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(V, ff) (Here, Karp refined the construction so as to show that FS“Y M =FM
whenever M = (|M|,€, A1 N |M]|,..., A, N |M]|) is transitive and closed

under function primitive recursive in Aq,..., A,. It can also be shown that
M = (|M|,€,As,..., A,) is closed under functions primitive recursive in
Aq,..., Ay iff |[M] is primitive recursive closed and M is amenable, (i.e.

xNA; € Mforallze M,v=1,...,n).
A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let A; C
V' be primitive recursive in By,..., B, with primitive recursive def s; in
bi,....bym (i =1,...,m). Let f be primitive recursive in Ay, ..., A, with
primitive recursive definition s in aq,...,a,. Then f is primitive recursive
in By, ..., By by a primitive recursive definition s in b, . .., by. & is uniform
in the sense that it depends only on si,...,s, and s, not on By,...,B,,. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

/
S1y--+3Sm,SH> S

with the following property: Let By, ..., By, be any classes. Let s; define g;
from B(i=1,...,n). Set: A; = {x|gi(z) #0} ini=1,...,n. Let f be the
function defined by s from A. Then s’ defines f from B.

Note (H,, €) is an admissible structure; hence Fs [ H,, = fi*¢. This shows
that the constant function w is not primitive recursive, since w ¢ H,. It
can be shown that f :w — w is primitive recursive in the sense of ordinary
recursion theory iff
F(a) = { f(:v) ifrew
0 if not

is primitive recursive over H,,. Conversely, there is a primitive recursive map
o : H, < wsuch that f: H, — H,, is primitive recursive over H,, iff o fo~!
is primitive recursive in sense of ordinary recursion theory.

1.3 1ll founded ZF~ models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF~ (where the language of ZF~ may contain predicates other than €).
Let A = (A, €4, By,...,B,) be such a model. For X C A we of course
write A|X = (X,€4 NX?,...). By the well founded core of A we mean
the set of all v € A such that €5 NC(x)? is well founded, where C(z) is
the closure of {z} under €,. Let wfc(A) be the restriction A|C' of A to
its well founded core C. Then wifc(A) is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive
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structure. Hence A is isomorphic to a structure A’ such that wfc(A') is
transitive (i.e. wic(A') = (A, €,m) where A’ is transitive). We call such A’
grounded, defining:

Definition 1.3.1. A = (A, €,,...) is grounded iff wic(A) is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF~ has a
grounded model. Clearly

(1) w C wic(A) if A is grounded.
For any ZF~ model A we have:
(2) If z € A and {z|z €4 2} C wic(A), then = € wic(A).

Proof: C(z) = {z} UU{C(2)|z €p x}. QED

By Xg—absoluteness we have:

(3) Let A be grounded. Let ¢ be ¥y and let z1, ..., x, € wic(A). Then

wic(A) | ol] < A = o[2].

By €-induction on z € wifc(A) it follows that the rank function is
absolute:

(4) m(x) = rm®(z) for z € wic(A) if A is grounded.
The converse also holds:
(5) Let rn®(x) € wfc(A). Then x € wfc(A).

Proof: Let 7 = rn®(z). Then r is an ordinal by (3). Assume that 7 is the
least counterexample. Then rn®(z) < r for z €4 2. Hence {z|z €4 2} C

wic(A) and x € wic(A) by (2).
Contradiction! QED

We now prove:
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Lemma 1.3.1. Let A be grounded. Then wfc(A) is admissible.

Proof: Axiom (1) and axiom (2) (Xg—subsets) follow trivially from (3). We
verify the axiom of ¥y collection. Let R(x,y) be Xq(wfc(A)). Let u € wic(A)
such that Az € u\/ yR(x,y). It suffices to show:

Claim: \/v Az € u\/y € vR(x,y).

Let R’ be Xy(A) by the same definition in the same parameters as R. Then
R = R'Nwifc(A)? by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is € On® such that r ¢ wfc(A). Hence

A Ern(y) <rfor all y € wic(A)
by (4). Hence there is an 7 € On® such that

(6) AzeuVy(R(z,y) NAET(Y) <T)
Since A models ZF ™, there must be a least such r. But then:
(7) r € wic(A).

Since by (2) there would otherwise be an 7’ such that A = ' < r and
r’ ¢ wic(A). Hence (6) holds for /, contradicting the minimality of r.
QED (7)

But there is w such that

8) ANz euVyewR (z,y) Arn(y) <r).

Let A = v = {y € wrn(y) < r}. Then rn®(v) < r. Hence rn®(v) € wic(A)
and v € wfc(A) by (5). But:

/\a; € u\/y € vRxy.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let 6 = OnNwic(A). Then Ls(u) is admissible whenever
u € wic(A).

Corollary 1.3.3. L{ = (Ls[A], A N Ls[A]) is admissible whenever A €
X, (A) (since (A, A) is a ZF~ model.

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF~
by KP (Kripke-Platek set theory). In this form Lemma 1.3.1 is known as
Ville’s Lemmoa.



