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where � is a first order formula. Note that this reduction is uniform.
Hence if � < ⌫  �, z 2 J⌫ and J⌫ |= �[z, x, �], it follows that
J⌫+! |=  [x, �]. This means that J⌫ |= ¬�0

[x, �] for � < ⌫ < �, where
� = �(v0, v1, vn) and �0

=
W
v0�. We know that � < ⇢n

J�
for all n.

Choose n such that �0 is ⌃n. Let M = J� , N : Mn,p when p = pN .
Let X = hN (� + 1 [ {x}) and let ⇡ : N

⇠ ! X, where N is transitive.
As before, there are M,p,⇡ � ⇡ such that M

n
p = N , ⇡ : M !⌃1 M ,

and ⇡(p) = p. Let M = J
�
. Then J

�
|= �0

(x, �). Hence � = � and
⇡ = id. Hence N = hN (� + 1 [ {x}). Hence � � ⇢n+1

= ⇢N .
Contradiction! QED (Lemma 2.5.21)

M = JA
↵ is a constructible extension of N = JA

�
iff �  ↵ and A ⇢ N .

Or methods have some application to constructible extensions. By a slight
modification of the proof of (A) we get:

Lemma 2.5.22. If M = JA
↵ is an acceptable constructible extension of N =

JA

�
, then:

(a) If ⇢n
M
� �, then M is n-sound.

(b) If ⇢n+1

M
< �  ⇢n

M
, and M =: Mn,p

n
M , then M = h

M
(� [ q) whenever

q 2 P
M

.

The proof of (B) then gives us:

Lemma 2.5.23. If N = JA

�
is sound and acceptable, and A ⇢ N , then

M = JA

�+!
is acceptable.

The verifications are left to the reader.

2.6 ⌃⇤–theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = hJA

↵ , Bi which — at first sight — seems more natural. ⌃0, we
recall, consists of the relation on M which are ⌃0 definable in the predicates
of M . ⌃1 then consists of relations of the form

W
yR(y, ~x) where R is ⌃0.

Call these levels ⌃(0)

0
and ⌃(0)

1
. Our next level in the new hierarchy, call it

⌃
(1)

0
, consists of relations which are "⌃0 in ⌃(0)

1
" — i.e. ⌃0(hM, ~Ai) where

A1, . . . , An are ⌃(0)

1
. ⌃(1)

1
then consists of relations of the form

W
yR(y, ~x)
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where R is ⌃(1)

0
. ⌃(2)

0
then consists of relations which are ⌃0 in ⌃(1)

1
. . . etc.

By a ⌃(n)

i
relation we of course mean a relation of the form

R(~x)$ R0
(~x, ~p),

where p1, . . . , pm 2 M and R0 is ⌃(n)

i
(m). It is clear that there is natural

class of ⌃(n)

i
–formulae such that R is a ⌃(n)

i
–relation iff it is defined by a

⌃
(n)

i
–formula. Thus e.g. we can define the ⌃(1)

0
formula to be the smallest

set ⌃ of formulae such that

• All primitive formulae are in ⌃.

• All ⌃(0)

1
formulae are in ⌃.

• ⌃ is closed under the sentential operations _,!,$,¬.

• If ' is in ⌃, then so are
V
v 2 u ',

W
v 2 u ' (where v 6= u).

By a ⌃(1)

1
formula we then mean a formula of the form

W
v', where ' is ⌃(1)

0
.

How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful refinement of the Levy hierarchy:
If ⇢n

M
= ↵, then ⌃(n)

0
⇢ �n+1 and ⌃(n)

1
= ⌃n+1. If, however, a projectum

drops, it trivializes and becomes useless. Suppose e.g. that M = J↵ and
⇢ = ⇢1

M
< ↵. Then every M–definable relation becomes ⌃(1)

0
(M). To see

this let R(~x) be defined by the formula '(~v), which we may suppose to be
in prenex normal form:

'(~v) = Q1u1 . . . Qmum'
0
(~v, ~u),

where '0 is quantifier free (hence ⌃0). Then:

R(~x)$ Q1y1 2M . . .Qmym 2MR0
(~x, ~y)

where R0 is ⌃0. By soundness we know that there is a ⌃1(M) partial map f
of ⇢ onto M . But then:

R(~x)$ Q1⇠⇠ 2 dom(f) . . . Qm⇠m 2 dom(f)R0
(~x, f(~⇠)).

Since f is ⌃1, the relation R0
(~x, f(~⇠)) is ⌃1. But dom(f) is ⌃1 and dom(f) ⇢

⇢, hence by induction on m:

R(~x)$ Q1⇠1 2 ⇢ . . . Qm⇠m 2 ⇢R00
(~x, ~⇠),

where R00 is a sentential combination of ⌃1 relations. Hence R00 is ⌃(1)

0
(M)

and so is R.
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The problem is that, in passing from ⌃
(0)

1
to ⌃(1)

0
our variables continued to

range over the whole of M , despite the fact that M had grown "soft" with
respect to ⌃1 sets. Thus we were able to reduce unbounded quantification
over M to quantification bounded by ⇢, which lies in the "soft" part of M . in
section 2.5 we acknowledged softness by reducing to the part H = HM

⇢ which
remained "hard" wrt ⌃1 sets. We then formed a reduct Mp containing just
the sets in H. If M is sound, we can choose p such that Mp contains complete
information about M . In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want
to hold on to the original structure M . In passing to ⌃(1)

0
, however, we want

to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1 ,
the old ones being of Type 0 . Using uh, vh(h = 0, 1) as metavariables for
variables of Type h, we can then reformulate the definition of ⌃(1)

0
formula,

replacing the last clause by:

• If ' is in ⌃, then so are
V
vi 2 u1',

W
vi 2 u1' where i = 0, 1 and

vi 6= u1.

A ⌃
(1)

1
formula is then a formula of the form

W
v1', where ' is ⌃(1)

0
. We

call A ⇢M a ⌃(1)

1
set if it is definable in parameters by a ⌃(1)

1
formula. The

second projectum ⇢2 is then the least ⇢ such that ⇢ \ B /2 M for some ⌃(1)

1

set B. We then introduce type 2 variables v2, u2, . . . ranging over |JA

⇢2
| (|JA

� |
being the set of elements of the structure JA

� , where e.g. M = hJA
↵ , Bi.)

Proceeding in this way, we arrive at a many sorted language with variables
of type n for each n < !. The resulting hierarchy of ⌃(n)

h
formulae (h = 0, 1)

offers a much finer analysis of M–definabilty than was possible with the Levy
hierarchy alone. This analysis is known as ⌃⇤ theory. In this section we shall
develop ⌃⇤ theory systematically and ab ovo.

Before beginning, however, we address a remark to the reader: Most people
react negatively on their first encounter with ⌃⇤ theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing ⌃⇤–
theory and making its first applications, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that ⌃⇤ theory facilitates the fine structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let M = hJ ~A
↵ , ~Bi be acceptable.
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The ⌃⇤ M–language L⇤
= L⇤

M
has

• a binary predicate 2̇

• unary predicates Ȧ1, . . . , Ȧn, Ḃ1, . . . , Ḃm

• variables vj
i
(i, j < !)

Definition 2.6.2. By induction on n < ! we define sets ⌃(n)

h
(h = 0, 1) of

formulae

⌃
(n)

0
= the smallest set of formulae such that

• all primitive formulae are in ⌃.

• ⌃(m)

0
[ ⌃(m)

1
⇢ ⌃ for m < n.

• ⌃ is closed under sentential operations ^,_,!,$,¬.

• If ' is in ⌃, j  n, and vj 6= un, then
V
vj 2 un',

W
vj 2 un' are in

⌃.

We then set:

⌃
(n)

1
=: The set of formulae

_
vn', where ' 2 ⌃(n)

0
.

We also generalize the last part of this definition by setting:

Definition 2.6.3. Let n < !, 1  h < !. ⌃(n)

h
is the set of formulae

_
vn1

^
vn2 . . . Qvn

h
',

where ' is ⌃(n)

0
(and Q is

W
if h is odd and

V
if h is even).

We now turn to the interpretation of the formualae in M .

Definition 2.6.4. Let Fml
n be the set of formulae in which only variables

of type  n occur.

By recursion on n we define:

• The n–th projectum ⇢n = ⇢n
M

.

• The n–th variable domain Hn
= Hn

M
.
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• The satisfaction relation |=n for formulae in Fml
n.

|=n is defined by interpreting variables of type i as ranging over H i for i  n.
We set: ⇢0 = ↵, H0

= |M | = |J ~A
↵ |, when M = hJ ~A

↵ , ~Bi.

Now let ⇢n, Hn be given (hence |=n is given). Call a set D 2 Hn a ⌃(n)

1
set.

if it is definable from parameters by a ⌃(n)

1
formula ':

Dx$M |=n '[x, a1, . . . , ap],

where ' = '(vn, ui1 , . . . , uim) is ⌃(n)

1
. ⇢n+1 is then the least ⇢ such that

there is a ⌃(n)

1
set D ⇢ ⇢ with D /2M . We then set:

Hn+1
= |J ~A

⇢ |.

This then defines |=n+1.

It is obvious that |=i is contained in |=j for i  j, so we can define the full
⌃
⇤ satisfaction relation for M by:

|= =

[

n<!

|=n .

Satisfaction is defined in the usual way. We employ vi, ui,!i etc. as metavari-
ables for variables of type i. We also employ xi, yi, zi etc. as metavariables
for elements of H i. We call vi1

1
, . . . , vinn a good sequence for the formula ' iff

it is a sequence of distinct variables containing all the variables which occur
free in '. If vi1

1
, . . . , vinn is good we write:

|=M '[vi1
1
, . . . , vinn /xi1

1
, . . . , xinn ]

to mean that ' becomes true if vin
h

is interpreted by xin
h
(h = 1, . . . , n). We

shall follow normal usage in suppressing the sequence vi1
1
, . . . , vinn writing

only:
|=M '[xi1

1
, . . . , xinn ].

(However, it is often important for our understanding to retain the upper
indices i1, . . . , in.) We often write ' = '(vi1

1
, . . . , vinn ) to indicate that these

are the suppressed variables. ' (together with vi1
1
, . . . , vinn ) defines a relation:

R(xi1
1
, . . . , xinn )$|=M '[xi1

1
, . . . , xinn ].

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
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know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but hi1, . . . , ini. An ordinary 1–sorted relation
is usually identified with its field. We shall identify a many sorted relation
with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair h|R|, ri such
that for some n:

(a) |R| ⇢Mn

(b) r = hr1, . . . , rni where ri < !

(c) R(x1, . . . , xn)! xi ⇢ Hri for i = 1, . . . , n.

|R| is called the field of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing R(xi1
1
, . . . , xinn ) to

indicate that R is a many sorted relation of arity hi1, . . . , ini.
Note. Let L = LM be the ordinary first order language of M (i.e. it has
only variables of type 0.

Since Hn 2 M or Hn
= M for all n < !, it follows that every L⇤–definable

many sorted relation has a field which is L–definable in parameters from M .)
Note. If R is a relation of arity hi1, . . . , ini, then its complement is � \ R,
where:

� = {hx1, . . . , xni|xh 2 H in for h = 1, . . . , n},
the arity remaining unchanged.

Definition 2.6.6. R(xi1
1
, . . . , ximm ) is a ⌃(n)

h
(M) relation iff it is defined by a

⌃
(n)

h
formula. R is ⌃(n)

h
(M) in the parameters p1, . . . , pr iff R(~x)$ R0

(~x, ~p),
where R0 is ⌃(n)

h
(M). R is a ⌃(n)

h
(M) relation iff it is ⌃(n)

h
(M) in some

parameters.

It is easily checked that:

Lemma 2.6.1. • If R(yn, ~x) is ⌃(n)

1
, so is

W
ynR(yn, ~x)

• If R(~x), P (~x) are ⌃(n)

1
, then so are R(~x) _ P (~x), R(~x) ^ P (~x).

Moreover, if R(xi0
0
, . . . , xim�1

m�1
) is ⌃(n)

1
, so is any relation R0

(yj0
0
, . . . , yjr�1

r�1
) ob-

tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type — i.e.

R0
(yj0

0
, . . . , yjr�1

r�1
)$ R(y

j�(0)

�(0)
, . . . y

j�(m�1)

�(m�1)
)
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where � : m! r such that j�(l) = il for l < m.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = hJA
↵ , Bi be acceptable. Let ⇢ = ⇢n, H = Hn. Then

(a) If ⇢ 2M , then ⇢ is a cardinal in M . (Hence H = HM
⇢ )

(b) If D is ⌃(n)

1
(M) and D ⇢ H, then hH,Di is amenable.

(c) If u 2 H, there is no ⌃(n)

1
(M) partial map of u onto H.

(d) ⇢ 2 Lm
⇤ if n > 0.

Proof: By induction on n. The induction step is a virtual repetition of the
proof of Lemma 2.5.6. QED (Lemma 2.6.2)

Definition 2.6.7. Let R(xi1
1
, . . . , ximm ) be a many sorted relation. By an

n–specialization of R we mean a relation R0
(xj1

1
, . . . , xjmm ) such that

• jl � il for l = 1, . . . ,m

• jl = il if l < n

• If z1, . . . , zm are such that zl 2 Hjl for l = 1, . . . ,m, then:
R(~z)$ R0

(~z).

Given a formula ' in which all bound quantifiers are of type  n, we can
easily devise a formula '0 which defines a specialization of the relation defined
by ':

Fact Let ' = '(vi1
1
, . . . , vimm ) be a formula in which all bound variables are

of type  n. Let uj1
1
, . . . , ujmm be a sequence of distinct variables such that

jl � il and jl = il if il < n(l = 1, . . . ,m). Suppose that '0
= '0

(~u) is
obtained by replacing each free occurence of vil

l
by a free occurence of ujl

l
for

l = 1, . . . ,m. Then for all x1, . . . , xm such that xl 2 Hjl for l = 1, . . . ,m we
have:

|=M '(~v)[~x]$|=M '0
(~u)[~x].

The proof is by induction on '. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(xi1
1
, . . . , ximm ) be ⌃(n)

l
. Then every n–specialization of

R is ⌃(n)

l
.
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Proof: R0
(xi1

1
, . . . , ximm ) be an n–spezialization. Let R be defined by '(vi1

1
, . . . , vimm ).

Suppose (uj1
1
, . . . , vjmm ) is a sequence of distinct variables which are new —

i.e. none of them occur free or bound in '. Let '0 be obtained by replacing
every free occurence of vil

l
by ujl

l
(l = 1, . . . ,m). Then '0

(uj1
1
, . . . , vjmm ) de-

fines R0 by the above fact. QED (Lemma
2.6.3)

Corollary 2.6.4. Let R be ⌃(n)

1
in the parameter p. Then every n–spezialization

of R is ⌃(n)

1
in p.

Lemma 2.6.5. Let R0
(xj1

1
, . . . , xjmm ) be ⌃(n)

1
. Then R0 is an n–specialization

of a ⌃(n)

1
relation R(xi1

1
, . . . , ximm ) such that il  n for l = 1, . . . ,m.

Proof: Let R0 be defined by '0
(uj1

1
, . . . , vjmm ), when '0 is ⌃(n)

1
. Let vin

1
, . . . , vimm

be a sequence of distinct new variables, where il = min(n, jl) for l =

1, . . . ,m. Replace each free occurence of ujl
l

by vil
l

for l = 1, . . . ,m to get
'(ui1

1
, . . . , vimm ). Let R be defined by '. Then R0 is a specialization of R by

the above fact. QED (Lemma 2.6.5)

Corollary 2.6.6. Let R0
(xj1

1
, . . . , xjmm ) be ⌃(n)

1
in p. Then R0 is a spe-

cialization of a relation R(xi1
1
, . . . , ximm ) which is ⌃(n)

1
in p with il  n for

l = 1, . . . ,m.

Every ⌃(m)

1
formula can appear as a "primitive" component of a ⌃(m+1)

0

formula. We utilize this fact in proving:

Lemma 2.6.7. Let n = m+1. Let Qj(znj,1, . . . , z
n

j,pj
, xi1

1
, . . . , xip) be ⌃(m)

1
(j =

1, . . . , r).
Set: Qj,~x =: {h~zn

j
i|Qj(~znj , ~x)}.

Set: H~x =: hHn, Q1,~x, . . . , Qr,~xi.
Let ' = '(v1, . . . , vq) be ⌃l in the language of H~x. Then

{h~xn, ~xi|H~x |= '[~xn]} is ⌃(n)

l
.

Proof: We first prove it for l = 0, showing by induction on ' that the
conclusion holds for any sequence v1, . . . , vl of variables which is good for '.

We describe some typical cases of the induction.

Case 1 ' is primitive.
Let e.g. ' = Q̇j(vh1 , . . . , vhpi

), where Q̇j is the predicate for Qj~x. Then
H~x |= '[~xn] is equivalent to: Qj(xnh1

, . . . , xn
hpj

, ~x), which is ⌃(m)

1
(hence

⌃
(n)

0
). QED (Case 1)



2.6. ⌃⇤–THEORY 107

Case 2 ' arises from a sentential operation.
Let e.g. ' = ('0 ^ '1). Then H~x |= '[~xn] is equivalent to:

H~x |= '0[~x
n
] ^H~x |= '1[~x

n
]

which, by the induction hypothesis is ⌃(n)

0
. QED (Case 2)

Case 3 ' arises from a quantification.
Let e.g. ' =

V
w 2 vi . By bound relettering we can assume w.l.o.g.

that w is not among v1, . . . , vp. We apply the induction hypothesis to
 (w, v1, . . . , vp). Then H~x |= '[~xn] is equivalent to:

^
z 2 xni H~x |=  [w, ~xn]

which is ⌃(n)

0
by the induction hypothesis. QED (Case 3)

This proves the case l = 0. We then prove it for l > 0 by induction on l,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)
Note. It is clear from the proof that the set {h~xn, ~xi|H~x |= '[~xn]} is uni-
formly ⌃(n)

l
— i.e. its defining formula � depends only on ' and the defining

formula  i for Qi(i = 1, . . . , p). In fact, the proof implicitly describes an
algorithm for the function ', 1, . . . , p 7! �.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Let n = m+1. Let R(~xn, xi1
1
, . . . , x

ig
g ) be ⌃(n)

l
where il  m

for l = 1, . . . , g. Then there are ⌃(n)

1
relations Qi(~zni , ~x)(i = 1, . . . , p) and a

⌃l formula ' such that

R(~xn, ~x)$ H~x |= '[~xn],

where H~x is defined as above.

Note. This is weaker, since we now require il  m.

Proof: We first prove it for l = 0. By induction on � we prove:

Claim Let � be ⌃(n)

0
. Let ~vn, vi1

1
, . . . , v

iq
q be good for �, where i1, . . . , iq  m.

Let �(~vn,~v) define the relation R(~xn, ~x). Then the conclusion of Lemma 2.6.8
holds for this R (with l = 0).

Case 1 � is ⌃(m)

1
.

Let �(~xn, ~x) define Q(~xn, ~x). Then R(~xn, ~x)$ H~x |= Q̇~vn[~xn].
QED (Case 1)
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Case 2 � arises from a sentential operation.
Let e.g. � = ( ^  0

). Appliyng the induction hypothesis we get
Qi(~xni , ~x)(i = 1, . . . , p) and ' such that

M |=  [~xn, ~x]$ H~x |= '[~xn]

where H~x = hHn, Q1~x, . . . , Qp~xi. Similarly we get Q0
i
(~yn

i
, ~x)(i = 1, . . . , q0)

and '0

M |=  0
[~xn, ~x]$ H 0

~x
|= '0

[~xn].

Let Q̇i be the predicate for Qi~x in the language of H~x. Let Q̇0
i
be the

predicate for Q0
i~x

in the language of H 0
~x
. Assume w.l.o.q. that Q̇i 6= Q̇0

j

for all i, j. Putting the two languages together we get a language for

H⇤
~x
= hHn, ~Q~x, ~Q

0
~x
i.

Clearly:
M |= (� ^ �0

)[~xn, ~x]$ H⇤
~x
|= (' ^ '0

)[~xn].

QED (Case 2)

Case 3 � arises from the application of a bounded quantifier.
Let e.g. � =

V
wn 2 vn

j
�0. By bound relettering we can assume w.l.o.g.

that wn is not among ~vn. Then wn~vn,~v is a good sequence for �0 and
by the induction hypothesis we have for �0

= �0
(wn,~vn,~v):

M |= �0
[zn, ~xn, x]$ H~x |= '[zn, ~xn, ~x].

But then:

M |= �[~xn, ~x] $
V
zn 2 xn

j
M |= �0

[zn, ~xn, ~x]

$
V
zn 2 xn

j
H~x |= '[zn, ~xn]

$ H~x |=
V
w 2 vj'[~xn].

QED (Lemma 2.6.8)

Note. Our proof again establishes uniformity. In fact, if � is the ⌃(n)

l
–

definition of R, the proof implicitely describes an algorithm for the function

� 7! ', 1, . . . , p

where  i is a ⌃(m)

1
definition of Qi.

Remark. Lemma 2.6.7 and 2.6.8 taken together give an inductive definition
of "⌃(n)

l
relation" which avoids the many sorted language. It would, however,

be difficult to work directly from this definition.
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By a function of arity hi1, . . . , ini to Hj we mean a relation F (yj , xi1 , . . . , xin)
such that for all xi1 , . . . , xin there is at most one such yj . If this y exists, we
denote it by F (xi1 , . . . , xin). Of particular interest are the ⌃(i)

1
functions to

H i.

Lemma 2.6.9. R(yn, ~x) be a ⌃(n)

1
relation. Then R has a ⌃(n)

1
uniformizing

function F (~x).

Proof: We can assume w.l.o.g that the arguments of R are all of type  n.
(Otherwise let R be a specialization of R0, where the arguments of R0 are of
type  n. Let F 0 uniformize R0. Then the appropriate specialization F of
F 0 uniformizes R.)

Case 1 n = 0.
Set:

F (~x) ': y where hz, yi is <M –least such that R0
(z, y, ~x).

By section 2.3 we know that uM (x) is ⌃1, where uM (x) = {y|y <M x}.
Thus for sufficient r we have:

y = F (~x)$
W
z(R0

(z, y, ~x)^
^w 2 uM (hz, yi)

V
z0, y0 2 Cr(w)

(w = hz0, y0i ! ¬R(z0, y0, ~x)),

which is uniformly ⌃1(M).

Case 2 n > 0. Let n = m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(yn, ~xn, ~x), where the ~x are of type  m. Then there
are Qi(~zni , ~x

n, ~x)(i = 1, . . . , p) such that Qi is ⌃(m)

1
and

R(yn, ~xn, ~x)$ H~x |= '[yn, ~xn],

where ' is ⌃1 and

H~x = hHn, Q1~x, . . . , Qn~xi.

If e.g. M = hJA, Bi, we can assume w.l.o.g. that Q1(zn, ~x) $ A(zn).
Then <H~x, uH~x are uniformly ⌃1(H~x) and by the argument of Case 1
there is a ⌃1 formula '0 such that F uniformies R where

y = F (~xn, ~x)$ H~x |= '0
[~xn, ~x].

QED (2.6.9)
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Note. The proof shows that F (~x) is uniformly ⌃(n)

1
— i.e. its ⌃(n)

1
definition

depends only on the ⌃(n)

1
definition of R(yn, ~x), regardless of M .

Note. It is clear from the proof that the ⌃(n)

1
definition of F is functionally

absolute — i.e. it defines a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Every ⌃(n)

1
function F (~x) to Hn has a functionally ab-

solute ⌃(n)

1
definition.

Note. The ⌃(n)

1
functions are closed under permutation of arguments, in-

sertion of dummy arguments, and fusion of arguments of same type. Thus
if F (xi1

1
, . . . xinn ) is ⌃(n)

1
, so is F 0

(yj1
1
, . . . , yjmm ) where

F 0
(yj1

1
, . . . , yjmm ) ' F (y

j�(1)

�(1)
, . . . , y

j�(n)

�(n)
)

and � : n! m such that j�(l) = il for l < n.

If R(xj1
1
, . . . , x

jp
p ) is a relation and Fi(~z) is a function to Hji for i = 1, . . . , n,

we sometimes use the abbreviation:

R(~F (~z))$:

_
xj1
1
, . . . x

jp
p (

p^

i=1

xji
i
= Fi(~z) ^R(~x)).

Note that R(~F (~z)) is then false if some Fi(~z) does not exist. ⌃(n)

1
relations

are not, in general, closed under substitution of ⌃(n)

1
functions, but we do

get:

Lemma 2.6.11. Let R(xj1
1
, . . . , x

jp
p ) be ⌃(n)

1
such that ji  n for i = 1, . . . , p.

Let Fi(~z) be a ⌃(ji)

1
map to Hji for i = 1, . . . , p. Then R(~F (~z)) is ⌃(n)

1

(uniformly in the ⌃(n)

1
definitions of R,F1, . . . , Fp)

Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(~x, yj1
1
, . . . , y

jp
p ) be ⌃(n)

1
where ji  n for i =

1, . . . , p. Let Fi(~z) be a ⌃(ji)

1
map to Hji for i = 1, . . . , p. Then R(~x, ~F (~z))

is (uniformly) ⌃(n)

1
.

Proof: We can assume w.l.o.g. that each of ~x has type  n, since otherwise
R is a specialization of an R0 with this property. But then R(~x, ~F (z)) is
a specialization of R0

(~x, ~F (z)). Let ~x = xh1
1
, . . . , x

hq
q with hi  n for i =

1, . . . , q. For i = 1, . . . , p set:

F 0
(~x, ~z) ' F (~z).
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For i = 1, . . . , q set:
Gh(~x, ~z) ' xhi

i
.

By Lemma 2.6.11, R( ~G(~x, ~z), F 0
(~x, ~z)) is ⌃(n)

1
. But

R( ~G(~x, ~z), F 0
(~x, ~z))$ R(~x, ~F (~z)).

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.

Case 1 n = 0.
The conclusion is immediate by the definition of R(~F (~z)):

R(~F (~z))$
_

x01 . . . x
0

p(

p^

i=1

x01 = Fi(~z) ^R(~x)).

Case 2 n = m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:

R(~xn, xl1
1
, . . . , x

lq
q ) where li  m for i = 1, . . . , q.

We first show:

Claim R(~xn, ~F (~z)) is ⌃(n)

1
.

Proof: Let Qi(~zni , ~x) be ⌃(m)

1
(i = 1, . . . , r) such that

R(xn, ~x)$ H~x |= '[~xn]

where ' is ⌃1 and:

H~x = hHn, Q1,~x, . . . , Qr,~xi.

Set:
Qi(~z

n

i
, ~z) $: Qi(zni , F (~z))

$
W
~x(
V

q

i=1
xli
i
= Fi(~z) ^R(~x))

H~z =: hHn, Q1,~z, . . . , Qr,~zi.

If xli
i
= Fi(~z) for i = 1, . . . , q, then Qi(~z

n

i
, ~z) $ Qi(~zn, ~x) and H~z =

H~x. Hence:
H~z |= '[~xn] $ H~x |= '[~xn]

$ R(~xn, ~x)

$ R(~xn, ~F (~z)).
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If, on the other hand, Fi(~z) does not exist for some i, then R(~xn, ~F (~z))
is false. Hence:

R(~xn, ~F (~z)) $ (
V

q

i=1

W
xli
i
(xli

i
= Fi(~z))

^H~z |= '[~xn]).

But
qV

i=1

W
xli
i
(xli

i
= Fi(~z)) is ⌃(n)

0
, so the result follows by applying

Lemma 2.6.7 to '. QED (Claim)

But then, setting: R0
(~xn, ~z)$ R(~xn, F (~z)), we have:

R(~F (~x))$ _~xn(
q^

i=1

xni = Fi(~z) ^R0
(~xn, ~z)).

QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(~xn, xl1
1
, . . . , x

lq
q ) as being ⌃(n)

0

instead of ⌃(n)

1
, then in the proof of the claim we could take ' as being ⌃0

instead of ⌃1. But then the application of Lemma 2.6.7 to H~z |= '[~xn] yields
a ⌃(n)

0
formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let R(~xn, yl1
1
, . . . , y

lq
q ) be ⌃(n)

0
where l1, . . . , lr < n. Let

Fi(~z) be a ⌃(li)

1
map to H li for i = 1, . . . , r. Then R(xn, ~F (~z)) is (uniformly)

⌃
(n)

0
.

As corollaries of Lemma 2.6.11 we then get:

Corollary 2.6.14. Let G(xj1
1
, . . . , x

jp
p ) be a ⌃(n)

1
map to Hn, where j1, . . . , jp 

n. Let Fi(~z) be a ⌃(n)

1
map to Hji for i = 1, . . . , p. Then H(~z) ' G(~F (~z))

is uniformly ⌃(n)

1
.

Proof:

y = H(~z)$
_
~x(

p^

i=1

xji
i
= Fi(~z) ^ y = G(~x)).

QED (Corollary 2.6.14)

Corollary 2.6.15. Let R(xj1
1
, . . . , x

jp
p ) be ⌃(n)

1
where ji  n for i = 1, . . . , p.

There is a ⌃(n)

1
relation R0

(z0
1
, . . . , z0p) with the same field

Proof: Set:

R0
(~z)$:

_
~x(

p^

i=1

xji
i
= z0i ^R(~x)).
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QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Lest one make too much of this, however, we remark that the
defining formula of R0 will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type  n,
then the property of being ⌃(n)

1
depends only on the field of R. Let us define:

Definition 2.6.8. R0
(zj1

1
, . . . , zjrr ) is a reindexing of the relation R(xi1

1
, . . . , xirr )

iff both relations have the same field i.e.

R0
(~y)$ R(~y) for y1, . . . , yr 2M.

Then:
Corollary 2.6.16. Let R(xi1

1
, . . . , xirr ) be ⌃(n)

1
where i1, . . . , ir  n. Let

R0
(zj1

1
, . . . , zjrr ) be a reindexing of R, where j1, . . . , jr  n. Then R0 is ⌃(n)

1
.

Proof:
R0

(~z) $ R(F1(z1), . . . , Fr(zr))

$ _~x(
W

r

l=1
xil
l
= zjl

l
^R(~x))

where
xil = Fl(z

jl)$: xil = zjl .

QED (Corollary 2.6.16)

We now consider the relationship between ⌃⇤ theory and the theory devel-
oped in §2.5. ⌃(0)

1
is of course the same as ⌃1 and ⇢1 is the same as the ⌃1

projectum ⇢ which we defined in §2.5.2. In §2.5.2 we also defined the set P
of good parameters and the set R of very good parameters. We then defined
the reduct M of MP for any p 2 [OnM ]

<!. We now generalize these notions
to ⌃(n)

1
. We have already defined the ⌃(n)

1
projectum ⇢n. In analogy with

the above we now define the sets Pn, Rn of ⌃(n)

1
–good parameters. We also

define the ⌃(n)

1
reduct Mnp of M by p 2 [OnM ]

<!.

Under the special assumption of soundness, these will turn out to be the
same as the concepts defined in §2.5.3.
Definition 2.6.9. Let M = hJA

↵ , Bi be acceptable. We define sets Mn

xn�1,...,x0

and predicates Tn
(xn, . . . , x0) as follows:

M0
=: M,T 0

=: B (i.e. Mn

~x
= M for n = 0)

Mn+1

~x
=:hJA

⇢n+1 , T
n+1

~x
i for ~x = xn, . . . , x0

Tn+1
(xn+1, ~x)$

W
zn+1

W
i < !(xn+1

= hi, zn+1i
^Mn

xn�1,...,x0 |= 'i[zn+1, xn])
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(where h'i|i < !i is our fixed canonical enumeration of ⌃1 formulae.)

(Then Tn+1
(hi, xn+1i, xn, . . . , x0)$Mn

xn�1,...,x0 |= 'i[xn+1, xn]).

Clearly Tn+1 is uniformly ⌃(n)

1
(M).

Lemma 2.6.17.

(a) Tn+1 is ⌃(n)

1

(b) Let ' be ⌃j. Then {h~xn+1, ~xi|Mn+1

~x
|= '[~xn+1

]} is ⌃(n+1)

j
.

Proof: We first note that Mn+1

~x
can be written as H~x = hHn+1, An+1

~x
, Tn+1

~x
i,

where An+1
(xn+1, ~x)$: A(xn+1

). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n = 0 is trivial since �⌃1
N

is ⌃1(N) for all rud closed N .

Case 2 n = m+ 1. Then T (n+1) is ⌃(n)

1
by (1) applied to m.

QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.

Lemma 2.6.18. (a) Let R(xn+1, . . . , x0) be ⌃(n)

1
. Then there is i < !

such that
R(xn+1, ~x)$ Tn+1

(hi, xn+1i, ~x).

(b) Let R(~xn+1, . . . , x0) be ⌃(n+1)

1
. Then there is a ⌃1 formula ' such that

R(~xn+1, ~x)$Mn+1

~x
|= '[~xn+1

].

Proof:

(1) Let (a) hold at n. Then so does (b).

Proof: We know that

R(~xn+1, ~x)$
_

zn+1P (zn+1, xn+1, ~x)

for a ⌃(n+1)

0
formula P . Hence it suffices to show:
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Claim Let P (~xn+1, ~x) be ⌃(n+1)

0
. Then there is a ⌃1 formula ' such that

P (~xn+1, ~x)$Mn+1

~x
|= '[~xn+1

].

Proof: We know that there are Qi(~z
n+1

i
, ~x)(i = 1, . . . , p) such that Qi is

⌃
(n)

1
and

(2) P (~xn+1, ~x)$ Hn+1

~x
|=  [~xn+1

] where  is ⌃0 and

Hn

~x
= hHn+1, ~Q~xi.

Applying (a) to the relation:
_

un+1
(un+1

= h~zn+1

i
i ^Qi(~z

n+1

i
, ~x))

we see that for each i there is ji < ! such that

Qi(~z
n+1

i
, ~x)$ hji, h~zn+1ii 2 Tn+1

vecx .

Thus Qi, ~x is uniformly rud in Tn+1

~x
for i = 1, . . . , p. P~x is the restric-

tion of a relation rud in Qi,~x(i = 1, . . . , p) to Hn+1, by (2). By §2
Corollary 2.2.8 it follows that P~x is the restriction of a relation rud in
Tn+1

~x
to Hn+1 uniformly. Since Mn+1

~x
= hJA

⇢n+1
, Tn+1

~x
i is rud closed,

it follows by §2 Corollary 2.2.8 that:

P (~xn+1, ~x)$Mn+1

~x
|= '[~xn+1

]

for a ⌃1 formula '. QED (1)

Given (1) we can now prove (a) by induction on n.

Case 1 n = 0.
Since ⌃1 = ⌃

(0)

1
, there is 'i such that

R(x1, x0) $M |= 'i[x1, x0]

$ T 1
(hi, x1i, x0).

Case 2 n = m+ 1.
Let R(xn+1, . . . , x0) be ⌃(n)

1
. By the induction hypothesis and (1) we

know that (b) holds at n. Hence:

R(xn+1, xm+1, xm, . . . , x0)$
$Mn

xm,...,x0 |= 'i[xn+1, xm+1
]

for some i. But then

R(xn+1, . . . , x0)$ Tn+1
(hi, xn+1i, xm+1, . . . , x0).

QED (Lemma 2.6.18)
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Note. The reductions in (a) and (b) are both uniform. We have in fact im-
plicitly defined algorithms which in case (a) takes us from the ⌃(n)

1
definition

of R to the integer i, and in case (b) takes us from the ⌃(n+1)

1
definition of

R to the ⌃1 formula '.

We now generalize the definition of reduct given in §2.5.2 as follows:

Definition 2.6.10. Let a 2 [OnM ]
<!. M0,a

=: M ; Mn+1,a
=: Mn+1

a(0),...,a(n)

where a(i) = a \ ⇢i
M

.

Thus Mn+1,a
= hJA

⇢n+1 , Tn+1,ai where Tn+1,a
=: Tn+1

a(0),...,a(n) .

Thus by Lemma 2.6.18

Corollary 2.6.19. Set a(i) = a \ ⇢i for a 2 [OnM ]
<!.

(a) If D ⇢ Hn+1 is ⌃(n)

1
in a(0), . . . , a(n), there is (uniformly) an i < !

such that
D(xn+1

)$ hi, xn+1i 2 Tn+1,a

(b) If D(~xn+1
) is ⌃(n+1)

1
in a(0), . . . , a(n) there is (uniformly) a ⌃1 formula

' such that D(~xn+1
)$Mn+1,a |= '[~xn+1

].

Note. Being ⌃(n)

1
in a is the same as being ⌃(n)

1
in a(0), . . . , a(n), but I do not

see how this is uniformly so. To see that a ⌃(n)

1
relation R in a(0), . . . , a(n) is

⌃
(n)

1
in a we note that for each n there is k such that y = a \ ⇢n $

W
f (f

is the monotone enumeration of a and y = f 00k), which is ⌃1 in a. However,
k cannot be inferred from the ⌃(n)

1
definition of R, so the reduction is not

uniform.

We can generalize the good parameter sets P,R of §2.5.2 as follows:

Definition 2.6.11. P 0

M
=: [On]

<!.

Pn+1

M
=: the set of a 2 Pn

M
such that there is D which is ⌃(n)

1
(M) in a with

D \Hn

M
/2M .

(Thus we obviously have P 1
= P .)

Similarly:

Definition 2.6.12. R0

M
=: P 0

M
.
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Rn+1

M
=: The set of a 2 Rn

M
such that

Mn,a
= hMn,a(⇢n+1 [ (a \ ⇢n)).

Comparing these definitions with those in §2.5.6 it is apparent that Rn

M

has the same meaning and that, whenever a 2 Rn

M
, then Mn,a is the same

structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:

Lemma 2.6.20. a 2 Pn $ Tna /2M .

We also note the following fact:

Lemma 2.6.21. Let a 2 Rn. Let D be ⌃(n)

1
. Then D is ⌃(n)

1
in parameters

from ⇢n+1 [ {a(0), . . . , a(n)}, where a(i) =: a \ ⇢i. (Hence D is ⌃(n)

1
(M) in

parameters from ⇢n+1 [ {a}.)

Proof: We use induction on n. Let it hold below n. Then:

D(~x)$ D0
(~x; a(0), . . . , a(n�1), ~⇠),

where ⇠1, . . . , ⇠r < ⇢n. (If n = 0 the sequence a(0), . . . , a(n�1) is vacuous and
⇢n = OnM .)

Let ⇠i = hMn+1(ji, hµi, a(n)i), where µ1, . . . , µr < ⇢n+1. The functions:

Fi(x) ' hMna(ji, hx, a(n)i)

are ⌃(n)

1
to Hn in the parameters a(0), . . . , a(n). But D(~x) then has the form:

D0
(~x, a(0), . . . , a(n�1), F1(µ1), . . . , Fr(µr)),

which is ⌃(n)

1
in a(0), . . . , a(n), µ1, . . . , µk by Corollary 2.6.12.

QED (Lemma 2.6.21)

Definition 2.6.13. ⇡ is a ⌃(n)

h
preserving map of M to M (in symbols

⇡ : M !
⌃

(n)
h

M) iff the following hold:

• M,M are acceptable structures of the same type.

• ⇡00H i

M
⇢ H i

M
for i  n.

• Let ' = '(vj1
1
, . . . , vjmm ) be a ⌃(n)

h
formula with a good sequence ~v of

variables such that j1, . . . , jm  n. Let xi 2 Hji

M
for i = 1, . . . ,m.

Then:
M |= '[~x]$M |= '[⇡(~x)].
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⇡ is then a structure preserving injection. If it is ⌃(n)

h
–preserving, it is

⌃
(m)

1
–preserving for m < n and ⌃(n)

i
–preserving for i < h. If h � 1 then

⇡�100Hn

M
⇢ Hn

M
, as can be seen using:

x 2 Hn

M $M |=
_

unun = v0[x].

We say that ⇡ is strictly ⌃(n)

h
preserving (in symbols ⇡ : M !

⌃
(n)
h

M strictly)

iff it is ⌃(n)

h
preserving and ⇡�100Hn

M
⇢ Hn

M
. (Only if h = 0 can the embed-

ding fail to be strict.)

We say that ⇡ is ⌃⇤ preserving (⇡ : M !⌃⇤ M) iff it is ⌃(n)

1
preserving for

all n < !. We call ⇡ ⌃(n)

! preserving iff it is ⌃(n)

h
preserving for all h < !.

Good functions

Let n < !. Consider the class F of all ⌃(n)

1
functions F (xi1 , . . . , xim) to Hj ,

where j, i1, . . . , im  n. This class is not necessarily closed under compo-
sition. If, however, G0 is the class of ⌃(j)

1
functions G(zi1 , . . . , zim) to Hj

where j, i1, . . . , im  n, then G0 ⇢ F and, as we have seen, elements of G0

can be composed into elements of F — i.e. if F (zi1 , . . . , zim) is in F and
Gl(~x) is in G0 for l = 1, . . . ,m, then F ( ~G(~x)) lies in F. The class G of good
⌃
(n)

1
functions is the result of closing G0 under composition. The elements

of G are all ⌃(n)

1
functions and G is closed under composition. The precise

definition is:

Definition 2.6.14. Fix acceptable M . We define sets Gk
= Gk

n of ⌃(n)

1

functions by:

G0
= The set of partial ⌃(i)

1
maps F (xj1

1
, . . . , xjmm ) to H i, where i  n and

j1, . . . , jm  n.

Gk+1
= The set of H(~x) ' G(~F (~x)), such that G(yj1 , . . . , yjmm ) is in Gk and
Fl 2 G0 is a map to jl for l = 1, . . . ,m.

It follows easily that Gk ⇢ Gk

k+1
(since G(~y) ' G(~h(~y)) where h(yj1

1
, . . . , yjmm ) =

yji
i

for i = 1, . . . ,m). G = Gn =:
S
k

Gk is then the set of all good ⌃(n)

1

functions G⇤
=

S
n

Gn is the set of all good ⌃⇤ functions. All good ⌃(n)

1
func-

tions have a functionally absolute ⌃(n)

1
definition. Moreover, the good ⌃(n)

1

functions are closed under permutation of arguments, insertion of dummy
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arguments, and fusion of arguments of same type (i.e. if F (xi1
0
, . . . , x

jp

m�1
)

is good, then so is F 0
(~y) ' F (y

j�(1)

�(1)
, . . . , y

j�(m)

�(m)
) where � : m ! p such that

j�(l) = il for l < m.

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each Gk
n has the above properties.

The proof is quite straightforward. We then get:

Lemma 2.6.23. The good ⌃(n)

1
functions are closed under composition:

Let G(yj1
1
, . . . , yjmm ) be good and let Fl(~x) be a good function to Hjl for

l = 1, . . . ,m. Then the function G(~F (~x)) is good.

Proof: By induction in k < ! we prove:

Claim The above holds for Fl 2 Gk
(l = 1, . . . ,m).

Case 1 k = 0.
This is trivial by the definition of "good function".

Case 2 k = h+ 1.
Let:

Fl(~x) ' Hl(Fl,1(~x), . . . , Fl,pl
(~x))

for l = 1, . . . ,m, where Hl(zl,1, . . . , zl,pl) is in Gh and Fl,i 2 G0 is a
map to Hjl,i for l = 1, . . . ,m, i = 1, . . . , pl.
Let hhl⇠, i⇠i|⇠ = 1, . . . , pi enumerate

{hl, ii|l = 1, . . . ,m; i = 1, . . . , pl}.

Define �l : {1, . . . , pl}! {1, . . . , p} by:

�l(i) = that ⇠ such that hl, ii = hl⇠, i⇠i.

Set:
H 0

l
(z1, . . . , zp) ' Hl(z�l(1)

, . . . , z�l(pl)
)

for l = 1, . . . ,m. F 0
⇠
= Fl⇠,i⇠

for ⇠ = 1, . . . , p.
Clearly we have:

Fl(~x) = H 0
l
(F 0

1(~x), . . . , F
0
p(~x))

where H 0
l
2 Gh for l = 1, . . . ,m. Set:

G0
(z1, . . . , zp| ' G(H1(~z), . . . , Hm(~z)).
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Then G0 is a good ⌃(n)

1
function by the induction hypothesis. But:

G(~F (~x)) ' G0
(F 0

1(~x), . . . , F
0
p(~x)).

The conclusion then follows by Case 1, since F 0
i
2 G0 for i = 1, . . . , p.
QED (Lemma 2.6.23)

An entirely similar proof yields:

Lemma 2.6.24. Let R(xi1
1
, . . . , xirr ) be ⌃(n)

1
where i1, . . . , ir  n. Let Fl(~z)

be a good ⌃(n)

1
map to H il(L = 1, . . . ,m). Then R(~F (~z)) is ⌃(n)

1
.

Recall that R(~F (~z)) means:

_
y1, . . . , yr(

r^

l=1

yl = Fl(~z) ^R(~y)).)

Applying Corollary 2.6.13 we also get:

Lemma 2.6.25. Let n = m + 1. Let R(~xn, xi1
1
, . . . , xirr ) be ⌃(n)

0
where

i1, . . . , ir  m. Let Fl(~z) be a good ⌃(n)

1
map to H il for l = 1, . . . , r. Then

R(~xn, ~F (~z)) is ⌃(n)

0
.

By a reindexing of a function G(xi1
1
, . . . , xirr ) we mean any function G0 which

is a reindexing of G as a relation. (In other words G,G0 have the same field,
i.e.

G(~x) ' G0
(~x) for all x1, . . . , xr 2M.)

Then:

Corollary 2.6.26. Let G(xi1
1
, . . . , xirr ) be a good ⌃(m)

1
map to H i. Let

G0
(yj1

1
, . . . , yjrr ) be a map to Hj, where j, j1, . . . , jr  n. If G0 is a rein-

dexing of G, then G0 is a good ⌃(m)

1
function.

Proof: G0
(y) ' F (G(F1(y

j1
1
), . . . , F (yjrr ))) where F is defined by xi = yi

and Fl is defined by xil
l
= yjl

l
. (Then e.g.

F (y) =

(
y if y 2 Hmin{i,j}

M
,

undefined if not.

where F is a map to i with arity j.)
But F, F1 . . . , Fr are ⌃(n)

1
good. QED (Corollary 2.6.26)

The statement made earlier that every good ⌃(n)

1
function has a functionally

absolute ⌃(n)

1
definition can be improved. We define:
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Definition 2.6.15. ' is a good ⌃(n)

1
definition iff ' is a ⌃(n)

1
formula which

defines a good ⌃(n)

1
function over any acceptable M of the given type.

Lemma 2.6.27. Every good ⌃(n)

1
function has a good ⌃(n)

1
definition.

Proof: By induction on k we show that it is true for all elements of Gk.
If F 2 G0, then F is a ⌃(i)

1
map to H i for an i  n. Hence any func-

tionally absolute ⌃(i)

1
definition will do. Now let F 2 Gk+1. Then F (~x) '

G(H1(~x), . . . , Hp(~x)) where G 2 Gk and Hi 2 G0 for i = 1, . . . , p. Then
G has a good definition ' and every Hi has a good definition  i. By the
uniformity expressed in Corollary 2.6.14 there is a ⌃(n)

1
formula � such that,

given any acceptable M of the given type, if ' defines G0 and  i defines
H 0

i
(i = 1, . . . , p), then � defines F 0

(~x) ' G0
( ~H 0

(~x)). Thus � is a good ⌃(n)

1

definition of F . QED (Lemma 2.6.27)

Definition 2.6.16. Let a 2 [OnM ]
<!. We define partial maps ha from

! ⇥Hn to Hn by:
hna(i, x) ': hMn,a(i, hx, a(n)i).

Then hna is uniformly ⌃(n)

1
in a(n), . . . , a(0). We then define maps h̃na from

! ⇥Hn to H0 by:

h̃0a(i, x) ' hoa(i, x)

h̃n+1
a (i, x) ' h̃na((i)0, h

n+1
a ((i)1, x)).

Then h̃na is a good ⌃(n)

1
function uniformly in a(n), . . . , a(0).

Clearly, if a 2 Rn+1, then

hna
00
(! ⇥ ⇢n+1

) = Hn.

Hence:

Lemma 2.6.28. If a 2 Rn+1, then h̃na
00
(! ⇥ ⇢n+1

) = M .

Corollary 2.6.29. If Rn 6= ;, then ⌃l ⇢ ⌃
(n)

l
for l � 1.

Proof: Trivial for n = 0, since ⌃(0)

l
= ⌃l. Now let n = m + 1. Set:

D = Hn \ dom(hna), where a 2 Rn. Then D is ⌃(n)

1
by Lemma 2.6.24, since:

xn 2 D $ hna(x
n
) = hna(x

n
)

$
W
z0(z0 = hna(x

n
) ^ z0 = z0).
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Let R(~x) be ⌃l(M). Let

R(~x)$ Q1z1 . . . QzlP (~z, ~x)

where P is ⌃0. Set:
P 0

(~un, ~x)$: P (~hn(~un), ~x).

Then P 0 is ⌃(n)

1
in a. But for un

1
, . . . , un

l
2 D, ¬P 0

(~un, ~x) can also be written
as a ⌃(n)

1
formula. Hence

R(~x)$ Qun1 2 D . . .Qun
l
2 DP 0

(~un, ~x)

is ⌃(n)

l
in a. QED (Corollary 2.6.29)

We have seen that every ⌃(n)

! relation is ⌃!. Hence:

Corollary 2.6.30. Let Rn 6= ;. Then ⌃(n)

! = ⌃!.

An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a 2 Rn

M
. Then every element of M has the form

F (⇠, a(0), . . . , a(n)) where F is a good ⌃(n)

1
function and ⇠ < ⇢n.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n = m + 1. Let a 2 [OnM ]
<! and let N = Mna. Let

⇡ : N !⌃j N , where N is a J–model. Then:

(a) There are unique M,a such that a 2 Rn

M
and M

na
= N .

(b) There is a unique ⇡ � ⇡ such that ⇡ : M !
⌃

(m)
0

M strictly and
⇡(a) = a.

(c) ⇡ : M !
⌃

(n)
j

M .

Proof: We first prove existence, then uniqueness. The existence assertion
in (a) follows by:

Claim 1 There are M,a, ⇡̂ � ⇡ such that M
na

= N , a 2 Rn

M
,

⇡̂ : M !⌃1 M , ⇡̂(a) = a.
Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h + 1. We first apply Lemma 2.5.12
to Mma. It is clear from our definition that ⇢Mm,a � ⇢n

M
. Set N 0

=

(Mm,a
)
a\⇢mM . Then N 0

= hJA

⇢0 , T
0i, where ⇢0 = ⇢Mma . But it is clear

from our definition that Tna
= T 0 \ JA

⇢
n
M

. Hence:
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(1) ⇡ : N !⌃0 N 0.
By Lemma 2.5.12 there are then M̃, ã, ⇡̃ � ⇡ such that M̃ ã

= N 0,
ã 2 R

M̃
, ⇡̃ : M̃ !⌃1 Mm,a and ⇡̃(ã) = a \ ⇢m

M
= a(m).

(Note: Throughout this proof we use the notation:

a(i) =: a \ ⇢i for i = 0, . . . ,m.)

By the induction hypothesis there are then M,a, ⇡̂ � ⇡̃ such that
M

ma
= M̃ , ⇡̂ : M !⌃1 M , and ⇡̂(a) = a.

We observe that:

(2) ã = a \ ⇢m
M

.

Proof:

(⇢) Let ⇢̃ =: ⇢m
M

= On\M̃ . Then ã ⇢ ⇢̃. But ⇡̂(ã) = ⇡̃(ã) =

a \ ⇢m
M
⇢ a = ⇡̂(a). Hence ã ⇢ a.

(�) ⇡̂(a\ ⇢̃) = ⇡̂00(a\ ⇢̃) ⇢ ⇢m
M
\a = ⇡̂(ã), since ⇡̂00⇢̃ ⇢ ⇢m

M
. Hence

a \ ⇢̃ = ã. QED (2)

Since ã 2 Rma

M
we conclude that a 2 Rn

M
and N = (Mma

)
a\⇢̃

=

M
n,a. QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let Ma
= N and a 2 Rn

M
. There is ⇡ � ⇡ such that ⇡ : M !

⌃
(m)
1

M and ⇡(a) = a.

Proof: Let x1, . . . , xn 2M with xi = F i(zi)(i = 1, . . . , r), where F i is
a ⌃(m)

1
(M) good function in the parameters a(0), . . . , a(n) and zi 2 N .

Let Fi have the same ⌃(m)

1
(M)–good definition in a(0), . . . , a(m). Let

R(u1, . . . , ur) be a ⌃(n)

1
(M) relation and let R be ⌃(n)

1
(M) by the same

definition.

Then R(F 1(z1), . . . , F r(zr)) is ⌃(m)

1
(M) in a(0), . . . , a(m) and

R(F1(z1), . . . , Fr(zr)) is ⌃(m)

1
(M) in a(0), . . . , a(m) by the same defini-

tion. Hence there is i < ! such that

R(F (~z)$ hi, h~zii 2 T

R(F (~z))$ hi, h~zii 2 T

where N = hJA

⇢
, T i, N = hJA

⇢ , T i. Thus R(F (~z)) is rud in N and
R(F (~z)) is rud in N by the same rud definition. But ⇡ : N !⌃0 N .

Hence:

R(F 1(zi), . . . , F r(zr))$ R(F1(⇡(z1)), . . . , Fr(⇡(zr))).
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Thus there is ⇡ : M !
⌃

(n)
1

M defined by ⇡(F (⇠)) =: F (⇡(⇠)) whenever

⇠ 2 On\N , F is ⌃(m)

1
(M)– good in a(0), . . . , a(m) and F is ⌃(m)

1
(M)–

good in a(0), . . . , a(m) by the same definition. But then

⇡(z) = ⇡(id(z)) = ⇡(z) for z 2 N.

Hence ⇡ � ⇡. But clearly

⇡(a)= ⇡(a(0) [ . . . [ a(m)
)

= a(0) [ . . . [ a(m)
= a.

QED (Claim 2)
We now verify (c):

Claim 3 Let M,a,⇡ be as in Claim 2. Then ⇡ : M !
⌃

(n)
j

M .

Proof: We first note that ⇡, being ⌃(n)

1
–preserving, is strictly so —

i.e. ⇢i
M

= ⇡�100⇢i
M

for i = 0, . . . ,m. It follows easily that:

⇡(a(i)) = ⇡00a(i) = a(i) for i = 0, . . . ,m.

We now proceed the cases.

Case 1 j = 0.
It suffices to show that if ' is ⌃(n)

1
and x1, . . . , xr 2 N , then

M |= '[x1, . . . , xr]!M |= '[⇡(x1), . . . ,⇡(xr)].

Let x1, . . . , xr 2M . Then xi = F i(zi)(i = 1, . . . , r) where zi 2 N

and F i is ⌃(m)

1
(M)–good in a(0), . . . , a(m). Let Fi be ⌃(m)

1
(M)–

good in a(0), . . . , a(m) by the same good definition.
By Corollary 2.6.19, we know that M |= '[F 1(z1), . . . , F r(zr)] is
equivalent to

N |=  [z1, . . . , zr]
for a certain ⌃1 formula  . The same reduction on the M side
shows that M |= '[F1(z1), . . . , Fr(zr)] is equivalent to: N |=
 [z1, . . . , zr] for z1, . . . , zr 2 N , where  is the same formula.
Since ⇡ is ⌃0–preserving we then get:

M |= '[~x]$M |= '[F (~z)]

$ N |=  [~z]
! N |=  [⇡(~z)]
$M |= '[F (⇡(~z))]

$M |= '[⇡(~x)].

QED (Case 1)
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Case 2 j > 0.
This is entirely similar. Let ' be ⌃(n)

j
. By Corollary 2.6.19 it

follows easily that there is a ⌃j formula  such that: M |=
'[F 1(z1), . . . , F r(zr)] is equivalent to:

N |=  [z1, . . . , zr].

Since the corresponding reduction holds on the M–side, we get

M |= '[~x]$M |= '[⇡(~x)],

since ⇡(xi) = ⇡(F i(zi)) = Fi(⇡(zi)). QED (Claim 3)

This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let M̂, â be such that M̂n,â
= N and â 2 RN

M̂
.

Claim M̂ = M, â = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a
⇡ : M̂ !

⌃
(m)
1

M defined by:

(3) ⇡(F̂ (z)) = F (z) whenever z 2 N , F̂ is a good ⌃(m)

1
(M̂) function

in â(0), . . . , â(m) and F is the ⌃(m)

1
(M) function in a(0), . . . , a(m)

with the same good definition.

But ⇡ is then onto. Hence ⇡ is an isomorphism of M̂ with M . Since
M̂,M are transitive, we conclude that M = M̂, a = â.

QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let ⇡0 : M !
⌃

(m)
0

M strictly, such that ⇡0(a) = a. Then ⇡0 = ⇡.

Proof: By strictness we can again conclude that ⇡0(a(i)) = a(i) for
i = 0, . . . ,m. Let x 2M , x = F (z), where z 2 N and F is a ⌃(m)

1
(M)

good function in the parameters a(0), . . . , a(m). Let F be ⌃(m)

1
(M) in

a(0), . . . , a(m) by the same good definition.
The statement: x = F (z) is ⌃(m)

2
(M) in a(0), . . . , a(m). Since ⇡0 is

⌃
(m)

0
–preserving, the corresponding statement must hold in M — i.e.

⇡0(x) = F (⇡(z)) = ⇡(x).
QED (Lemma 2.6.32)


