Proof: X satisfies the extensionality axiom. Hence by Mostowski's isomorphism theorem there is $\pi: \bar{U} \stackrel{\sim}{\longleftrightarrow} X$, where \bar{U} is transitive. Now let f be rud and $x_{1}, \ldots, x_{n} \in \bar{U}$. Then there is $y^{\prime} \in X$ such that $y^{\prime}=f(\pi(\vec{x}))$, since $X \prec_{\Sigma_{1}} U$. Let $\pi(y)=y^{\prime}$. Then $y=f(\vec{x})$, since the condition ' $y=f(\vec{x})^{\prime}$ is Σ_{0} and π is Σ_{1}-preserving.

QED (Lemma 2.2.19)
The condensation lemma for rud closed $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ is much weaker, however. We state it for the case $n=1$.

Lemma 2.2.20. Let $M=\langle | M|, \in, A\rangle$ be transitive and rud closed. Let $X \prec_{\Sigma_{1}} M$. There is an isomorphism $\pi: \bar{M} \stackrel{\sim}{\longleftrightarrow} X$, where $\bar{M}=\langle | \bar{M}|, \in, \bar{A}\rangle$ is transitive and rud closed. Moreover:
(a) $\pi(\bar{A} \cap x)=A \cap \pi(x)$
(b) Let f be rud in A. Let f be characterized by: $f(\vec{x})=f_{0}\left(\vec{x}, A \cap f_{1}(\vec{x})\right)$, where f_{0}, f_{1} are rud. Set: $\bar{f}(\vec{x})=: f_{0}\left(\vec{x}, \bar{A} \cap f_{1}(\vec{x})\right)$. Then:

$$
\pi(\bar{f}(\vec{x}))=f(\pi(\vec{x}))
$$

The proof is left to the reader.

2.3 The J_{α} hierarchy

We are now ready to introduce the alternative to Gödel's constructible hierarchy which we had promised in $\S 1$. We index it by ordinals from the class Lm of limit ordinals.
Definition 2.3.1.

$$
\begin{aligned}
& J_{\omega}=\operatorname{Rud}(\emptyset) \\
& J_{\beta+\omega}=\operatorname{Rud}\left(J_{\beta}\right) \text { for } \beta \in \operatorname{Lm} \\
& J_{\lambda}=\bigcup_{\gamma<\lambda} J_{\gamma} \text { for } \lambda \text { a limit point of } \mathrm{Lm}
\end{aligned}
$$

It can be shown that $L=\bigcup_{\alpha} J_{\alpha}$ and, indeed, that $L_{\alpha}=J_{\alpha}$ for a great many $\alpha($ for instance closed $\alpha)$. Note that $J_{\omega}=L_{\omega}=H_{\omega}$.

By $\S 2$ Corollary 2.2.14 we have:

$$
\mathbb{P}\left(J_{\alpha}\right) \cap J_{\alpha+\omega}=\operatorname{Def}\left(J_{\alpha}\right)
$$

which pinpoints the resemblance of the two hierarchies. However, we shall not dwell further on the relationship of the two hierarchies, since we intend to consequently employ the J-hierarchy in the rest of this book. As usual, we shall often abuse notation by not distinguishing between J_{α} and $\left\langle J_{\alpha}, \in\right\rangle$.

Lemma 2.3.1. $\operatorname{rn}\left(J_{\alpha}\right)=\operatorname{On} \cap J_{\alpha}=\alpha$.

Proof: By induction on $\alpha \in \mathrm{Lm}$. For $\alpha=\omega$ it is trivial. Now let $\alpha=\beta+\omega$, where $\beta \in \operatorname{Lm}$. Then $\beta=\operatorname{On} \cap J_{\beta} \in \operatorname{Def}\left(J_{\beta}\right) \subset J_{\alpha}$. Hence $\beta+n \in J_{\alpha}$ for $n<\omega$ by rud closure. But $\operatorname{rn}\left(J_{\alpha}\right) \leq \beta+\omega=\alpha$ since J_{α} is the rud closure of $J_{\alpha} \cup\left\{J_{\alpha}\right\}$. Hence $\mathrm{On} \cap J_{\alpha}=\alpha=\operatorname{rn}\left(J_{\alpha}\right)$.

If α is a limit point of Lm the conclusion is trivial.
QED (Lemma 2.3.1)
To make our notation simpler, define
Definition 2.3.2. $\mathrm{Lm}^{*}=$ the limit points of Lm .

It is sometimes useful to break the passage from J_{α} to $J_{\alpha+\omega}$ into ω many steps. Any way of doing this will be rather arbitrary, but we can at least do it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem 2.2.15) to prove:

Lemma 2.3.2. There is a rud function $s: V \rightarrow V$ such that for all U :
(a) $U \subset s(U)$
(b) $\operatorname{rud}(U)=\bigcup_{n<\omega} s^{n}(U)$
(c) If U is transitive, so is $s(U)$.

Proof: Define rud functions $G_{i}(i=0,1,2,3)$ by:

$$
\begin{aligned}
& G_{0}(x, y, z)=(x, y) \\
& G_{1}(x, y, z)=(x, y, z) \\
& G_{2}(x, y, z)=\{x,(y, z)\} \\
& G_{3}(x, y, z)=x^{*} y
\end{aligned}
$$

Set:

$$
s(U)=: U \cup \bigcup_{i=0}^{9} F_{i}^{U} U^{2} \cup \bigcup_{i=0}^{3} G_{i}^{U} U^{3}
$$

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let $a \in s(U)$. We claim: $a \subset s(U)$. There are 14 cases: $a \in U, a=F_{i}(x, y)$ for an $i=0, \ldots, 8$, where $x, y \in U$, and $a=G_{i}(x, y, z)$ where $x, y, z \in U$ and $i=0, \ldots, 3$. Each of the cases is quite straightforward. We give some example cases:

- $a=F(x, y)=x \otimes y$. If $z \in a$, then $z=\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime} \in x, y^{\prime} \in y$. But then $x^{\prime}, y^{\prime} \in U$ by transitivity and $z=G_{0}\left(x^{\prime}, y^{\prime}, x^{\prime}\right) \in s(U)$.
- $a=F_{3}(x, y)=\{(w, z, v) \mid z \in x \wedge(u, v) \in y\}$. If $a^{\prime}=(w, z, v) \in a$, then $w, z, v \in U$ by transitivity and $a^{\prime}=G_{1}(w, z, v) \in s(U)$.
- $a=F_{8}(x, y)$. If $a^{\prime} \in a$, then $a^{\prime}=x^{*} z$ where $z \in y$. Hence $z \in U$ by transitivity and $a^{\prime}=G_{3}(x, z, z) \in s(U)$.
- $a=G_{0}(x, y, z)=\{\{x\},\{x, y\}\}$. Then $a \subset F_{0}^{\prime \prime} U^{2} \subset s(U)$.
- $a=G_{1}(x, y, z)=(x, y, z)=\{\{x\},\{x,(y, z)\}\}$. Then $\{x\}=F_{0}(x, x) \in$ $s(U)$ and $\{x,(y, z)\}=G_{2}(x, y, z) \in s(U) . \quad$ QED (Lemma 2.3.2)

If we then set:
Definition 2.3.3. $S(U)=s(U \cup\{U\})$ we get:
Corollary 2.3.3. S is a rud function such that
(a) $U \cup\{U\} \subset S(U)$
(b) $\bigcup_{n<\omega} S^{n}(U)=\operatorname{Rud}(U)$
(c) If U is transitive, so is $S(U)$.

We can then define:

Definition 2.3.4.

$$
\begin{aligned}
& S_{0}=\emptyset \\
& S_{\nu+1}=S\left(S_{\nu}\right) \\
& S_{\lambda}=\bigcup_{\nu<\lambda} S_{\nu} \text { for limit } \lambda
\end{aligned}
$$

Obviously then: $J_{\gamma}=S_{\gamma}$ for $\gamma \in \mathrm{Lm}$. (It would be tempting to simply define $J_{\nu}=S_{\nu}$ for all $\nu \in$ On. We avoid this, however, since it could lead to confusion: At successors ν the models S_{ν} do not have very nice properties. Hence we retain the convention that whenever we write J_{α} we mean α to be a limit ordinal.)

Each J_{α} has Σ_{1} knowledge of its own genesis:
Lemma 2.3.4. $\left\langle S_{\nu} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$.

Proof: $y=S_{\nu} \leftrightarrow \bigvee f(\varphi(f) \wedge y=f(\nu))$, where $\varphi(f)$ is the Σ_{0} formula:
f is a function $\wedge \operatorname{dom}(f) \in \operatorname{On} \wedge f(0)=\emptyset$
$\wedge \wedge \xi \in \operatorname{dom}(f)(\xi+1 \in \operatorname{dom}(f) \rightarrow f(\xi+1)=S(f(\xi)))$
$\wedge \wedge \lambda \in \operatorname{dom}\left(f \mid\left(\lambda\right.\right.$ is a limit $\left.\rightarrow f(\lambda)=\bigcup f^{\prime \prime} \lambda\right)$.

Thus it suffices to show that the existence quantifier can be restricted to J_{α} - i.e.

Claim $\left\langle S_{\nu} \mid \nu<\tau\right\rangle \in J_{\alpha}$ for $\tau<\alpha$.

Case $1 \alpha=\omega$ is trivial.
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lm}$.
Then $\left\langle S_{\nu} \mid \nu<\beta\right\rangle \in \operatorname{Def}\left(J_{\beta}\right) \subset J_{\alpha}$. Hence $S_{\beta}=\bigcup_{\nu<\beta} S_{\nu} \in J_{\alpha}$. By rud closure it follows that $S_{\beta+n} \in J_{\alpha}$ for $n \subset w$. Hence $S \upharpoonright \nu \in J_{\alpha}$ for $\nu<\alpha$.

QED (Case 2)
Case $3 \alpha \in \mathrm{Lm}^{*}$
This case is trivial since if $\nu<\beta \in \alpha \cap \mathrm{Lm}$. Then $S \upharpoonright \nu \in J_{\beta} \subset J_{\alpha}$.
QED (Lemma 2.3.4)

We now use our methods to show that each J_{α} has a uniformly $\Sigma_{1}\left(J_{\alpha}\right)$ well ordering. We first prove:

Lemma 2.3.5. There is a rud function $w: V \rightarrow V$ such that whenever r is a well ordering of u, then $w(u, r)$ is a well ordering of $s(u)$ which end extends r.

Proof: Let r_{2} be the r-lexicographic ordering of u^{2} :

$$
\langle x, y\rangle r_{2}\langle z, w\rangle \leftrightarrow(x r z \vee(x=z \wedge y r w)) .
$$

Let r_{3} be the r-lexicographic ordering of u^{3}. Set:

$$
u_{0}=u, u_{1+i}=F_{i}^{\prime \prime} u^{2} \text { for } i=0, \ldots, 8, u_{10+i}=G_{i}^{\prime \prime} u^{3} \text { for } i=0, \ldots, 3 .
$$

Define a well ordering w_{i} of u_{i} as follows: $w_{0}=r$, For $i=0, \ldots, 9$ set

$$
\begin{aligned}
& x w_{1+i} y \leftrightarrow \bigvee a, b \in u^{2}\left(x=F_{i}(a) \wedge y=F_{i}(b) \wedge\right. \\
& \wedge a r_{2} b \wedge \wedge a^{\prime} \in u^{2}\left(a^{\prime} r_{2} a \rightarrow x \neq F_{i}\left(a^{\prime}\right)\right) \wedge \\
& \left.\wedge \wedge b^{\prime} \in u^{2}\left(b^{\prime} r_{2} b \rightarrow y \neq F_{i}\left(b^{\prime}\right)\right)\right)
\end{aligned}
$$

For $i=0, \ldots, 3$ let w_{10+i} have the same definitions with G_{i} in place of F_{i} and u^{3}, r_{3} in place of u^{2}, r_{2}

We then set:

$$
\begin{aligned}
w=w(u)=\left\{\langle x, y\rangle \in s(u)^{2} \mid\right. & \bigvee_{i=0}^{13} \\
& \left(\left(x w_{i} y \wedge x, y \notin \bigcup_{h<i} u_{n}\right) \vee\right. \\
& \left.\left.\vee\left(x \in \bigcup_{h<i} u_{n} \wedge y \notin \bigcup_{n<i} u_{n}\right)\right)\right\}
\end{aligned}
$$

(where $\bigcup_{h<0} u_{n}=\emptyset$).
QED (Lemma 2.3.5)

If r is a well ordering of u, then

$$
r_{u}=\{\langle x, y\rangle \mid\langle x, y\rangle \in r \vee(x \in u \wedge y=u)\}
$$

is a well ordering of $u \cup\{u\}$ which end extends r. Hence if we set:
Definition 2.3.5. $W(u, r)=: w\left(u \cup\{u\}, r_{u}\right)$.

We have:
Corollary 2.3.6. W is a rud function such that whenever r is a well ordering of u, then $W(u, r)$ is a well ordering of $S(u)$ which end extends r.

If we then set:

Definition 2.3.6.

$$
\begin{aligned}
& <_{S_{0}}=\emptyset \\
& <_{S_{\nu+1}}=W\left(S_{\nu},<_{S_{\nu}}\right) \\
& <_{S_{\lambda}}=\bigcup_{\nu<\lambda}<_{S_{\nu}} \text { for limit } \lambda
\end{aligned}
$$

it follows that $<_{S_{\alpha}}$ is a well ordering of S_{α} which end extends $<_{S_{\nu}}$ for all $\nu<\alpha$.

Definition 2.3.7. $<_{\alpha}=<_{J_{\alpha}}=:<_{S_{\alpha}}$ for $\alpha \in$ Lm.

Then $<_{\alpha}$ is a well ordering of J_{α} for $\alpha \in \mathrm{Lm}$.
By a close imitation of the proof of Lemma 2.3.4 we get:
Lemma 2.3.7. $\left\langle<_{S_{\nu}} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$.

Proof:

$$
y=<_{S_{\nu}} \leftrightarrow \bigvee f \bigvee g(\varphi(f) \wedge \psi(f, g) \wedge y=g(\nu))
$$

where φ is as in the proof of Lemma 2.3.4 and ψ is the Σ_{0} formula:

$$
\begin{aligned}
& g \text { is a function } \wedge \operatorname{dom}(g)=\operatorname{dom}(f) \\
& \wedge g(0=\emptyset \wedge \wedge \xi \in \operatorname{dom}(g) \mid \xi+1 \in \operatorname{dom}(g) \rightarrow \\
& \rightarrow g(\xi+1)=W(f(\xi), g(\xi))) \\
& \wedge \wedge \lambda \in \operatorname{dom}(g)\left(\lambda \text { is a limit } \rightarrow g(\lambda)=\bigcup g^{\prime \prime} \lambda\right) .
\end{aligned}
$$

Just as before, we show that the existence quantifiers can be restricted to J_{α}.

QED (Lemma 2.3.7)
But then:
Corollary 2.3.8. $<_{\alpha}=\bigcup_{\nu<\alpha}<_{S_{\nu}}$ is a well ordering of J_{α} which is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$. Moreover $<_{\alpha}$ end extends $<_{\nu}$ for $\nu \in \operatorname{Lm}, \nu<\alpha$.

Corollary 2.3.9. u_{α} is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$, where $u_{\alpha}(x) \simeq\left\{z \mid z<_{\alpha} x\right\}$.

Proof:

$$
y=u_{\alpha}(x) \leftrightarrow \bigvee \nu\left(x \in S_{\nu} \wedge y=\left\{z \in S_{\nu} \mid z<_{S_{\nu}} x\right\}\right)
$$

QED (Corollary 2.3.9)
Note. We shall often write $<_{J_{\alpha}}$ for $<_{\alpha}$. We also write $<_{\infty}$ or $<_{J}$ or $<_{L}$ for $\bigcup_{\alpha \in \text { On }}<_{\alpha}$. Then $<_{L}$ well orders L and is an end extension of $<_{\alpha}$.

We obtain a particularly strong form of Gödel's condensation lemma:
Lemma 2.3.10. Let $X \prec_{\Sigma_{1}} J_{\alpha}$. Then there are $\bar{\alpha}, \pi$ such that $\pi: J_{\bar{\alpha}} \stackrel{\sim}{\longleftrightarrow} X$.

Proof: By $\S 2$ Lemma 2.2.19 there is rud closed U such that U is transitive and $\pi: \stackrel{\sim}{\longleftrightarrow} X$. Note that the condition

$$
S(f, \nu) \leftrightarrow: f=\left\langle S_{\xi} \mid \nu<\xi\right\rangle
$$

is Σ_{0}, since:

$$
\begin{aligned}
S(f, \nu) \leftrightarrow & \leftrightarrow f \text { is a function } \wedge \\
& \wedge \operatorname{dom}(f)=\nu \wedge f(0)=\emptyset \text { if } 0<\nu \wedge \\
& \wedge \xi \in \operatorname{dom}(f)(\xi+1 \in \operatorname{dom}(f) \rightarrow \\
& \rightarrow f(\xi+1)=S(f(\xi)))) .
\end{aligned}
$$

Let $\bar{\alpha}=$ On $\cap U$ and let $\bar{\nu}<\bar{\alpha}$. Let $\pi(\bar{\nu})=\nu$. Then $f=\left\langle S_{\xi} \mid \xi<\nu\right\rangle \in X$ since $X \prec_{\Sigma_{1}} J_{\alpha}$. Let $\pi(\bar{f})=f$. Then $\bar{f}=\left\langle S_{\xi} \mid \xi<\bar{\nu}\right\rangle$, since $S(\bar{f}, \bar{\nu})$. But then $J_{\bar{\alpha}}=\bigcup_{\xi<\bar{\alpha}} S_{\xi} \subset U$. But since π is Σ_{1} preserving we know that

$$
\begin{aligned}
x \in U & \rightarrow \bigvee f, \nu \in U\left(S(f, \nu) \wedge x \in U f^{\prime \prime} \nu\right) \\
& \rightarrow x \in J_{\bar{\alpha}} .
\end{aligned}
$$

Corollary 2.3.11. Let $\pi: J_{\bar{\alpha}}: J_{\bar{\alpha}} \rightarrow \Sigma_{1} J_{\alpha}$. Then:
(a) $\nu<\tau \leftrightarrow \pi(\nu)<\pi(\tau)$ for $\nu, \tau<\bar{\alpha}$.
(b) $x<_{L} y \leftrightarrow \pi(x)<_{L} \pi(y)$ for $x, y \in J_{\bar{\alpha}}$. Hence:
(c) $\nu \leq \pi(\nu)$ for $\nu<\bar{\alpha}$.
(d) $x \leq_{L} \pi(x)$ for $x \in J_{\bar{\alpha}}$.

Proof: (a), (b) follow by the fact that $<\cap J_{\alpha}^{2}$ and $<_{L} \cap J_{\alpha}^{2}=<_{\alpha}$ are uniformly $\Sigma_{1}\left(J_{\alpha}\right)$. But if $\pi(\nu)<\nu$, then $\nu, \pi(\nu), \pi^{2}(\nu), \ldots$ would form an infinite decreasing sequence by (a). Hence (c) holds. Similarly for (d).

QED (Corollary 2.3.11)

2.3.1 The $J_{\alpha}^{A}-$ hierarchy

Given classes A_{1}, \ldots, A_{n} one can generalize the previous construction by forming the constructible hierarchy $\left\langle J_{\alpha}^{A_{1}, \ldots, A_{n}} \mid \alpha \in \operatorname{Lim}\right\rangle$ relativized to A_{1}, \ldots, A_{n}. We have this far dealt only with the case $n=0$. We now develop the case $n=1$, since the generalization to $n>1$ is then entirely straightforward. (Moreover the case $n=1$ is sufficient for most applications.)

Definition 2.3.8. Let $A \subset V .\left\langle J_{\alpha}^{A} \mid \alpha \in \mathrm{Lm}\right\rangle$ is defined by:

$$
\begin{aligned}
& J_{\alpha}^{A}=\left\langle J_{\alpha}[A], \in, A \cap J_{\alpha}[A]\right\rangle \\
& J_{\omega}[A]=\operatorname{Rud}_{A}(\emptyset)=H_{\omega} \\
& J_{\beta+\omega}[A]=\operatorname{Rud}_{A}\left(J_{\beta}\right) \text { for } \beta \in \mathrm{Lm} \\
& J_{\lambda}[A]=\bigcup_{\nu<\lambda} J_{\nu}[A] \text { for } \lambda \in \mathrm{Lm}^{*}
\end{aligned}
$$

Note. $A \cap J_{\alpha}[A]$ is treated as an unary predicate.
Thus every J_{α}^{A} is rud closed. We set
Definition 2.3.9.

$$
\begin{aligned}
& L[A]=J[A]=\bigcup_{\alpha \in \mathrm{On}} J_{\alpha}[A] \\
& L^{A}=J^{A}=\langle L[A], \in, A \cap L[A]\rangle
\end{aligned}
$$

Note. that $J_{\alpha}[\emptyset]=J_{\alpha}$ for all $\alpha \in \operatorname{Lm}$.

Repeating the proof of Lemma 1.1.1 we get:

Lemma 2.3.12. $\operatorname{rn}\left(J_{\alpha}^{A}\right)=\mathrm{On} \cap J_{\alpha}^{A}=\alpha$.

We wish to break $J_{\alpha+\omega}^{A}$ into ω smaller steps, as we did with $J_{\alpha+\omega}$. To this end we define:

Definition 2.3.10. $S^{A}(u)=S(u) \cup\{A \cap u\}$.

Corresponding to Corollary 2.3.3 we get:
Lemma 2.3.13. S^{A} is a function rud in A such that whenever u is transitive, then:
(a) $u \cup\{u\} \cup\{A \cap u\} \subset S(u)$
(b) $\bigcup_{n<\omega}\left(S^{A}\right)^{n}(u)=\operatorname{Rud}_{A}(u)$
(c) $S(u)$ is transitive.

Proof: (a) is immediate. (c) holds, since $S(u)$ is transitive, $a \subset S(u)$ and $A \cap u \subset u$. (b) holds since $S(u) \supset u$ is transitive and $A \cap u \subset u$. But if we set: $U=\bigcup_{n<\omega}\left(S^{A}\right)^{n}(u)$, then U is rud closed and $\langle U, A \cap U\rangle$ is amenable. QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.

$$
\begin{aligned}
& S_{0}^{A}=\emptyset \\
& S_{\alpha+1}^{A}=S^{A}\left(S_{\alpha}^{A}\right) \\
& S_{\lambda}^{A}=\bigcup_{\nu<\lambda} S_{\nu}^{A} \text { for limit } \lambda .
\end{aligned}
$$

We again have: $J_{\alpha}[A]=S_{\alpha}^{A}$ for $\alpha \in$ Lm. A close imitation of the proof of Lemma 2.3.4 gives:

Lemma 2.3.14. $\left\langle S_{\nu}^{A} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

Proof: This is exactly as before except that in the formula $\varphi(f)$ we replace $S(f(\nu))$ by $S^{A}(f(\nu))$. But this is $\Sigma_{0}\left(J_{\alpha}^{A}\right)$, since:

$$
x \in S^{A}(u) \leftrightarrow(x \in S(u) \vee x=A \cap u)
$$

hence:

$$
\begin{aligned}
y= & S^{A}(u) \leftrightarrow \bigwedge z \in y z \in S^{A}(u) \\
& \wedge \bigwedge z \in S(u) z \in y \wedge \bigvee z \in y z=A \cap u
\end{aligned}
$$

QED (Lemma 2.3.14)
We now show that J_{α}^{A} has a uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ well ordering, which we call $<_{\alpha}^{A}$ or $<_{J_{\alpha}^{A}}$.

Set:

Definition 2.3.12.

$$
\begin{aligned}
W^{A}(u, r)= & \{\langle x, y\rangle \mid\langle x, y\rangle \in W(u, r) \vee \\
& (x \in S(u) \wedge y=A \cap u \notin S(u)\}
\end{aligned}
$$

If u is transitive and r well orders u, then $W^{A}(u, r)$ is a well ordering of $S^{A}(u)$ which end extends r.

We set:

Definition 2.3.13.

$$
\begin{aligned}
& <_{0}^{A}=\emptyset \\
& <_{\nu+1}^{A}=W^{A}\left(S_{\nu}^{A},<_{\nu}^{A}\right) \\
& <_{\lambda}^{A}=\bigcup_{\nu<\lambda}<_{\nu}^{A} \text { for limit }<.
\end{aligned}
$$

Then $<_{\nu}^{A}$ is a well ordering of S_{ν}^{A} which end extends $<_{\xi}^{A}$ for $\xi<\nu$. In particular $<_{\alpha}^{A}$ well orders J_{α}^{A} for $\alpha \in \Gamma$. We also write: $<_{J_{\alpha}^{A}}=:<_{\alpha}^{A}$. We set: $<_{L^{A}}=<_{J^{A}}=<_{\infty}^{A}=: \bigcup_{\nu<\infty}<_{\nu}^{A}$.

Just as before we get:
Lemma 2.3.15. $\left\langle<_{\nu}^{A} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

The proof is left to the reader. Just as before we get:
Lemma 2.3.16. $<_{\alpha}^{A}$ and $f(u)=\left\{z \mid z<_{\alpha}^{A} u\right\}$ are uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

Up until now almost everything we proved for the J_{α} hierarchy could be shown to hold for the J_{α}^{A} hierarchy. The condensation lemma, however, is available only in a much weaker form:

Lemma 2.3.17. Let $X \prec \Sigma_{1} J_{\alpha}^{A}$. Then there are $\bar{\alpha}, \pi, \bar{A}$ such that $\pi: J_{\bar{\alpha}}^{\bar{A}} \stackrel{\sim}{\longleftrightarrow} X$.

Proof: By Lemma 2.2 .19 there is $\langle\bar{U}, \bar{A}\rangle$ such that $\pi:\langle\bar{U}, \bar{A}\rangle \stackrel{\sim}{\longleftrightarrow} X$ and $\langle\bar{U}, \bar{A}\rangle$ is rud closed. As before, the condition

$$
S^{A}(f, \nu) \leftrightarrow f=\left\langle S_{\xi}^{A} \mid \nu<\xi\right\rangle
$$

si Σ_{0} in A. Now let $\bar{\nu}<\bar{\alpha}, \pi(\bar{\nu})=\nu$. As before $f=\left\langle S_{\xi} \mid \xi<\nu\right\rangle \in X$. Let $\pi\left(\bar{f}=f\right.$. Then $\bar{f}=\left\langle S_{\xi}^{A} \mid \xi<\bar{\nu}\right\rangle$, since $S^{\bar{A}}(\bar{f}, \bar{\nu})$. Then $J_{\bar{\alpha}}^{\bar{A}} \subset \bigcup_{\xi<\bar{\alpha}} S_{\xi}^{\bar{A}} \subset \bar{U}$. $U \subset J_{\bar{\alpha}}^{\bar{A}}$ then follows as before.

QED (Lemma 2.3.17)
A sometimes useful feature of the J_{α}^{A} hierarchy is:
Lemma 2.3.18. $x \in J_{\alpha}^{A} \rightarrow T C(x) \in J_{\alpha}^{A}$.
(Hence $\left\langle T C(x) \mid x \in J_{\alpha}^{A}\right\rangle$ is $\Pi_{1}\left(J_{\alpha}^{A}\right)$ since $u=T C(x)$ is defined by:
u is transitive $\wedge x \subset u \wedge \bigwedge v((v$ is transitive $\wedge x \subset v) \rightarrow u \subset v)$

Proof: By induction on α.

Case $1 \alpha=\omega$ (trivial)
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lim}$.
Then every $x \in J_{\alpha}^{A}$ has the form $f(\vec{z})$ where $z_{1}, \ldots, z_{n} \in J_{\beta}[A] \cup$ $\left\{J_{\beta}[A]\right\}$ and f is rud in A. By Lemma 2.2.2 we have

$$
\bigcup^{P} x \subset \bigcup_{i=1}^{n} T C\left(z_{i}\right) \subset J_{\beta}[A] \text { for some } p<\omega
$$

Hence $T C(x)=C_{p}(x) \cup T C\left(\bigcup_{i=1}^{n} T C\left(z_{i}\right)\right.$, where $\left\langle T C(z) \mid z \in J_{\beta}[A]\right\rangle$ is J_{β}^{A}-definable, hence an element of J_{α}^{A}.

Case $3 \alpha \in \mathrm{Lm}^{*}$ (trivial).
QED (Lemma 2.3.18)
Corollary 2.3.19. If $\alpha \in \mathrm{Lm}^{*}$, then $\left\langle T C(x) \mid x \in J_{\alpha}^{A}\right\rangle$ is uniformly $\Delta_{1}\left(J_{\alpha}^{A}\right)$.

Proof: We have seen that it is $\Pi_{1}\left(J_{\alpha}^{A}\right)$. But $T C \upharpoonright J_{\alpha}^{A} \in J_{\alpha}^{A}$ for all $\beta \in \operatorname{Lm} \cap \alpha$. Hence $u=T C(x)$ is definable in J_{α}^{A} by:
$\bigvee f(f$ is a function $\wedge \operatorname{dom}(f)$ is transitive $\wedge u=f(x)$

$$
\left.\wedge \bigwedge x \in \operatorname{dom}(f) f(x)=x \cup \bigcup f^{\prime \prime} n x\right)
$$

QED (Corollary 2.3.19)

