
Manuscript on fine structure, inner model
theory, and the core model below one

Woodin cardinal

Ronald B. Jensen

ii

Preface

Here are the first three chapters of a prospective book. It is intended to
provide a detailed introduction to fine structure theory, ultimately leading up
to a proof of the Covering Lemma for the Core Model under the assumption
that there is no inner model with a Woodin cardinal.

I am grateful to various colleagues who have helped and encouraged me in
this project. I especially want to thank Ralf Schindler, who has provided
steadfast support at every stage. I am completely dependent on technical
typing and, therefore, owe a special debt to Ms. Martina Pfeiffer, who typed
the initial sections, and to Dr. Fabiana Castiblanco, who very competently
continued this work.

A group of “anonymous donors”, unknown to me, is helping to defray the
cost of producing the manuscript. For this I am exceedingly grateful. Last
but not least I thank my wife Hilde, who gives me the strength to continue.

Ronald Jensen

iii

iv

Contents

0 Preliminaries 1

1 Transfinite Recursion Theory 9

1.1 Admissibility . 9

1.1.1 Introduction . 9

1.1.2 Properties of admissible structures 11

1.1.3 The constructible hierarchy 19

1.2 Primitive Recursive Set Functions 22

1.2.1 PR Functions . 22

1.2.2 PR Definitions . 30

1.3 Ill founded ZF� models . 32

1.4 Barwise Theory . 35

1.4.1 Syntax . 35

1.4.2 Models . 40

1.4.3 Applications . 42

2 Basic Fine Structure Theory 47

2.1 Introduction . 47

2.2 Rudimentary Functions . 49

v

vi CONTENTS

2.2.1 Condensation . 63

2.3 The J↵ hierarchy . 64

2.3.1 The JA
↵ –hierarchy . 70

2.4 J–models . 74

2.5 The ⌃1 projectum . 83

2.5.1 Acceptability . 83

2.5.2 The projectum . 86

2.5.3 Soundness and iterated projecta 93

2.6 ⌃
⇤–theory . 99

2.7 Liftups . 126

2.7.1 The ⌃0 liftup . 126

2.7.2 The ⌃
(n)

0
liftup . 132

3 Mice 151

3.1 Introduction . 151

3.2 Extenders . 155

3.2.1 Extendability . 163

3.2.2 Fine Structural Extensions 165

3.2.3 n–extendibility . 170

3.2.4 ⇤–extendability . 174

3.2.5 Good Parameters . 177

3.3 Premice . 182

3.4 Iterating premice . 201

3.4.1 Introduction . 201

3.4.2 Normal iteration . 204

CONTENTS vii

3.4.3 Padded iterations . 211

3.4.4 n–iteration . 213

3.4.5 Copying an iteration 215

3.4.6 Copying an n–iteration 220

3.5 Iterability . 221

3.5.1 Normal iterability . 221

3.5.2 The comparison iteration 223

3.5.3 n–normaliterability . 227

3.5.4 Iteration strategy and copying 227

3.5.5 Full iterability . 227

3.5.6 The Dodd–Jensen Lemma 231

3.5.7 Copying a full iteration 233

3.5.8 The Neeman–Steel lemma 234

3.5.9 Smooth iterability . 238

3.5.10 n–full iterability . 238

3.6 Verifying full iterability . 240

3.6.1 Introduction . 240

3.6.2 Pseudo projecta . 241

3.6.3 Mirrors . 260

3.6.4 The conclusion . 276

3.7 Smooth Iterability . 282

3.7.1 Insertions . 282

3.7.2 Reiterations . 302

3.7.3 A first conclusion . 327

viii Table of contents

3.7.4 Reiteration and Inflation 332

3.7.5 Smooth Reiterability 349

3.7.6 The final conclusion 357

3.8 Unique Iterability . 366

3.8.1 One small mice . 366

3.8.2 Woodiness and non unique branches 368

3.8.3 One smallness and unique branches 382

4 Properties of Mice 389

4.1 Solidity . 389

4.2 Phalanx Iteration . 400

4.3 Solidity and Condensation . 431

4.3.1 Solidity . 432

4.3.2 Soundness and Cores 438

4.3.3 Condensation . 442

Chapter 0

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{x|'(x)} for the class of x such that '(x). We also write:

{t(x1, . . . , xn)|'(x1, . . . , xn)}, (where e.g.
t(x1, . . . , xn) = {y| (y, x1, . . . , xn)})

for:
{y|

_
x1, . . . , xn(y = t(x1, . . . , xn) ^ '(x1, . . . , xn))}

We also write

P(A) = {z|z ⇢ A}, A [B = {z|z 2 A _ z 2 B}
A \B = {z|z 2 A ^ z 2 B},¬A = {z| /2 A}

(2) Our notation for ordered n–tuples is hx1, . . . , xni. This can be defined
in many ways and we don’t specify a definition.

(3) An n–ary relation is a class of n–tuples. The following operations are
defined for all classes, but are mainly relevant for binary relations:

dom(R) =: {x|
W
yhy, xi 2 R}

rng(R) =: {y|
W
xhy, xi 2 R}

R � P = {hy, xi|
W
z|hy, zi 2 R ^ hz, xi 2 P}

R�A = {hy, xi|hy, xi 2 R ^ x 2 A}
R�1

= {hy, xi|hx, yi 2 R}

We write R(x1, . . . , xn) for hx1, . . . , xni 2 R.

(4) A function is identified with its extension or field — i.e. an n–ary
function is an n+ 1–ary relation F such that

V
x1 . . . xn

V
z
V
w((F (z, x1, . . . , xn) ^ F (w, x1, . . . , xn)) !

! z = w)

1

2 CHAPTER 0. PRELIMINARIES

F (x1, . . . , xn) then denotes the value of F at x1, . . . , xn.

(5) "Functional abstraction" htx1,...,xn |'(x1, . . . , xn)i denotes the function
which is defined and takes value tx1,...,xn whenever '(x1, . . . , xn) and
tx1,...,xn is a set:

htx1,...,xn |'(x1, . . . , xn)i =:

{hy, x1, . . . , xni|y = tx1,...,xn ^ '(x1, . . . , xn)},

where e.g. tx1,...,xn = {z| (z, x1, . . . , xn)}.

(6) Ordinal numbers are defined in the usual way, each ordinal being iden-
tified with the set of its predecessors: ↵ = {⌫|⌫ < ↵}. The nat-
ural numbers are then the finite ordinals: 0 = ;, 1 = {0}, . . . , n =

{0, . . . , n � 1}. On is the class of all ordinals. We shall often em-
ploy small greek letters as variables for ordinals. (Hence e.g. {↵|'(↵)}
means {x|x 2 On^'(x)}.) We set:

supA =:
S
(A \On), inf A =:

T
(A ^On)

lubA =: sup{↵+ 1|↵ 2 A}.

(7) A note on ordered n–tuples. A frequently used definition of ordered
pairs is:

hx, yi =: {{x}, {x, y}}.

One can then define n–tuples by:

hxi =: x, hx1, x2, . . . , xni =: hx1, hx1, . . . , xnii.

However, this has the disadvantage that every n + 1–tuple is also an
n–tuple. If we want each tuple to have a fixed length, we could instead
identify the n–tuples with vecton of length n — i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to define the notion of "function". Thus,
if we take this course, we must first make a "preliminary definition" of
ordered pairs — for instance:

(x, y) =: {{x}, {x, y}}

and then define:

hx0, . . . , xn�1i = {(x0, 0), . . . , (xn�1, n� 1)}.

If we wanted to form n–tuples of proper classes, we could instead iden-
tify hA0, . . . , An�1i with:

{hx, ii|(i = 0 ^ x 2 A0) _ . . . _ (i = n� 1 ^ x 2 An�1)}.

3

(8) Overhead arrow notation. The symbol ~x is often used to donate a
vector hx1, . . . , xni. It is not surprising that this usage shades into what
I shall call the informal mode of overhead arrow notation. In this mode
~x simply stands for a string of symbols x1, . . . , xn. Thus we write f(~x)
for f(x1, . . . , xn), which is different from f(hx1, . . . , xni). (In informal
mode we would write the latter as f(h~xi).) Similarly, ~x 2 A means that
each of x1, . . . , xn is an element of A, which is different from h~xi 2 A.
We can, of course, combine several arrows in the same expression. For
instance we can write f(~g(~x)) for f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Similarly we can write f(
�!
g(~x)) or f(~g(~x)) for

f(g1(x1,1, . . . , x1,p1), . . . , gm(xm,1, . . . , xm,pm)).

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

(9) A model or structure will for us normally mean an n+1–tuple hD,A1, . . . , Ani
consisting of a domain D of individuals, followed by relations on that
domain. If ' is a first order formula, we call a sequence v1, . . . , vn of
distinct variables good for ' iff every free variable of ' occurs in the se-
quence. If M is a model, ' a formula, v1, . . . , vn a good sequence for '
and x1, . . . , xn 2 M , we write: M |= '(v1, . . . , vn)[x1, . . . , xn] to mean
that ' becomes true in M if vi is interpreted by xi for i = 1, . . . , n.
This is the satisfaction relation. We assume that the reader knows how
to define it. As usual, we often suppress the list of variables, writing
only M |= '[x1, . . . , xn]. We may sometimes indicate the variables
being used by writing e.g. ' = '(v1, . . . , vn).

(10) 2–models. M = hD,E,A1, . . . , Ani is an 2–model iff E is the restric-
tion of the 2–relation to D2. Most of the models we consider will be
2–models. We then write hD,2, A1, . . . , Ani or even hD,A1, . . . , Ani
for hD,2 \D2, A1, . . . , Ani. M is transitive iff it is an 2–model and D
is transitive.

(11) The Levy hierarchy. We often write
V
x 2 y' for

V
x(x 2 y ! '),

and
W
x 2 y' for

W
x(x 2 y ^ '). Azriel Levy defined a hierarchy of

formulae as follows:

A formula is ⌃0 (or ⇧0) iff it is in the smallest class ⌃ of formulae such
that every primitive formula is in ⌃ and

V
v 2 u',

W
v 2 u' are in ⌃

whenever ' is in ⌃ and v, u are distinct variables.

(Alternatively we could introduce
V
v 2 u,

W
v 2 u as part of the

primitive notation. We could then define a formula as being ⌃0 iff it
contains no unbounded quantifiers.)

4 CHAPTER 0. PRELIMINARIES

The ⌃n+1 formulae are then the formulae of the form
W
v', where '

is ⇧n. The ⇧n+1 formulae are the formulae of the form
V
v' when '

is ⌃n.
If M is a transitive model, we let ⌃n(M) denote the set of realations
on M which are definable by a ⌃n formula. Similarly for ⇧n(M). We
say that a relation R is ⌃n(M)(⇧n(M)) in parameters p1, . . . , pm iff

R(x1, . . . , xn) $ R0
(x1, . . . , xn, p1, . . . , pm)

and R0 is ⌃n(M)(⇧n(M)). ⌃1(M) then denotes the set of relations
which are ⌃1(M) in some parameters. Similarly for ⇧1(M).

(12) Kleene’s equation sign. An equation ’L ' R’ means: ’The left side is
defined if and only if everything on the right side is defined, in which
case the sides are equal’. This is of course not a strict definition and
must be interpreted from case to case.
F (~x) ' G(H1(~x), . . . , Hn(~x)) obviously means that the function F is
defined at hx1, . . . , xni iff each of the Hi is defined at h~xi and G is
defined at hH1(~x), . . . , Hn(~x)i, in which case equality holds.
The recursion schema of set theory says that, given a function G, there
is a function F with:

F (y, ~x) ' G(y, ~x, hF (z, ~x)|z 2 yi).

This says that F is defined at hy, ~xi iff F is defined at hz, ~xi for all z 2 y
and G is defined at hy, ~x, hF (z, ~x)|z 2 yii, in which case equality holds.

(13) By the recursion theorem we can define:

TC(x) = x [
[

z2x
TC(z)

(the transitive closure of x)

rn(x) = lub{rn(z)|z 2 x}

(the rank of x).

(14) By a normal ultrafilter on we mean an ultrafilter U on P() with
the property that whenever f : ! is regressive modulo U (i.e.
{⌫|f(v) < ⌫} 2 U), then there is ↵ < such that {⌫|f(⌫) < ⌫} 2 U .
Each normal ultrafilter determines an elementary embedding ⇡ of V
into an inner model W . Letting

D = the class of functions f with domain ,

we can characterize the pair hW,⇡i uniquely by the conditions:

5

• ⇡ : V � W and write (⇡) =

• W = {⇡(f)(⌫)| 2 D}
• ⇡(f)(⌫) 2 ⇡(g)() $ {⌫|f(⌫) 2 g(⌫)} 2 U .

U can then be recovered from ⇡ by:

U = {x ⇢ | 2 ⇡(x)}.

We shall call hW,⇡i the extension of V by U . W can be defined from
U by the well known ultrapower construction: We first define a "term
model" D = hD,⇠=, 2̃i by:

f ⇠= g $: {⌫|f(⌫) = g(⌫)} 2 U

f 2̃g $: {⌫|f(⌫) = g(⌫)} 2 U.

D is an equality model in the sense that ⇠= is not the identity relation
but rather a congruence relation for D. We can then factor D by ⇠=,
getting an identity model D\ ⇠=, whose are the equivalence classes:

[x] = {y|y ⇠= x}

D\ ⇠= turns out to be isomorphic to an inner model W . If � is the
isomorphism, we can define ⇡ by:

⇡(x) = �([constx])

where constx is the constant function x defined on . W is then called
the ultrapower of V by U . ⇡ is called the canonical embedding .

(15) (Extenders) The normal ultrafilter is one way of coding an embedding
of V into an inner model by a set. However, many embeddings cannot
be so coded, since ⇡() 2

 whenever hW,⇡i is the extension by U . If
we wish to surmount this restriction, we can use extenders in place of
ultrafilters. (The extenders we shall deal with are also known as "short
extenders".)

An extender F at maps
S

n<!

P(un) into
S

n<!

P(�n) for a� > u.

It engenders an embedding ⇡ of V into an inner model W characterized
by:

• ⇡ : V � W crit(⇡ =)

• Every element of W has the form ⇡(f)(~↵) where ↵1, . . . ,↵n < �
and f is a function with domain n

• ⇡(f)(~↵) 2 ⇡(g)(~↵) $ h~↵i 2 ⇡({h~⇠i|f(~⇠) 2 g(~⇠)})

6 CHAPTER 0. PRELIMINARIES

F is then recoverable from hW,⇡i by:

F (X) = ⇡(X) \ �n for X ⇢ n.

The concept "F is an extender" can be defined in ZFC, but we defer
that to Chapter 3. If hW,⇡i is as above, we call it the extension
of V by F . We also call W the ultrapower of V by F and ⇡ the
canonical embedding. hW,⇡i can be obtained from F by a "term
model" construction analogous to that described above.

(16) (Large Cardinals)

Definition 0.0.1. We call a cardinal strong iff for all � > there
is an extender F such that if hW,⇡i is the extension of V by F , then
V� ⇢ W .

Definition 0.0.2. Let A be any class. is A–strong iff for all � >
there is F such that letting hW,⇡i be the extension of V by F , we
have:

A \ V� = ⇡(A) \ V� .

These concepts can of course be relativized to V⌧ in place of V when
⌧ is strongly inaccessible. We then say that is strong (or A–strong)
up to ⌧ .)

Definition 0.0.3. ⌧ is Woodin iff ⌧ is strongly inaccessible and for
every A ⇢ V⌧ there is < ⌧ which is strong up to ⌧ .

(17) (Embeddings)

Definition 0.0.4. Let M,M 0 be 2–structures and let ⇡ be a structure
preserving embeddings of M into M 0. We say that ⇡ is ⌃n–preserving
(in symbols: ⇡ : M !⌃n M 0) iff for all ⌃n formulae we have:

M |= '[a1, . . . , an] $ M 0 |= '[⇡(a1), . . . , (an)]

for a1, . . . , an 2 M . It is elementary (in symbols: ⇡ : M � M 0 of
⇡ : M !⌃! M 0) iff the above holds for all formulae ' of the M–
sprache. It is easily seen that ⇡ is elementary iff it is ⌃n–preserving
for all n < !.

We say that ⇡ is cofinal iff M 0
=

S
u2M ⇡(u).

We note the following facts, which we shall occasionally use:

Fact 1 Let ⇡ : M !⌃0 M 0 cofinally. Then ⇡ is ⌃1–preserving.
Fact 2 Let ⇡ : M !⌃0 M 0 cofinally, where M is a ZFC

� model. Then
M 0 is a ZFC

� model and ⇡ is elementary.

7

Fact 3 Let ⇡ : M !⌃0 M 0 cofinally where M 0 is a ZFC
� model. Then

M is a ZFC
� model and ⇡ is elementary.

We call an ordinal the critical point of an embedding ⇡ : M ! M 0

(in symbols: = crit(⇡)) iff ⇡ � = id and ⇡() > .

8 CHAPTER 0. PRELIMINARIES

