A transitive structure $M=\langle | M|, \in \vec{A}\rangle$ is called strongly admissible iff, in addition to the Kripke-Platek axioms, it satisfies the Σ_{1} axiom of subsets:

$$
x \cap\{z \mid \varphi(z)\} \text { is a set (for } \Sigma_{1} \text { formulae } \varphi \text {). }
$$

Kripke defines the projectum δ_{α} of an admissible ordinal α to be the least δ such that $A \cap \delta \notin L_{\alpha}$ for some $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$ set A. He shows that $\delta_{\alpha}=\alpha$ iff α is strongly admissible. He calls α projectible iff $\delta_{\alpha}<\alpha$. There are many projectible admissibles - e.g. $\delta_{\alpha}=\omega$ if α is the least admissible greater than ω. He shows that for every admissible α there is a $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$ injection f_{α} of L_{α} into δ_{α}.

The definition of projectum of course makes sense for any $\alpha \geq \omega$. By refinements of Kripke's methods it can be shown that f_{α} exists for every $\alpha \geq \omega$ and that $\delta_{\alpha}<\alpha$ whenever $\alpha \geq \omega$ is not strongly admissible. We shall - essentially - prove these facts in chapter 2 (except that, for technical reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 $P R$ Functions

The primitive recursive set functions comprise a collection of functions

$$
f: V^{n} \rightarrow V
$$

which form a natural analogue of the primitive recursive number functions in ordinary recursion theory. As with admissibility theory, their discovery arose from the attempt to generalize ordinary recursion theory. These functions are ubiquitous in set theory and have very attractive absoluteness properties. In this section we give an account of these functions and their connection with admissibility theory, though - just as in $\S 1$ - we shall suppress some proofs.

Definition 1.2.1. $f: V^{n} \rightarrow V$ is a primitive recursive ($p r$) function iff it is generated by successive application of the following schemata:
(i) $f(\vec{x})=x_{i}$ (here \vec{x} is $\left.x_{1}, \ldots, x_{n}\right)$
(ii) $f(\vec{x})=\left\{x_{i}, x_{j}\right\}$
(iii) $f(\vec{x})=x_{i} \backslash x_{j}$
(iv) $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right)$
(v) $f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$
(vi) $f(y, \vec{x})=g(y, \vec{x},\langle f(z, \vec{x}) \mid z \in y\rangle)$

We also define:
Definition 1.2.2. $R \subset V^{n}$ is a primitive recursive relation iff there is a primitive recursive function r such that $R=\{\langle\vec{x}\rangle \mid r(\vec{x}) \neq \emptyset\}$.
(Note It is possible for a function on V to be primitive recursive as a relation but not as a function!)

We begin by developing some elementary consequences of these definitions:
Lemma 1.2.1. If $f: V^{n} \rightarrow V$ is primitive recursive and $k: n \rightarrow m$, then g is primitive recursive, where

$$
g\left(x_{0}, \ldots, x_{m-1}\right)=f\left(x_{k(0)}, \ldots, x_{k(n-1)}\right)
$$

Proof. By (i), (iv).
Lemma 1.2.2. The following functions are primitive recursive
(a) $f(\vec{x})=\bigcup x_{j}$
(b) $f(\vec{x})=x_{i} \cup x_{j}$
(c) $f(\vec{x})=\{\vec{x}\}$
(d) $f(\vec{x})=n$, where $n<\omega$
(e) $f(\vec{x})=\langle\vec{x}\rangle$

Proof.

(a) By (i), (v), Lemma 1.2.1, since $\bigcup x_{j}=\bigcup_{z \in x_{j}} z$
(b) $x_{i} \cup x_{j}=\bigcup\left\{x_{i}, x_{j}\right\}$
(c) $\{\vec{x}\}=\left\{x_{1}\right\} \cup \ldots \cup\left\{x_{m}\right\}$
(d) By in induction on n, since $0=x \backslash x, n+1=n \cup\{n\}$
(e) The proof depends on the precise definition of n-tuple. We could for instance define $\langle x, y\rangle=\{\{x\},\{x, y\}\}$ and $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle x_{1},\left\langle x_{2}, \ldots, x_{n}\right\rangle\right\rangle$ for $n>2$.

If, on the other hand, we wanted each tuple to have a unique length, we could call the above defined ordered pair (x, y) and define:

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\{\left(x_{1}, 0\right), \ldots,\left(x_{n}, n-1\right)\right\} .
$$

QED (Lemma 1.2.2)

Lemma 1.2.3. (a) \notin is pr
(b) If $f: V^{n} \rightarrow V, R \subset V^{n}$ are primitive recursive, then so is

$$
g(\vec{x})=\left\{\begin{array}{l}
f(\vec{x}) \text { if } R \vec{x} \\
\emptyset \text { if not }
\end{array}\right.
$$

(c) $R \subset V^{n}$ is primitive recursive iff its characteristic functions χ_{R} is a primitive recursive function
(d) If $R \subset V^{n}$ is primitive recursive so is $\neg R=$: $V^{n} \backslash R$
(e) Let $f_{i}: V^{n} \rightarrow V, R_{i} \subset V^{n}$ be $\operatorname{pr}(i=1, \ldots, m)$ where R_{1}, \ldots, R_{m} are mutually disjoint and $\bigcup_{i=1}^{m} R_{i}=V^{n}$. Then f is pr where:

$$
f(\vec{x})=f_{i}(x) \text { when } R_{i} \vec{x} .
$$

(f) If $R z \vec{x}$ is primitive recursive, so is the function

$$
f(y, \vec{x})=y \cap\{z \mid R z \vec{x}\}
$$

(g) If $R z \vec{x}$ is primitive recursive so is $\bigvee z \in y R z \vec{x}$
(h) If $R_{i} \vec{x}$ is primitive recursive $(i=1, \ldots, m)$, then so is $\bigvee_{i=1}^{m} R_{i} \vec{x}$
(i) If R_{1}, \ldots, R_{n} are primitive recursive relations and φ is a Σ_{0} formula, then $\left\{\langle\vec{x}\rangle \mid\left\langle V, R_{1}, \ldots, R_{n}\right\rangle \models \varphi[\vec{x}]\right\}$ is primitive recursive.
(j) If $f(z, \vec{x})$ is primitive recursive, then so are:

$$
\begin{aligned}
& g(y, \vec{x})=\{f(z, \vec{x}): z \in y\} \\
& g^{\prime}(y, \vec{x})=\langle f(z, \vec{x}): z \in y\rangle
\end{aligned}
$$

(k) If $R(z, \vec{x})$ is primitive recursive, then so is

$$
f(y, \vec{x})=\left\{\begin{array}{l}
\text { That } z \in y \text { such that } R z \vec{x} \text { if exactly } \\
\text { one such } z \in y \text { exists } \\
\emptyset \text { if not. }
\end{array}\right.
$$

Proof.

(a) $x \notin y \leftrightarrow\{x\} \backslash y \neq \emptyset$
(b) Let $R \vec{x} \leftrightarrow r(\vec{x}) \neq \emptyset$. Then $g(\vec{x})=\bigcup_{z \in r(\vec{x})} f(\vec{x})$.
(c) $\chi_{r}(\vec{x})=\left\{\begin{array}{l}1 \text { if } R \vec{x} \\ 0 \text { if not }\end{array}\right.$
(d) $\chi_{\neg R}(\vec{x})=1 \backslash \chi_{R}(\vec{x})$
(e) Let $f_{i}^{\prime}(\vec{x})=\left\{\begin{array}{l}f_{i}(\vec{x}) \text { if } R_{i} \vec{x} \\ \emptyset \text { if not }\end{array}\right.$

Then $f(\vec{x})=f_{i}^{\prime}(\vec{x}) \cup \ldots \cup f_{m}^{\prime}(\vec{x})$.
(f) $f(y, \vec{x})=\bigcup_{z \in y} h(z, \vec{x})$, where:

$$
h(z, \vec{x})=\left\{\begin{array}{l}
\{z\} \text { if } R z \vec{x} \\
\emptyset \text { if not }
\end{array}\right.
$$

(g) Let $P y \vec{x} \leftrightarrow: \bigvee z \in y R z \vec{x}$. Then $\chi_{P}(\vec{x})=\bigcup_{z \in y} \chi_{R}(z, \vec{x})$.
(h) Let $P \vec{x} \leftrightarrow \bigvee_{i=1}^{m} R_{i} \vec{x}$. Then

$$
X_{P}(\vec{x})=X_{R_{1}} \cup \ldots \cup X_{R_{n}}(\vec{x}) .
$$

(i) is immediate by (d), (g), (h)
(j) $g(y, \vec{x})=\bigcup_{z \in y}\{f(z, \vec{x})\}, g^{\prime}(y, \vec{x})=\bigcup_{z \in y}\{\langle f(z, \vec{x}), z\rangle\}$
(k) $R^{\prime} z u \vec{x} \leftrightarrow:\left(z \in u \wedge R z \vec{x} \wedge \wedge z^{\prime} \in u\left(z \neq z^{\prime} \rightarrow \neg R z^{\prime} \vec{x}\right)\right)$ is primitive recursive by (i). But then:

$$
f(y, \vec{x})=\bigcup\left(y \cap\left\{z \mid R^{\prime} z y \vec{x}\right\}\right)
$$

QED (Lemma 1.2.3)
Lemma 1.2.4. Each of the functions listed in §1 Lemma 1.1.12 is primitive recursive.

The proof is left to the reader.
Note Up until now we have only made use of the schemata (i) - (v). This will be important later. The functions and relations obtainable from (i) - (v) alone are called rudimentary and will play a significant role in fine structure theory. We shall use the fact that Lemmas 1.2.1-1.2.3 hold with "rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:
Lemma 1.2.5. The functions $T C(x), r n(x)$ are primitive recursive.

The proof is the same as before ($\S 1$ Corollary 1.1.14).
Definition 1.2.3. $f: \mathrm{On}^{n} \times V^{m} \rightarrow V$ is primitive recursive iff f^{\prime} is primitive recursive, where

$$
f^{\prime}(\vec{y}, \vec{x})=\left\{\begin{array}{l}
f(\vec{y}, \vec{x}) \text { if } y_{1}, \ldots, y_{n} \in \text { On } \\
\emptyset \text { if not }
\end{array}\right.
$$

As before:
Lemma 1.2.6. The ordinal function $\alpha+1, \alpha+\beta, \alpha \cdot \beta, \alpha^{\beta}, \ldots$ are primitive recursive.

Definition 1.2.4. Let $f: V^{n+1} \rightarrow V$.
$f^{\alpha}(\alpha \in \mathrm{On})$ is defined by:

$$
\begin{aligned}
& f^{0}(y, \vec{x})=y \\
& f^{\alpha+1}(y, \vec{x})=f\left(f^{\alpha}(y, \vec{x}), \vec{x}\right) \\
& f^{\lambda}(y, \vec{x})=\bigcup_{r<\lambda} f^{r}(y, \vec{x}) \text { for limit } \lambda
\end{aligned}
$$

Then:
Lemma 1.2.7. If f is primitive recursive, so is $g(\alpha, y, \vec{x})=f^{\alpha}(y, \vec{x})$.

There is a strengthening of the recursion schema (vi) which is analogous to §1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let $h: V \rightarrow V$ be primitive recursive. h is manageable iff there is a primitive recursive $\sigma: V \rightarrow$ On such that

$$
x \in h(y) \rightarrow \sigma(x)<\sigma(y)
$$

(Hence the relation $x \in h(y)$ is well founded.)
Lemma 1.2.8. Let h be manageable. Let $g: V^{n+2} \rightarrow V$ be primitive recursive. Then $f: V^{n+1} \rightarrow V$ is primitive recursive, where:

$$
f(y, \vec{x})=g(y, \vec{x},\langle f(z, \vec{x}) \mid z \in h(y)\rangle)
$$

Proof. Let σ be as in the above definition. Let $|x|=\operatorname{lub}\{\mid y \| y \in h(x)\}$ be the rank of x in the relation $y \in h(x)$. Then $|x| \leq \sigma(x)$. Set:

$$
\Theta(z, \vec{x}, u)=\bigcup\{\langle g(y, \vec{x}, z \upharpoonright h(y)), y\rangle \mid y \in u \wedge h(y) \subset \operatorname{dom}(z)\} .
$$

By induction on α, if u is h-closed (i.e. $x \in u \rightarrow h(x) \subset u$), then:

$$
\left.\Theta^{\alpha}(\emptyset, \vec{x}, u)=\langle f(y, \vec{x})| y \in u \wedge|y|<\alpha\right\rangle
$$

Set $\tilde{h}(v)=v \cup \bigcup_{z \in v} h(z)$. Then $\tilde{h}^{\alpha}(\{y\})$ is h-closed for $\alpha \geq|y|$. Hence:

$$
f(y, \vec{x})=\Theta^{\sigma(y)+1}\left(\emptyset, \vec{x}, \tilde{h}^{\sigma(y)}(\{y\})\right)(y)
$$

QED (Lemma 1.2.8)
Corresponding to $\S 1$ Lemma 1.1.17 we have:
Lemma 1.2.9. Let $u \in H_{\omega}$. The constant function $f(x)=u$ is primitive recursive.

Proof: By \in-induction on u.
As we shall see, the constant function $f(x)=\omega$ is not primitive recursive, so the analogue of $\S 1$ Lemma 1.1.18 fails. We say that f is primitive recursive in the parameters $p_{1}, \ldots, p_{m} H$:

$$
f(\vec{x})=g(\vec{x}, \vec{p}), \text { where } g \text { is primitive recursive. }
$$

In place of $\S 1$ Lemma 1.1.19 we get:
Lemma 1.2.10. The class Fin and the function $f(x)=\mathbb{P}_{\omega}(x)$ are primitive recursive in the parameter ω.

Proof: Let f be primitive recursive such that $f(0, x)=\{\emptyset\} \cup\{\{z\} \mid z \in x\}$, $f(n+1, x)=\left\{u \cup v \mid\langle u, v\rangle \in f(n, x)^{2}\right\}$. Then $\mathbb{P}_{\omega}(x)=\bigcup_{n \in \omega} f(n, x)$. But then:

$$
x \in \operatorname{Fin} \leftrightarrow \bigvee n \in \omega \bigvee g \in \bigcup_{n<\omega} \mathbb{P}_{\omega}^{n}(x \times \omega) g: n \leftrightarrow x
$$

QED
Corollary 1.2.11. The constant function $f(x)=H_{\omega}$ is primitive recursive in the parameter ω.

Proof: $H_{\omega}=\bigcup_{n<\omega} \mathbb{P}_{\omega}^{n}(\emptyset)$.
QED

Corresponding to Lemma 1.1.21 of $\S 1$ we have:
Lemma 1.2.12. The function $\operatorname{Def}(u)$ is primitive recursive in the parameter ω.

The proof involves carrying out the proof of $\S 1$ Lemma 1.1.21 (which we also omitted) while ensuring that the relevant classes and functions are primitive recursive. We give not further details here (though filling in the details can be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:
Corollary 1.2.13. The function $f(\alpha)=L_{\alpha}$ is primitive recursive in ω.
Similarly:
Lemma 1.2.14. The function $f(\alpha, x)=L_{\alpha}(x)$ is primitive recursive in ω.
Lemma 1.2.15. Let $A \subset V$ be primitive recursive in the parameter p. Then $f(\alpha)=L_{\alpha}^{A}$ is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in the class $A \subset V$ (or in the classes $A_{1}, \ldots, A_{n} \subset V$).

We define:
Definition 1.2.6. Let $A_{1}, \ldots, A_{n} \subset V$. The function $f: V^{n} \rightarrow V$ is primitive recursive in A_{1}, \ldots, A_{n} iff it is obtained by successive applications of the schemata (i) - (vi) together with the schemata:

$$
f(x)=\chi_{A_{i}}(x)(i=1, \ldots, n)
$$

A relation R is primitive recursive in A_{1}, \ldots, A_{n} iff

$$
R=\{\langle\vec{x}\rangle \mid f(\vec{x}) \neq 0\}
$$

for a function f which is primitive recursive in A_{1}, \ldots, A_{n}.
It is obvious that all of the previous results hold with "primitive recursive in A_{1}, \ldots, A_{n} " in place of "primitive recursive".

By induction on the defining schemata of f we can show:
Lemma 1.2.16. Let f be primitive recursive in A_{1}, \ldots, A_{n}, where each A_{i} is primitive recursive in B_{1}, \ldots, B_{m}. Then f is primitive recursive in B_{1}, \ldots, B_{m}.

The proof is by induction on the defining schemata leading from A_{1}, \ldots, A_{n} to f. The details are left to the reader. It is clear, however, that this proof is uniform in the sense that the schemata which give in f from B_{1}, \ldots, B_{m} are not dependent on B_{1}, \ldots, B_{m} or A_{1}, \ldots, A_{n}, but only on the schemata which lead from A_{1}, \ldots, A_{n} to f and the schemata which led from B_{1}, \ldots, B_{m} to $A_{i}(i=1, \ldots, n)$.

This will be made more precise in $\S 1.2 .2$

1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discussion must ostensibly be carried out in second order set theory. However, we can translate it into ZF by talking about primitive recursive definitions. By a primitive recursive definition we mean a finite sequence of equations of the form (i) - (vi) such that:

- The function variable on the left side does not occur in a previous equation in the sequence
- every function variable on the right side occurs previously on the left side with the same number of argument places.

We assume that the language in which we write these equation has been arithmetized - i.e. formulae, terms, variables etc. have been identified in a natural way with elements of ω (or at least H_{ω}).

Every primitive recursive definition s defines a function F_{s}. If $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$, then $F_{s}=F_{s}^{n-1}$, where F_{s}^{i} interprets the leftmost function variable of s_{i}. This is defined in a straightforward way. If e.g. s_{i} is " $f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$ " and g was leftmost in s_{j}, then we get

$$
F^{i}(y, \vec{x})=\bigcup_{z \in y} F^{j}(z, \vec{x}) .
$$

Let PD be the class of primitive recursive definitions. In order to define $\left\{\langle x, s\rangle \mid s \in P D \wedge x \in F_{s}\right\}$ in ZF we proceed as follows:

Let $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in P D$. Let M be any admissible structure. By induction we can then define $\left\langle F_{s}^{i, M} \mid i<n\right\rangle$ where F_{s}^{i} a function on $M^{n_{i}}\left(n_{i}\right.$ being the number of argument places). By admissibility we know that F_{s}^{i} exists and is defined on all of $M^{n_{i}}$. We then set: $F_{s}^{M}=F_{s}^{n-1, M}$. This defines the set $\left\langle F_{s}^{M} \mid s \in P D\right\rangle$. If $M \subseteq M^{\prime}$ and M^{\prime} is also admissible, it follows by any induction on $i<n$ that $F^{i, M}=F^{i, M^{\prime}} \upharpoonright M$. Hence $F_{s}^{M} \subset F_{s}^{M^{\prime}}$. We can then set:

$$
F_{s}=\bigcup\left\{F_{s}^{M} \mid M \text { is admissible }\right\}
$$

Note that by $\S 1$, each F_{s}^{M} has a uniform Σ_{1} definition φ_{s} which defines F_{s}^{M} over every admissible M. It follows that φ_{s} defines F_{s} in V. Thus we have won an important absoluteness result: Every primitive recursive function has a Σ_{1} definition which is absolute in all inner models, in all generic extensions of V, and indeed, in all admissible structures $M=\langle | M \mid, \epsilon$ \rangle. This absoluteness phenomenon is perhaps the main reason for using the
theory of primitive recursive functions in set theory. Carol Karp was the first to notice the phenomenon - and to plumb its depths. She proved results going well beyond what I have stated here, showing for instance that the canonical Σ_{1} definition can be so chosen, that $F_{s} \upharpoonright M$ is the function defined over M by φ_{s} whenever M is transitive and closed under primitive recursive function. She also improved the characterization of such M : Call an ordinal α nice if it is closed under each of the function:

$$
f_{0}(\alpha, \beta)=\alpha+\beta ; f_{1}(\alpha, \beta)=\alpha \cdot \beta, f_{2}(\alpha, \beta)=\alpha^{\beta} \ldots \text { etc. }
$$

(More precisely: $f_{i+1}(\alpha, \beta)=\tilde{f}_{i}^{\beta}(\alpha)$ for $i \geq 1$, where $\tilde{f}_{i}(\alpha)=f_{i}(\alpha, \alpha), g^{\beta}(\alpha)$ is defined by: $g^{0}(\alpha)=\alpha, g^{\beta+1}(\alpha)=g\left(g^{\beta}(\alpha)\right), g^{\lambda}(\alpha)=\sup _{v<\lambda}^{v}(\alpha)$ for limit λ.) She showed that L_{α} is primitive recursively closed iff α is nice. Moreover, $L_{\alpha}\left[A_{1}, \ldots, A_{n}\right]$ is closed under functions primitive recursive in A_{1}, \ldots, A_{n} iff α is nice.

Primitive recursiveness in classes A_{1}, \ldots, A_{n} can also be discussed in terms of primitive recursive definitions. To this end we appoint new designated function variable $\dot{a}_{i}(i=1, \ldots, n)$, which will be interpreted by $\chi_{A_{i}}(i=1, \ldots, n)$. By a primitive recursive definition in $\dot{a}_{1}, \ldots, \dot{a}_{n}$ we mean a sequence of equation having either the form (i) - (vi), in which $\dot{a}_{1}, \ldots, \dot{a}_{n}$ do not appear, or the form
$\left(^{*}\right) f\left(x_{1}, \ldots, x_{p}\right)=\dot{a}_{i}\left(x_{j}\right)(i=1, \ldots, n, j=1, \ldots, p)$

We impose our previous two requirements on all equations not of the form (*).

If $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$ is a pr definition in $\dot{a}_{1}, \ldots, \dot{a}_{n}$, we successively define $F_{s}^{i, A_{1}, \ldots, A_{n}}(i<n)$ as before, setting $F_{s}^{i, \vec{A}}\left(x_{1}, \ldots, x_{p}\right)=X_{A_{i}}\left(x_{j}\right)$ if s_{i} has the form (*). We again set $F_{s}^{\vec{A}}=F_{s}^{n-1, \vec{A}}$. The fact that $\left\{\langle x, s\rangle \mid x \in F_{s}^{\vec{A}}\right\}$ is uniformly $\left\langle V, \in, A_{1}, \ldots, A_{n}\right\rangle$ definable is shown essentially as before:

Given an admissible $M=\langle | M\left|, \in, a_{1}, \ldots, a_{n}\right\rangle$ we define $F_{s}^{i, M}, F_{s}^{M}=F_{s}^{n-1, M}$ as before, restricting to M. The existence of the total function $F_{s}^{i, M}$ follows as before by admissibility. Admissibility also gives a canonical Σ_{1} definition φ_{s} such that

$$
y=F_{s}^{M}(\vec{x}) \leftrightarrow M \models \varphi_{s}[y, \vec{x}] .
$$

(Thus F_{s}^{M} is uniformly Σ_{1} regardless of M.) If M, M^{\prime} are admissibles of the same type and $M \subseteq M^{\prime}$ (i.e. M is structurally included in M^{\prime}), then $F_{s}^{M}=F_{s}^{M^{\prime}} \upharpoonright M$. Thus we can let $F_{s}^{A_{1}, \ldots, A_{n}}$ be the union of all F_{s}^{M} such that $M=\langle | M\left|, \in, A_{1} \cap\right| M\left|, \ldots, A_{n} \cap\right| M| \rangle$ is admissible. φ_{s} then defines $F_{s}^{\vec{A}}$ over
$\langle V, \vec{A}\rangle$. (Here, Karp refined the construction so as to show that $F_{s}^{\vec{A}} \upharpoonright M=F_{s}^{M}$ whenever $M=\langle | M\left|, \in, A_{1} \cap\right| M\left|, \ldots, A_{n} \cap\right| M| \rangle$ is transitive and closed under function primitive recursive in A_{1}, \ldots, A_{n}. It can also be shown that $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ is closed under functions primitive recursive in A_{1}, \ldots, A_{n} iff $|M|$ is primitive recursive closed and M is amenable, (i.e. $x \cap A_{i} \in M$ for all $\left.x \in M, v=1, \ldots, n\right)$.

A full account of these results can be found in $[P R]$ or $[A S]$.
We can now state the uniformity involved in Lemma 2.2.19: Let $A_{i} \subset$ V be primitive recursive in B_{1}, \ldots, B_{m} with primitive recursive def s_{i} in $\dot{b}_{1}, \ldots, \dot{b}_{m}(i=1, \ldots, m)$. Let f be primitive recursive in A_{1}, \ldots, A_{n} with primitive recursive definition s in $\dot{a}_{1}, \ldots, \dot{a}_{n}$. Then f is primitive recursive in B_{1}, \ldots, B_{n} by a primitive recursive definition s^{\prime} in $\dot{b}_{1}, \ldots, \dot{b}_{m} . s^{\prime}$ is uniform in the sense that it depends only on s_{1}, \ldots, s_{n} and s, not on B_{1}, \ldots, B_{m}. In fact, the induction on the schemata in s implicitly describes an algorithm for a function

$$
s_{1}, \ldots, s_{m}, s \mapsto s^{\prime}
$$

with the following property: Let B_{1}, \ldots, B_{m} be any classes. Let s_{i} define g_{i} from $\vec{B}(i=1, \ldots, n)$. Set: $A_{i}=\left\{x \mid g_{i}(x) \neq 0\right\}$ in $i=1, \ldots, n$. Let f be the function defined by s from \vec{A}. Then s^{\prime} defines f from \vec{B}.

Note $\left\langle H_{\omega}, \in\right\rangle$ is an admissible structure; hence $F_{s} \upharpoonright H_{\omega}=f_{s}^{H_{\omega}}$. This shows that the constant function ω is not primitive recursive, since $\omega \notin H_{\omega}$. It can be shown that $f: \omega \rightarrow \omega$ is primitive recursive in the sense of ordinary recursion theory iff

$$
f^{*}(x)=\left\{\begin{array}{l}
f(x) \text { if } x \in \omega \\
0 \text { if not }
\end{array}\right.
$$

is primitive recursive over H_{ω}. Conversely, there is a primitive recursive map $\sigma: H_{\omega} \leftrightarrow \omega$ such that $f: H_{\omega} \rightarrow H_{\omega}$ is primitive recursive over H_{ω} iff $\sigma f \sigma^{-1}$ is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded $Z F^{-}$models

We now prove a lemma about arbitrary (possibly ill founded) models of $Z F^{-}$(where the language of $Z F^{-}$may contain predicates other than \in). Let $\mathbb{A}=\left\langle A, \in_{\mathbb{A}}, B_{1}, \ldots, B_{n}\right\rangle$ be such a model. For $X \subset A$ we of course write $\mathbb{A} \mid X=\left\langle X, \in_{A} \cap X^{2}, \ldots\right\rangle$. By the well founded core of \mathbb{A} we mean the set of all $v \in \mathbb{A}$ such that $\in_{\mathbb{A}} \cap C(x)^{2}$ is well founded, where $C(x)$ is the closure of $\{x\}$ under $\in_{\mathbb{A}}$. Let $\operatorname{wfc}(\mathbb{A})$ be the restriction $\mathbb{A} \mid C$ of \mathbb{A} to its well founded core C. Then $w f c(\mathbb{A})$ is a well founded structure satisfying the axiom of extensionality, and is, therefore, isomorphic to a transitive

