$2.4 J$-models

We can add further unary predicates to the structure $J_{\alpha}^{\vec{A}}$. We call the structure:

$$
M=\left\langle J_{\alpha}^{A_{1}, \ldots, A_{n}}, B_{1}, \ldots, B_{m}\right\rangle
$$

a J-model if it is amenable in the sense that $x \cap B_{i} \in J_{\alpha}^{\vec{A}}$ whenever $x \in J_{\alpha}^{\vec{A}}$ and $i=1, \ldots, m$. The B_{i} are again taken as unary predicates. The type of M is $\langle n, m\rangle$. (Thus e.g. J_{α} has type $\langle 0,0\rangle, J_{\alpha}^{A}$ has type $\langle 1,0\rangle$, and $\left\langle J_{\alpha}, B\right\rangle$ has type $\langle 0,1\rangle$.) By an abuse of notation we shall often fail to distinguish between M and the associated structure:

$$
\hat{M}=\left\langle J_{\alpha}[\vec{A}], A_{1}^{\prime}, \ldots, A_{n}^{\prime}, B_{1}, \ldots, B_{m}\right\rangle
$$

where $A_{i}^{\prime}=A_{i} \cap J_{\alpha}[\vec{A}](i=1, \ldots, n)$.
We may for instance write $\Sigma_{1}(M)$ for $\Sigma_{1}(\hat{M})$ or $\pi: N \rightarrow_{\Sigma_{n}} M$ for $\pi: \hat{N} \rightarrow_{\Sigma_{n}}$ \hat{M}. (However, we cannot unambignously identify M with \hat{M}, since e.g. for $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ we might have: $\left.\hat{M}=J_{\alpha}^{A, B}.\right)$

In practice we shall usually deal with J models of type $\langle 1,1\rangle,\langle 1,0\rangle$, or $\langle 0,0\rangle$. In any case, following the precedent in earlier section, when we prove general theorem about J-models, we shall often display only the proof for type $\langle 1,1\rangle$ or $\langle 1,0\rangle$, since the general case is then straightforward.
Definition 2.4.1. If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$ is a J-model and $\beta \leq \alpha$ in Lm, we set:

$$
M \mid \beta=:\left\langle J_{\beta}^{\vec{A}}, B_{1} \cap J_{\beta}^{\vec{A}}, \ldots, B_{n} \cap J_{\beta}^{\vec{A}}\right\rangle .
$$

In this section we consider $\Sigma_{1}(M)$ definability over an arbitrary $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$. If the context permits, we write simply Σ_{1} instead of $\Sigma_{1}(M)$. We first list some properties which follow by rud closure alone:

- $\models_{M}^{\Sigma_{1}}$ is uniformly Σ_{1}, by corollary 2.2.18 (Note 'Uniformly' here means that the Σ_{1} definition is the same for any two M having the same type.)
- If $R\left(y, x_{1}, \ldots, x_{n}\right)$ is a Σ_{1} relation, then so is $\bigvee y R\left(y, x_{1}, \ldots, x_{n}\right)$ (since $\bigvee y \bigvee z P(y z, \vec{x}) \leftrightarrow \bigvee u \bigvee y, z \in u P(y, z, \vec{x})$ where $R(y, \vec{x}) \leftrightarrow \bigvee z P(y, z, \vec{x})$ and P is Σ_{0}).
By an n-ary $\Sigma_{1}(M)$ function we mean a partial function on M^{n} which is $\Sigma_{1}(M)$ as an $n+1$-ary relation.
- If R, R^{\prime} are n-ary Σ_{1} relations, then so are $R \cap R^{\prime}, R \cup R^{\prime}$. (Since e.g.

$$
\begin{aligned}
& \left(\bigvee y P(y, \vec{x}) \wedge \bigvee P^{\prime}(y, \vec{x})\right) \leftrightarrow \\
& \left.\bigvee y y^{\prime}\left(P(y, \vec{x}) \wedge P^{\prime}\left(y^{\prime}, \vec{x}\right)\right) .\right)
\end{aligned}
$$

- If $R\left(y_{1}, \ldots, y_{m}\right)$ is an n-ary Σ_{1} relation and $f_{i}(\vec{x})$ is an n-ary Σ_{1} function for $i=1, \ldots, m$, then so is the n-ary relation

$$
R(\vec{f}(\vec{x})) \leftrightarrow: \bigvee y_{1}, \ldots, y_{m}\left(\bigwedge_{i=1}^{m} y_{i}=f_{i}(\vec{x}) \wedge R(\vec{y})\right)
$$

- If $g\left(y_{1}, \ldots, y_{m}\right)$ is an m-ary Σ_{1} function and $f_{i}(\vec{x})$ is an n-ary Σ_{1} function for $i=1, \ldots, m$ then $h(\vec{x}) \simeq g(\vec{f}(\vec{x}))$ is an n-ary Σ_{1} function. (Since $z=h(\vec{x}) \leftrightarrow \bigvee y_{1}, \ldots, y_{m}\left(\bigwedge_{i=1}^{m} y_{i}=f_{i}(\vec{x}) \wedge z=g(\vec{y})\right)$.)

Since $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is Σ_{1} function, we have:

- If $R\left(x_{1}, \ldots, x_{n}\right)$ is Σ_{1} and $\sigma: n \rightarrow m$, then

$$
P\left(z_{1}, \ldots, z_{m}\right) \leftrightarrow: R\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)
$$

is Σ_{1}.

- If $f\left(x_{1}, \ldots, x_{n}\right)$ is a Σ_{1} function and $\sigma: n \rightarrow m$, then the function:

$$
g\left(z_{1}, \ldots, z_{m}\right) \simeq: f\left(z_{\sigma(1)}, \ldots, z_{\sigma n}\right)
$$

is Σ_{1}.
J-models have the further property that every binary Σ_{1} relation is uniformizable by a Σ_{1} function. We define

Definition 2.4.2. A relation $R(y, \vec{x})$ is uniformized by the function $F(\vec{x})$ iff the following hold:

- $\bigvee y R(y, \vec{x}) \rightarrow F(\vec{x})$ is defined
- If $F(\vec{x})$ is defined, then $R(F(\vec{x}), \vec{x})$

We shall, in fact, prove that M has a uniformly Σ_{1} definable Skolem function. We define:

Definition 2.4.3. $h(i, x)$ is a Σ_{1}-Solem function for M iff h is a $\Sigma_{1}(M)$ partial map from $\omega \times M$ to M and, whenever $R(y, x)$ is a $\Sigma_{1}(M)$ relation, there is $i<\omega$ such that h_{i} uniformizes R, where $h_{i}(x) \simeq h(i, x)$.

Lemma 2.4.1. M has a Σ_{1}-Skolem function which is uniformly $\Sigma_{1}(M)$.

Proof: $\models_{M}^{\Sigma_{1}}$ is uniformly Σ_{1}. Let $\left\langle\varphi_{i} \mid i<\omega\right\rangle$ be a recursive enumeration of the Σ_{1} formulae in which at most the two variables v_{0}, v_{1} occur free. Then the relation:

$$
T(i, y, x) \leftrightarrow: \mid=_{M}^{\Sigma_{1}} \varphi_{i}[y, x]
$$

is uniformly Σ_{1}. But then for any Σ_{1} relation R there is $i<\omega$ such that

$$
R(y, x) \leftrightarrow T(i, y, x) .
$$

Since T is Σ_{1}, it has the form:

$$
\bigvee z T^{\prime}(z, i, y, x)
$$

where T^{\prime} is Σ_{0}. Writing $<_{M}$ for $<_{\alpha}^{\vec{A}}$, we define:

$$
\begin{gathered}
y=h(i, x) \leftrightarrow \bigvee z\left(\langle z, y\rangle \text { is the }<_{M}\right. \text {-least } \\
\text { pair }\left\langle z^{\prime}, y^{\prime}\right\rangle \text { such that } T^{\prime}\left(z^{\prime}, i, y^{\prime}, x\right) .
\end{gathered}
$$

Recalling that the function $f(x)=\left\{z \mid z<_{M} x\right\}$ is Σ_{1}, we have:

$$
\begin{aligned}
y= & h(i, x) \leftrightarrow \bigvee z \bigvee u\left(T^{\prime}(z, i, y, x) \wedge\right. \\
& \wedge u=\{w \mid w<M\langle z, y\rangle\} \wedge \\
& \left.\wedge \wedge\left\langle z^{\prime}, y^{\prime}\right\rangle \in u \neg T^{\prime}(z, i, y, x)\right)
\end{aligned}
$$

QED 2.4.1
We call the function h defined above the canonical Σ_{1} Skolem function for M and denote it by h_{M}. The existence of h implies that every $\Sigma_{1}(M)$ relation is uniformizable by a $\Sigma_{1}(M)$ function:

Corollary 2.4.2. Let $R\left(y, x_{1}, \ldots, x_{n}\right)$ be Σ_{1}. R is uniformizable by a Σ_{1} function.

Proof: Let h_{i} uniformize the binary relation

$$
\left\{\langle y, z\rangle \mid \bigvee x_{1} \ldots x_{n}\left(R(y, \vec{x}) \wedge z=\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)\right\}
$$

Then $f(\vec{x}) \simeq: h_{i}(\langle\vec{x}\rangle)$ uniformizes R.
We say that a $\Sigma_{1}(M)$ function has a functionally absolute definition if it has a Σ_{1} definition which defines a function over every J-model of the same type.

Corollary 2.4.3. Every $\Sigma_{1}(M)$ function g has functionally absolute definition.

Proof: Apply the construction in Corollary 2.4.2 to $R(y, \vec{x}) \leftrightarrow y=g(\vec{x})$. Then $f(x) \simeq: h_{i}(\langle\vec{x}\rangle)$ is functionally absolute since h_{i} is.

QED (Corollary 2.4.2)
Lemma 2.4.4. Every $x \in M$ is $\Sigma_{1}(M)$ in parameters from $\mathrm{On} \cap M$.

Proof: We must show: $x=f\left(\xi_{1}, \ldots, \xi_{n}\right)$ where f is $\Sigma_{1}(M)$. If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$, it obviously suffices to show it for the model $M^{\prime}=J_{\alpha}^{\vec{A}}$. For the sake of simplicity we display the proof for J_{α}^{A}. (i.e. M has type $\langle 1,0\rangle$). We proceed by induction on $\alpha \in \mathrm{Lm}$.

Case $1 \alpha=\omega$.
Then $J_{\alpha}^{A}=\operatorname{Rud}(\emptyset)$ and $x=f(\{0\})$ where f is rudimentary.
Case $2 \alpha=\beta+\omega, \beta \in \mathrm{Lm}$.
Then $x=f\left(z_{1}, \ldots, z_{n}, J_{\beta}^{A}\right)$ where $z_{1}, \ldots, z_{n} \in J_{\beta}^{A}$ and f is rud in A. (This is meant to include the case: $n=0$ and $x=f\left(J_{\beta}^{A}\right)$.) By the induction hypothesis there are $\vec{\xi} \in \beta$ such that $z_{i}=g_{i}(\vec{\xi})(i=1, \ldots, n)$ and g_{i} is $\Sigma_{1}\left(J_{\beta}^{A}\right)$. For each i pick a functionally absolute Σ_{1} definition for g_{i} and let g_{i}^{\prime} be $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ by the same definition. Then $z_{i}=g_{i}^{\prime}(\vec{\xi})$ since the condition is Σ_{1}. Hence $x=f^{\prime}(\vec{\xi}, \beta)=f\left(\vec{g}^{\prime}\left(\xi, J_{\beta}^{A}\right)\right.$ where f^{\prime} is Σ_{1}.

QED (Case 2)
Case $3 \alpha \in \mathrm{Lm}^{*}$.
Then $x \in J_{\beta}^{A}$ for a $\beta<\alpha$. Hence $x=f(\vec{\xi})$ where f is $\Sigma_{1}\left(J_{\beta}^{A}\right)$. Pick a functionally absolute Σ_{1} definition of f and let f^{\prime} be $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ by the same definition. Then $x=f^{\prime}(\vec{\xi})$.

QED (Lemma 2.4.4)

But being Σ_{1} in parameters from $\mathrm{On} \cap M$ is the same as being Σ_{1} in a finite subset of On $\cap M$:

Lemma 2.4.5. Let $x=f(\vec{\xi})$ where f is $\Sigma_{1}(M)$. Let $a \subset \mathrm{On} \cap M$ be finite such that $\xi_{1}, \ldots, \xi_{n} \in a$. Then $x=g(a)$ for $a \Sigma_{1}(M)$ function g.

Proof: Set:

$$
k_{i}(a)=\left\{\begin{array}{l}
\text { the } i-\text { th element of } a \text { in order } \\
\text { of size if } a \subset \text { On is finite } \\
\text { and } \operatorname{card}(a)>i \\
\text { undefined if not. }
\end{array}\right.
$$

Then k_{i} is $\Sigma_{1}(M)$ since:

$$
\begin{gathered}
y=k_{i}(a) \leftrightarrow \bigvee f \bigvee n<\omega(f: n \leftrightarrow a \wedge \bigwedge i, j<n(f(i)<f(j) \leftrightarrow i<j) \\
\wedge a \subset \operatorname{On} \wedge y=f(i))
\end{gathered}
$$

Thus $x=f\left(k_{i_{1}}(a), \ldots, k_{i_{n}}(a)\right)$ where $\xi_{l}=k_{i_{l}}(a)$ for $l=1, \ldots, n$.
QED (Lemma 2.4.5)
We now show that for every J-model M there is a $\underline{\Sigma}_{1}(M)$ partial map of On $\cap M$ onto M. As a preliminary we prove:
Lemma 2.4.6. There is a partial $\underline{\Sigma}_{1}(M)$ map of $\mathrm{On} \cap M$ onto $(\mathrm{On} \cap M)^{2}$.
Proof: Order the class of pairs On^{2} by setting: $\langle\alpha, \beta\rangle<^{*}\langle\gamma, \delta\rangle$ iff $\langle\max (\alpha, \beta), \alpha, \beta\rangle$ is lexicographically less than $\langle\max (\gamma, \delta), \gamma, \delta\rangle$. This ordering has the property that the collection of predecessors of any pair form a set. Hence there is a function $p: \mathrm{On} \rightarrow \mathrm{On}^{2}$ which enumerates the pairs in order $<$ *.

Claim $1 p \upharpoonright \mathrm{On}_{M}$ is $\Sigma_{1}(M)$.
Proof: If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$, it suffices to prove it for $J_{\alpha}^{\vec{A}}$. To simplify notation, we assume: $M=J_{\alpha}^{A}$ for an $A \subset M$ (i.e. M is of type $\langle 1,0\rangle$.)
We know:

$$
y=p(\nu) \leftrightarrow \bigvee f(\varphi(f) \wedge y=f(\nu))
$$

where φ is the Σ_{0} formula:

$$
\begin{aligned}
& f \text { is a function } \wedge \operatorname{dom}(f) \in \operatorname{On} \wedge \\
& \wedge \bigwedge u \in \operatorname{rng}(f) \bigvee \beta, \gamma \in C_{n}(u) u=\langle\beta, \gamma\rangle \wedge \\
& \wedge \bigwedge \nu, \tau \in \operatorname{dom}(f)\left(\nu<\tau \leftrightarrow f(\nu)<^{*} f(\tau)\right) \\
& \wedge \bigwedge u \in \operatorname{rng}(f) \bigwedge \mu, \xi \leq \max (u)\left(\langle\mu, \xi\rangle<^{*} u \rightarrow\langle\mu, \xi\rangle \in \operatorname{rng}(f)\right)
\end{aligned}
$$

Thus it suffices to show that the existence quantifier can be restricted to J_{α}^{A} - i.e. that $p \upharpoonright \xi \in J_{\alpha}^{A}$ for $\xi<\alpha$. This follows by induction on α in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on $\alpha=\mathrm{On}_{M}$, considering three cases:
Case $1 p(\alpha)=\langle 0, \alpha\rangle$.
Then $p \upharpoonright \alpha$ maps α onto

$$
\left\{u \mid u<_{*}\langle 0, \alpha\rangle\right\}=\alpha^{2}
$$

and we are done, since $p \upharpoonright \alpha$ is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$. (Note that ω satisfies Case 1.)
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lm}$ and Case 1 fails.
There is a $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ bijection of β onto α defined by:

$$
\begin{aligned}
& f(2 n)=\beta+n \text { for } n<\omega \\
& f(2 n+1)=n \text { for } n<\omega \\
& f(\nu)=\nu \text { for } \omega \leq \nu<\beta
\end{aligned}
$$

Let g be a $\underline{\Sigma}_{1}\left(J_{\beta}^{A}\right)$ partial map of β onto β^{2}. Set $\left(\left\langle\gamma_{0}, \gamma_{1}\right\rangle\right)_{i}=\gamma_{i}$ for $i=0,1$.

$$
g_{i}(\nu) \simeq(g(\nu))_{i}(i=0,1)
$$

Then $\tilde{f}(\nu) \simeq\left\langle f g_{0}\left(\nu, f g_{1}(\nu)\right\rangle\right.$ maps β onto α^{2}.
QED (Case 2)
Case 3 The above cases fail.
Then $p(\alpha)=\langle\nu, \tau\rangle$, where $\nu, \tau<\alpha$. Let $\gamma \in \operatorname{Lm}$ such that $\max (\nu, \tau)<$ $\gamma<\alpha$. Let g be a partial $\underline{\Sigma}_{1}\left(J_{\alpha}^{A}\right)$ map of γ onto γ^{2}. Then $g \in M, p^{-1}$ is a partial map of γ^{2} onto α; hence $f=p^{-1} \circ g$ is a partial map of γ onto α. Set: $\tilde{f}(\langle\xi, \delta\rangle) \simeq\langle f(\xi), f(\delta)\rangle$ for ξ, δ, γ. Then $\tilde{f} g$ is a partial map of γ onto α^{2}.

QED (Lemma 2.4.6)

We can now prove:
Lemma 2.4.7. There is a partial $\underline{\Sigma}_{1}(M)$ map of On_{M} onto M.

Proof: We again simplify things by taking $M=J_{\alpha}^{A}$. Let g be a partial map of α onto α^{2} which is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in the parameters $p \in J_{\alpha}^{A}$. Define "ordered pairs" of ordinals $<\alpha$ by:

$$
(\nu, \tau)=: g^{-1}(\langle\nu, \tau\rangle)
$$

We can then, for each $n \geq 1$, define "ordered n-tuples" by:

$$
(\nu)=: \nu,\left(\nu_{1}, \ldots, \nu_{n}\right)=\left(\nu_{1},\left(\nu_{2}, \ldots, \nu_{n}\right)\right)(n \geq 2)
$$

We know by Lemma 2.4 .4 that every $y \in J_{\alpha}^{A}$ has the form: $y=f\left(\nu_{1}, \ldots, \nu_{n}\right)$ where $\nu_{1}, \ldots, \nu_{n}<\alpha$ and f is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$. Define a function f^{*} by:

$$
\begin{aligned}
y=f^{*}(\tau) & \leftrightarrow \bigvee \nu_{1}, \ldots, \nu_{n}\left(\tau=\left(\nu_{1}, \ldots, \nu_{n}\right) \wedge\right. \\
& \left.\wedge y=f\left(\nu_{1}, \ldots, \nu_{n}\right)\right)
\end{aligned}
$$

Then f^{*} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p and $y \in f^{* \prime \prime} \alpha$. If we set: $h^{*}(i, x) \simeq h(i,\langle x, p\rangle)$, then each binary relation which is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p is uniformized by one of the functions $h_{i}^{*}(x) \simeq h^{*}(i, x)$. Hence $y=h^{*}(i, \gamma)$ for some $\gamma<\alpha$. Hence $J_{\alpha}^{A}=h^{* \prime \prime}(\omega \times \alpha)$. But, setting:

$$
y=\hat{h}(\mu) \leftrightarrow \bigvee i, \nu\left(\mu=(i, \nu) \wedge y=h^{*}(i, \nu)\right)
$$

we see that \hat{h} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p and $y \in \hat{h}^{\prime \prime} \alpha$. Hence $J_{\alpha}^{A}=\hat{h}^{\prime \prime} \alpha$, where \hat{h} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p.

QED (Lemma 2.4.7)
Corollary 2.4.8. Let $x \in M$. There are $f, \gamma \in J_{\alpha}^{A}$ such that f maps γ onto x.

Proof: We again prove it for $M=J_{\alpha}^{A}$. If $\alpha=\omega$ it is trivial since $J_{\alpha}^{A}=H_{\omega}$. If $\alpha \in \mathrm{Lm}^{*}$ then $x \in J_{\beta}^{A}$ for a $\beta<\alpha$ and there is $f \in J_{\alpha}^{A}$ mapping β onto J_{β}^{A} by Lemma 2.4.7. There remains only the case $\alpha=\beta+\omega$ where β is a limit ordinal. By induction on $n<\omega$ we prove:

Claim There is $f \in J_{\alpha}^{A}$ mapping β onto $S_{\beta+n}^{A}$. If $n=0$ this follows by Lemma 2.4.7.

Now let $n=m+1$.
Let $f: \beta \xrightarrow{\text { onto }} S_{\beta+m}^{A}$ and define f^{\prime} by $f^{\prime}(0)=S_{\beta+m}^{A}, f^{\prime}(n+1)=f(n)$ for $n<\omega, f^{\prime}(\xi)=f(\xi)$ for $\xi \geq \omega$. Then f^{\prime} maps β onto $U=S_{\beta+m}^{A} \cup\left\{S_{\beta+m}^{A}\right\}$ and $S_{\beta+m}^{A}=\bigcup_{\delta=\beta}^{8} F_{i}^{\prime \prime} U^{2} \cup \bigcup_{i=0}^{3} G_{i}^{\prime \prime} U^{3} \cup\left\{A \cap S_{\beta+m}^{A}\right\}$.

Set:

```
\(g_{i}=\left\{\left\langle F_{i}\left(f^{\prime}(\xi), f^{\prime}(\zeta)\right),\langle i,\langle\xi, \zeta\rangle\rangle\right\rangle \mid \xi, \zeta<\beta\right\}\)
for \(i=0, \ldots, 8\)
\(\left.g_{8+i+1}=\left\{\left\langle G_{i}\right| f^{\prime}(\xi), f^{\prime}(\zeta), f^{\prime}(\mu)\right),\langle 8+i+1,\langle\xi, \zeta, \mu\rangle\rangle \mid \xi, \zeta, \mu<\beta\right\}\)
for \(i=0, \ldots, 3\)
\(g_{13}=\left\{\left\langle A \cap S_{\beta+m}^{A}\langle 13, \emptyset\rangle\right\rangle\right\}\)
```

Then $g=\bigcup_{i=0}^{13} g_{i} \in J_{\alpha}^{A}$ is a partial map of J_{β}^{A} onto $S_{\beta+n}^{A}$ and $g h \in J_{\alpha}^{A}$ is a partial map of β onto S_{β}^{A}. QED (Corollary 2.4.8)

Define the cardinal of x in M by:
Definition 2.4.4. $\overline{\bar{x}}=\overline{\bar{x}}^{M}=$: the least γ such that some $f \in M$ maps γ onto x.
Note. this is a non standard definition of cardinal numbers. If M is e.g. $p r$ closed, we get that there is $f \in M$ bijecting $\overline{\bar{x}}$ onto x.

Definition 2.4.5. Let $X \subset M . h(X)=h_{M}(X)=$: The set of all $y \in M$ such that $y=f\left(x_{1}, \ldots, x_{n}\right)$, where $x_{1}, \ldots, x_{n} \in X$ and f is a $\Sigma_{1}(M)$ function

Since $\Sigma_{1}(M)$ functions are closed under composition, it follows easily that $Y=h(X)$ is closed under $\Sigma_{1}(M)$ functions.

By Corollary 2.4.2 we then have:
Lemma 2.4.9. Let $Y=h(X)$. Then $M \mid Y \prec \Sigma_{1} M$ where

$$
M \mid Y=:\left\langle Y, A_{1} \cap Y, \ldots, A_{n} \cap Y, B_{1} \cap Y, \ldots, B_{m} \cap Y\right\rangle
$$

Note. We shall often ignore the distinction between Y and $M \mid Y$, writing simply: $Y \prec \Sigma_{1} M$.

If f is a $\Sigma_{1}(M)$ function, there is $i<\omega$ such that $h(i,\langle\vec{x}\rangle) \simeq f(\vec{x})$. Hence:
Corollary 2.4.10. $h(X)=\bigcup_{n<\omega} h^{\prime \prime}\left(\omega \times X^{n}\right)$.

There are many cases in which $h(X)=h^{\prime \prime}(\omega \times X)$, for instance:
Corollary 2.4.11. $h(\{x\})=h^{\prime \prime}(\omega \times\{x\})$.

Gödels pair function on ordinals is defined by:
Definition 2.4.6. $\prec \gamma, \delta \succ=: p^{-1}(\prec \gamma, \delta \succ)$, where p is the function defined in the proof of Lemma 2.4.6.

We can then define Gödel n-tuples by iterating the pair function:
Definition 2.4.7. $\prec \gamma \succ=: \gamma ; \prec \gamma_{1}, \ldots, \gamma_{n} \succ=: \prec \gamma_{1}, \prec \gamma_{2}, \ldots, \gamma_{n} \succ \succ(n \geq$ 2).

Hence any X which is closed under Gödel pairs is closed under the tuplefunction. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If $Y \subset \mathrm{On}_{M}$ is closed under Gödel pairs, then:
(a) $h(Y)=h^{\prime \prime}(\omega \times Y)$
(b) $h(Y \cup\{p\})=h^{\prime \prime}(\omega \times(Y \times\{p\}))$ for $p \in M$.

Proof: We display the proof of (b). Let $y \in h(Y \cup\{p\})$. Then $y=$ $f\left(\gamma_{1}, \ldots, \gamma_{n}, p\right)$, where $\gamma_{1}, \ldots, \gamma_{n} \in Y$ and f is $\Sigma_{1}(M)$.

Hence $y=f^{*}(\langle\delta, p\rangle)$ where $\delta=\prec \gamma_{1}, \ldots, \gamma_{n} \succ$ and

$$
\begin{gathered}
y=f^{*}(z) \leftrightarrow \bigvee \gamma_{1}, \ldots, \gamma_{n} \bigvee p\left(z=\left\langle\prec \gamma_{1}, \ldots, \gamma_{n} \succ, p\right\rangle \wedge\right. \\
\wedge y=f(\vec{\gamma}, p))
\end{gathered}
$$

Hence $y=h(i,\langle\delta, p\rangle)$ for some i.
QED (Corollary 2.4.12)
Similarly we of course get:
Corollary 2.4.13. If $Y \subset M$ is closed under ordered pairs, then:
(a) $h(Y)=h^{\prime \prime}(\omega \times Y)$
(b) $h(Y \cup\{p\})=h^{\prime \prime}(\omega \times(Y \times\{p\})$ for $p \in M$.

By Lemma 2.4.5 we easily get:
Corollary 2.4.14. Let $Y \subset \mathrm{On}_{M}$. Then $h(Y)=h^{\prime \prime}\left(\omega \times \mathbb{P}_{\omega}(Y)\right)$.

In fact:
Corollary 2.4.15. Let $A \subset \mathbb{P}_{\omega}\left(\mathrm{On}_{M}\right)$ be directed (i.e. $a, b \in A \rightarrow \bigvee c \in$ $A a, b \subset c)$. Let $Y=\bigcup A$. Then $h(Y)=h^{\prime \prime}(\omega \times A)$.

By the condensation lemma we get:
Lemma 2.4.16. Let $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M$ where M is a J-model and \bar{M} is transitive. Then \bar{M} is a J-model.

Proof: \bar{M} is amenable by Σ_{1} preservation. But then it is a J-model by the condensation lemma.

QED (Lemma 2.4.16)
We can get a theorem in the other direction as well. We first define:
Definition 2.4.8. Let \bar{M}, M be transitive structures. $\sigma: \bar{M} \rightarrow M$ cofinally iff σ is a structural embedding of \bar{M} into M and $M=\bigcup \sigma^{\prime \prime} \bar{M}$.

Then:
Lemma 2.4.17. If $\sigma: \bar{M} \rightarrow \Sigma_{0} M$ cofinally. Then σ is Σ_{1} preserving.

Proof: Let $R(y, \vec{x})$ be $\Sigma_{0}(M)$ and let $\bar{R}(y, \vec{x})$ be $\Sigma_{0}(\bar{M})$ by the same definition. We claim:

$$
\bigvee y R(y, \sigma(\vec{x})) \rightarrow \bigvee y \bar{R}(y, \vec{x})
$$

for $x_{1}, \ldots, x_{n} \in \bar{M}$. To see this, let $R(y, \sigma(\vec{x}))$. Then $y \in \sigma(u)$ for a $u \in \bar{M}$. Hence $\bigvee y \in \sigma(u) R(y, \sigma(\vec{x}))$, which is a Σ_{0} statement about $\sigma(u), \sigma(\vec{x})$. Hence $\bigvee y \in u \bar{R}(y, \vec{x})$.

QED (Lemma 2.4.17)
Lemma 2.4.18. Let $\sigma: \bar{M} \rightarrow_{\Sigma_{0}} M$ cofinally, where \bar{M} is a J-model. Then M is a J-model.

Proof: Let e.g. $\bar{M}=\langle J \overline{\bar{\alpha}}\rangle, M=\langle U, A, \bar{B}\rangle$.

Claim $1 U=J_{\alpha}^{A}$ where $\alpha=\mathrm{On}_{M}$.
Proof: $y=S^{\bar{A}} \upharpoonright \nu$ is a Σ_{0} condition, so $\sigma\left(S^{\bar{A}} \upharpoonright \nu\right)=S^{A} \upharpoonright \sigma(\nu)$. But σ takes $\bar{\alpha}$ cofinally to α, so if $\xi<\alpha, \xi<\sigma(\nu)$, then $S_{\xi}^{A}\left(S^{A} \upharpoonright \sigma(\nu)\right)(\xi) \in U$. Hence $J_{\alpha}^{A} \subset U$. To see $U \subset J_{\alpha}^{A}$, let $x \in U$. Then $x \in \sigma(u)$ where $u \in J_{\bar{\alpha}}^{\bar{A}}$. Hence $u \subset S_{\nu}^{\bar{A}}$ and $x \in \sigma\left(S_{\nu}^{\bar{A}}\right)=S_{\sigma(\nu)}^{A} \subset J_{\alpha}^{A} . \operatorname{QED}($ Claim 1)

Claim $2 M$ is amenable.

Let $x \in S_{\sigma(\nu)}^{A}$. Then $\sigma\left(\bar{B} \cap S_{\nu}^{\bar{A}}\right)=B \cap S_{\sigma(\nu)}^{A}$ and $x \cap B=\left(B \cap S_{\nu}^{A}\right) \cap x \in$ U, since S_{ν}^{A} is transitive.

QED (Lemma 2.4.18)
Lemma 2.4.19. Let \bar{M}, M be J-models. Then $\sigma: \bar{M} \rightarrow \Sigma_{0} M$ cofinally iff $\sigma: \bar{M} \rightarrow \Sigma_{0} M$ and σ takes $\mathrm{On}_{\bar{M}}$ to On_{M} cofinally.

Proof: (\rightarrow) is obvious. We prove (\leftarrow). The proof of $\sigma\left(S_{\nu}^{\bar{A}}\right)=S_{\sigma(\nu)}^{A}$ goes through as before. Thus if $x \in M$, we have $x \in S_{\xi}^{A}$ for some ξ. Let $\xi \leq \sigma(\nu)$. Then $x \in S_{\sigma(\nu)}^{A}=\sigma\left(S_{\nu}^{\bar{A}}\right)$.

QED (Lemma 2.4.19)

2.5 The Σ_{1} projectum

2.5.1 Acceptability

We begin by defining a class of J-models which we call acceptable. Every J_{α} is acceptable, and we shall see later that there are many other naturally occurring acceptable structures. Accepability says essentially that if something dramatic happens to β at some later stage ν of the construction, then ν is, in fact, collapsed to β at that stage:

Definition 2.5.1. $J_{\alpha}^{\vec{A}}$ is acceptable iff for all $\beta \leq \nu<\alpha$ in Lm we have:
(a) If $a \subset \beta$ and $a \in J_{\nu+\omega}^{\vec{A}} \backslash J_{\nu}^{\vec{A}}$, then $\overline{\bar{\nu}} \leq \beta$ in $J_{\nu+\omega}^{\vec{A}}$.
(b) If $x \in J_{\beta}^{\vec{A}}$ and ψ is a Σ_{1} condition such that $J_{\nu+\omega}^{\vec{A}} \models \psi[\beta, x]$ but $J_{\nu}^{\vec{A}} \not \models \psi[\beta, x]$, then $\overline{\bar{\nu}} \leq \beta$ in $J_{\nu+\omega}^{\vec{A}}$.
A J-model $\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$ is acceptable iff $J_{\alpha}^{\vec{A}}$ is acceptable.
Note. 'Acceptability' referred originally only to property (a). Property (b) was discovered later and was called ' Σ_{1} acceptability'.

In the following we shall always suppose M to be acceptable unless otherwise stated. We recall that by Corollary 2.4.8 every $x \in M$ has a cardinal $\overline{\bar{x}}=\overline{\bar{x}}^{M}$. We call γ a cardinal in M iff $\gamma=\bar{\gamma}$ (i.e. no smaller ordinal is mappable onto γ in $M)$.

Lemma 2.5.1. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable. Let $\gamma>\omega$ be a cardinal in M. Then:

