
2.2. RUDIMENTARY FUNCTIONS 49

etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, §2, Lemma 1.1.4). If rn(xi) < � for i = 1, . . . , n and f is
rudimentary, then rn(f(x1, . . . , xn)) < � + !. All reasonable "elementary"
set theoretic functions are rudimentary. If ↵ is a limit ordinal, then L↵
is closed under rudimentary functions. If ↵ is a successor, then closing L↵
under rudimentary functions yields a transitive structure L⇤

↵ of rank ↵+!. It
then turns out that every ⌃!(L

⇤
↵) definable subset of L↵ is already ⌃!(L↵),

and conversely. Hence we can, in effect, replace the rather weak definability
theory of L↵ by the rather nice definability theory of L⇤

↵. (This method was
used in [JH], except that L⇤

↵ was given a different but equivalent definition,
since the rudimentary functions were not yet known.) It turns out that if N is
transitive and rudimentarily closed, and Rud(N) is defined to be the closure
of N [{N} under rudimentary functions, then P(N) \ Rud(N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting:

J! = H! = Rud(;)

J↵+! = Rud(J↵) for ↵ 2 Lm

J� =
S
⌫<�

J⌫ for � a limit p.t. of Lm.

Note. Setting J =
S
↵

J↵, we have: J = L in fact J↵ = L↵ whenever ↵ is pr

closed.

Note. This indexing was introduced by Sy Friedman. In [FSC] we indexed
by all ordinals, so that our J!↵ corresponds to the J↵ of [FSC]. The usage
in [FSC] has been followed by most authors. Nonetheless we here adopt
Friedman’s usage, which seems to us more natural, since we then have: ↵ =

rn(J↵) = On\J↵.

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. f : V n ! V is a rudimentary (rud) function iff it is
generated by successive applications of schemata (i) – (v) in the definition
of primitive recursive in chapter 1, §2.

50 CHAPTER 2. BASIC FINE STRUCTURE THEORY

A relation R ⇢ V n is rud iff there is a rud function f such that: R~x $
f(~x) = 1. In chapter 1, §1.2 we established that:

Lemma 2.2.1. Lemmas 1.2.1 – 1.2.4 of chapter 1, §1.2 hold with ’rud’ in
place of ’pr’.

Note. Our definition of ’rud function’, like the definition of ’pr function’ is
ostensibly in second order set theory, but just as in chapter 1, §1.2 we can
work in ZFC by talking about rud definitions. The notion of rud definition
is defined like that of pr definition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud definition s a rud function
Fs : V n ! V with the property that FM

s = Fs �M whenever M is admissible
and FM

s : Mn ! M is the function on M defined by s. But then if M is
transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FM

s = Fs �M .

A rudimentary function can raise the rank of its arguments by at most a
finite amount:

Lemma 2.2.2. Let f : V n ! V be rud. Then there is p < ! such that

f(~x) ⇢ Pp
(TC(x1 [. . . [xn)) for all x1, . . . , xn.

(Hence rn(f~x)  max{rn(x1), . . . , rn(xn)}+ p and
S

p f(~x) ⇢ TC(x1 [. . . [
xn).)

Proof: Call any such p sufficient for f . Then if p is sufficient, so is every
q � p. By induction on the defining schemata for f , we prove that f has
a sufficient p. If f is given by an initial schema, this is trivial. Now let
f(~x) = h(g1(~x), . . . , gm(~x)). Let p be sufficient for h and q be sufficient for
gi(i = 1, . . . ,m). It follows easily that p + q is sufficient for f . Now let
f(y, ~x) =

S
z2y

g(z, ~x), where p is sufficient for g. It follows easily that p is

sufficient for f . QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every ⌃0 relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We first define:

Definition 2.2.2. f : V n ! V is simple iff whenever R(z, ~y) is a ⌃0 relation,
then so is R(f(~x), ~y).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) x 2 f(~y) is ⌃0

2.2. RUDIMENTARY FUNCTIONS 51

(ii) If A(z, ~u) is ⌃0, then
V
z 2 f(~x)A(z, ~u) is ⌃0,

for given these we can verify by induction on the ⌃0 definition of R that
R(f(~x), ~y) is ⌃0.
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of f that f is simple. The proof is left to the reader. QED

In particular:

Corollary 2.2.4. Every rud function f is ⌃0 as a relation. Moreover f �U
is uniformly ⌃0(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is ⌃0.

In chapter 1, §2 we relativized the concept ’pr’ to ’pr in A1, . . . , An’. We can
do the same thing with ’rud’.

Definition 2.2.3. Let Ai ⇢ V (i = 1, . . . ,m). f : V n ! V is rudimentary in
A1, . . . , An (rud in A1, . . . , An) iff it is obtained by successive applications
of the schemata (i) – (v) and:

f(x) = �A(x) (i = 1, . . . , n)

where �A is the characteristic function of A.

Lemma 1.1.1 and 1.1.2 obviously hold with ’rud in A1, . . . , An’ in place of
’rud’. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the
relation {x} 2 A is not ⌃0 in A.

However, we do get:

Lemma 2.2.6. If f is rud in A1, . . . , An, then

f(~x) = f0(~x,A1 \ f1(~x), . . . , An \ fn(~x))

where f0, f1, . . . , fn are rud functions.

Proof: We display the proof for the case n = 1. Let f be rud in A. By
induction on the defining schemata for f we show:

f(~x) = f0(~x,A \ f1(~x)) where f0, f1 are rud .

52 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 1 f is given by schemata (i) – (iii). This is trivial.

Case 2 f(x) = �A(x). Then

f(x) =

⇢
1 if A \ {x} 6= ;
0 if not

�
= f 0

(x,A \ {x})

where f 0 is rud. QED (Case 2)

Case 3 f(~x) = g(h1(~x), . . . , hm(~x)). Let

g(~z) = g0(~z,A \ g1(~z))

hi(~x) = hi
0
(~x,A \ hi

1
(~x))(i = 1, . . . ,m)

where g0, g1, hi0, h
i

1
are rud. Set:

g̃(~z, u) = g0(~z, u \ g1(~z))
h̃i(~x, u) = hi

0
(~x, u \ hi

1
(~x))

f̃(~x, u) = g̃(h̃1(~x, u), . . . , h̃m(~x, u), u)

k(~x) = g1(~h1(~x)) [
mS
i=1

hi
1
(~x).

Then f(~x) = f̃(~x,A\ k(~x)), where f̃ , k are rud. This follows from the
facts:

h̃i(~x,A \ v) = hi
0
(~x,A \ hi

1
(~x)) = hi(~x) if hi

1
(~x) ⇢ v

g̃i(~z,A \ v) = g0(~z,A \ z) if g1(~z) ⇢ v.

QED (Case 3)

Case 4 f(y, ~x) =
S
z2y

g(z, ~x). Let g(z, ~x) = g0(z, ~x,A \ g1(z, ~x)). Set

g̃(z, ~x, u) = g0(z, ~x, u \ g1(z, ~x))
f̃(y, ~x, u) =

S
z2y

g̃(z, ~x, u)

k(y, ~x) =
S
z2y

g1(z, ~x)

Then f(y, ~x) = f̃(y, ~x,A \ k(y, ~z)) where f̃ , k are rud.
QED (Lemma 2.2.6)

Definition 2.2.4. X is rudimentarily closed (rud closed) iff it is closed under
rudimentary functions. hM,A1, . . . , Ani is rud closed iff M is closed under
functions rudimentary in A1, . . . , An.

If M = h|M |, A1, . . . , Ani is transitive and rud closed, then it is amenable,
since it is closed under f(x) = x \A. By lemma 2.2.6 we then have:

2.2. RUDIMENTARY FUNCTIONS 53

Corollary 2.2.7. Let M = h|M |A1, . . . , Ani be transitive. M is rud closed
iff it is amenable and |M | is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Every function f which is rud in A is ⌃1 in A as a
relation. Moreover f �U is ⌃1(hU,A\Ui) by the same ⌃1 definition whenever
hU,A\Ui is transitive and rud closed. (Similarly for "rud in A1, . . . , An".)

Proof: Let f(~x) = f0(~x,A \ f1(~x)) where f0, f1 are rud. Then:

y = f(~x)$
_

u
_

z(y = f0(~x, z) ^ u = f1(~x) ^ z = A \ u).

QED (Corollary 2.2.8)

In chapter 1 §2.2 we extended the notion of "pr definition" so as to deal with
functions pr in classes A1, . . . , An. We can do the same for rudimentary
functions:

We appoint new designated function variables ȧ1, . . . , ȧn and define the set of
rud definition in a1, . . . , an exactly as before, except that we omit the schema
(vi). Given A1, . . . , An we can, exactly as before, assign to each rud definition
s in ȧ1, . . . , ȧn a function FA1,...,An

s are then exatly the functions rud in
A1, . . . , An. Since lemma 2.2.6 (and with it corollary 2.2.8) is proven by
induction on the defining schemata, its proof implicitly defines an algorithm
which assigns to each s as ⌃1 formula 's which defines F

~A
s .

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f be rud in A1, . . . , An, where each Ai is rud in B1, . . . , Bm.
Then f is rud in B1, . . . , Bm.

The proof is again by induction on the defining schemata. It shows, in fact
that f is uniformly rud in ~B in the sense that its rud definition from ~B
depends only on its rud definition from ~A and the rud definition of Ai from
~B (i = 1, . . . , n).

We also note:

Lemma 2.2.10. Let ⇡ : M !⌃0 M , where M,M are rud closed. Then
⇡ preserves rudimentarily in the following sense: Let f be defined from the
predicates of M by the rud definition s. Let f be defined from the predicates
of M by s. Then ⇡(f(~x)) = f(⇡(~x)) for x1, . . . , xn 2M .

54 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: Let 's be the canonical ⌃1 definition. Then M |= 's[y, ~x] ! M |=
's[⇡(y),⇡(~x)] by ⌃0–preservation. QED (Lemma 2.2.10)

We now define:

Definition 2.2.5.
rud(U) =: The closure of U under rud functions
rudA1,...,An(U) =: The closure of U under functions rud in A1, . . . , An

(Hence rud(U) = rud;(U).)

Lemma 2.2.11. If U is transitive, then so is rud(U).

Proof: Let W = rud(U). Let Q(x) mean: TC({x}) ⇢W . By induction on
the defining schemata of f we show:

(Q(x1) ^ . . . ^Q(xn))! Q(f(x1, . . . , xn))

for x1, . . . , xn 2 W . The details are left to the reader. But x 2 U ! Q(x)
and each z 2W has the form f(~x) where f is rud and x1, . . . , xn 2 U . Hence
TC({z}) ⇢W for z 2W . QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rud ~A
(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction
of any ⌃0(W) relation to U is ⌃0(U).

Proof: Let R be ⌃0(W). Let R(~x) $ R0
(~x, ~p) where R0 is ⌃0(W) and

p1, . . . , pn 2 W . Let pi = fi(~z), where fi is rud and z1, . . . , zn 2 U . Then
for x1, . . . , xm 2 U :

R(~x) $ R0
(~x, ~f(~z))

$ R00
(~x, ~z)

where R00 is ⌃0(U), by lemma 2.2.3. QED (Lemma 2.2.13)

We now define:

Definition 2.2.6. Let U be transitive.

Rud(U) =: rud(U [{U})
Rud ~A

(U) =: rud ~A
(U [{U})

Then Rud(U) is a proper transitive extension of U . By Lemma 2.2.13:

2.2. RUDIMENTARY FUNCTIONS 55

Corollary 2.2.14. Def(U) = P(U) \ Rud(U) if U 6= ; is transitive.

Proof: If A 2 Def(U), then A is ⌃0(U [{U}). Hence A 2 Rud(U). Con-
versely, if A 2 Rud(U), then A is ⌃0(U [{U}) by lemma 1.1.7. It follows
easily that A 2 Def(U). QED (Corollary 2.2.14)

Note. To see that A 2 Def(U), consider the 2–language augmented by a
new constant U̇ which is interpreted by U . We assign to every ⌃0 formula
' in this language a first order formula '0 not containing U̇ such that for all
x1, . . . , xn 2 U :

U [{U} |= '[~x]$ U |= '0
[~x].

(Here xi is taken to interpret vi where v1, . . . , vn is an arbitrarily chosen
sequence of distinct variables, including all variables which occur free in '.)
We define '0 by induction on '. For primitive formulae we set first:

(v 2 w)0 = v 2 w, (v 2 U̇)
0
= v = v,

(U̇ 2 v)0 = v 6= v, (U̇ 2 U̇) =
W
v v 6= v.

For sentential combinations we do the obvious thing:

(' ^)0 = ('0 ^ 0
), (¬')0 = ¬'0,

etc. Quantifiers are treated as follows:

(
V
v 2 w')0 =

V
v 2 w'0

(
V
v 2 U̇')0 =

V
v'0

Given finitely many rud functions s1, . . . , sp we say that they constitute a
basis for the rud function iff every rud function is obtainable by successive
application of the schemata:

• f(x1, . . . , xn) = xj (j = 1, . . . , n)

• f(~x) = si(g1(~x), . . . , gm(~x)) (i = 1 . . . , p)

Note that if s1, . . . , sp is a basis, then rud(U) is simply the closure of U
under the finitely many functions s1, . . . , sp. We shall now prove the Basis
Theorem, which says that the rud functions possess a finite basis. We first
define:

Definition 2.2.7. (x, y) =: {{x}, {x, y}}; (x) = x,
(x1, . . . , xn) = (x1, (x2, . . . , xn)) for n � 2.

56 CHAPTER 2. BASIC FINE STRUCTURE THEORY

(Note: Our "official" notation for n–tuples is hx1, . . . , xni. However, we
have refrained from specifying its definition. Thus we do not know whether
(~x) = h~xi.)

We also set:

Definition 2.2.8.

x⌦ y = {(z, w)|z 2 x ^ w 2 y}
dom

⇤
(x) = {z|

W
y(y, z) 2 x}

x⇤z = {y|(y, z) 2 x}

Theorem 2.2.15. The following functions form a basis for the rud function:

F0(x, y) = {x, y}
F1(x, y) = x \ y
F2(x, y) = x⌦ y
F3(x, y) = {(u, z, v)|z 2 x ^ (u, v) 2 y}
F4(x, y) = {(u, v, z)|z 2 x ^ (u, v) 2 y}
F5(x, y) =

S
x

F6(x, y) = dom
⇤
(x)

F7(x, y) = {(z, w)|z, w 2 x ^ z 2 w}
F8(x, y) = {x⇤z|z 2 y}

Proof: The proof stretches over several subclaims. Call a function f good
iff it is obtainable from F0, . . . , F8 by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We first note:

Claim 1 The good functions are closed under composition — i.e. if g, h1, . . . , hn
are good, then so is f(~x) = g(~h(~x)).

Proof: Set G = the set of good function g(y1, . . . , yv) such that whenever
hi(~x) is good for i = 1, . . . , r, then so is f(~x) = g(~h(~x)). By a straightforward
induction on the defining schemata it is easily shown that all good functions
are in G. QED (Claim 1)

Claim 2 The following functions are good:

{x, y}, x \ y, x⌦ y, x [y =
S
{x, y},

x \ y = x \ (x \ y), {x1, . . . , xn} = {x1} [. . . [{xn},

Cn(u) = u [
S
u [. . . [

nz }| {[
. . .

[
u, (x1, . . . , xn)

(since (x1, . . . , xn) is obtained by iteration of F0.) By an 2–formula we
mean a first order formula containing only 2̇ as a non logical predicate. If

2.2. RUDIMENTARY FUNCTIONS 57

' = '(v1, . . . , vn) is any 2–formula in which at most the distinct variables
(v1, . . . , vn) occur free, set:

t'(u) =: {(x1, . . . , xn)|~x 2 u ^ hu,2i |= '[~x]}.

Note. We follow the usual convention of suppressing the list of variables.
We should, of course, write: t',v1,...,vn(u).

Note. Recall our convention that ~x 2 u means that xi 2 u for i = 1, . . . , n.

Then t' is rud. We claim:

Claim 3 t' is good for every 2–formula '.

Proof:

(1) It holds for ' = vi 2 vj (1  i < j  n)

Proof: For i = 2, 3 set:

F 0

i (u,w) = w, Fm+1

i
(u,w) = Fi(u, F

m

i (u,w))

then Fm

i
is good for all m. For m � 1 we have:

Fm

2
(u,w) = {(x1, . . . , xm, z)|~x 2 u ^ z 2 w}

Fm

3
(u,w) = {(y, x1, . . . , xm, z)|~x 2 u ^ (y, z) 2 w}

We also set
u(m)

= {(x1, . . . , xm)|~x 2 u}
= Fm�1

2
(u, u)

If j = n, then

t'(u)= {(x1, . . . , xn)|~x 2 u ^ xi 2 xj}
= F i�1

2
(u, Fn�i�1

3
(u, F7(u, u))).

Now let n > j. Noting that:

F4(u
(m), w) = {(y, z, x1, . . . , xm)|~x 2 u ^ (y, z) 2 w},

we have:

t'(u) = F i�1

2
(u, F j�n�1

3
(u, F4(u

(n�j), F7(u, u)))).

QED (1)

(2) It holds for ' = vi 2 vi.

Proof: t'(w) = ; = w \ w.

58 CHAPTER 2. BASIC FINE STRUCTURE THEORY

(3) If it holds for ' = '(v1, . . . , vn), then for ¬'.

Proof:
t¬'(w) = (w(n) \ t'(w)).

QED (3)

(4) If it holds for ', , then for ' ^ , ' _ . (Hence for ' ! , ' $
by (3).)

Proof:

t'_ (w) = t'(w) [t (w) =
S
{t'(w), t (w)}

t'^ (w) = t'(w) \ t (w), where x \ y = (x \ (x \ y)).

QED (4)

(5) If it holds for ' = '(u, v1, . . . , vn), then for
V
u',

W
u
'.

Proof:
tWu'(w) = F6(t'(!), t'(!)) hence
tVu'(w) = t¬

W
u¬'(w) by (3)

QED (5)

(6) It holds for ' = vi = vj (i, j  n).

Proof: Let (v1, . . . , vn) =
V
z(z 2 vi $ z 2 vj). Then for (~x) 2 U (n)

we have:
(~x) 2 t (u [

[
u)$ xi = xj ,

since xi, xj ⇢ (u [
S
u). Hence

t'(u) = u(n) \ t (u [
[

u).

QED (6)

(7) It holds for ' = vj 2 vi (i < j)

Proof:
vj 2 vi $

_
u(u = vj ^ u 2 vi).

We apply (6), (5) and (4). QED (7)

But then if '(v1, . . . , vn) = Qu1, . . . Qun (~u,~v) is any formula in prenex
normal form, we apply (1), (2), (6), (7) and (3), (4) to see that t is good.
But then t' is good by iterated applications of (5). QED (Claim 3)

In our application we shall use the function t' only for ⌃0 formulae '. We
shall make strong use of the following well known fact, which can be proven
by induction on n.

2.2. RUDIMENTARY FUNCTIONS 59

Fact Let ' = '(v1, . . . , vm) be a ⌃0 formula in which at most n quantifiers
occur. Let u be any set and let x1, . . . , xm 2 u. Then V |= '[~x]$ Cn(u) |=
'[~x].

Definition 2.2.9. Let f : V n ! V be rud. f is verified iff there is a good
f⇤

: V ! V such that f 00Un ⇢ f⇤
(U) for all sets U . We then say that f⇤

verifies f .

Claim 4 Every verified function is good.

Proof: Let f be verified by f⇤. Let ' be the ⌃0 formula: y = f(x1, . . . , xn).
For sufficient m we know that for any set u we have:

y = f(~x)$ (y, ~x) 2 t'(Cm(u [f⇤
(u)))

for y, ~x 2 u [f⇤
(u).

Define a good function F by:

F (u) =: (f⇤
(u)⌦ u(n)) \ t'(Cm(u [f⇤

(u))).

Then F (u) is the set of (f(~x), ~x) such that ~x 2 u. In particular, if u =

{x1, . . . , xn}, then:
F8(F ({~x}), {(~x)}) = {f(~x)}

and f(~x) =
S
F8(F ({~x}), {(~x)}). QED (Claim 4)

Thus it remains only to prove:

Claim 5 Every rud function is verified.

Proof: We proceed by induction on the defining schemata of f .

Case 1 f(~x) = xi
Take f⇤

(u) = u = u \ (u \ u).

Case 2 f(~x) = xi \ xj
Let ' be the formula z 2 x \ y. Then for z, x, y 2 v we have

z 2 x \ y $ v |= '[z, x, y]

$ (z, x, y) 2 t'(v).

But x, y 2 u! x \ y ⇢
S
u. Hence for all x, y, u and all z we have:

z 2 x \ y $ (z, x, y) 2 t'(u [
[

u).

Hence:

f 00un ⇢ {x \ y|x, y 2 u} = F8(t'(u [
[

u), u(2)).

QED (Case 2)

60 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 3 f(~x) = {xi, xj}
Then f 00un = {{x, y}|x, y 2 u} =

S
u(2). QED (Case 3)

Case 4 f(~x) = g(~h(~x))
Let h⇤

i
verify hi and g⇤ verify g. Then f⇤

(u) = g⇤(
S
i

h⇤
i
(u)) verifies f .

QED (Case 4)

Case 5 f(y, ~x) =
S
z2y

g(z, ~x). Let g⇤ verify g. Let ' = '(u, y, ~x) be the ⌃0

formula:
W

z 2 y w 2 g(z, ~x). For sufficient m we have:
_

z 2 y w 2 g(z, ~x)$ (w, y, ~x) 2 t'(Cm(u [
[

g⇤(u)))

for all w, y, ~x 2 u [
S
g⇤(u).

Set F (u) = t'(Cm(u [
S
g⇤(u))). Then g(z, ~x) ⇢

S
g⇤(u) whenever

y, ~x 2 u and z 2 y. Hence

F (u)⇤(y, ~x) =
[

z2y
g(z, ~x)

for y, ~x 2 U . Hence

f 00un+1 ⇢ F8(F (u), u(n+1)
).

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let A1, . . . , An ⇢ V . Then F0, . . . , F8 together with the
functions ai(x) = x \ Ai(i = 1, . . . , n) form a basis for the functions which
are rudimentary in A1, . . . , An.

Let M = h|M |,2, A1, . . . , Ani. ‘|=M ’ denotes the satisfaction relation for M
and ’|=⌃n

M
’ denotes its restriction to ⌃n formulae. We can make good use of

the basis theorem in proving:

Lemma 2.2.17. |=⌃0
M

is uniformly ⌃1(M) over transitive rud closed M =

h|M |,2, A1, . . . , Ani.

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = h|M |,2, Ai.
By a variable evaluation we mean a function e which maps a finite set of
variables of the M–language into |M |. Let E be the set of such evaluations.
If e 2 E, we can extend it to an evaluation e⇤ of all variables by setting:

e⇤(v) =

⇢
e(v) if v 2 dom(e)
; if not

2.2. RUDIMENTARY FUNCTIONS 61

|=M '[e] then means that ' becomes true in M if each free variable v in '
is interpreted by e⇤(v).

We assume, of course, that the first order language of M has been "arithme-
tized" in a reasonable way — i.e. the syntactic objects such as formulae and
variables have been identified with elements of H! in such a way that the
basic syntactic relations and operations become recursive. (Without this the
assertion we are proving would not make sense.) In particular the set V bl of
variables, the set Fml of formulae, and the set Fml0 of ⌃0–formulae are all
recursive (i.e. �1(H!)). We first note that every ⌃0(M) relation is rud, or
equivalently:

(1) Let ' be ⌃0. Let v1, . . . , vn be a sequence of distinct variables contain-
ing all variables occuring free in '. There is a function f uniformly
rud in A such that

|=M '[e]$ f(e⇤(v1), . . . e
⇤
(vn)) = 1

for all e 2 E.

Proof: By induction on '. We leave the details to the reader.
QED (1)

The notion A–good is defined like "good" except that we now add the
function F9(x, y) = x \ A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A–good. We now define in H! an
auxiliary term language whose terms represent the A–good function.
We first set: Ḟi(x, y) =: hi, hx, yii for i = 0, . . . , 9: ẋ = h10, xi. The set
Tm of Terms is then the smallest set such that

• v̇ is a term whenever v 2 V bl

• If t, t0 are terms, then so is Ḟi(t, t0) for i = 0, . . . , 9.

Applying the methods of Chapter 1 to the admissible set H! it follows
easily that the set Tm is recursive (i.e. �1(H!)). Set

C(t) ': The smallest set C such that the term t 2 C and C is closed
under subterms (i.e. Ḟi(s, s0) 2 C ! s, s0 2 C).

Then C(t) 2 H! for t 2 Tm, and the function C(t) is recursive (hence
�1(H!)). Since V bl is recursive, the function
V bl(t) ': {v 2 V bl|v̇ 2 C(t)} is recursive.

We note that:

(2) Every recursive relation on H! is uniformly ⌃1(M).

62 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: It suffices to note that: H! is uniformly ⌃1(M), since

x 2 H! $
_

f
_

u
_

n'(f, u, n, x)

where ' is the ⌃0 formula: f is a function ^ u is transitive
^n 2 ! ^ f : n$ u ^ x 2 u. QED (2)

Given e 2 E we recursively define an evaluation he(t)|t 2 Tmi by:

e(v̇) = e⇤(v) for v 2 V bl
e(Ḟi(t, s)) = Fi(e(t), e(s)).

Then:

(3) {hy, e, ti|e 2 E ^ t 2 Tm ^ y = e(t)} is uniformly ⌃1(M).

Proof: Let e 2 E, t 2 Tm. Then y = e(t) can be expressed in M by:
_

g
_

u
_

v(u = C(t) ^ v = V bl(t) ^ '(y, e, u, v, y, t))

where ' is the ⌃0 formula:

(g is a function ^ dom(g) = u ^
V
x 2 v x 2 u

^
V
x 2 v((x 2 dom(e) ^ g(ẋ) = e(x))_
_(x /2 dom(e) ^ g(ẋ) = ;))

^
9V

i=0

V
t, s, i 2 u(t = Ḟi(s, s0)!

! g(t) = Fi(g(s), y(s00)
^y = g(t))

QED (3)

(4) Let f(x1, . . . , xn) be A–good. Let v1, . . . , v0n be any sequence of distinct
variables. There is t 2 Tm such that

f(e⇤(v1), . . . , e
⇤
(vn)) = e(t)

for all e 2 E.

Proof: By induction on the defining schemata of f . If f(~x) = xi,
we take t = v̇i. If e⇤(~v)) = e(si) for e 2 E(i = 0, 1), and f(~x) =

Fi(g0(~x), g1(~x)), we set t = Ḟi(s0, s1). Then

e(t) = Fi(e(s0), e(s1)) = Fi(g0(~x), g1(~x)) = f(~x).

QED (4)

But then:

2.2. RUDIMENTARY FUNCTIONS 63

(5) Let ' be a ⌃0 formula. There is t 2 Tm such that M |= '[e]$ e(t) = 1

for all e 2 E.
Proof: Let v1, . . . , vn be a sequence of distinct variables containing all
variables which occur free in '. Then

M |= '[e]$M |= '[e⇤(v1), . . . , e
⇤
(vn)]

for all e 2 E. Set

(⇤) f(~x) =
⇢

1 if M |= '[~x]
0 if not.

Then f is rudimentary, hence A–good. Let t 2 Tm such that

(⇤⇤) f(e⇤(v1), . . . , e⇤(vn)) = e(t).

Then: M |= '[e]$ e(t) = 1. QED (6)
(5) is, however, much more than an existence statement, since our
proofs are effective: Clearly we can effectively assign to each ⌃0 formula
' a sequence v(') = hv1, . . . , vni of distinct variables containing all
variables which occur free in '. But the proof that the f defined by
(⇤) is rud in fact implicity defines a rud definition D' such that D'

defines such an f = fD' over any rud closed M = hM,2, Ai. The
proof that f is A–good is by induction on the defining schemata and
implicitly defines a term t = T' which satisfies (⇤⇤) over any rud closed
M . Thus our proofs implicitly describe an algorithm for the function
' 7! T'. Hence this function is recursive, hence uniformly ⌃1(M).
But then ⌃0 satisfaction can be defined over M by:

M |= '[e]$: e(T') = 1.

QED (Lemma 2.2.17)

Corollary 2.2.18. Let n � 1. |=⌃n
M

is uniformly ⌃n(M) for transitive rud

closed structures M = h|M |,2, A1, . . . , Ani.

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = hU,2i reads:

Lemma 2.2.19. Let U = hU,2i be transitive and rud closed. Let X �⌃1 U .
Then there is an isomorphism ⇡ : U

⇠ ! X, where U is transitive and rud

closed. Moreover, ⇡(f(~x)) = f(⇡(~x)) for all rud functions f .

64 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Proof: X satisfies the extensionality axiom. Hence by Mostowski’s isomor-
phism theorem there is ⇡ : U

⇠ ! X, where U is transitive. Now let f be
rud and x1, . . . , xn 2 U . Then there is y0 2 X such that y0 = f(⇡(~x)), since
X �⌃1 U . Let ⇡(y) = y0. Then y = f(~x), since the condition ’y = f(~x)’ is
⌃0 and ⇡ is ⌃1–preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = h|M |,2, A1, . . . , Ani is much
weaker, however. We state it for the case n = 1.

Lemma 2.2.20. Let M = h|M |,2, Ai be transitive and rud closed. Let
X �⌃1 M . There is an isomorphism ⇡ : M

⇠ ! X, where M = h|M |,2, Ai
is transitive and rud closed. Moreover:

(a) ⇡(A \ x) = A \ ⇡(x)

(b) Let f be rud in A. Let f be characterized by: f(~x) = f0(~x,A \ f1(~x)),
where f0, f1 are rud. Set: f(~x) =: f0(~x,A \ f1(~x)). Then:

⇡(f(~x)) = f(⇡(~x)).

The proof is left to the reader.

2.3 The J↵ hierarchy

We are now ready to introduce the alternative to Gödel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.
J! = Rud(;)
J�+! = Rud(J�) for � 2 Lm

J� =
S
�<�

J� for � a limit point of Lm

It can be shown that L =
S
↵

J↵ and, indeed, that L↵ = J↵ for a great many

↵ (for instance closed ↵). Note that J! = L! = H!.

By §2 Corollary 2.2.14 we have:

P(J↵) \ J↵+! = Def(J↵),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J–hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between J↵ and hJ↵,2i.

