ P=\{\langle y, x\rangle|\bigvee z|\langle y, z\rangle \in R \wedge\langle z, x\rangle \in P\} \\
& R \upharpoonright A=\{\langle y, x\rangle \mid\langle y, x\rangle \in R \wedge x \in A\} \\
& R^{-1}=\{\langle y, x\rangle \mid\langle x, y\rangle \in R\}
\end{aligned}
$$

We write $R\left(x_{1}, \ldots, x_{n}\right)$ for $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in R$.
(4) A function is identified with its extension or field - i.e. an n-ary function is an $n+1$-ary relation F such that

$$
\begin{gathered}
\bigwedge x_{1} \ldots x_{n} \bigwedge z \bigwedge w\left(\left(F\left(z, x_{1}, \ldots, x_{n}\right) \wedge F\left(w, x_{1}, \ldots, x_{n}\right)\right) \rightarrow\right. \\
\rightarrow z=w)
\end{gathered}
$$

$F\left(x_{1}, \ldots, x_{n}\right)$ then denotes the value of F at x_{1}, \ldots, x_{n}.
(5) "Functional abstraction" $\left\langle t_{x_{1}, \ldots, x_{n}} \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$ denotes the function which is defined and takes value $t_{x_{1}, \ldots, x_{n}}$ whenever $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $t_{x_{1}, \ldots, x_{n}}$ is a set:

$$
\begin{aligned}
& \left\langle t_{x_{1}, \ldots, x_{n}} \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\rangle=: \\
& \left\{\left\langle y, x_{1}, \ldots, x_{n}\right\rangle \mid y=t_{x_{1}, \ldots, x_{n}} \wedge \varphi\left(x_{1}, \ldots, x_{n}\right)\right\},
\end{aligned}
$$

where e.g. $t_{x_{1}, \ldots, x_{n}}=\left\{z \mid \psi\left(z, x_{1}, \ldots, x_{n}\right)\right\}$.
(6) Ordinal numbers are defined in the usual way, each ordinal being identified with the set of its predecessors: $\alpha=\{\nu \mid \nu<\alpha\}$. The natural numbers are then the finite ordinals: $0=\emptyset, 1=\{0\}, \ldots, n=$ $\{0, \ldots, n-1\}$. On is the class of all ordinals. We shall often employ small greek letters as variables for ordinals. (Hence e.g. $\{\alpha \mid \varphi(\alpha)\}$ means $\{x \mid x \in \operatorname{On} \wedge \varphi(x)\}$.) We set:

$$
\begin{aligned}
& \sup A=: \bigcup(A \cap \mathrm{On}), \inf A=: \bigcap(A \wedge \mathrm{On}) \\
& \operatorname{lub} A=: \sup \{\alpha+1 \mid \alpha \in A\} .
\end{aligned}
$$

(7) A note on ordered n-tuples. A frequently used definition of ordered pairs is:

$$
\langle x, y\rangle=:\{\{x\},\{x, y\}\} .
$$

One can then define n-tuples by:

$$
\langle x\rangle=: x,\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=:\left\langle x_{1},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right\rangle .
$$

However, this has the disadvantage that every $n+1$-tuple is also an n-tuple. If we want each tuple to have a fixed length, we could instead identify the n-tuples with vecton of length n - i.e. functions with domain n. This would be circular, of course, since we must have a notion of ordered pair in order to define the notion of "function". Thus, if we take this course, we must first make a "preliminary definition" of ordered pairs - for instance:

$$
(x, y)=:\{\{x\},\{x, y\}\}
$$

and then define:

$$
\left\langle x_{0}, \ldots, x_{n-1}\right\rangle=\left\{\left(x_{0}, 0\right), \ldots,\left(x_{n-1}, n-1\right)\right\}
$$

If we wanted to form n-tuples of proper classes, we could instead identify $\left\langle A_{0}, \ldots, A_{n-1}\right\rangle$ with:

$$
\left\{\langle x, i\rangle \mid\left(i=0 \wedge x \in A_{0}\right) \vee \ldots \vee\left(i=n-1 \wedge x \in A_{n-1}\right)\right\}
$$

(8) Overhead arrow notation. The symbol \vec{x} is often used to donate a vector $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. It is not surprising that this usage shades into what I shall call the informal mode of overhead arrow notation. In this mode \vec{x} simply stands for a string of symbols x_{1}, \ldots, x_{n}. Thus we write $f(\vec{x})$ for $f\left(x_{1}, \ldots, x_{n}\right)$, which is different from $f\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$. (In informal mode we would write the latter as $f(\langle\vec{x}\rangle)$.) Similarly, $\vec{x} \in A$ means that each of x_{1}, \ldots, x_{n} is an element of A, which is different from $\langle\vec{x}\rangle \in A$. We can, of course, combine several arrows in the same expression. For instance we can write $f(\vec{g}(\vec{x}))$ for $f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$. Similarly we can write $f(g(\vec{x}))$ or $f(\vec{g}(\vec{x}))$ for

$$
f\left(g_{1}\left(x_{1,1}, \ldots, x_{1, p_{1}}\right), \ldots, g_{m}\left(x_{m, 1}, \ldots, x_{m, p_{m}}\right)\right)
$$

The precise meaning must be taken from the context. We shall often have recourse to such abbreviations. To avoid confusion, therefore, we shall use overhead arrow notation only in the informal mode.
(9) A model or structure will for us normally mean an $n+1$-tuple $\left\langle D, A_{1}, \ldots, A_{n}\right\rangle$ consisting of a domain D of individuals, followed by relations on that domain. If φ is a first order formula, we call a sequence v_{1}, \ldots, v_{n} of distinct variables good for φ iff every free variable of φ occurs in the sequence. If M is a model, φ a formula, v_{1}, \ldots, v_{n} a good sequence for φ and $x_{1}, \ldots, x_{n} \in M$, we write: $M \models \varphi\left(v_{1}, \ldots, v_{n}\right)\left[x_{1}, \ldots, x_{n}\right]$ to mean that φ becomes true in M if v_{i} is interpreted by x_{i} for $i=1, \ldots, n$. This is the satisfaction relation. We assume that the reader knows how to define it. As usual, we often suppress the list of variables, writing only $M \models \varphi\left[x_{1}, \ldots, x_{n}\right]$. We may sometimes indicate the variables being used by writing e.g. $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$.
(10) \in-models. $M=\left\langle D, E, A_{1}, \ldots, A_{n}\right\rangle$ is an \in-model iff E is the restriction of the \in-relation to D^{2}. Most of the models we consider will be $\in-$ models. We then write $\left\langle D, \in, A_{1}, \ldots, A_{n}\right\rangle$ or even $\left\langle D, A_{1}, \ldots, A_{n}\right\rangle$ for $\left\langle D, \in \cap D^{2}, A_{1}, \ldots, A_{n}\right\rangle . M$ is transitive iff it is an \in - model and D is transitive.
(11) The Levy hierarchy. We often write $\Lambda x \in y \varphi$ for $\bigwedge x(x \in y \rightarrow \varphi)$, and $\bigvee x \in y \varphi$ for $\bigvee x(x \in y \wedge \varphi)$. Azriel Levy defined a hierarchy of formulae as follows:

A formula is $\Sigma_{0}\left(\right.$ or $\left.\Pi_{0}\right)$ iff it is in the smallest class Σ of formulae such that every primitive formula is in Σ and $\bigwedge v \in u \varphi, \bigvee v \in u \varphi$ are in Σ whenever φ is in Σ and v, u are distinct variables.
(Alternatively we could introduce $\bigwedge v \in u, \bigvee v \in u$ as part of the primitive notation. We could then define a formula as being Σ_{0} iff it contains no unbounded quantifiers.)

The Σ_{n+1} formulae are then the formulae of the form $\bigvee v \varphi$, where φ is Π_{n}. The Π_{n+1} formulae are the formulae of the form $\Lambda v \varphi$ when φ is Σ_{n}.
If M is a transitive model, we let $\Sigma_{n}(M)$ denote the set of realations on M which are definable by a Σ_{n} formula. Similarly for $\Pi_{n}(M)$. We say that a relation R is $\Sigma_{n}(M)\left(\Pi_{n}(M)\right)$ in parameters p_{1}, \ldots, p_{m} iff

$$
R\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow R^{\prime}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{m}\right)
$$

and R^{\prime} is $\Sigma_{n}(M)\left(\Pi_{n}(M)\right) . \underline{\Sigma}_{1}(M)$ then denotes the set of relations which are $\Sigma_{1}(M)$ in some parameters. Similarly for $\underline{\Pi}_{1}(M)$.
(12) Kleene's equation sign. An equation ' $L \simeq R$ ' means: 'The left side is defined if and only if everything on the right side is defined, in which case the sides are equal'. This is of course not a strict definition and must be interpreted from case to case.
$F(\vec{x}) \simeq G\left(H_{1}(\vec{x}), \ldots, H_{n}(\vec{x})\right)$ obviously means that the function F is defined at $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ iff each of the H_{i} is defined at $\langle\vec{x}\rangle$ and G is defined at $\left\langle H_{1}(\vec{x}), \ldots, H_{n}(\vec{x})\right\rangle$, in which case equality holds.
The recursion schema of set theory says that, given a function G, there is a function F with:

$$
F(y, \vec{x}) \simeq G(y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle) .
$$

This says that F is defined at $\langle y, \vec{x}\rangle$ iff F is defined at $\langle z, \vec{x}\rangle$ for all $z \in y$ and G is defined at $\langle y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle\rangle$, in which case equality holds.
(13) By the recursion theorem we can define:

$$
T C(x)=x \cup \bigcup_{z \in x} T C(z)
$$

(the transitive closure of x)

$$
\operatorname{rn}(x)=\operatorname{lub}\{\operatorname{rn}(z) \mid z \in x\}
$$

(the rank of x).
(14) By a normal ultrafilter on κ we mean an ultrafilter U on $\mathbb{P}(\kappa)$ with the property that whenever $f: \kappa \rightarrow \kappa$ is regressive modulo U (i.e. $\{\nu \mid f(v)<\nu\} \in U)$, then there is $\alpha<\kappa$ such that $\{\nu \mid f(\nu)<\nu\} \in U$. Each normal ultrafilter determines an elementary embedding π of V into an inner model W. Letting

$$
D=\text { the class of functions } f \text { with domain } \kappa,
$$

we can characterize the pair $\langle W, \pi\rangle$ uniquely by the conditions:

- $\pi: V \prec W$ and write $(\pi)=\kappa$
- $W=\{\pi(f)(\nu) \mid \kappa \in D\}$
- $\pi(f)(\nu) \in \pi(g)(\kappa) \leftrightarrow\{\nu \mid f(\nu) \in g(\nu)\} \in U$.
U can then be recovered from π by:

$$
U=\{x \subset \kappa \mid \kappa \in \pi(x)\} .
$$

We shall call $\langle W, \pi\rangle$ the extension of V by $U . W$ can be defined from U by the well known ultrapower construction: We first define a "term model" $\mathbb{D}=\langle D, \cong \tilde{\epsilon}\rangle$ by:

$$
\begin{aligned}
& f \cong g \leftrightarrow:\{\nu \mid f(\nu)=g(\nu)\} \in U \\
& f \tilde{\in} g \leftrightarrow:\{\nu \mid f(\nu)=g(\nu)\} \in U .
\end{aligned}
$$

\mathbb{D} is an equality model in the sense that \cong is not the identity relation but rather a congruence relation for \mathbb{D}. We can then factor \mathbb{D} by \cong, getting an identity model $\mathbb{D} \backslash \cong$, whose are the equivalence classes:

$$
[x]=\{y \mid y \cong x\}
$$

$\mathbb{D} \backslash \cong$ turns out to be isomorphic to an inner model W. If σ is the isomorphism, we can define π by:

$$
\pi(x)=\sigma\left(\left[\text { const }_{x}\right]\right)
$$

where const ${ }_{x}$ is the constant function x defined on κ. W is then called the ultrapower of V by $U . \pi$ is called the canonical embedding.
(15) (Extenders) The normal ultrafilter is one way of coding an embedding of V into an inner model by a set. However, many embeddings cannot be so coded, since $\pi(\kappa) \leq 2^{\kappa}$ whenever $\langle W, \pi\rangle$ is the extension by U. If we wish to surmount this restriction, we can use extenders in place of ultrafilters. (The extenders we shall deal with are also known as "short extenders".)
An extender F at κ maps $\bigcup_{n<\omega} \mathbb{P}\left(u^{n}\right)$ into $\bigcup_{n<\omega} \mathbb{P}\left(\lambda^{n}\right)$ for $a \lambda>u$.
It engenders an embedding π of V into an inner model W characterized by:

- $\pi: V \prec W \operatorname{crit}(\pi=\kappa)$
- Every element of W has the form $\pi(f)(\vec{\alpha})$ where $\alpha_{1}, \ldots, \alpha_{n}<\lambda$ and f is a function with domain κ^{n}
- $\pi(f)(\vec{\alpha}) \in \pi(g)(\vec{\alpha}) \leftrightarrow\langle\vec{\alpha}\rangle \in \pi(\{\langle\vec{\xi}\rangle \mid f(\vec{\xi}) \in g(\vec{\xi})\})$
F is then recoverable from $\langle W, \pi\rangle$ by:

$$
F(X)=\pi(X) \cap \lambda^{n} \text { for } X \subset \kappa^{n}
$$

The concept " F is an extender" can be defined in ZFC, but we defer that to Chapter 3. If $\langle W, \pi\rangle$ is as above, we call it the extension of V by F. We also call W the ultrapower of V by F and π the canonical embedding. $\langle W, \pi\rangle$ can be obtained from F by a "term model" construction analogous to that described above.
(16) (Large Cardinals)

Definition 0.0.1. We call a cardinal κ strong iff for all $\beta>\kappa$ there is an extender F such that if $\langle W, \pi\rangle$ is the extension of V by F, then $V_{\beta} \subset W$.

Definition 0.0.2. Let A be any class. κ is A-strong iff for all $\beta>\kappa$ there is F such that letting $\langle W, \pi\rangle$ be the extension of V by F, we have:

$$
A \cap V_{\beta}=\pi(A) \cap V_{\beta}
$$

These concepts can of course be relativized to V_{τ} in place of V when τ is strongly inaccessible. We then say that κ is strong (or A-strong) up to τ.)

Definition 0.0.3. τ is Woodin iff τ is strongly inaccessible and for every $A \subset V_{\tau}$ there is $\kappa<\tau$ which is strong up to τ.
(17) (Embeddings)

Definition 0.0.4. Let M, M^{\prime} be \in-structures and let π be a structure preserving embeddings of M into M^{\prime}. We say that π is Σ_{n}-preserving (in symbols: $\pi: M \rightarrow \Sigma_{n} M^{\prime}$) iff for all Σ_{n} formulae we have:

$$
M \models \varphi\left[a_{1}, \ldots, a_{n}\right] \leftrightarrow M^{\prime} \models \varphi\left[\pi\left(a_{1}\right), \ldots,\left(a_{n}\right)\right]
$$

for $a_{1}, \ldots, a_{n} \in M$. It is elementary (in symbols: $\pi: M \prec M^{\prime}$ of $\left.\pi: M \rightarrow \Sigma_{\omega} M^{\prime}\right)$ iff the above holds for all formulae φ of the $M-$ sprache. It is easily seen that π is elementary iff it is Σ_{n}-preserving for all $n<\omega$.

We say that π is cofinal iff $M^{\prime}=\bigcup_{u \in M} \pi(u)$.
We note the following facts, which we shall occasionally use:
Fact 1 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally. Then π is Σ_{1}-preserving.
Fact 2 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally, where M is a ZFC $^{-}$model. Then M^{\prime} is a ZFC^{-}model and π is elementary.

Fact 3 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally where M^{\prime} is a ZFC $^{-}$model. Then M is a ZFC^{-}model and π is elementary.

We call an ordinal κ the critical point of an embedding $\pi: M \rightarrow M^{\prime}$ (in symbols: $\kappa=\operatorname{crit}(\pi))$ iff $\pi \upharpoonright \kappa=\mathrm{id}$ and $\pi(\kappa)>\kappa$.

