
22 CHAPTER 1. TRANSFINITE RECURSION THEORY

A transitive structure M = h|M |,2 ~Ai is called strongly admissible iff, in
addition to the Kripke–Platek axioms, it satisfies the ⌃1 axiom of subsets:

x \ {z|'(z)} is a set (for ⌃1 formulae ').

Kripke defines the projectum �↵ of an admissible ordinal ↵ to be the least
� such that A \ � /2 L↵ for some ⌃1(L↵) set A. He shows that �↵ = ↵ iff
↵ is strongly admissible. He calls ↵ projectible iff �↵ < ↵. There are many
projectible admissibles — e.g. �↵ = ! if ↵ is the least admissible greater
than !. He shows that for every admissible ↵ there is a ⌃1(L↵) injection f↵
of L↵ into �↵.

The definition of projectum of course makes sense for any ↵ � !. By
refinements of Kripke’s methods it can be shown that f↵ exists for every
↵ � ! and that �↵ < ↵ whenever ↵ � ! is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions

f : V n ! V

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f : V n ! V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:

(i) f(~x) = xi (here ~x is x1, . . . , xn)

(ii) f(~x) = {xi, xj}

(iii) f(~x) = xi \ xj

(iv) f(~x) = g(h1(~x), . . . , hm(~x))

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 23

(v) f(y, ~x) =
S
z2y

g(z, ~x)

(vi) f(y, ~x) = g(y, ~x, hf(z, ~x)|z 2 yi)

We also define:

Definition 1.2.2. R ⇢ V n is a primitive recursive relation iff there is a
primitive recursive function r such that R = {h~xi|r(~x) 6= ;}.

(Note It is possible for a function on V to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If f : V n ! V is primitive recursive and k : n ! m, then g
is primitive recursive, where

g(x0, . . . , xm�1) = f(xk(0), . . . , xk(n�1)).

Proof. By (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) f(~x) =
S
xj

(b) f(~x) = xi [xj

(c) f(~x) = {~x}

(d) f(~x) = n, where n < !

(e) f(~x) = h~xi

Proof.

(a) By (i), (v), Lemma 1.2.1, since
S
xj =

S
z2xj

z

(b) xi [xj =
S
{xi, xj}

(c) {~x} = {x1} [. . . [{xm}

(d) By in induction on n, since 0 = x \ x, n+ 1 = n [{n}

(e) The proof depends on the precise definition of n–tuple. We could for in-
stance define hx, yi = {{x}, {x, y}} and hx1, . . . , xni = hx1, hx2, . . . , xnii
for n > 2.

24 CHAPTER 1. TRANSFINITE RECURSION THEORY

If, on the other hand, we wanted each tuple to have a unique length, we
could call the above defined ordered pair (x, y) and define:

hx1, . . . , xni = {(x1, 0), . . . , (xn, n� 1)}.

QED (Lemma 1.2.2)

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 25

Lemma 1.2.3. (a) /2 is pr

(b) If f : V n ! V,R ⇢ V n are primitive recursive, then so is

g(~x) =

⇢
f(~x) if R~x
; if not

(c) R ⇢ V n is primitive recursive iff its characteristic functions �R is a
primitive recursive function

(d) If R ⇢ V n is primitive recursive so is ¬R =: V n \R

(e) Let fi : V n ! V,Ri ⇢ V n be pr(i = 1, . . . ,m) where R1, . . . , Rm are

mutually disjoint and
mS
i=1

Ri = V n. Then f is pr where:

f(~x) = fi(x) when Ri~x.

(f) If Rz~x is primitive recursive, so is the function

f(y, ~x) = y \ {z|Rz~x}

(g) If Rz~x is primitive recursive so is
W
z 2 yRz~x

(h) If Ri~x is primitive recursive (i = 1, . . . ,m), then so is
mW
i=1

Ri~x

(i) If R1, . . . , Rn are primitive recursive relations and ' is a ⌃0 formula,
then {h~xi|hV,R1, . . . , Rni |= '[~x]} is primitive recursive.

(j) If f(z, ~x) is primitive recursive, then so are:

g(y, ~x) = {f(z, ~x) : z 2 y}
g0(y, ~x) = hf(z, ~x) : z 2 yi

(k) If R(z, ~x) is primitive recursive, then so is

f(y, ~x) =

8
<

:

That z 2 y such that Rz~x if exactly
one such z 2 y exists;
; if not.

Proof.

(a) x /2 y $ {x} \ y 6= ;

(b) Let R~x $ r(~x) 6= ;. Then g(~x) =
S

z2r(~x)
f(~x).

26 CHAPTER 1. TRANSFINITE RECURSION THEORY

(c) �r(~x) =

⇢
1 if R~x
0 if not

(d) �¬R(~x) = 1 \ �R(~x)

(e) Let f 0
i
(~x) =

⇢
fi(~x) if Ri~x
; if not

Then f(~x) = f 0
i
(~x) [. . . [f 0

m(~x).

(f) f(y, ~x) =
S
z2y

h(z, ~x), where:

h(z, ~x) =

⇢
{z} if Rz~x
; if not

(g) Let Py~x $:
W
z 2 yRz~x. Then �P (~x) =

S
z2y

�R(z, ~x).

(h) Let P~x $
mW
i=1

Ri~x. Then

XP (~x) = XR1 [. . . [XRn(~x).

(i) is immediate by (d), (g), (h)

(j) g(y, ~x) =
S
z2y

{f(z, ~x)}, g0(y, ~x) =
S
z2y

{hf(z, ~x), zi}

(k) R0zu~x $: (z 2 u ^ Rz~x ^
V
z0 2 u(z 6= z0 ! ¬Rz0~x)) is primitive

recursive by (i). But then:

f(y, ~x) =
[

(y \ {z|R0zy~x})

QED (Lemma 1.2.3)

Lemma 1.2.4. Each of the functions listed in §1 Lemma 1.1.12 is primitive
recursive.

The proof is left to the reader.

Note Up until now we have only made use of the schemata (i) – (v). This
will be important later. The functions and relations obtainable from (i)
– (v) alone are called rudimentary and will play a significant role in fine
structure theory. We shall use the fact that Lemmas 1.2.1 – 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(x), rn(x) are primitive recursive.

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 27

The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. f : On
n⇥V m ! V is primitive recursive iff f 0 is primitive

recursive, where

f 0
(~y, ~x) =

⇢
f(~y, ~x) if y1, . . . , yn 2 On

; if not

As before:

Lemma 1.2.6. The ordinal function ↵+1,↵+ �,↵ · �,↵� , . . . are primitive
recursive.

Definition 1.2.4. Let f : V n+1 ! V .

f↵
(↵ 2 On) is defined by:

f0
(y, ~x) = y

f↵+1
(y, ~x) = f(f↵

(y, ~x), ~x)
f�

(y, ~x) =
S
r<�

f r
(y, ~x) for limit �.

Then:

Lemma 1.2.7. If f is primitive recursive, so is g(↵, y, ~x) = f↵
(y, ~x).

There is a strengthening of the recursion schema (vi) which is analogous to
§1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let h : V ! V be primitive recursive. h is manageable
iff there is a primitive recursive � : V ! On such that

x 2 h(y) ! �(x) < �(y).

(Hence the relation x 2 h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V n+2 ! V be primitive recur-
sive. Then f : V n+1 ! V is primitive recursive, where:

f(y, ~x) = g(y, ~x, hf(z, ~x)|z 2 h(y)i).

Proof. Let � be as in the above definition. Let |x| = lub{|y||y 2 h(x)} be
the rank of x in the relation y 2 h(x). Then |x| �(x). Set:

⇥(z, ~x, u) =
[

{hg(y, ~x, z �h(y)), yi|y 2 u ^ h(y) ⇢ dom(z)}.

28 CHAPTER 1. TRANSFINITE RECURSION THEORY

By induction on ↵, if u is h–closed (i.e. x 2 u ! h(x) ⇢ u), then:

⇥
↵
(;, ~x, u) = hf(y, ~x)|y 2 u ^ |y| < ↵i

Set h̃(v) = v [
S
z2v

h(z). Then h̃↵({y}) is h–closed for ↵ � |y|. Hence:

f(y, ~x) = ⇥
�(y)+1

(;, ~x, h̃�(y)({y}))(y).

QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let u 2 H!. The constant function f(x) = u is primitive
recursive.

Proof: By 2–induction on u. QED

As we shall see, the constant function f(x) = ! is not primitive recursive, so
the analogue of §1 Lemma 1.1.18 fails. We say that f is primitive recursive
in the parameters p1, . . . , pmH:

f(~x) = g(~x, ~p), where g is primitive recursive.

In place of §1 Lemma 1.1.19 we get:

Lemma 1.2.10. The class Fin and the function f(x) = P!(x) are primitive
recursive in the parameter !.

Proof: Let f be primitive recursive such that f(0, x) = {;} [{{z}|z 2 x},
f(n+1, x) = {u[v|hu, vi 2 f(n, x)2}. Then P!(x) =

S
n2!

f(n, x). But then:

x 2 Fin $
_

n 2 !
_

g 2
[

n<!

Pn

!(x⇥ !)g : n $ x.

QED

Corollary 1.2.11. The constant function f(x) = H! is primitive recursive
in the parameter !.

Proof: H! =
S

n<!

Pn
!(;). QED

Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter
!.

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 29

The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
recursive. We give not further details here (though filling in the details can
be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:
Corollary 1.2.13. The function f(↵) = L↵ is primitive recursive in !.

Similarly:
Lemma 1.2.14. The function f(↵, x) = L↵(x) is primitive recursive in !.

Lemma 1.2.15. Let A ⇢ V be primitive recursive in the parameter p. Then
f(↵) = LA

↵ is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in
the class A ⇢ V (or in the classes A1, . . . , An ⇢ V).

We define:
Definition 1.2.6. Let A1, . . . , An ⇢ V . The function f : V n ! V is
primitive recursive in A1, . . . , An iff it is obtained by successive applications
of the schemata (i) – (vi) together with the schemata:

f(x) = �Ai(x)(i = 1, . . . , n).

A relation R is primitive recursive in A1, . . . , An iff

R = {h~xi|f(~x) 6= 0}

for a function f which is primitive recursive in A1, . . . , An.

It is obvious that all of the previous results hold with "primitive recursive in
A1, . . . , An" in place of "primitive recursive".

By induction on the defining schemata of f we can show:
Lemma 1.2.16. Let f be primitive recursive in A1, . . . , An, where each
Ai is primitive recursive in B1, . . . , Bm. Then f is primitive recursive in
B1, . . . , Bm.

The proof is by induction on the defining schemata leading from A1, . . . , An

to f . The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from B1, . . . , Bm are
not dependent on B1, . . . , Bm or A1, . . . , An, but only on the schemata which
lead from A1, . . . , An to f and the schemata which led from B1, . . . , Bm to
Ai(i = 1, . . . , n).

This will be made more precise in §1.2.2

30 CHAPTER 1. TRANSFINITE RECURSION THEORY

1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive definitions. By
a primitive recursive definition we mean a finite sequence of equations of the
form (i) – (vi) such that:

• The function variable on the left side does not occur in a previous
equation in the sequence

• every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized — i.e. formulae, terms, variables etc. have been identified in a
natural way with elements of ! (or at least H!).

Every primitive recursive definition s defines a function Fs. If s = hs0, . . . , sn�1i,
then Fs = Fn�1

s , where F i
s interprets the leftmost function variable of si.

This is defined in a straightforward way. If e.g. si is "f(y, ~x) =
S
z2y

g(z, ~x)"

and g was leftmost in sj , then we get

F i
(y, ~x) =

[

z2y
F j

(z, ~x).

Let PD be the class of primitive recursive definitions. In order to define
{hx, si|s 2 PD ^ x 2 Fs} in ZF we proceed as follows:

Let s = hs0, . . . , sn�1i 2 PD. Let M be any admissible structure. By
induction we can then define hF i,M

s |i < ni where F i
s a function on Mni (ni

being the number of argument places). By admissibility we know that F i
s

exists and is defined on all of Mni . We then set: FM
s = Fn�1,M

s . This defines
the set hFM

s |s 2 PDi. If M ✓ M 0 and M 0 is also admissible, it follows by
any induction on i < n that F i,M

= F i,M
0 �M . Hence FM

s ⇢ FM
0

s . We can
then set:

Fs =

[
{FM

s |M is admissible}.

Note that by §1, each FM
s has a uniform ⌃1 definition 's which defines

FM
s over every admissible M . It follows that 's defines Fs in V . Thus

we have won an important absoluteness result: Every primitive recursive
function has a ⌃1 definition which is absolute in all inner models, in all
generic extensions of V , and indeed, in all admissible structures M = h|M |,2
i. This absoluteness phenomenon is perhaps the main reason for using the

1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 31

theory of primitive recursive functions in set theory. Carol Karp was the first
to notice the phenomenon — and to plumb its depths. She proved results
going well beyond what I have stated here, showing for instance that the
canonical ⌃1 definition can be so chosen, that Fs �M is the function defined
over M by 's whenever M is transitive and closed under primitive recursive
function. She also improved the characterization of such M : Call an ordinal
↵ nice if it is closed under each of the function:

f0(↵,�) = ↵+ �; f1(↵,�) = ↵ · �, f2(↵,�) = ↵� . . . etc.

(More precisely: fi+1(↵,�) = f̃�

i
(↵) for i � 1, where f̃i(↵) = fi(↵,↵), g�(↵)

is defined by: g0(↵) = ↵, g�+1
(↵) = g(g�(↵)), g�(↵) = sup

v<�

gv(↵) for limit �.)

She showed that L↵ is primitive recursively closed iff ↵ is nice. Moreover,
L↵[A1, . . . , An] is closed under functions primitive recursive in A1, . . . , An iff
↵ is nice.

Primitive recursiveness in classes A1, . . . , An can also be discussed in terms of
primitive recursive definitions. To this end we appoint new designated func-
tion variable ȧi(i = 1, . . . , n), which will be interpreted by �Ai(i = 1, . . . , n).
By a primitive recursive definition in ȧ1, . . . , ȧn we mean a sequence of equa-
tion having either the form (i) – (vi), in which ȧ1, . . . , ȧn do not appear, or
the form

(*) f(x1, . . . , xp) = ȧi(xj)(i = 1, . . . , n, j = 1, . . . , p)

We impose our previous two requirements on all equations not of the form
(*).

If s = hs0, . . . , sn�1i is a pr definition in ȧ1, . . . , ȧn, we successively define
F i,A1,...,An
s (i < n) as before, setting F i, ~A

s (x1, . . . , xp) = XAi(xj) if si has the
form (*). We again set F

~A
s = Fn�1, ~A

s . The fact that {hx, si|x 2 F
~A
s } is

uniformly hV,2, A1, . . . , Ani definable is shown essentially as before:

Given an admissible M = h|M |,2, a1, . . . , ani we define F i,M
s , FM

s = Fn�1,M
s

as before, restricting to M . The existence of the total function F i,M
s follows

as before by admissibility. Admissibility also gives a canonical ⌃1 definition
's such that

y = FM

s (~x) $ M |= 's[y, ~x].

(Thus FM
s is uniformly ⌃1 regardless of M .) If M,M 0 are admissibles of

the same type and M ✓ M 0 (i.e. M is structurally included in M 0), then
FM
s = FM

0
s �M . Thus we can let FA1,...,An

s be the union of all FM
s such that

M = h|M |,2, A1\ |M |, . . . , An\ |M |i is admissible. 's then defines F ~A
s over

32 CHAPTER 1. TRANSFINITE RECURSION THEORY

hV, ~Ai. (Here, Karp refined the construction so as to show that F ~A
s �M = FM

s

whenever M = h|M |,2, A1 \ |M |, . . . , An \ |M |i is transitive and closed
under function primitive recursive in A1, . . . , An. It can also be shown that
M = h|M |,2, A1, . . . , Ani is closed under functions primitive recursive in
A1, . . . , An iff |M | is primitive recursive closed and M is amenable, (i.e.
x \Ai 2 M for all x 2 M , v = 1, . . . , n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let Ai ⇢
V be primitive recursive in B1, . . . , Bm with primitive recursive def si in
ḃ1, . . . , ḃm (i = 1, . . . ,m). Let f be primitive recursive in A1, . . . , An with
primitive recursive definition s in ȧ1, . . . , ȧn. Then f is primitive recursive
in B1, . . . , Bn by a primitive recursive definition s0 in ḃ1, . . . , ḃm. s0 is uniform
in the sense that it depends only on s1, . . . , sn and s, not on B1, . . . , Bm. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

s1, . . . , sm, s 7! s0

with the following property: Let B1, . . . , Bm be any classes. Let si define gi
from ~B(i = 1, . . . , n). Set: Ai = {x|gi(x) 6= 0} in i = 1, . . . , n. Let f be the
function defined by s from ~A. Then s0 defines f from ~B.

Note hH!,2i is an admissible structure; hence Fs �H! = fH!
s . This shows

that the constant function ! is not primitive recursive, since ! /2 H!. It
can be shown that f : ! ! ! is primitive recursive in the sense of ordinary
recursion theory iff

f⇤
(x) =

⇢
f(x) if x 2 !
0 if not

is primitive recursive over H!. Conversely, there is a primitive recursive map
� : H! $! such that f : H! ! H! is primitive recursive over H! iff �f��1

is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded ZF� models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF� (where the language of ZF� may contain predicates other than 2).
Let A = hA,2A, B1, . . . , Bni be such a model. For X ⇢ A we of course
write A|X = hX,2A \X2, . . .i. By the well founded core of A we mean
the set of all v 2 A such that 2A \C(x)2 is well founded, where C(x) is
the closure of {x} under 2A. Let wfc(A) be the restriction A|C of A to
its well founded core C. Then wfc(A) is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive

