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2.7 Liftups

2.7.1 The X, liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the 3¢ liftup). We can define it as
follows:

Definition 2.7.1. Let M be a J-model. Let 7 > w be a cardinal in M. Let
H=HM ¢ M and let 7 : H —y, H’' cofinally. We say that (M’ ') is a ¥
liftup of (M, ) iff M’ is transitive and:

(a) 7’ Dmand 7' : M —y, M’

(b) Every element of M’ has the form #'(f)(z) for an z € H' and an
f € T° where I'° = I'(7, M) is the set of functions f € M such that
dom(f) € H.

Note. The condition of being a J—model can be relaxed considerably, but

that is uninteresting for our purposes.

Until further notice we shall use the word ’liftup’ to mean g liftup’.

If (M’ 7'} is a liftup of (M, 7) it follows easily that:
Lemma 2.7.1. 7’ : M —x, M’ cofinally.

Proof: Let y € M', y = 7'(f)(z) where x € H' and f € T, then y €
7' (rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. (M’ 7' is the only liftup of (M, ).

Proof: Suppose not. Let (M*, 7*) be another liftup. Let ¢(v1,...,vy,) be

Y. Then
M’ }: (P[W/(fl)(l'l), s 77T/<fn)<mn)] ANe
(@1, 20) € T({DIM | o[f(D)})
M* = olr (fi) (1), -, 7 () (20)]-
Hence there is an isomorphism o of M’ onto M* defined by:
o(w'(f)(@)) = = (f)(x)
for f € TY, x € w(dom(f)).
But M', M* are transitive. Hence o0 =id, M’ = M*, ' = 7*.
QED (Lemma 2.7.2)
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—

Note. M |= ¢[f(Z)] means the same as

n

Vo o\ vi = filz) A M oli]).
i=1
Hence if e = {(2)|M | ¢[f(2)]}, then e C gl dom(f;) € H. Hence e € M

1=
by rud closure, since e is X,(M). But then e € H, since P(u) N M C H for
ue H.

But when does the liftup exist? In answering this question it is useful to
devise a 'term model’ for the putative liftup rather like the ultrapower con-
struction:

Definition 2.7.2. Let M, 7,7 : H —y, H' be as above. The term model
D = D(M,7) is defined as follows. Let eg. M = (J2, B). D =: (D,

, &€, A, B) where

D = the set of pairs (f, z) such that f € Ty and x € H’

= (g,y) o (z,y) € 7({{z,0)[f(2) = 9(y)})

€9, y) «: (z,y) € T({(z,w)[f(2) € 9(y)})
(f;x) o:wen({2z]Af(2)})

B(f,z) ¢z € n({z|Bf (2)})

Note. D is an ’equality model’; since the identity predicate = is interpreted
by = rather than the identity.

Los theorem for D then reads:

Lemma 2.7.3. Let ¢ = o(v1,...,v,) be Xo. Then

—

D= el(fr, 1), s (fo )] < (21, zn) € T({(2)IM = [f(2)]})-

Proof: (Sketch)

We prove this by induction on the formula . We display a typical case of the
induction. Let ¢ = \/u € v1¥. By bound relettering we can assume w.l.0.g.
that u is not among vy, ..., v,. Hence u, vy, ..., v, is a good sequence for V.
We first prove (—). Assume:

D ': ‘P[<flax1>a S <fn7$n>}

Claim (zy,...,z,) € 7(e) where

e={{z1,.... )M = p[fi(z1) .. fu(zn)]}-
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Proof: By our assumption there is (g,y) € D such that (g,y)€(f1,21) and:

D ): \I}[<g7y>’ <f1,.7}1>, SRR <f”7xn>]

By the induction hypothesis we conclude that (y, Z) € 7(€) where:

—

e = {(w, 2)]g(w) € fil=1) A M | Ug(w), f(2)}.

Clearly e,é € H and

HE \w, 2(w,2) €é— (5) €e).

Hence
H = \w, Z(w,2) € m(e) — (2) € n(e)).
Hence (%) € 7(e). QED (—)

We now prove (<)
We assume that (z1,...,z,) € m(e) and must prove:

Claim D E o[(f1,21), ..., (fn, zn)].

Proof: Let r € M be a well ordering of rng(f1). For (Z) € e set:

g({(Z)) = the r-least w such that
M E Yw, fi(z1),- -, fa(zn)].

Then g € M and dom(g) = e € H. Now let € be defined as above with this
g. Then:

H ): /\Zla"'azn(<2_‘> ce< <<2>72> € é)
But then the corresponding statement holds of 7 (e), 7(€) in H'. Hence
((7), %) e m(e).
By the induction hypothesis we conclude:

D ): \P[<g7 <f>>7 <f1,.%’1>, AR <fn7‘rn>]
The conclusion is immediate. QED (Lemma 2.7.3)
The liftup of (M, ) can only exist if the relation € is well founded:

Lemma 2.7.4. Let € be ill founded. Then there is no (M',x') such that
' M —yx, M'. M’ is transitive, and 7' D .
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Proof: Suppose not. Let (fi11,xi+1)€(fi, ;) for i < w. Then
(iv1,2i) € T{(z, w)|fi+1(2) € fi(w)}.

Hence 7T/(fi+1)($i+1) S W/(fz)(l'l)(’b < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let € be well founded. Then the liftup of (M, ) exists.

Proof: We shall explicitly construct a liftup from the term model I. The
proof will stretch over several subclaims.

Definition 2.7.3. z* = n*(z) =: (const,,0), where const, =: {(z,0)} =
the constant function z defined on {0}.

Then:

(1) #*: M —yx, D.
Proof: Let ¢(v1,...,v,) be Xg. Set:

e={(z1,...,2n)|M = ¢[const,, (21),...,const,, (2,)]}.

Obviously:

{ {(0,...,0)} if M = p[z1,...,24]

() if not.
Hence by Loz theorem:

D olz},...,zk] <+ (0,...,0) € w(e)
M Eplr,...,x)

(2) D = Extensionality.
Proof: Let o(u,v) == Awcuwev ANNwevwE u.

Claim D |= ¢[a,b] — a = b for a,b € D. This reduces to the Claim:
Let a = (f,z),b = (g,y). Then

D Eol(f,2),(9,9)] <> (z,y) € 7(e)
(fiz) =(g,y)

T

where

(z,w)|M = ¢[z,w]}
(z,w)|f(2) = g(w)}

)
|

{
{
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QED (2)

Since = is a congruence relation for D we can factor D by 22, getting:

where:

D = {3|s € D}
s=A{tlt=s} forse D
5EL ¢»: st

As & jls, B3 «»: Bs.
Then D is a well founded identity model satisfying extensionality. By

Mostowski’s isomorphism theorem there is an isomorphism k of ID onto
M’ where M' = (|M'|,€, A’, B") is transitive.

Set:

[s] =: k(8) for s € D

7' (x) =: [z*] for x € M.
Then by (1):
7 M =y, M.

Lemma 2.7.5 will then follow by:
Lemma 2.7.6. (M’ 7' is the liftup of (M, 7).

We shall often write [f,z] for [(f,x)]. Clearly every s € M’ has the
form [f,z] where f € M; dom(f) € H, x € H'.

Definition 2.7.4. H =: the set of [f,z] such that (f,z) € D and
feH.

We intend to show that [f,z] = n(f)(z) for z € H. As a first step we
show:

H is transitive.
Proof: Let s € [f,z] where f € H.
Claim s = [g,y| fora g € H.
Proof: Let s = [¢/,y]. Then (y,z) € w(e) where: e = {(u,v)|¢'(u) €
f(v)} set:

¢ ={ulg'(u) € tng(f)}, g=g'1¢".
Then g C rng(f) x dom(¢’) € H. Hence g € H. Then [¢,y] = [g,]
since 7(¢")(y) = 7(g)(y) and hence
(y,9) € 7({(u,v)]g'(u) = g(v)}). But e = {(u,v)|g(u) € f(v)} Hence
9,91 € [f, ], QED (4)
But then:
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(5) [f,a] =n(f)(z) for f € H,(f,x) €D.
Proof: Let f,g € H,(f,x),{g,y) € D. Then:

[f.z] € [g,y] < (z,y) € m(e)
< 7(f)(x) € m(g)(y)

where e = {(u, v)|f(u) € g(v)}. Hence there is an €-isomorphism o of
H onto H defined by:

o(m(f)(x)) = [f,2].

But then o = id, since H, H are transitive. (5)
But then:

(6) @ D> m.
Proof: Let € H. Then 7'(z) = [const,,0] = 7(const,)(0) = 7(z)
by (5).

(7) [f,2] = 7' (f)(z) for (f,z) € D.
Proof: Let a = dom(f). Then [ids, #] = id ) (z) = 2 by (5). Hence
it suffices to show:

1f,2] = [eonsty, 0]([ida, ).
But this says that (z,0) € 7w(e) where:

(2,u)|f(2) = consty(u)(ida(2))}
f

(& z
z

(2,0)|f(2) = f(2)} = a x {0}.

{
{
QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let 7 D 7 such that 7" : M —x, M*. Then the liftup
(M, 7") of (M,x) exists. Moreover there is a o : M' —s, M* uniquely
defined by the condition:

! : /
oclH =id, on’ = 7*.

Proof: (M', ') exists, since € is well founded, since (f, x)E(g,y) <> 7*(f)(z) €
7(g)(y). But then:

M el (fi) (@), - 7 (fr) ()]

& (x1,...,x) € (e)

& M* = olm*(fi)(@1), - 7 (fr) ()]



132 CHAPTER 2. BASIC FINE STRUCTURE THEORY

where e = {{z1,...,2)|M = ¢[f(Z)]}. Hence there is ¢ : M’ -y, M*
defined by:
o('(f)(x)) = 7*(f)(x) for {f,z) € D.

Now let 6 : M" —y,, M* such that ¢ | H' = id and 67’ = 7".
Claim 0 = 0.

Let s € M', s = 7/(f)(z). Then &(7'(f)) = 7*(f), o(x) = x. Hence
a(s) =7"(f)(x) = o(s). QED (Lemma 2.7.7)

2.7.2 The X" liftup

From now on suppose M to be acceptable. We now attempt to generalize
the notion of ¥ liftup. We suppose as before that 7 > w is a cardinal in
M and H = HM. As before we suppose that 7’ : H —y, H' cofinally. Now
let p" > 7. The ¥p-liftup was the "minimal" (M’ 7’) such that 7’ D 7 and
7' M —y, M'. We shall now consider pairs (M’ ') such that 7/ O 7 and
7't M —xp M'. Among such pairs (M', 1) we want to define a "minimal"
one and show, if possible, that it exists. The minimality of the 3 liftup was
expressed by the condition that every element of M’ have the form 7'(f)(z),
where x € H' and f € I'%(7, M). As a first step to generalizing this definition
we replace I'°(7, M) by a larger class of functions I'(r, M).

Definition 2.7.5. Let n > 0 such that 7 < plt,. I'™ = TI'""(7, M) is the set
of maps f such that

(a) dom(f) € H

(b) For some i < n there is a good Zgi)(M) function G and a parameter

p € M such that f(z) = G(x,p) for all x € dom(f).

Note. Good Egl) functions are many sorted, hence any such function can be
identified with a pair consisting of its field and its arity. An element of I'",
on the other hand, is 1-sorted in the classical sense, and can be identified
with its field.

Note. This definition makes sense for the case n = w, and we will not
exclude this case. A ng) formula (or relation) then means any formula (or

relation) which is Eéi) for an i <w — i.e. Z((]w) =X

We note:

Lemma 2.7.8. Let f € I'™ such that tng(f) C H', where i < n. Then

f(x) = G(z,p) for x € dom(f) where G is a good Zgh) function to H* for
some h < n.
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Proof: Let f(z) = G'(z,p) for z € dom(f) where G’ is a good Egh) function

to H’ where h,j < n. Since every good Egh) function is a good X% function
for k > h, we can assume w.l.o0.g. that i, j < h. Let F' be the identity function
defined by v* = w/ (i.e. y' = F(27) < y' = 27). Set: G(z,y) ~: F(G'(z,y)).
Then F is a good Egh) function and so is G, where f(zx) = G(x,p) for
x € dom(f).

QED (Lemma 2.7.8)

Lemma 2.7.9. (7, M) C I"(r, M) fori <mn.

Proof: For 0 < ¢ this is immediat by the definition. Now let ¢ = 0. If
f €T° then f(z) = G(x, f) for x € dom(f) where G is the X function
defined by
y=G(z, f) <> (fis a function A
Ny, x) € f).
QED (Lemma 2.7.9)

The "natural" minimality condition for the E((Jn) liftup would then read: Each
element of M has the form 7'(f)(z) where z € H' and f € T'"™. But what
sense can we make of the expression "7/(f)(x)" when f is not an element of
M? The following lemma rushes to our aid:

Lemma 2.7.10. Let ' : M — ) M'" where n > 0 and ©' D 7. There is a
0
unique map 7" on T (7, M) with the following property:

x Let f € I'"™(1, M) such that f(x) = G(z,p) for x € dom(f) where G
is a good Egi) function for an i < n and x is a good Egi) definition of
G. Let G’ be the function defined on M'" by x. Let f' = ©"(f). Then
dom(f") = w(dom(f)) and f'(z) = G'(x,«'(p)) for z € dom(f").

Proof: As a first approximation, we simply pick G, x with the above prop-
erties. Let G’ then be as above. Let d = dom(f). The statement

Nz ed\yy=G(z,p)is Z(()n) is d, p, so we have:

Nzend)\/yy=G ().

Define fo by dom(fy) = n(d) and fo(z) = G'(z,7(p)) for z € w(d). The
problem is, of course, that GG, x were picked arbitrarily. We might also have:

f(z) = H(z,q) for x € d,

where H is Egj)(M) for a j < mn and ¥ is a good Zgj) definition of H. Let
H' be the good function on M’ defined by W. As before we can define f;
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by dom(f1) = 7(d) and fi(z) = H'(x,7'(q)) for x € m(d). We must show:
fo = f1. We note that:

Az € dG(e.p) = Hiz.q).
But this is a Z(()n) statement. Hence

Nz € n(d)G (x,p) = H'(z,q).
Then fo = fi. QED (Lemma 2.7.10)
Moreover, we get:
Lemma 2.7.11. Let n,m, 7,7, 7" be as above. Then ©"(f) = #'(f) for

Fer(r, M).

Proof: We know f(z) = G(z, f) for € d = dom(f), where:
y=G(z, f) <> (f is a function Ay = f(z)).

Then 7" (f)(z) = G'(z,7'(f)) = 7'(f)(z) for € w(d), where G’ has the
same definition over M. QED (Lemma 2.7.11)

Thus there is no ambiguity in writing #’(f) instead of #”(f) for f € T'™.
Doing so, we define:

Definition 2.7.6. Let w < 7 < p'j; where n < w and 7 is a cardinal in M.
Let H= HM and let 7 : H —x, H' cofinally. We call (M’ ') a Eén) liftup
of (M, ) iff the following hold:

(a) 7 D7 and 7’ : M—>Eén) M.

(b) Each element of M’ has the form #'(f)(x), where f € T"(7, M) and
r e H.

(Thus the old ¥ liftup is simply the special case: n = 0.)

Definition 2.7.7. I'!(7, M) =: the set of f € I'"(7, M) such that either
i<nandrg(f) C Hi;ori=n<wand f € H,.

(Here, as usual, H* = Joi [A] where M = (J4, B).)

Lemma 2.7.12. Let f € I'}(7,M). Let 7' : M — ) M’ where 7’ O .
0
Then @' (f) € TP (n' (1), M").
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Proof:

- M / M’
Case 1 i =n. Then f € Hj . Hence 7'(f) € Hpn .

Case 2 ¢ < n.

By Lemma 2.7.9 for some h < n there is a good Zgn)(M) function G(u,v)
to H' and a parameter p such that

f(z) = G(z,p) for x € dom(f).

Hence:

' (f)(x) = G'(z,7'(p)) for x € dom(w(f)),

where G’ is defined over M’ by the same good Egn) definition. Hence
mg(7'(f)) C Hi,. QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding Z(()n) liftups.

Lemma 2.7.13. Let R(a:ill, ..., xir) be Eén) where i1,...,i, < n. Let f; €
[E(l=1,...,r). Then:

a) The relation P is 5™ in q parameter p where:
0
P(2) <: R(f1(z1),- -, fr(2r)).

(b) Let 7' D7 such that w': M — ) M'. Let R’ be E(()n)(M’) by the same
0

definition as R. Then P’ is Eén) (M) in 7'(p) by the same definition
as P in p, where:

P'(Z) ¢ Ri(n'(f1) (1), o ' (f) (20))-

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Lete = {(Z)|P(2)}. Thene € H andw(e) = {(2)|P'(2)}.

Proof: Clearly e C d = x dom(f;) € H. But then d € Hyn and e € Hjn
=1

since (H,n, PNH ) is amenable. Hence e € H, since H = H and therefore
P(u)NM C H foru e H.

Now set ¢/ = {(2)|P'(2)}. Then ¢’ C 7(d) = l
hence w(dom(f;)) = dom(w(f;)). But

A(E) €d((z) € e & P(2))

X =

dom(7(f;)) since 7’ D 7w and
1



136 CHAPTER 2. BASIC FINE STRUCTURE THEORY

which is a E[()n) statement about e,p. Hence the same statement holds of
m(e), m(p) in M'. Hence

A(E) € n(d)((2) € n(e) > P'(2)).
Hence 7(e) =€’ QED (Corollary 2.7.14)

Corollary 2.7.15. (M, ) has at most one Eén) liftup (M', 7).

Proof: Let (M*,7*) be a second such. Let @(vl,... vir) be a Eén) for-
mula. (In fact, we could take it here as being 260).) Let e = {(?)|M E
elfi(z1),..., fr(z)]} where fi e TR (1 =1,...,7). Then:

M el (f)(@), . () ()]

& (x1,...,x) € 7(e)

o M* = oln*(fi)(z1), ..., 7" (fr)(2r)]
for x; € m(dom(f))(I =1,...,r).

Hence there is an isomorphism o : M’ M* defined by:

for f €T, z € w(dom(f)). But M’', M* are transitive. Hence o = id, M’ =
M* 7' =7*. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n=0.
Then fi,...,fr € M and P is ¥y in p = (f1,..., fr), since f; is rudi-

mentary in p and for sufficiently large h we have:

P(2) &\ i € O\ vi = fi(Z) A R())
i=1

where R is Xo. If P’ has the same X definition over M’ in 7/(p), then

r

P'(z) <V, € Cn(m(p))( /\1‘% = 7(fi)(zi) A R(Y))

n=

—

< R(m(f)(2))

QED
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Case 2 n =w. A
Then X = U Egh). Let R(z%,...,2l) be Egh). Since every Zgh)
h<w

(

relation is Elk) for £k > h, we can assume h taken large enough that
i1,...,% < h. We can also choose it large enough that:

fi(z) ~ Gi(z,p) forl=1,... v

where G is a good Egh) map to H%. (We assume w.l.0.g. that p is the

same for [ =1,...,r and that d; = dom(f;) is rudimentary in p.) Set:
P(Za y) g R(Glxlvy)7 SER) G(‘Thy))

By §6 Lemma 2.6.24, P is Egh) (uniformly in the Zgh) definition of R
and G1,...,G,). Moreover:

P(2) < P(Z,p).

Thus P is uniformly Egh) in p, which proves (a). But letting P’ have

the same Egh) definition in 7’'(p) over M’, we have:

P(Z) & P'(Z,7'(p))
A R/(”T/(fl)(zl)a T 77r/(fr)(zr))7
which proves (b). QED (Case 2)

Case 3 0 <n < w.
Let n = m+ 1. Rearranging arguments as necessary, we can take R as
given in the form:

n n .01 i
R(yY,...,ys, 2}, ... z))

where 41,...,5, <m. Let fi €I} for I =1,...,r and let g1,...,g1 €
.

Claim

(a) P is Eén) in a parameter p where
P(#, %) : R(G(@), [(2)).

b) If «’, M’ are as above and P’ is S (MY in 7 p) by the same
0
definition, then

—

P'(w,Z) +» R(n'(g)(@), 7' (£)(2))

where R’ has the same Egn) definition over M’.
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—

We prove this by first substituting f(2) and then §(w), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
Po(gjna 5) = R(ynv fl(zl)a ey f'r‘(ZT‘))‘
Then:

(a) Py is Eén)(M) in a parameter pg.

(b) Let 7', M’, R’ be as above. Let P} have the same Zgn)(M’) defi-
nition in 7’(pg). Then:

Py, 2) < R (y", ' (f)(2)).
Claim 2 Let
P(Tﬁ, Z) < PO(gl(wl)7 cee 7gs(ws)7 Z)
Then:

(a) Pis E((]n)(M) in a parameter p.

(b) Let 7', M’, Pj be as above. Let P’ have the same Egn)(M’) defi-
nition in 7/(p). Then

We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that g1,...,gs € H".
Set: p={(g1,---,9n,p). Then P is Eén)(M) in p, since:

S

P(W,2) < \/y1 S Ys € Ch(p)(/\ yi = gi(w;) A\ Py(7, 2))

=1

where g;, po are rud in P, for a sufficiently large h. But if P’ is Z(()n) (M') in
IT'(P) by the same definition, we obviously have:

P/(, ) va”y4§%=W@@mA%@a>

Py () (), 7).
QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments @". Thus, after re-
arranging arguments we would have R(@", §", x', ..., z¥) where iy, ..., i, <
n. We would then define

—

P(i", @, 2) < R(@, §(@), f(2)).

This gives us:
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Corollary 2.7.16. Letn < w. Let R(ﬂ",x?, o, xir) be E(()n) where iy, ..., i, <
n. Let fy eIy forl=1,...,r. Set:

P(a", 2) < R(@", fi(z1), ..., fr(z)).

Then:

(a) P(u",Z2) is 2(()”) in a parameter p.
(b) Let ' D m such that 7'+ M —o ) M'. Let R’ be E[()")(M’) by the same
0
definition. Let P be Eén)(M’) in 7' (p) by the same definition. Then

Pi(a",2) < R(a", ' (fi)(z1), .7 (fr)(2r).

By Corollary 2.7.15 (M, 7) can have at most one Z(()n) liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D™ for the supposed liftup, which will then exist whenever D is well
founded.

Definition 2.7.8. Let M, 7, H,H',m be as above where p}, > 7,n < w.

The 26n) term model D = D(") is defined as follows: (Let e.g. M = (JZ, B).)
We set: D = (D, €, A, B) where:

D =D =: the set of pairs (f,z)
such that f € I'(r, M) and
x € m(dom(f))

(f,z) = (g,y) <> (x,y) € 7(e), where
e = {(z,w)|f(2) = g(w)}.

(g9,y) <»: (x,y) € 7(e), where

e={{z,w)|f(z) € g(w)}

me

(f,z)

(similarly for A, B).

We shall interpret the model D in a many sorted language with variables of
type i < w if n = w and otherwise of type i < n. The variables v’ will range
over the domain D; defined by:

Definition 2.7.9. D; = D\ =: {(f,z) € D|f € T"}.

Under this interpretation we obtain Los theorem in the form:
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Lemma 2.7.17. Let p(vi',... vir) be E(()n). Then:

D ': 90[<f17x1>?"'7<f7“7$r>] A <.CI?1,...,£L'7~> € 7T(€)

where e = {(2)|M = o[fi(z1),. .., fr(zr)]} and (fi,z;) € D;, forl=1,...,r.
Proof: By induction on ¢ we show:

(

Claim If i < n or ¢ = n < w, then the assertion holds for Eoi) formulae.
Proof: Let it hold for j < i. We proceed by induction on the formula ¢.

Case 1 ¢ is primitive (i.e. ¢ is v;€vj, v;=vj, Av; or Bu; (for M = (J2, B)).
This is immediate by the definition of .

Case 2 ¢ is 227) where j < 4 and h = 0 or 1. If h = 0 this is immediate
by the induction hypothesis. Let h = 1. Then ¢ = \/ /¥, where ¥
is E(()i). By bound relettering we can assume w.l.o.g. that u’ is not in
our good sequence vil, ...,vlr. We prove both directions, starting with
(—):

Let D = ¢[(f1,21), ..., (fr,zr)]. Then there is (g,y) € D; such that

D = Y[(g,9), (fr,21)s s (fro 2r)]

(u?, ¥ being the good sequence for ¥). Set ¢’ = {(w, 2)|M = ¥[g(w), 2(£)]}.
Then (y,Z) € m(e’) by the induction hypothesis on i. But in M we
have:

Nw Z(w,2) €€ — () €e).

This is a II; statement about e’;e. Since m : H —y, H' we can
conclude:

N w, Z(w, 2) € 7(e') = (Z € 7(e)).

But (y,#) € 7(e’) by the induction hypothesis. Hence (Z € w(e). This
proves (—). We now prove (+—). Let (¥) € w(e). Let R be the Egj)
relation

R(w,z1,...,2p) =M = plw, 21, ..., 2]

Let G be a E(()j)(M) map to H? which uniformizes R. Then G is a
spezialization of a function G’(zi”, ...,z such that by < j for [ < j.

Thus G’ is a good Zéj) function. But

fi(z) = Fi(z,p) for z € dom(f;) for I =1,...,r
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where Fj is a good E(()k) map to H" forl =1,...,rand j < k <i. (We
assume w.l.0.g. that the parameter p is the same for all i = 1,...,7r,.)
Define G (u¥, w) by:

G (u,w) =~ G'(w)y ™t .., (W) =], w)

r—1

then G” is a good Egk) function. Define g by: dom(g) = x dom(f;)
i=1

and: g((2)) = G"((2),p) for (Z) € dom(g). Then g € I and g9((2)) =
G(f1(z1),- .-, fr(2r)). Hence, letting:

—

e’ = {{w, 2)|M = V[g(w), f(2)]},
we have:
AZ(E) e e (2,2 € &),

This is a II; statement about e, e’ in H. Hence in H' we have:

NZ((2) € mle) & ((2).2) € ().
But then ((Z), 2) € 7(¢’). By the induction hypothesis we conclude:

D= ¥[(g, (), (fr,z1), - (fry ).

Hence:

D E ol(fi,21), .-, (frszr)]-
QED (Case 2)

Case 3 pis Vg AV, VgAY, Uy — Uy, Uy <> Uy, or V0.

This is straightforward and we leave it to the reader.

Case 4 ¢ = \/u’ € vy or Au® € vy, where v has type > i. We display
the proof for the case ¢ = \/u’ € v;x. We again assume w.l.0.g. that
u' #wvjfor j=1,...,7. Set: ¥ = (u' € v Ax). Then ¢ is equivalent
to \/ u'¥. Using the induction hypothesis for x we easily get:

D ': qf[(g,y), <f17xi>? te <f7"7x7">] AR

(y, 1, ..., 25) € 7(e)

()

—

where ¢/ = {(w,2)|M = V[g(w), f(Z)]}. Using (*), we consider two
subcases:

Case 4.1 ¢ < n.
We simply repeat the proof in Case 2, using (x) and with ¢ in place of
7.
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Case 4.2 i =n < w.
(Hence v; has type n.) For the direction (—) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for 3¢ liftups.

We know that e € H and (Z) € w(e), where e = {(Z2)| M |= ¢[fi(z1),. .., [r(z)]}
Set:
R(w",2) <»: M = V[w", fi(z1),..., fr(z)]

Then R is Z(()n) by Corollary 2.7.16. Moreover \/ w"R(w", ) + (Z) € e.
Clearly f; € Hj; since f; € I'},. Let s € Hy, be a well odering of
Jrng(fi). Clearly:

R(w", 2) —w" € fi(z)
— w" € Jrng(f1).

We define a function g with domain e by:

g9((Z)) = the s-least w such that R(w, Z).

Since R is Eén), it follows easily that g € H % . Hence g € I'. But
then

/\ Z((Z) € e > ((2),2) € €'), where ¢’ is defined as above, using this g.

Hence in H' we have:

NZ(2) € n(e) & ((2),2) € n(€)).

—

Since (Z) € 7(e) we conclude that ((Z),Z) € m(e’). Hence:

D ': \IIKga <f>>7 <f17x1>7 sy (fr;xr>]'
Hence:
D 'Z 90[<f17 £C1>, SR <fr7$7“>}'
QED (Lemma 2.7.17)
Exactly as before we get:

Lemma 2.7.18. If € is ill founded, then the S\ liftup of (M, =) does not
exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If € is well founded, then the E(()n) liftup of (M, ) exists.
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)

Proof: We shall again use the term model D to define an explicit E(()n liftup.

We again define:

Definition 2.7.10. z* = 7*(z) =: (const,, 0), where const, =: {(x,0)} =
the constant function x defined on {0}.

Using Los theorem Lemma 2.7.17 we get:

(1) M —)Z(n) D
0 .
(where the variables v* range over D; on the D side).

The proof is exactly like the corresponding proof for Xo-liftups ((1) in
Lemma 2.7.5). In particular we have: 7* : M —x, D. Repeating the
proof of (2) in Lemma 2.7.5 we get:

(2) D = Extensionality.
Hence 2 is again a congruence relation and we can factor D, getting:

D= (D\ ) = (D,& A, B)
where .
D =:{3|se D}, §=:{t|t = s} for s€ D
3EL <2 sEt
A3 o fls, Bs ¢ Bs
Then D is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism & of ID onto
M’ where M' = (|M'|, €, A’, B) is transitive. Set:
[s] =: k(8) for s € D
' (x) =: [z*] for x € M
Hi={8|]seDi}(i<nori=n<uw).
We shall initially interpret the variables v’ on the M’ side as ranging
over H;. We call this the pseudo interpretation. Later we shall show
that it (almost) coincides with the intended interpretation. By (1) we
have
(3) «" : M — 5 M’ in the pseudo interpretation. (Hence «’ : M —5y(m)
0 0
M)
Lemma 2.7.19 then follows from:

Lemma 2.7.20. (M',7’) is the Eén) liftup of (M, ).
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For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again
use the abbreviation:

[f,z] =: [(f,x)] for (f,z) € D.

Defining H exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

H is transitive.
[f,x] = n(f)(x) if f € H and (f,z) € D. (Hence H = H'.)

7 D
(However (7) in Lemma 2.7.6 will have to be proven later.)
In order to see that m: M —sm) M’ in the intended interpretation we

must show that H; = H]iw, for ¢ < n and that H, C H},;. As a first
step we show:

H; is transitive for ¢ < n.

Proof: Let s € H;,t € s. Let s = [f, ] where f € I'?. We must show
that ¢t = [g,y] for g € T". Let t = [¢/,y]. Then (y,z) € w(e) where

e = {(u,v)|g'(u) € f(v)}.

Set:
a=:{ulg'(u) e mg(f)},9 =4 la.

Claim 1 g € I'}.
Proof: a C dom(q') is Eén). Hence a € H and g € I'™. If i < n,
then rng(g) C rng(f) € H},;. Hence g € I'?". Now let i = n. Then
rng(f) € I' and the relation z = g(y) is Z(()n). Hence g € Hy,.
QED (Claim 1)

Claim 2 t = [g,y]
Proof:

/\u,v((u,v) €e— (u,u) €¢)

where ¢ = {{u,w)|g(u) = ¢’(w)}. Hence the same II; statement
holds of m(e),w(e’) in H'. Hence (y,y) € w(e’). Hence [g,y] =
9",y =1t QED (7)

We can improve (3) to:

Let ¥ = \/vill,...,vfhp, where ¢ is E(()n) and iy <nori =n < w for

l=1,...,7. Then 7’ is "¥—elementary" in the sense that:

M = V[7] + M' = V[7'(£)] in the pseudo interpretation.
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Proof: We first prove (—). Let M | ¢[Z, Z]. Then M’ |= o[r’(2), 7' (Z)]
by (3)-
We now prove (+). Let:

M' = o[l f1, 21, - [ fr 2], T (E))]

where f; € T for [ =1,...,7. Since 7'(x) = [const,, 0], we then have:
(21,...,2r,0...0) € m(e), where:

e={(ug,...,u0...0): M = o[f(7),7]}.

Hence e # (). Hence

\vr..oM = o[ f(7), 4]

where mng(f;) C H% for [ = 1,...,r. Hence M = ¥[7]. QED (8)
If i < n, then every ng‘) formula is Zgn). Hence by (8):

If ¢ < n then
M ) M’ in the pseudo interpretation.
2

We also get:

Let n < w. Then:

7' | Hy; : Hyy —s, Hy cofinally.

Proof: Let x € H,. We must show that « € 7’(a) for an a € H};. Let
x = [f,y], where f € T7'. Let d = dom(f),a = rng(f). Then y € n(d)

and:
/\z €d(z,0)€e

where

e = {(u,v)|f(u) € consty(v)}
= {{u,0)|f(u) € a}.

This is a > statement about d,e. Hence the same statement holds of
7(d),7(e) in Hy. Hence (z,0) € 7(e). Hence [f,y] € 7’(a). QED (10)

(Note: (10) and (3) imply that 7’ : M — ) M’ is the pseudo inter-
1
pretation, but this also follows directly from (8).)
Letting M = (J2, B) and M’ = (|]M’|, A', B') we define:
M; = (H;, ANH,;, BN HY,), M = (H;, A'n H;, B' N H;)

for i <mn or i =n < w. Then each M; is acceptable. It follows that:
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M is acceptable.

Proof: If i = n, then ' | M,, : M,, =%, M,, cofinally by (3) and (10).
Hence M), is acceptable by §5 Lemma 2.5.5. If i < n, then 7' [ M; :
M; ) M) by (9). Hence M; is acceptable since acceptability is a
II5 condition. QED (11)
We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

Let i +1 < n. Let A C H;y1 be Zgi) in the pseudo interpretation.
Then (H;11,A) is amenable.

Proof: Suppose not. Then there is A’ C H;1 such that A’ is Egi) in
the pseudo interpretation, but (H;, A’) is not amenable. Let:

A'(z) < B'(x,p)
where B’ is Egi) in the pseudo interpretation. For p € M’ we set:
A;, =:{z|B'(z,p)}.
Let B be Zgi)(M) by the same definition. For p € M we set:

Ap =:{z|B(z,p)}.

Casel i+1<n.
Then \/p\/ @ A1+ £ /1 0 AL holds in the pseudo in-
terpretation. This has the form: \/p\/ a'Tlo(p,a’*t!) where ¢
is Hgi—H), hence E(()n) in the pseudo interpretation. By (8) we
conclude that M |= ¢(p,a’*!) for some p,a’™ € M. Hence
(Hir' A,) is not amenable, where A, is Egl)(M).
Contradiction! QED (Case 1)
Case 2 Case 1 fails.
Then ¢ + 1 = n. Since n’ takes H}, cofinally to H,. There
must be a € HJ, such that w(a) N A" ¢ H,. From this we
derive a contradiction. Let A" = A}, where p = [f,z]. Set:
B = {{z,w)|B(w, f(2))}. Then Bis 2\ (M). Set: b = (dxa)NB,
where d = dom(f). Then b € H};. Define g : d — HJ; by:

9(z) = Ay Na = {z € al(z,r) € b}.

Then g € H};, since it is rudimentary in a, b € Hy;. Let p(u™, v", w)

be the Eén) statement expressing

uw=A,Nv" in M.
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(14)

(15)

Then setting:

e = {(v,0,w)|M [= ¢g(v),a, f(2)]}
we have:
/\v € d (v,0,v) € e.

But then the same holds of 7(d),n(e) in H,. Hence (z,0,z) €
m(e). Hence: [g,2] = Ajp N 7(a) € Hp.
Contradiction! QED (12)

On the other hand we have:

Leti+1<mn. Let AC Hif' be Zgi) (M) in the parameter p such that
A¢ M. Let A' be (M) in 7'(p) by the same X\ (M) definition
in the pseudo interpretation. Then A’ N H;11 ¢ M.

Proof: Suppose not. Then in M’ we have:
\/a/\v“‘l(vﬂ'1 €aw A@Th).

This has the form \/ ap(a, 7(p)) where ¢ is Hgiﬂ) hence Eén). By (8)
it then follows that \/ ap(a,p) holds in M. Hence A € M.
Contradiction! QED (13)

Recall that for any acceptable M = (JZ', B) we can define Pl Hyy by:

=«

p't1 = the least p such that there is A which is
(M) with Anp ¢ M

H'= J,[A].

Hence by (11), (12), (13) we can prove by induction on i that:

Let ¢ < n. Then

(a) php = pis Hyp = H;
(b) The pseudo interpretation is correct for formulae ¢, all of whose
variables are of type < i.

By (9) we then have:

M =g M fori <n.

2
This means that if n = w, then 7’ is automatically X*—preserving. If
n < w, however, it is not necessarily the case that H, = H},, — i.e.
the pseudo interpretation is not always correct. By (12), however we
do have:
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pn < py, (hence H,, C HYp)).
Using this we shall prove that 7’ is E(()n)—preserving. As a preliminary
we show:

Let n < w. Let ¢ be a E(()n) formula containing only variables of type

i <n. Let v}',...,v be a good sequence for . Let z1,...,z, € M’

such that x; € H;, for [ =1,...,7. Then M |= p[z1,...,2,] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let Cy be the set of all such ¢ with: ¢ is Egl) for an ¢ < n. Let C be the
closure of Cy under sentential operation and bounded quantifications
of the form Av" € w™p, \Jv" € w"p. The claim holds for ¢ € Cy
by (15). We then show by induction on ¢ that it holds for ¢ € C. In
passing from ¢ to A v™ € w"p we use the fact that w™ is interpreted
by an element of H,. QED (17)

Since " H', C H; for i < n, we then conclude:
7 M —>E(n) M.
0

It now remains only to show:

[f;a] = 7' (f)(@).
Proof: Let f(z) = G(z,p) for x € dom(f), where G is Zgj) good for

aj <n. Let a =dom(f). Let ¥(u,v,w) be a good Egj) definition of
G. Set:

e={(z,y,w)|M = ¥[f(2),ida(y), const,(w)]}.

Then z € a — (z,2,0) € e. Hence the same holds of 7(a),7(e). But
x € m(a). Hence:

M' & Y[[f, 2], [ida, 2], [consty, z]],
where [id,, 2] = z, [const,, 0] = 7’(p). Hence:
[f, 2] = G'(z, 7' (p)) = 7'(f) (=),

where G’ has the same Egj) definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).

QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let (M',7’) be the E(()n) liftup of (M, 7). Let i <mn. Then
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. !
Eéz) M

(b) If iy € M, then ' (py) = piy;.

(c) If pi, = Onpy, then p' = Onpypr.

(a) 7" M —

Proof:

(a) follows by (9) and (14).
(b) In M we have:

AN\ €& < phy 0 =8

This has the form A £0W(¢0, piy,) where W is E(()n). But then the same
holds of 7/(p%,) in M’ by (8) and (14) — i.e.

AN €& <xlphy) & =&,

(c) In M we have A&\ €0 = ¢!, hence the same holds in M’ just as
above.
QED (Lemma 2.7.21)

n)

The interpolation lemma for E(() liftups reads:
Lemma 2.7.22. Let o0 : H —y, |M*| and 7* : M —gm M* such that
0

7 D on. Then the El()n) liftup (M',7") of (M,n) exists. Moreover there is a
unique map o' : M’ —gm M such that o' |H =o and o'n’ = 7*.
0

Proof: € is well founded since:

(f,2)€(g,y) < 7 (f)(o(x)) € 7 (9)(0(y))-
Thus (M’ 7') exists. But for E(()n) formulae ¢ = @(vi!,...,v¥) we have:

M' = olr'(fi)(x1), ... 7' (fr)or)]

& (21, .., x,) € w(e)

— (o(z1),...,0(x,)) € o(mw(e)) = 7*(e)

o M = elr(fi)(o(21)), ..., 7 (fr)(o(r))]

where:

e={{x1,...,2.)|M = o[fi(z1),..., frlz)]}
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and (f;,z;) € I'Y for i = 1,...,7. Hence there is a E(()n)fpreserving embed-
ding o : M’ — M* defined by:

o (7' (f)(2)) = 7 (f)(o(a)) for (f,a) € T™.

Clearly ¢/ | H = o and o'7’ = 7*. But ¢’ is the unique such embedding,
since if & were another one, we have

QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map ,
for instance:

Lemma 2.7.23. Let (M*,7*) be the Z(()n) liftup of (M, 7). Let 7* [p’]\ljl =id
and ]P’(p?jl) NM* C M. Then p}i;. = sup 71'*”/)7]@[.

(Hence the pseudo interpretation is correct and 7* is Egn) preserving.)

Proof: Suppose not. Let p = sup TI'*NpS\LZ[ < piyy-- Set:
H" = Hyy = JpM; H = 3.
Then H € M*. Let A be Zgn)(M) in p such that AN plift ¢ M. Let:
Az < \/y”B(y",m),
where B is Eén) in p. Let B* be E[()n)(M*) in 7*(p) by the same definition.
Then . )
7 |H" : (H",BNH") =y, (H,B*N H).
Then AN pﬁjl =An prjjl, where:
A={z|\/y" € H B*(y,2)}.
But A is Z(ln) (M*) in 7*(p) and H. Hence
Aﬁp}fjl :Aﬁpﬁjl EP(pﬁl)ﬂM* C M.

Contradiction! QED (Lemma 2.7.23)



