$\langle V, \vec{A} \rangle$. (Here, Karp refined the construction so as to show that $F_s^{\vec{A}} \upharpoonright M = F_s^M$ whenever $M = \langle |M|, \in, A_1 \cap |M|, \ldots, A_n \cap |M| \rangle$ is transitive and closed under function primitive recursive in A_1, \ldots, A_n . It can also be shown that $M = \langle |M|, \in, A_1, \ldots, A_n \rangle$ is closed under functions primitive recursive in A_1, \ldots, A_n iff |M| is primitive recursive closed and M is amenable, (i.e. $x \cap A_i \in M$ for all $x \in M, v = 1, \ldots, n$).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let $A_i \subset V$ be primitive recursive in B_1, \ldots, B_m with primitive recursive def s_i in $\dot{b}_1, \ldots, \dot{b}_m$ ($i = 1, \ldots, m$). Let f be primitive recursive in A_1, \ldots, A_n with primitive recursive definition s in $\dot{a}_1, \ldots, \dot{a}_n$. Then f is primitive recursive in B_1, \ldots, B_n by a primitive recursive definition s' in $\dot{b}_1, \ldots, \dot{b}_m$. s' is uniform in the sense that it depends only on s_1, \ldots, s_n and s, not on B_1, \ldots, B_m . In fact, the induction on the schemata in s implicitly describes an algorithm for a function

$$s_1,\ldots,s_m,s\mapsto s'$$

with the following property: Let B_1, \ldots, B_m be any classes. Let s_i define g_i from $\vec{B}(i = 1, \ldots, n)$. Set: $A_i = \{x | g_i(x) \neq 0\}$ in $i = 1, \ldots, n$. Let f be the function defined by s from \vec{A} . Then s' defines f from \vec{B} .

Note $\langle H_{\omega}, \in \rangle$ is an admissible structure; hence $F_s \upharpoonright H_{\omega} = f_s^{H_{\omega}}$. This shows that the constant function ω is not primitive recursive, since $\omega \notin H_{\omega}$. It can be shown that $f: \omega \to \omega$ is primitive recursive in the sense of ordinary recursion theory iff

$$f^*(x) = \begin{cases} f(x) \text{ if } x \in \omega\\ 0 \text{ if not} \end{cases}$$

is primitive recursive over H_{ω} . Conversely, there is a primitive recursive map $\sigma: H_{\omega} \leftrightarrow \omega$ such that $f: H_{\omega} \to H_{\omega}$ is primitive recursive over H_{ω} iff $\sigma f \sigma^{-1}$ is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded ZF^- models

We now prove a lemma about arbitrary (possibly ill founded) models of ZF^- (where the language of ZF^- may contain predicates other than \in). Let $\mathbb{A} = \langle A, \in_{\mathbb{A}}, B_1, \ldots, B_n \rangle$ be such a model. For $X \subset A$ we of course write $\mathbb{A}|X = \langle X, \in_A \cap X^2, \ldots \rangle$. By the well founded core of \mathbb{A} we mean the set of all $v \in \mathbb{A}$ such that $\in_{\mathbb{A}} \cap C(x)^2$ is well founded, where C(x) is the closure of $\{x\}$ under $\in_{\mathbb{A}}$. Let wfc(\mathbb{A}) be the restriction $\mathbb{A}|C$ of \mathbb{A} to its well founded core C. Then wfc(\mathbb{A}) is a well founded structure satisfying the axiom of extensionality, and is, therefore, isomorphic to a transitive structure. Hence \mathbb{A} is isomorphic to a structure \mathbb{A}' such that $\operatorname{wfc}(\mathbb{A}')$ is transitive (i.e. $\operatorname{wfc}(\mathbb{A}') = \langle A', \in, m \rangle$ where A' is transitive). We call such \mathbb{A}' grounded, defining:

Definition 1.3.1. $\mathbb{A} = \langle A, \in_{\mathbb{A}}, \ldots \rangle$ is grounded iff wfc(\mathbb{A}) is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded". We avoid that usage here, however, since *solidity* — in quite another sense — is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF^- has a grounded model. Clearly

(1) $\omega \subset wfc(\mathbb{A})$ if \mathbb{A} is grounded.

For any ZF^- model \mathbb{A} we have:

(2) If $x \in \mathbb{A}$ and $\{z | z \in \mathbb{A} x\} \subset wfc(\mathbb{A})$, then $x \in wfc(\mathbb{A})$.

Proof: $C(x) = \{x\} \cup \bigcup \{C(z) | z \in \mathbb{A} x\}.$

By Σ_0 -absoluteness we have:

(3) Let \mathbb{A} be grounded. Let φ be Σ_0 and let $x_1, \ldots, x_n \in wfc(\mathbb{A})$. Then

$$\operatorname{wfc}(\mathbb{A}) \models \varphi[\vec{x}] \leftrightarrow \mathbb{A} \models \varphi[\vec{x}].$$

By \in -induction on $x \in wfc(\mathbb{A})$ it follows that the rank function is absolute:

(4) $\operatorname{rn}(x) = \operatorname{rn}^{\mathbb{A}}(x)$ for $x \in \operatorname{wfc}(\mathbb{A})$ if \mathbb{A} is grounded.

The converse also holds:

(5) Let $\operatorname{rn}^{\mathbb{A}}(x) \in \operatorname{wfc}(\mathbb{A})$. Then $x \in \operatorname{wfc}(\mathbb{A})$.

Proof: Let $r = \operatorname{rn}^{\mathbb{A}}(x)$. Then r is an ordinal by (3). Assume that r is the least counterexample. Then $\operatorname{rn}^{\mathbb{A}}(z) < r$ for $z \in_{\mathbb{A}} x$. Hence $\{z | z \in_{\mathbb{A}} x\} \subset \operatorname{wfc}(\mathbb{A})$ and $x \in \operatorname{wfc}(\mathbb{A})$ by (2).

Contradiction!

QED

QED

We now prove:

Lemma 1.3.1. Let \mathbb{A} be grounded. Then wfc(\mathbb{A}) is admissible.

Proof: Axiom (1) and axiom (2) (Σ_0 -subsets) follow trivially from (3). We verify the axiom of Σ_0 collection. Let R(x, y) be $\underline{\Sigma}_0(\text{wfc}(\mathbb{A}))$. Let $u \in \text{wfc}(\mathbb{A})$ such that $\bigwedge x \in u \bigvee yR(x, y)$. It suffices to show:

Claim: $\bigvee v \land x \in u \lor y \in vR(x, y)$.

Let R' be $\underline{\Sigma}_0(\mathbb{A})$ by the same definition in the same parameters as R. Then $R = R' \cap \operatorname{wfc}(\mathbb{A})^2$ by (3). If $\mathbb{A} = \operatorname{wfc}(\mathbb{A})$, there is nothing to prove, so suppose not. Then there is $r \in \operatorname{On}^{\mathbb{A}}$ such that $r \notin \operatorname{wfc}(\mathbb{A})$. Hence

$$\mathbb{A} \models rn(y) < r \text{ for all } y \in wfc(\mathbb{A})$$

by (4). Hence there is an $r \in On^{\mathbb{A}}$ such that

(6)
$$\bigwedge x \in u \bigvee y(R'(x,y) \land \mathbb{A} \models rn(y) < r)$$

Since A models ZF^- , there must be a least such r. But then:

(7)
$$r \in wfc(\mathbb{A}).$$

Since by (2) there would otherwise be an r' such that $\mathbb{A} \models r' < r$ and $r' \notin wfc(\mathbb{A})$. Hence (6) holds for r', contradicting the minimality of r.

QED(7)

But there is w such that

(8)
$$\bigwedge x \in u \bigvee y \in w(R'(x,y) \land rn(y) < r).$$

Let $\mathbb{A} \models v = \{y \in w | rn(y) < r\}$. Then $rn^{\mathbb{A}}(v) \leq r$. Hence $rn^{\mathbb{A}}(v) \in wfc(\mathbb{A})$ and $v \in wfc(\mathbb{A})$ by (5). But:

$$\bigwedge x \in u \bigvee y \in vRxy.$$
QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let $\delta = On \cap wfc(\mathbb{A})$. Then $L_{\delta}(u)$ is admissible whenever $u \in wfc(\mathbb{A})$.

Corollary 1.3.3. $L_{\delta}^{A} = \langle L_{\delta}[A], A \cap L_{\delta}[A] \rangle$ is admissible whenever $A \in \underline{\Sigma}_{\omega}(\mathbb{A})$ (since $\langle \mathbb{A}, A \rangle$ is a ZF^{-} model.

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF^- by KP (Kripke–Platek set theory). In this form Lemma 1.3.1 is known as *Ville's Lemma*.