2.7 Liftups

2.7.1 The Σ_{0} liftup

A concept which, under a variety of names, is frequently used in set theory is the liftup (or as we shall call it here, the Σ_{0} liftup). We can define it as follows:

Definition 2.7.1. Let M be a J-model. Let $\tau>\omega$ be a cardinal in M. Let $H=H_{\tau}^{M} \in M$ and let $\pi: H \rightarrow_{\Sigma_{0}} H^{\prime}$ cofinally. We say that $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is a Σ_{0} liftup of $\langle M, \pi\rangle$ iff M^{\prime} is transitive and:
(a) $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$
(b) Every element of M^{\prime} has the form $\pi^{\prime}(f)(x)$ for an $x \in H^{\prime}$ and an $f \in \Gamma^{0}$, where $\Gamma^{0}=\Gamma^{0}(\tau, M)$ is the set of functions $f \in M$ such that $\operatorname{dom}(f) \in H$.

Note. The condition of being a J-model can be relaxed considerably, but that is uninteresting for our purposes.

Until further notice we shall use the word 'liftup' to mean ' Σ_{0} liftup'.
If $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is a liftup of $\langle M, \pi\rangle$ it follows easily that:
Lemma 2.7.1. $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally.

Proof: Let $y \in M^{\prime}, y=\pi^{\prime}(f)(x)$ where $x \in H^{\prime}$ and $f \in \Gamma^{0}$, then $y \in$ $\pi^{\prime}(\operatorname{rng}(f))$.

QED (Lemma 2.7.1)
Lemma 2.7.2. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the only liftup of $\langle M, \pi\rangle$.

Proof: Suppose not. Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be another liftup. Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Then

$$
\begin{aligned}
& M^{\prime} \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{n}\right)\left(x_{n}\right)\right] \leftrightarrow \\
& \left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(\{\langle\vec{z}\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\}) \leftrightarrow \\
& M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{n}\right)\left(x_{n}\right)\right] .
\end{aligned}
$$

Hence there is an isomorphism σ of M^{\prime} onto M^{*} defined by:

$$
\begin{aligned}
& \sigma\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(x) \\
& \text { for } f \in \Gamma^{0}, x \in \pi(\operatorname{dom}(f)) .
\end{aligned}
$$

But M^{\prime}, M^{*} are transitive. Hence $\sigma=\mathrm{id}, M^{\prime}=M^{*}, \pi^{\prime}=\pi^{*}$.
QED (Lemma 2.7.2)

Note. $M \models \varphi[\vec{f}(\vec{z})]$ means the same as

$$
\bigvee y_{1} \ldots y_{n}\left(\bigwedge_{i=1}^{n} y_{i}=f_{i}\left(z_{i}\right) \wedge M \models \varphi[\vec{y}]\right) .
$$

Hence if $e=\{\langle\vec{z}\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\}$, then $e \subset \underset{i=1}{\times} \operatorname{dom}\left(f_{i}\right) \in H$. Hence $e \in M$ by rud closure, since e is $\underline{\Sigma}_{0}(M)$. But then $e \in H$, since $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

But when does the liftup exist? In answering this question it is useful to devise a 'term model' for the putative liftup rather like the ultrapower construction:

Definition 2.7.2. Let $M, \tau, \pi: H \rightarrow_{\Sigma_{0}} H^{\prime}$ be as above. The term model $\mathbb{D}_{\tilde{\sim}}=\mathbb{D}(M, \pi)$ is defined as follows. Let e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle . \mathbb{D}=:\langle D, \cong$, $\tilde{\epsilon}, \tilde{A}, \tilde{B}\rangle$ where
$D=$ the set of pairs $\langle f, x\rangle$ such that $f \in \Gamma_{0}$ and $x \in H^{\prime}$

$$
\begin{aligned}
& \langle f, x\rangle \cong\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(\{\langle z, w\rangle \mid f(z)=g(y)\}) \\
& \langle f, x\rangle \tilde{\epsilon}\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(\{\langle z, w\rangle \mid f(z) \in g(y)\}) \\
& \tilde{A}\langle f, x\rangle \leftrightarrow: x \in \pi(\{z \mid A f(z)\}) \\
& \tilde{B}\langle f, x\rangle \leftrightarrow: x \in \pi(\{z \mid B f(z)\})
\end{aligned}
$$

Note. \mathbb{D} is an 'equality model', since the identity predicate $=$ is interpreted by \cong rather than the identity.

Eos theorem for \mathbb{D} then reads:
Lemma 2.7.3. Let $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Then

$$
\mathbb{D} \models \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] \leftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(\{\langle\vec{z}\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\}) .
$$

Proof: (Sketch)
We prove this by induction on the formula φ. We display a typical case of the induction. Let $\varphi=\bigvee u \in v_{1} \Psi$. By bound relettering we can assume w.l.o.g. that u is not among v_{1}, \ldots, v_{n}. Hence u, v_{1}, \ldots, v_{n} is a good sequence for Ψ. We first prove (\rightarrow). Assume:

$$
\mathbb{D} \models \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

Claim $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e)$ where

$$
e=\left\{\left\langle z_{1}, \ldots, z_{n}\right\rangle \mid M \models \varphi\left[f_{1}\left(z_{1}\right) \ldots f_{n}\left(z_{n}\right)\right]\right\} .
$$

Proof: By our assumption there is $\langle g, y\rangle \in D$ such that $\langle g, y\rangle \tilde{\in}\left\langle f_{1}, x_{1}\right\rangle$ and:

$$
\mathbb{D} \mid=\Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

By the induction hypothesis we conclude that $\langle y, \vec{x}\rangle \in \pi(\tilde{e})$ where:

$$
\tilde{e}=\left\{\langle w, \vec{z}\rangle \mid g(w) \in f_{1}\left(z_{1}\right) \wedge M \models \Psi[g(w), \vec{f}(\vec{z})\} .\right.
$$

Clearly $e, \tilde{e} \in H$ and

$$
H \models \bigwedge w, \vec{z}(\langle w, \vec{z}\rangle \in \tilde{e} \rightarrow\langle\vec{z}\rangle \in e) .
$$

Hence

$$
H^{\prime} \vDash \bigwedge w, \vec{z}(\langle w, \vec{z}\rangle \in \pi(e) \rightarrow\langle\vec{z}\rangle \in \pi(e))
$$

Hence $\langle\vec{x}\rangle \in \pi(e)$.
QED (\rightarrow)
We now prove (\leftarrow)
We assume that $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e)$ and must prove:
$\operatorname{Claim} \mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right]$.
Proof: Let $r \in M$ be a well ordering of $\operatorname{rng}\left(f_{1}\right)$. For $\langle\vec{z}\rangle \in e$ set:

$$
\begin{aligned}
g(\langle\vec{z}\rangle)= & \text { the } r \text {-least } w \text { such that } \\
& M \models \Psi\left[w, f_{1}\left(z_{1}\right), \ldots, f_{n}\left(z_{n}\right)\right] .
\end{aligned}
$$

Then $g \in M$ and $\operatorname{dom}(g)=e \in H$. Now let \tilde{e} be defined as above with this g. Then:

$$
H \models \bigwedge z_{1}, \ldots, z_{n}(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \tilde{e}) .
$$

But then the corresponding statement holds of $\pi(e), \pi(\tilde{e})$ in H^{\prime}. Hence

$$
\langle\langle\vec{x}\rangle, \vec{x}\rangle \in \pi(\tilde{e}) .
$$

By the induction hypothesis we conclude:

$$
\mathbb{D} \models \Psi\left[\langle g,\langle\vec{x}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

The conclusion is immediate.
QED (Lemma 2.7.3)
The liftup of $\langle M, \pi\rangle$ can only exist if the relation \tilde{e} is well founded:
Lemma 2.7.4. Let $\tilde{\in}$ be ill founded. Then there is no $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime} . M^{\prime}$ is transitive, and $\pi^{\prime} \supset \pi$.

Proof: Suppose not. Let $\left\langle f_{i+1}, x_{i+1}\right\rangle \tilde{\in}\left\langle f_{i}, x_{i}\right\rangle$ for $i<w$. Then

$$
\left\langle x_{i+1}, x_{i}\right\rangle \in \pi\left\{\langle z, w\rangle \mid f_{i+1}(z) \in f_{i}(w)\right\}
$$

Hence $\pi^{\prime}\left(f_{i+1}\right)\left(x_{i+1}\right) \in \pi^{\prime}\left(f_{i}\right)\left(x_{i}\right)(i<w)$.
Contradiction!
QED (Lemma 2.7.4)
Conversely we have:
Lemma 2.7.5. Let $\tilde{\in}$ be well founded. Then the liftup of $\langle M, \pi\rangle$ exists.

Proof: We shall explicitly construct a liftup from the term model \mathbb{D}. The proof will stretch over several subclaims.

Definition 2.7.3. $x^{*}=\pi^{*}(x)=$: $\left\langle\operatorname{const}_{x}, 0\right\rangle$, where $\operatorname{const}_{x}=:\{\langle x, 0\rangle\}=$ the constant function x defined on $\{0\}$.

Then:
(1) $\pi^{*}: M \rightarrow \Sigma_{0} \mathbb{D}$.

Proof: Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Set:

$$
e=\left\{\left\langle z_{1}, \ldots, z_{n}\right\rangle \mid M \equiv \varphi\left[\operatorname{const}_{x_{1}}\left(z_{1}\right), \ldots, \operatorname{const}_{x_{n}}\left(z_{n}\right)\right]\right\}
$$

Obviously:

$$
e=\left\{\begin{array}{l}
\{\langle 0, \ldots, 0\rangle\} \text { if } M \models \varphi\left[x_{1}, \ldots, x_{n}\right] \\
\emptyset \text { if not. }
\end{array}\right.
$$

Hence by Łoz theorem:

$$
\begin{aligned}
\mathbb{D} \models \varphi\left[x_{1}^{*}, \ldots, x_{n}^{*}\right] & \leftrightarrow\langle 0, \ldots, 0\rangle \in \pi(e) \\
& \leftrightarrow M \models \varphi\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

(2) $\mathbb{D} \vDash$ Extensionality.

Proof: Let $\varphi(u, v)=: \bigwedge w \in u w \in v \wedge \bigwedge w \in v w \in u$.
Claim $\mathbb{D} \vDash \varphi[a, b] \rightarrow a \cong b$ for $a, b \in \mathbb{D}$. This reduces to the Claim:
Let $a=\langle f, x\rangle, b=\langle g, y\rangle$. Then

$$
\begin{aligned}
\mathbb{D} \models \varphi[\langle f, x\rangle,\langle g, y\rangle] & \leftrightarrow\langle x, y\rangle \in \pi(e) \\
& \leftrightarrow\langle f, x\rangle \cong\langle g, y\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
e & =\{\langle z, w\rangle \mid M \models \varphi[z, w]\} \\
& =\{\langle z, w\rangle \mid f(z)=g(w)\}
\end{aligned}
$$

QED (2)
Since \cong is a congruence relation for \mathbb{D} we can factor \mathbb{D} by \cong, getting:

$$
\hat{\mathbb{D}}=(\mathbb{D} \backslash \cong)=\langle\hat{D}, \hat{\in}, \hat{A}, \hat{B}\rangle
$$

where:

$$
\begin{aligned}
& \hat{D}=\{\hat{s} \mid s \in D\} \\
& \hat{s}=:\{t \mid t \cong s\} \text { for } s \in D \\
& \hat{s} \hat{\in} \hat{t} \leftrightarrow: s \tilde{\in} t \\
& \hat{A} \hat{s} \leftrightarrow: \tilde{A} s, \hat{B} \hat{s} \leftrightarrow: \tilde{B} s .
\end{aligned}
$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M^{\prime}, where $M^{\prime}=\langle | M^{\prime}\left|, \in, A^{\prime}, B^{\prime}\right\rangle$ is transitive.
Set:

$$
\begin{aligned}
& {[s]=: k(\hat{s}) \text { for } s \in D} \\
& \pi^{\prime}(x)=:\left[x^{*}\right] \text { for } x \in M .
\end{aligned}
$$

Then by (1):
(3) $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$.

Lemma 2.7.5 will then follow by:
Lemma 2.7.6. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the liftup of $\langle M, \pi\rangle$.
We shall often write $[f, x]$ for $[\langle f, x\rangle]$. Clearly every $s \in M^{\prime}$ has the form $[f, x]$ where $f \in M$; $\operatorname{dom}(f) \in H, x \in H^{\prime}$.

Definition 2.7.4. $\tilde{H}=$: the set of $[f, x]$ such that $\langle f, x\rangle \in D$ and $f \in H$.

We intend to show that $[f, x]=\pi(f)(x)$ for $x \in \tilde{H}$. As a first step we show:
(4) \tilde{H} is transitive.

Proof: Let $s \in[f, x]$ where $f \in H$.
Claim $s=[g, y]$ for a $g \in H$.
Proof: Let $s=\left[g^{\prime}, y\right]$. Then $\langle y, x\rangle \in \pi(e)$ where: $e=\left\{\langle u, v\rangle \mid g^{\prime}(u) \in\right.$ $f(v)\}$ set:

$$
e^{\prime}=\left\{u \mid g^{\prime}(u) \in \operatorname{rng}(f)\right\}, g=g^{\prime} \upharpoonright e^{\prime}
$$

Then $g \subset \operatorname{rng}(f) \times \operatorname{dom}\left(g^{\prime}\right) \in H$. Hence $g \in H$. Then $\left[g^{\prime}, y\right]=[g, y]$ since $\pi\left(g^{\prime}\right)(y)=\pi(g)(y)$ and hence
$\langle y, y\rangle \in \pi\left(\left\{\langle u, v\rangle \mid g^{\prime}(u)=g(v)\right\}\right)$. But $e=\{\langle u, v\rangle \mid g(u) \in f(v)\}$. Hence $[g, y] \in[f, x]$.

QED (4)
But then:
(5) $[f, x]=\pi(f)(x)$ for $f \in H,\langle f, x\rangle \in D$.

Proof: Let $f, g \in H,\langle f, x\rangle,\langle g, y\rangle \in D$. Then:

$$
\begin{aligned}
{[f, x] \in[g, y] } & \leftrightarrow\langle x, y\rangle \in \pi(e) \\
& \leftrightarrow \pi(f)(x) \in \pi(g)(y)
\end{aligned}
$$

where $e=\{\langle u, v\rangle \mid f(u) \in g(v)\}$. Hence there is an \in-isomorphism σ of H onto \tilde{H} defined by:

$$
\begin{equation*}
\sigma(\pi(f)(x))=:[f, x] \tag{5}
\end{equation*}
$$

But then $\sigma=$ id, since H, \tilde{H} are transitive.
But then:
(6) $\pi^{\prime} \supset \pi$.

Proof: Let $x \in H$. Then $\pi^{\prime}(x)=\left[\right.$ const $\left._{x}, 0\right]=\pi\left(\right.$ const $\left._{x}\right)(0)=\pi(x)$ by (5).
(7) $[f, x]=\pi^{\prime}(f)(x)$ for $\langle f, x\rangle \in D$.

Proof: Let $a=\operatorname{dom}(f)$. Then $\left[\mathrm{id}_{a}, x\right]=\operatorname{id}_{\pi(a)}(x)=x$ by (5). Hence it suffices to show:

$$
[f, x]=\left[\text { const }_{f}, 0\right]\left(\left[\mathrm{id}_{a}, x\right]\right) .
$$

But this says that $\langle x, 0\rangle \in \pi(e)$ where:

$$
\begin{aligned}
e & =\left\{\langle z, u\rangle \mid f(z)=\operatorname{const}_{f}(u)\left(\operatorname{id}_{a}(z)\right)\right\} \\
& =\{\langle z, 0\rangle \mid f(z)=f(z)\}=a \times\{0\} .
\end{aligned}
$$

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)
Lemma 2.7.7. Let $\pi^{*} \supset \pi$ such that $\pi^{*}: M \rightarrow \Sigma_{0} M^{*}$. Then the liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ of $\langle M, \pi\rangle$ exists. Moreover there is a $\sigma: M^{\prime} \rightarrow \Sigma_{0} M^{*}$ uniquely defined by the condition:

$$
\sigma \upharpoonright H^{\prime}=\mathrm{id}, \sigma \pi^{\prime}=\pi^{*} .
$$

Proof: $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ exists, since $\tilde{\epsilon}$ is well founded, since $\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow \pi^{*}(f)(x) \in$ $\pi^{*}(g)(y)$. But then:

$$
\begin{aligned}
M^{\prime} & \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(x_{r}\right)\right] \leftrightarrow \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{r}\right)\left(x_{r}\right)\right]
\end{aligned}
$$

where $e=\left\{\left\langle z_{1}, \ldots, z_{r}\right\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\right\}$. Hence there is $\sigma: M^{\prime} \rightarrow \Sigma_{0} M^{*}$ defined by:

$$
\sigma\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(x) \text { for }\langle f, x\rangle \in D
$$

Now let $\tilde{\sigma}: M^{\prime} \rightarrow_{\Sigma_{0}} M^{*}$ such that $\tilde{\sigma} \upharpoonright H^{\prime}=\mathrm{id}$ and $\tilde{\sigma} \pi^{\prime}=\pi^{r}$.
Claim $\tilde{\sigma}=\sigma$.
Let $s \in M^{\prime}, s=\pi^{\prime}(f)(x)$. Then $\tilde{\sigma}\left(\pi^{\prime}(f)\right)=\pi^{*}(f), \tilde{\sigma}(x)=x$. Hence $\tilde{\sigma}(s)=\pi^{*}(f)(x)=\sigma(s)$.

QED (Lemma 2.7.7)

2.7.2 The $\Sigma_{0}^{(n)}$ liftup

From now on suppose M to be acceptable. We now attempt to generalize the notion of Σ_{0} liftup. We suppose as before that $\tau>w$ is a cardinal in M and $H=H_{\tau}^{M}$. As before we suppose that $\pi^{\prime}: H \rightarrow \Sigma_{0} H^{\prime}$ cofinally. Now let $\rho^{n} \geq \tau$. The Σ_{0}-liftup was the "minimal" $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow_{\Sigma_{0}} M^{\prime}$. We shall now consider pairs $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow \Sigma_{0}^{n} M^{\prime}$. Among such pairs $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ we want to define a "minimal" one and show, if possible, that it exists. The minimality of the Σ_{0} liftup was expressed by the condition that every element of M^{\prime} have the form $\pi^{\prime}(f)(x)$, where $x \in H^{\prime}$ and $f \in \Gamma^{0}(\tau, M)$. As a first step to generalizing this definition we replace $\Gamma^{0}(\tau, M)$ by a larger class of functions $\Gamma^{n}(\tau, M)$.
Definition 2.7.5. Let $n>0$ such that $\tau \leq \rho_{M}^{n}$. $\Gamma^{n}=\Gamma^{n}(\tau, M)$ is the set of maps f such that
(a) $\operatorname{dom}(f) \in H$
(b) For some $i<n$ there is a good $\Sigma_{1}^{(i)}(M)$ function G and a parameter $p \in M$ such that $f(x)=G(x, p)$ for all $x \in \operatorname{dom}(f)$.
Note. Good $\Sigma_{1}^{(i)}$ functions are many sorted, hence any such function can be identified with a pair consisting of its field and its arity. An element of Γ^{n}, on the other hand, is 1 -sorted in the classical sense, and can be identified with its field.
Note. This definition makes sense for the case $n=\omega$, and we will not exclude this case. A $\Sigma_{0}^{(\omega)}$ formula (or relation) then means any formula (or relation) which is $\Sigma_{0}^{(i)}$ for an $i<\omega$ - i.e. $\Sigma_{0}^{(\omega)}=\Sigma^{*}$.

We note:
Lemma 2.7.8. Let $f \in \Gamma^{n}$ such that $\operatorname{rng}(f) \subset H^{i}$, where $i<n$. Then $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$ where G is a good $\Sigma_{1}^{(h)}$ function to H^{i} for some $h<n$.

Proof: Let $f(x)=G^{\prime}(x, p)$ for $x \in \operatorname{dom}(f)$ where G^{\prime} is a good $\Sigma_{1}^{(h)}$ function to H^{j} where $h, j<n$. Since every good $\Sigma_{1}^{(h)}$ function is a good Σ_{1}^{k} function for $k \geq h$, we can assume w.l.o.g. that $i, j \leq h$. Let F be the identity function defined by $v^{i}=u^{j}$ (i.e. $\left.y^{i}=F\left(x^{j}\right) \leftrightarrow y^{i}=x^{j}\right)$. Set: $G(x, y) \simeq: F\left(G^{\prime}(x, y)\right)$. Then F is a good $\Sigma_{1}^{(h)}$ function and so is G, where $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$.

QED (Lemma 2.7.8)
Lemma 2.7.9. $\Gamma^{i}(\tau, M) \subset \Gamma^{n}(\tau, M)$ for $i<n$.
Proof: For $0<i$ this is immediat by the definition. Now let $i=0$. If $f \in \Gamma^{0}$, then $f(x)=G(x, f)$ for $x \in \operatorname{dom}(f)$ where G is the $\Sigma_{0}^{(0)}$ function defined by

$$
\begin{aligned}
y=G(x, f) \leftrightarrow: & (f \text { is a function } \wedge \\
& \wedge\langle y, x\rangle \in f) .
\end{aligned}
$$

QED (Lemma 2.7.9)
The "natural" minimality condition for the $\Sigma_{0}^{(n)}$ liftup would then read: Each element of M has the form $\pi^{\prime}(f)(x)$ where $x \in H^{\prime}$ and $f \in \Gamma^{n}$. But what sense can we make of the expression " $\pi^{\prime}(f)(x)$ " when f is not an element of M ? The following lemma rushes to our aid:

Lemma 2.7.10. Let $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ where $n>0$ and $\pi^{\prime} \supset \pi$. There is a unique map $\pi^{\prime \prime}$ on $\Gamma^{n}(\tau, M)$ with the following property:

* Let $f \in \Gamma^{n}(\tau, M)$ such that $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$ where G is a good $\Sigma_{1}^{(i)}$ function for an $i<n$ and χ is a good $\Sigma_{1}^{(i)}$ definition of G. Let G^{\prime} be the function defined on M^{\prime} by χ. Let $f^{\prime}=\pi^{\prime \prime}(f)$. Then $\operatorname{dom}\left(f^{\prime}\right)=\pi(\operatorname{dom}(f))$ and $f^{\prime}(x)=G^{\prime}\left(x, \pi^{\prime}(p)\right)$ for $x \in \operatorname{dom}\left(f^{\prime}\right)$.

Proof: As a first approximation, we simply pick G, χ with the above properties. Let G^{\prime} then be as above. Let $d=\operatorname{dom}(f)$. The statement $\bigwedge x \in d \bigvee y y=G(x, p)$ is $\Sigma_{0}^{(n)}$ is d, p, so we have:

$$
\bigwedge x \in \pi(d) \bigvee y y=G^{\prime}(x, \pi(p))
$$

Define f_{0} by $\operatorname{dom}\left(f_{0}\right)=\pi(d)$ and $f_{0}(x)=G^{\prime}(x, \pi(p))$ for $x \in \pi(d)$. The problem is, of course, that G, χ were picked arbitrarily. We might also have:

$$
f(x)=H(x, q) \text { for } x \in d \text {, }
$$

where H is $\Sigma_{1}^{(j)}(M)$ for a $j<n$ and Ψ is a good $\Sigma_{1}^{(j)}$ definition of H. Let H^{\prime} be the good function on M^{\prime} defined by Ψ. As before we can define f_{1}
by $\operatorname{dom}\left(f_{1}\right)=\pi(d)$ and $f_{1}(x)=H^{\prime}\left(x, \pi^{\prime}(q)\right)$ for $x \in \pi(d)$. We must show: $f_{0}=f_{1}$. We note that:

$$
\bigwedge x \in d G(x, p)=H(x, q)
$$

But this is a $\Sigma_{0}^{(n)}$ statement. Hence

$$
\bigwedge x \in \pi(d) G^{\prime}(x, p)=H^{\prime}(x, q)
$$

Then $f_{0}=f_{1}$.
QED (Lemma 2.7.10)
Moreover, we get:
Lemma 2.7.11. Let $n, \pi, \tau, \pi^{\prime}, \pi^{\prime \prime}$ be as above. Then $\pi^{\prime \prime}(f)=\pi^{\prime}(f)$ for $f \in \Gamma^{0}(\tau, M)$.

Proof: We know $f(x)=G(x, f)$ for $x \in d=\operatorname{dom}(f)$, where:

$$
y=G(x, f) \leftrightarrow:(f \text { is a function } \wedge y=f(x))
$$

Then $\pi^{\prime \prime}(f)(x)=G^{\prime}\left(x, \pi^{\prime}(f)\right)=\pi^{\prime}(f)(x)$ for $x \in \pi(d)$, where G^{\prime} has the same definition over M^{\prime}.

QED (Lemma 2.7.11)
Thus there is no ambiguity in writing $\pi^{\prime}(f)$ instead of $\pi^{\prime \prime}(f)$ for $f \in \Gamma^{n}$. Doing so, we define:

Definition 2.7.6. Let $\omega<\tau<\rho_{M}^{n}$ where $n \leq \omega$ and τ is a cardinal in M. Let $H=H_{\tau}^{M}$ and let $\pi: H \rightarrow \Sigma_{0} H^{\prime}$ cofinally. We call $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ a $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ iff the following hold:
(a) $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$.
(b) Each element of M^{\prime} has the form $\pi^{\prime}(f)(x)$, where $f \in \Gamma^{n}(\tau, M)$ and $x \in H^{\prime}$.
(Thus the old Σ_{0} liftup is simply the special case: $n=0$.)
Definition 2.7.7. $\Gamma_{i}^{n}(\tau, M)=$: the set of $f \in \Gamma^{n}(\tau, M)$ such that either $i<n$ and $\operatorname{rng}(f) \subset H_{M}^{i}$ or $i=n<\omega$ and $f \in H_{M}^{i}$.
(Here, as usual, $H^{i}=J_{\rho_{M}^{i}}[A]$ where $M=\left\langle J_{\alpha}^{A}, B\right\rangle$. .)
Lemma 2.7.12. Let $f \in \Gamma_{i}^{n}(\tau, M)$. Let $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ where $\pi^{\prime} \supset \pi$. Then $\pi^{\prime}(f) \in \Gamma_{i}^{n}\left(\pi^{\prime}(\tau), M^{\prime}\right)$.

Proof:

Case $1 \quad i=n$. Then $f \in H_{\rho_{M}^{n}}^{M}$. Hence $\pi^{\prime}(f) \in H_{\rho_{M}^{n}}^{M^{\prime}}$.
Case $2 i<n$.

By Lemma 2.7.9 for some $h<n$ there is a $\operatorname{good} \Sigma_{1}^{(n)}(M)$ function $G(u, v)$ to H^{i} and a parameter p such that

$$
f(x)=G(x, p) \text { for } x \in \operatorname{dom}(f)
$$

Hence:

$$
\pi^{\prime}(f)(x)=G^{\prime}\left(x, \pi^{\prime}(p)\right) \text { for } x \in \operatorname{dom}(\pi(f))
$$

where G^{\prime} is defined over M^{\prime} by the same good $\Sigma_{1}^{(n)}$ definition. Hence $\operatorname{rng}\left(\pi^{\prime}(f)\right) \subset H_{M}^{i}$.

QED (Lemma 2.7.12)
The following lemma will become our main tool in understanding $\Sigma_{0}^{(n)}$ liftups.
Lemma 2.7.13. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$ where $i_{1}, \ldots, i_{r} \leq n$. Let $f_{l} \in$ $\Gamma_{i_{l}}^{n}(l=1, \ldots, r)$. Then:
(a) The relation P is $\Sigma_{0}^{(n)}$ in a parameter p where:

$$
P(\vec{z}) \leftrightarrow: R\left(f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right)
$$

(b) Let $\pi^{\prime} \supset \pi$ such that $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$. Let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ by the same definition as R. Then P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition as P in p, where:

$$
P^{\prime}(\vec{z}) \leftrightarrow: R^{\prime}\left(\pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right)
$$

Before proving this lemma we note some corollaries:
Corollary 2.7.14. Let $e=\{\langle\vec{z}\rangle \mid P(\vec{z})\}$. Then $e \in H$ and $\pi(e)=\left\{\langle\vec{z}\rangle \mid P^{\prime}(\vec{z})\right\}$.

Proof: Clearly $e \subset d=\underset{l=1}{\stackrel{r}{\times}} \operatorname{dom}\left(f_{l}\right) \in H$. But then $d \in H_{\rho^{n}}$ and $e \in H_{\rho^{n}}$ since $\left\langle H_{\rho^{n}}, P \cap H_{\rho^{n}}\right\rangle$ is amenable. Hence $e \in H$, since $H=H_{\tau}^{M}$ and therefore $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

Now set $e^{\prime}=\left\{\langle\vec{z}\rangle \mid P^{\prime}(\vec{z})\right\}$. Then $e^{\prime} \subset \pi(d)=\underset{l=1}{\stackrel{r}{\times}} \operatorname{dom}\left(\pi\left(f_{l}\right)\right)$ since $\pi^{\prime} \supset \pi$ and hence $\pi\left(\operatorname{dom}\left(f_{l}\right)\right)=\operatorname{dom}\left(\pi\left(f_{l}\right)\right)$. But

$$
\bigwedge\langle\vec{z}\rangle \in d(\langle\vec{z}\rangle \in e \leftrightarrow P(\vec{z}))
$$

which is a $\Sigma_{0}^{(n)}$ statement about e, p. Hence the same statement holds of $\pi(e), \pi(p)$ in M^{\prime}. Hence

$$
\bigwedge\langle\vec{z}\rangle \in \pi(d)\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow P^{\prime}(\vec{z})\right) .
$$

Hence $\pi(e)=e^{\prime}$.
QED (Corollary 2.7.14)
Corollary 2.7.15. $\langle M, \pi\rangle$ has at most one $\Sigma_{0}^{(n)}$ liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$.

Proof: Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be a second such. Let $\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ be a $\Sigma_{0}^{(n)}$ formula. (In fact, we could take it here as being $\Sigma_{0}^{(0)}$.) Let $e=\{\langle\vec{z}\rangle \mid M \models$ $\left.\varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$ where $f_{l} \in \Gamma_{i_{l}}^{n}(l=1, \ldots, r)$. Then:

$$
\begin{aligned}
M^{\prime} & \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(x_{r}\right)\right] \leftrightarrow \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{r}\right)\left(x_{r}\right)\right]
\end{aligned}
$$

for $x_{l} \in \pi\left(\operatorname{dom}\left(f_{l}\right)(l=1, \ldots, r)\right.$.
Hence there is an isomorphism $\sigma: M^{\prime} \underset{\rightarrow}{\boldsymbol{\rightarrow}} M^{*}$ defined by:

$$
\sigma\left(\pi^{\prime}(f)(x)\right)=: \pi^{*}(f)(x)
$$

for $f \in \Gamma^{n}, x \in \pi(\operatorname{dom}(f))$. But M^{\prime}, M^{*} are transitive. Hence $\sigma=\mathrm{id}, M^{\prime}=$ $M^{*}, \pi^{\prime}=\pi^{*}$.

QED (Corollary 2.7.15)
We now prove Lemma 2.7.13 by induction on n.

Case $1 n=0$.
Then $f_{1}, \ldots, f_{r} \in M$ and P is Σ_{0} in $p=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, since f_{i} is rudimentary in p and for sufficiently large h we have:

$$
P(\vec{z}) \leftrightarrow \bigvee_{y_{1}, \ldots, y_{r}} \in C_{h}(p)\left(\bigwedge_{i=1}^{r} y_{i}=f_{i}\left(\overrightarrow{z_{i}}\right) \wedge R(\vec{y})\right)
$$

where R is Σ_{0}. If P^{\prime} has the same Σ_{0} definition over M^{\prime} in $\pi^{\prime}(p)$, then

$$
\begin{aligned}
P^{\prime}(z) & \leftrightarrow \bigvee_{y_{1}, \ldots, y_{r}} \in C_{h}(\pi(p))\left(\bigwedge_{n=1}^{r} y_{i}=\pi\left(f_{i}\right)\left(z_{i}\right) \wedge R(\vec{y})\right) \\
& \leftrightarrow R(\pi(\vec{f})(\vec{z}))
\end{aligned}
$$

Case $2 n=\omega$.
Then $\Sigma_{0}^{\omega}=\bigcup_{h<w} \Sigma_{1}^{(h)}$. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{l_{r}}\right)$ be $\Sigma_{1}^{(h)}$. Since every $\Sigma_{1}^{(h)}$ relation is $\Sigma_{1}^{(k)}$ for $k \geq h$, we can assume h taken large enough that $i_{1}, \ldots, i_{r} \leq h$. We can also choose it large enough that:

$$
f_{l}(z) \simeq G_{l}(z, p) \text { for } l=1, \ldots, v
$$

where G_{l} is a good $\Sigma_{1}^{(h)} \operatorname{map}$ to $H^{i_{l}}$. (We assume w.l.o.g. that p is the same for $l=1, \ldots, r$ and that $d_{l}=\operatorname{dom}\left(f_{l}\right)$ is rudimentary in p.) Set:

$$
\left.P(\vec{z}, y) \leftrightarrow: R\left(G_{1} x_{1}, y\right), \ldots, G\left(x_{r}, y\right)\right)
$$

By $\S 6$ Lemma 2.6.24, P is $\Sigma_{1}^{(h)}$ (uniformly in the $\Sigma_{1}^{(h)}$ definition of R and $\left.G_{1}, \ldots, G_{r}\right)$. Moreover:

$$
P(\vec{z}) \leftrightarrow P(\vec{z}, p)
$$

Thus P is uniformly $\Sigma_{1}^{(h)}$ in p, which proves (a). But letting P^{\prime} have the same $\Sigma_{1}^{(h)}$ definition in $\pi^{\prime}(p)$ over M^{\prime}, we have:

$$
\begin{aligned}
P^{\prime}(\vec{z}) & \leftrightarrow P^{\prime}\left(\vec{z}, \pi^{\prime}(p)\right) \\
& \leftrightarrow R^{\prime}\left(\pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right)
\end{aligned}
$$

which proves (b).
QED (Case 2)
Case $30<n<w$.
Let $n=m+1$. Rearranging arguments as necessary, we can take R as given in the form:

$$
R\left(y_{1}^{n}, \ldots, y_{s}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)
$$

where $i_{1}, \ldots, i_{r} \leq m$. Let $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$ and let $g_{1}, \ldots, g_{1} \in$ Γ_{n}^{n}.

Claim

(a) P is $\Sigma_{0}^{(n)}$ in a parameter p where

$$
P(\vec{w}, \vec{z}) \leftrightarrow: R(\vec{g}(\vec{w}), \vec{f}(\vec{z}))
$$

(b) If π^{\prime}, M^{\prime} are as above and P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition, then

$$
P^{\prime}(w, \vec{z}) \leftrightarrow R^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \pi^{\prime}(\vec{f})(\vec{z})\right)
$$

where R^{\prime} has the same $\Sigma_{0}^{(n)}$ definition over M^{\prime}.

We prove this by first substituting $\vec{f}(\vec{z})$ and then $\vec{g}(\vec{w})$, using two different arguments. The claim then follows from the pair of claims:

Claim 1 Let:

$$
P_{0}\left(\vec{y}^{n}, \vec{z}\right) \leftrightarrow=R\left(y^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right)
$$

Then:
(a) P_{0} is $\Sigma_{0}^{(n)}(M)$ in a parameter p_{0}.
(b) Let $\pi^{\prime}, M^{\prime}, R^{\prime}$ be as above. Let P_{0}^{\prime} have the same $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ definition in $\pi^{\prime}\left(p_{0}\right)$. Then:

$$
P_{0}^{\prime}\left(\vec{y}^{n}, \vec{z}\right) \leftrightarrow R^{\prime}\left(y^{n}, \pi^{\prime}(\vec{f})(\vec{z})\right)
$$

Claim 2 Let

$$
P(\vec{w}, \vec{z}) \leftrightarrow: P_{0}\left(g_{1}\left(w_{1}\right), \ldots, g_{s}\left(w_{s}\right), \vec{z}\right)
$$

Then:
(a) P is $\Sigma_{0}^{(n)}(M)$ in a parameter p.
(b) Let $\pi^{\prime}, M^{\prime}, P_{0}^{\prime}$ be as above. Let P^{\prime} have the same $\Sigma_{1}^{(n)}\left(M^{\prime}\right)$ definition in $\pi^{\prime}(p)$. Then

$$
P^{\prime}(\vec{w}, \vec{z}) \leftrightarrow P_{0}^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \vec{z}\right)
$$

We prove Claim 1 by imitating the argument in Case 2, taking $h=m$ and using $\S 6$ Lemma 2.6.11. The details are left to the reader. We then prove Claim 2 by imitating the argument in Case 1: We know that $g_{1}, \ldots, g_{s} \in H^{n}$. Set: $p=\left\langle g_{1}, \ldots, g_{n}, p\right\rangle$. Then P is $\Sigma_{0}^{(n)}(M)$ in p, since:

$$
P(\vec{w}, \vec{z}) \leftrightarrow \bigvee y_{1} \ldots y_{s} \in C_{h}(p)\left(\bigwedge_{i=1}^{s} y_{i}=g_{i}\left(w_{i}\right) \wedge P_{0}(\vec{y}, \vec{z})\right)
$$

where g_{i}, p_{0} are rud in P, for a sufficiently large h. But if P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\Pi^{\prime}(P)$ by the same definition, we obviously have:

$$
\begin{aligned}
P^{\prime}(\vec{w}, \vec{z}) & \leftrightarrow \bigvee y_{1} \ldots y_{r}\left(\bigwedge_{i=1}^{s} y_{i}=\pi^{\prime}(g)\left(w_{i}\right) \wedge P_{0}^{\prime}(\vec{y}, \vec{z})\right) \\
& P_{0}^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \vec{z}\right)
\end{aligned}
$$

QED (Lemma 2.7.13)
We can repeat the proof in Case 3 with "extra" arguments \vec{u}^{n}. Thus, after rearranging arguments we would have $R\left(\vec{u}^{n}, \vec{y}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ where $i_{1}, \ldots, i_{r}<$ n. We would then define

$$
P\left(\vec{u}^{n}, \vec{w}, \vec{z}\right) \leftrightarrow: R\left(\vec{u}^{n}, \vec{g}(\vec{w}), \vec{f}(\vec{z})\right)
$$

This gives us:

Corollary 2.7.16. Let $n<w$. Let $R\left(\vec{u}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$ where $i_{1}, \ldots, i_{p} \leq$ n. Let $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$. Set:

$$
P\left(\vec{u}^{n}, \vec{z}\right) \leftrightarrow: R\left(\vec{u}^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right) .
$$

Then:
(a) $P\left(\vec{u}^{n}, \vec{z}\right)$ is $\Sigma_{0}^{(n)}$ in a parameter p.
(b) Let $\pi^{\prime} \supset \pi$ such that $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$. Let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ by the same definition. Let P^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition. Then

$$
P^{\prime}\left(\vec{u}^{n}, \vec{z}\right) \leftrightarrow R^{\prime}\left(\vec{u}^{n}, \pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right) .
$$

By Corollary 2.7.15 $\langle M, \pi\rangle$ can have at most one $\Sigma_{0}^{(n)}$ liftup. But when does it have a liftup? In order to answer this - as before - define a term model $\mathbb{D}=\mathbb{D}^{(n)}$ for the supposed liftup, which will then exist whenever \mathbb{D} is well founded.

Definition 2.7.8. Let $M, \tau, H, H^{\prime}, \pi$ be as above where $\rho_{M}^{n} \geq \tau, n \leq w$. The $\Sigma_{0}^{(n)}$ term model $\mathbb{D}=\mathbb{D}^{(n)}$ is defined as follows: (Let e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle$.) We set: $\mathbb{D}=\langle D, \cong, \tilde{\in}, \tilde{A}, \tilde{B}\rangle$ where:

$$
\begin{aligned}
D=D^{(n)}=: & \text { the set of pairs }\langle f, x\rangle \\
& \text { such that } f \in \Gamma^{n}(\tau, M) \text { and } \\
& x \in \pi(\operatorname{dom}(f))
\end{aligned}
$$

$\langle f, x\rangle \cong\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(e)$, where

$$
e=\{\langle z, w\rangle \mid f(z)=g(w)\} .
$$

$\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(e)$, where

$$
e=\{\langle z, w\rangle \mid f(z) \in g(w)\}
$$

(similarly for $\tilde{A}, \tilde{B})$.

We shall interpret the model \mathbb{D} in a many sorted language with variables of type $i<\omega$ if $n=\omega$ and otherwise of type $i \leq n$. The variables v^{i} will range over the domain D_{i} defined by:

Definition 2.7.9. $D_{i}=D_{i}^{(n)}=:\left\{\langle f, x\rangle \in D \mid f \in \Gamma_{i}^{n}\right\}$.

Under this interpretation we obtain Łos theorem in the form:

Lemma 2.7.17. Let $\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$. Then:

$$
\mathbb{D} \models \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e)
$$

where $e=\left\{\langle\vec{z}\rangle|M|=\varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$ and $\left\langle f_{l}, x_{l}\right\rangle \in D_{i_{l}}$ for $l=1, \ldots, r$.

Proof: By induction on i we show:

Claim If $i<n$ or $i=n<\omega$, then the assertion holds for $\Sigma_{0}^{(i)}$ formulae.

Proof: Let it hold for $j<i$. We proceed by induction on the formula φ.

Case 1φ is primitive (i.e. φ is $v_{i} \dot{\in} v_{j}, v_{i} \doteq v_{j}, \dot{A} v_{i}$ or $\dot{B} v_{i}\left(\right.$ for $\left.M=\left\langle J_{\alpha}^{A}, B\right\rangle\right)$.
This is immediate by the definition of \mathbb{D}.
Case 2φ is $\Sigma_{h}^{(j)}$ where $j<i$ and $h=0$ or 1 . If $h=0$ this is immediate by the induction hypothesis. Let $h=1$. Then $\varphi=\bigvee u^{j} \Psi$, where Ψ is $\Sigma_{0}^{(i)}$. By bound relettering we can assume w.l.o.g. that u^{i} is not in our good sequence $v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}$. We prove both directions, starting with (\rightarrow) :
Let $\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right]$. Then there is $\langle g, y\rangle \in D_{j}$ such that

$$
\mathbb{D} \vDash \Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right]
$$

$\left(u^{j}, \vec{v}\right.$ being the good sequence for $\left.\Psi\right)$. Set $e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \models \Psi[g(w), \vec{z}(\vec{x})]\}$. Then $\langle y, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$ by the induction hypothesis on i. But in M we have:

$$
\bigwedge w, \vec{z}\left(\langle w, \vec{z}\rangle \in e^{\prime} \rightarrow\langle\vec{z}\rangle \in e\right)
$$

This is a Π_{1} statement about e^{\prime}, e. Since $\pi: H \rightarrow_{\Sigma_{1}} H^{\prime}$ we can conclude:

$$
\bigwedge w, \vec{z}\left(\langle w, \vec{z}\rangle \in \pi\left(e^{\prime}\right) \rightarrow\langle\vec{z} \in \pi(e)) .\right.
$$

But $\langle y, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$ by the induction hypothesis. Hence $\langle\vec{x} \in \pi(e)$. This proves (\rightarrow). We now prove (\leftarrow). Let $\langle\vec{x}\rangle \in \pi(e)$. Let R be the $\Sigma_{0}^{(j)}$ relation

$$
R\left(w, z_{1}, \ldots, z_{r}\right) \leftrightarrow=M \models \varphi\left[w, z_{1}, \ldots, z_{r}\right] .
$$

Let G be a $\Sigma_{0}^{(j)}(M)$ map to H^{j} which uniformizes R. Then G is a spezialization of a function $G^{\prime}\left(z_{1}^{h_{1}}, \ldots, z_{r}^{h_{r}}\right)$ such that $h_{l} \leq j$ for $l \leq j$. Thus G^{\prime} is a good $\Sigma_{0}^{(j)}$ function. But

$$
f_{l}(z)=F_{l}(z, p) \text { for } z \in \operatorname{dom}\left(f_{l}\right) \text { for } l=1, \ldots, r
$$

where F_{l} is a good $\Sigma_{0}^{(k)} \operatorname{map}$ to $H^{h_{l}}$ for $l=1, \ldots, r$ and $j \leq k<i$. (We assume w.l.o.g. that the parameter p is the same for all $l=1, \ldots, r_{n}$.) Define $G^{\prime \prime}\left(u^{k}, w\right)$ by:

$$
G^{\prime \prime}(u, w) \simeq: G^{\prime}\left((u)_{0}^{r-1}, \ldots,(u)_{r-1}^{r-1}, w\right)
$$

then $G^{\prime \prime}$ is a $\operatorname{good} \Sigma_{1}^{(k)}$ function. Define g by: $\operatorname{dom}(g)=\stackrel{r}{\times} \underset{i=1}{\times} \operatorname{dom}\left(f_{i}\right)$ and: $g(\langle\vec{z}\rangle)=G^{\prime \prime}(\langle\vec{z}\rangle, p)$ for $\langle\vec{z}\rangle \in \operatorname{dom}(g)$. Then $g \in \Gamma^{n}$ and $g(\langle\vec{z}\rangle)=$ $G\left(f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right)$. Hence, letting:

$$
e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \models \Psi[g(w), \vec{f}(\vec{z})]\}
$$

we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in e^{\prime}\right) .
$$

This is a Π_{1} statement about e, e^{\prime} in H. Hence in H^{\prime} we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)\right) .
$$

But then $\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)$. By the induction hypothesis we conclude:

$$
\mathbb{D} \vDash \Psi\left[\langle g,\langle\vec{z}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

Hence:

$$
\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

QED (Case 2)
Case 3φ is $\Psi_{0} \wedge \Psi_{1}, \Psi_{0} \wedge \Psi_{1}, \Psi_{0} \rightarrow \Psi_{1}, \Psi_{0} \leftrightarrow \Psi_{1}$, or $\neg \Psi$.
This is straightforward and we leave it to the reader.
Case $4 \varphi=\bigvee u^{i} \in v_{l} \chi$ or $\bigwedge u^{i} \in v_{l} \chi$, where v_{l} has type $\geq i$. We display the proof for the case $\varphi=\bigvee u^{i} \in v_{l} \chi$. We again assume w.l.o.g. that $u^{\prime} \neq v_{j}$ for $j=1, \ldots, r$. Set: $\Psi=\left(u^{i} \in v_{l} \wedge \chi\right)$. Then φ is equivalent to $\bigvee u^{i} \Psi$. Using the induction hypothesis for χ we easily get:

$$
\begin{align*}
\mathbb{D} \models & \Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{i}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] \leftrightarrow \tag{*}\\
& \left\langle y, x_{1}, \ldots, x_{n}\right\rangle \in \pi\left(e^{\prime}\right)
\end{align*}
$$

where $e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \equiv \Psi[g(w), \vec{f}(\vec{z})]\}$. Using (*), we consider two subcases:

Case $4.1 i<n$.

We simply repeat the proof in Case 2 , using $(*)$ and with i in place of j.

Case $4.2 i=n<w$.
(Hence v_{l} has type n.) For the direction (\rightarrow) we can again repeat the proof in Case 2. For the other direction we essentially revert to the proof used initially for Σ_{0} liftups.
We know that $e \in H$ and $\langle\vec{x}\rangle \in \pi(e)$, where $e=\left\{\langle\vec{z}\rangle \mid M \models \varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$. Set:

$$
R\left(w^{n}, \vec{z}\right) \leftrightarrow: M \models \Psi\left[w^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]
$$

Then R is $\underline{\Sigma}_{0}^{(n)}$ by Corollary 2.7.16. Moreover $\bigvee w^{n} R\left(w^{n}, \vec{z}\right) \leftrightarrow\langle\vec{z}\rangle \in e$. Clearly $f_{l} \in H_{M}^{n}$ since $f_{l} \in \Gamma_{n}^{n}$. Let $s \in H_{M}^{n}$ be a well odering of \bigcup rng $\left(f_{l}\right)$. Clearly:

$$
\begin{aligned}
R\left(w^{n}, \vec{z}\right) & \rightarrow w^{n} \in f_{l}\left(z_{l}\right) \\
& \rightarrow w^{n} \in \bigcup \operatorname{rng}\left(f_{l}\right)
\end{aligned}
$$

We define a function g with domain e by:

$$
g(\langle\vec{z}\rangle)=\text { the } s \text {-least } w \text { such that } R(w, \vec{z}) \text {. }
$$

Since R is $\underline{\Sigma}_{0}^{(n)}$, it follows easily that $g \in H_{\rho^{n}}^{M}$. Hence $g \in \Gamma_{n}^{n}$. But then
$\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in e^{\prime}\right)$, where e^{\prime} is defined as above, using this g.
Hence in H^{\prime} we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)\right) .
$$

Since $\langle\vec{x}\rangle \in \pi(e)$ we conclude that $\langle\langle\vec{x}\rangle, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$. Hence:

$$
\mathbb{D} \models \Psi\left[\langle g,\langle\vec{x}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

Hence:

$$
\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

QED (Lemma 2.7.17)
Exactly as before we get:
Lemma 2.7.18. If $\tilde{\in}$ is ill founded, then the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ does not exist.

We leave it to the reader and prove the converse:
Lemma 2.7.19. If $\tilde{\in}$ is well founded, then the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ exists.

Proof: We shall again use the term model \mathbb{D} to define an explicit $\Sigma_{0}^{(n)}$ liftup. We again define:

Definition 2.7.10. $x^{*}=\pi^{*}(x)=$: $\left\langle\operatorname{const}_{x}, 0\right\rangle$, where const $_{x}=:\{\langle x, 0\rangle\}=$ the constant function x defined on $\{0\}$.

Using Łos theorem Lemma 2.7.17 we get:
(1) $\pi^{*}: M \rightarrow_{\Sigma_{0}^{(n)}} \mathbb{D}$
(where the variables v^{i} range over D_{i} on the \mathbb{D} side).
The proof is exactly like the corresponding proof for Σ_{0}-liftups ((1) in Lemma 2.7.5). In particular we have: $\pi^{*}: M \rightarrow \Sigma_{0} \mathbb{D}$. Repeating the proof of (2) in Lemma 2.7.5 we get:
(2) $\mathbb{D} \models$ Extensionality.

Hence \cong is again a congruence relation and we can factor \mathbb{D}, getting:

$$
\hat{\mathbb{D}}=(\mathbb{D} \backslash \cong)=\langle\hat{D}, \hat{\in}, \hat{A}, \hat{B}\rangle
$$

where

$$
\begin{aligned}
& \hat{D}=:\{\hat{s} \mid s \in D\}, \hat{s}=:\{t \mid t \cong s\} \text { for } s \in D \\
& \hat{s} \hat{\in} \hat{t} \leftrightarrow: s \tilde{\in} t \\
& \hat{A} \hat{s} \leftrightarrow: \tilde{A} s, \hat{B} \hat{s} \leftrightarrow: \tilde{B} s
\end{aligned}
$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M^{\prime}, where $M^{\prime}=\langle | M^{\prime}\left|, \in, A^{\prime}, B^{\prime}\right\rangle$ is transitive. Set:

$$
\begin{aligned}
& {[s]=: k(\hat{s}) \text { for } s \in D} \\
& \pi^{\prime}(x)=:\left[x^{*}\right] \text { for } x \in M \\
& H_{i}=:\left\{\hat{s} \mid s \in D_{i}\right\}(i<n \text { or } i=n<\omega) .
\end{aligned}
$$

We shall initially interpret the variables v^{i} on the M^{\prime} side as ranging over H_{i}. We call this the pseudo interpretation. Later we shall show that it (almost) coincides with the intended interpretation. By (1) we have
(3) $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ in the pseudo interpretation. (Hence $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}}$ $\left.M^{\prime}.\right)$
Lemma 2.7.19 then follows from:
Lemma 2.7.20. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$.

For $n=0$ this was proven in Lemma 2.7.6, so assume $n>0$. We again use the abbreviation:

$$
[f, x]=:[\langle f, x\rangle] \text { for }\langle f, x\rangle \in D
$$

Defining \tilde{H} exactly as in the proof of Lemma 2.7.6, we can literally repeat our previous proofs to get:
(4) \tilde{H} is transitive.
(5) $[f, x]=\pi(f)(x)$ if $f \in H$ and $\langle f, x\rangle \in D$. (Hence $\tilde{H}=H^{\prime}$.)
(6) $\pi^{\prime} \supset \pi$.
(However (7) in Lemma 2.7.6 will have to be proven later.)
In order to see that $\pi: M \rightarrow_{\Sigma^{(n)}} M^{\prime}$ in the intended interpretation we must show that $H_{i}=H_{M}^{i}$, for $i<n$ and that $H_{n} \subset H_{M}^{n}$. As a first step we show:
(7) H_{i} is transitive for $i \leq n$.

Proof: Let $s \in H_{i}, t \in s$. Let $s=[f, x]$ where $f \in \Gamma_{i}^{n}$. We must show that $t=[g, y]$ for $g \in \Gamma_{i}^{n}$. Let $t=\left[g^{\prime}, y\right]$. Then $\langle y, x\rangle \in \pi(e)$ where

$$
e=\left\{\langle u, v\rangle \mid g^{\prime}(u) \in f(v)\right\}
$$

Set:

$$
a=:\left\{u \mid g^{\prime}(u) \in \operatorname{rng}(f)\right\}, g=g^{\prime} \upharpoonright a
$$

Claim $1 g \in \Gamma_{i}^{n}$.
Proof: $a \subset \operatorname{dom}\left(q^{\prime}\right)$ is $\underline{\Sigma}_{0}^{(n)}$. Hence $a \in H$ and $g \in \Gamma^{n}$. If $i<n$, then $\operatorname{rng}(g) \subset \operatorname{rng}(f) \subset H_{M}^{i}$. Hence $g \in \Gamma_{i}^{n}$. Now let $i=n$. Then $\operatorname{rng}(f) \in \Gamma_{n}^{n}$ and the relation $z=g(y)$ is $\underline{\Sigma}_{0}^{(n)}$. Hence $g \in H_{M}^{n}$.

QED (Claim 1)
Claim $2 t=[g, y]$
Proof:

$$
\bigwedge u, v\left(\langle u, v\rangle \in e \rightarrow\langle u, u\rangle \in e^{\prime}\right)
$$

where $e^{\prime}=\left\{\langle u, w\rangle \mid g(u)=g^{\prime}(w)\right\}$. Hence the same Π_{1} statement holds of $\pi(e), \pi\left(e^{\prime}\right)$ in H^{\prime}. Hence $\langle y, y\rangle \in \pi\left(e^{\prime}\right)$. Hence $[g, y]=$ $\left[g^{\prime}, y\right]=t$.

QED (7)
We can improve (3) to:
(8) Let $\Psi=\bigvee v_{v_{1}}^{i_{1}}, \ldots, v_{r}^{i_{r}} \varphi$, where φ is $\Sigma_{0}^{(n)}$ and $i_{l}<n$ or $i_{l}=n<\omega$ for $l=1, \ldots, r$. Then π^{\prime} is " Ψ-elementary" in the sense that:

$$
M \models \Psi[\vec{x}] \leftrightarrow M^{\prime} \models \Psi\left[\pi^{\prime}(\vec{x})\right] \text { in the pseudo interpretation. }
$$

Proof: We first prove (\rightarrow). Let $M \models \varphi[\vec{z}, \vec{x}]$. Then $M^{\prime} \models \varphi\left[\pi^{\prime}(\vec{z}), \pi^{\prime}(\vec{x})\right]$ by (3).
We now prove (\leftarrow). Let:

$$
M^{\prime} \models \varphi\left[\left[f_{1}, z_{1}\right], \ldots,\left[f_{r}, z_{r}\right], \pi^{\prime}(\vec{x})\right]
$$

where $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$. Since $\pi^{\prime}(x)=\left[\operatorname{const}_{x}, 0\right]$, we then have: $\left\langle z_{1}, \ldots, z_{r}, 0 \ldots 0\right\rangle \in \pi(e)$, where:

$$
e=\left\{\left\langle u_{1}, \ldots, u_{r}, 0 \ldots 0\right\rangle: M \models \varphi[\vec{f}(\vec{u}), \vec{x}]\right\} .
$$

Hence $e \neq \emptyset$. Hence

$$
\bigvee v_{1} \ldots v_{r} M \models \varphi[\vec{f}(\vec{v}), \vec{x}]
$$

where $\operatorname{rng}\left(f_{l}\right) \subset H^{i_{l}}$ for $l=1, \ldots, r$. Hence $M \models \Psi[\vec{x}]$.
QED (8) If $i<n$, then every $\Pi_{1}^{(i)}$ formula is $\Sigma_{0}^{(n)}$. Hence by (8):
(9) If $i<n$ then

$$
\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime} \text { in the pseudo interpretation. }
$$

We also get:
(10) Let $n<w$. Then:

$$
\pi^{\prime} \upharpoonright H_{M}^{n}: H_{M}^{n} \rightarrow_{\Sigma_{0}} H_{n} \text { cofinally }
$$

Proof: Let $x \in H_{n}$. We must show that $x \in \pi^{\prime}(a)$ for an $a \in H_{M}^{n}$. Let $x=[f, y]$, where $f \in \Gamma_{n}^{n}$. Let $d=\operatorname{dom}(f), a=\operatorname{rng}(f)$. Then $y \in \pi(d)$ and:

$$
\bigwedge z \in d\langle z, 0\rangle \in e
$$

where

$$
\begin{aligned}
e & =\left\{\langle u, v\rangle \mid f(u) \in \operatorname{const}_{a}(v)\right\} \\
& =\{\langle u, 0\rangle \mid f(u) \in a\}
\end{aligned}
$$

This is a Σ_{0} statement about d, e. Hence the same statement holds of $\pi(d), \pi(e)$ in H_{n}. Hence $\langle z, 0\rangle \in \pi(e)$. Hence $[f, y] \in \pi^{\prime}(a)$. QED (10)
(Note: (10) and (3) imply that $\pi^{\prime}: M \rightarrow_{\Sigma_{1}^{(n)}} M^{\prime}$ is the pseudo interpretation, but this also follows directly from (8).)
Letting $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ and $M^{\prime}=\langle | M^{\prime}\left|, A^{\prime}, B^{\prime}\right\rangle$ we define:

$$
M_{i}=\left\langle H_{M}^{i}, A \cap H_{M}^{i}, B \cap H_{M}^{i}\right\rangle, M_{i}^{\prime}=\left\langle H_{i}, A^{\prime} \cap H_{i}, B^{\prime} \cap H_{i}\right\rangle
$$

for $i<n$ or $i=n<w$. Then each M_{i} is acceptable. It follows that:
(11) M_{i}^{\prime} is acceptable.

Proof: If $i=n$, then $\pi^{\prime} \upharpoonright M_{n}: M_{n} \rightarrow \Sigma_{0} M_{n}^{\prime}$ cofinally by (3) and (10). Hence M_{n}^{\prime} is acceptable by $\S 5$ Lemma 2.5.5. If $i<n$, then $\pi^{\prime} \upharpoonright M_{i}$: $M_{i} \rightarrow_{\Sigma_{2}^{(i)}} M_{i}^{\prime}$ by (9). Hence M_{i}^{\prime} is acceptable since acceptability is a Π_{2} condition.

QED (11)
We now examine the "correctness" of the pseudo interpretation. As a first step we show:
(12) Let $i+1 \leq n$. Let $A \subset H_{i+1}$ be $\underline{\Sigma}_{1}^{(i)}$ in the pseudo interpretation. Then $\left\langle H_{i+1}, A\right\rangle$ is amenable.
Proof: Suppose not. Then there is $A^{\prime} \subset H_{i+1}$ such that A^{\prime} is $\underline{\Sigma}_{1}^{(i)}$ in the pseudo interpretation, but $\left\langle H_{i}, A^{\prime}\right\rangle$ is not amenable. Let:

$$
A^{\prime}(x) \leftrightarrow B^{\prime}(x, p)
$$

where B^{\prime} is $\Sigma_{1}^{(i)}$ in the pseudo interpretation. For $p \in M^{\prime}$ we set:

$$
A_{p}^{\prime}=:\left\{x \mid B^{\prime}(x, p)\right\}
$$

Let B be $\Sigma_{1}^{(i)}(M)$ by the same definition. For $p \in M$ we set:

$$
A_{p}=:\{x \mid B(x, p)\} .
$$

Case $1 \quad i+1<n$.
Then $\bigvee p \bigvee a^{i+1} \bigwedge b^{i+1} b^{i+1} \neq a^{l+1} \cap A_{p}^{\prime}$ holds in the pseudo interpretation. This has the form: $\bigvee p \bigvee a^{i+1} \varphi\left(p, a^{i+1}\right)$ where φ is $\Pi_{1}^{(i+1)}$, hence $\Sigma_{0}^{(n)}$ in the pseudo interpretation. By (8) we conclude that $M \models \varphi\left(p, a^{i+1}\right)$ for some $p, a^{i+1} \in M$. Hence $\left\langle H_{M}^{i+1}, A_{p}\right\rangle$ is not amenable, where A_{p} is $\underline{\Sigma}_{1}^{(i)}(M)$. Contradiction!

QED (Case 1)

Case 2 Case 1 fails.

Then $i+1=n$. Since π^{\prime} takes H_{M}^{n} cofinally to H_{n}. There must be $a \in H_{M}^{n}$ such that $\pi(a) \cap A^{\prime} \notin H_{n}$. From this we derive a contradiction. Let $A^{\prime}=A_{p}^{\prime}$ where $p=[f, z]$. Set: $\tilde{B}=\{\langle z, w\rangle \mid B(w, f(z))\}$. Then \tilde{B} is $\underline{\Sigma}_{1}^{(i)}(M)$. Set: $b=(d \times a) \cap \tilde{B}$, where $d=\operatorname{dom}(f)$. Then $b \in H_{M}^{n}$. Define $g: d \rightarrow H_{M}^{n}$ by:

$$
g(z)=: A_{f(z)} \cap a=\{x \in a \mid\langle z, x\rangle \in b\} .
$$

Then $g \in H_{M}^{n}$, since it is rudimentary in $a, b \in H_{M}^{n}$. Let $\varphi\left(u^{n}, v^{n}, w\right)$ be the $\Sigma_{0}^{(n)}$ statement expressing

$$
u=A_{w} \cap v^{n} \text { in } M
$$

Then setting:

$$
e=\{\langle v, 0, w\rangle \mid M \models \varphi[g(v), a, f(z)]\}
$$

we have:

$$
\bigwedge v \in d\langle v, 0, v\rangle \in e
$$

But then the same holds of $\pi(d), \pi(e)$ in H_{n}. Hence $\langle z, 0, z\rangle \in$ $\pi(e)$. Hence: $[g, z]=A_{[f, z]} \cap \pi(a) \in H_{n}$. Contradiction!

QED (12)
On the other hand we have:
(13) Let $i+1<n$. Let $A \subset H_{M}^{i+1}$ be $\Sigma_{1}^{(i)}(M)$ in the parameter p such that $A \notin M$. Let A^{\prime} be $\Sigma_{1}^{(i)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same $\Sigma_{1}^{(i)}\left(M^{\prime}\right)$ definition in the pseudo interpretation. Then $A^{\prime} \cap H_{i+1} \notin M^{\prime}$.
Proof: Suppose not. Then in M^{\prime} we have:

$$
\bigvee a \bigwedge v^{i+1}\left(v^{i+1} \in a \leftrightarrow A^{\prime}\left(v^{i+1}\right)\right)
$$

This has the form $\bigvee a \varphi(a, \pi(p))$ where φ is $\Pi_{1}^{(i+1)}$ hence $\Sigma_{0}^{(n)}$. By (8) it then follows that $\bigvee a \varphi(a, p)$ holds in M. Hence $A \in M$. Contradiction!

QED (13)
Recall that for any acceptable $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ we can define ρ_{M}^{i}, H_{M}^{i} by:

$$
\begin{aligned}
& \rho^{0}=\alpha \\
& \rho^{i+1}= \text { the least } \rho \text { such that there is } A \text { which is } \\
& \underline{\Sigma}_{1}^{(i)}(M) \text { with } A \cap \rho \notin M \\
& H^{i}= J_{\rho_{i}}[A] .
\end{aligned}
$$

Hence by (11), (12), (13) we can prove by induction on i that:
(14) Let $i<n$. Then
(a) $\rho_{M^{\prime}}^{i}=\rho_{i}, H_{M^{\prime}}^{i}=H_{i}$
(b) The pseudo interpretation is correct for formulae φ, all of whose variables are of type $\leq i$.

By (9) we then have:
(15) $\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime}$ for $i<n$.

This means that if $n=\omega$, then π^{\prime} is automatically Σ^{*}-preserving. If $n<\omega$, however, it is not necessarily the case that $H_{n}=H_{M}^{n}$, - i.e. the pseudo interpretation is not always correct. By (12), however we do have:
(16) $\rho_{n} \leq \rho_{M}^{n}$, (hence $H_{n} \subset H_{M^{\prime}}^{n}$).

Using this we shall prove that π^{\prime} is $\Sigma_{0}^{(n)}$-preserving. As a preliminary we show:
(17) Let $n<w$. Let φ be a $\Sigma_{0}^{(n)}$ formula containing only variables of type $i \leq n$. Let $v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}$ be a good sequence for φ. Let $x_{1}, \ldots, x_{r} \in M^{\prime}$ such that $x_{l} \in H_{i_{l}}$ for $l=1, \ldots, r$. Then $M \models \varphi\left[x_{1}, \ldots, x_{r}\right]$ holds in the correct sense iff it holds in the pseudo interpretation.
Proof: (sketch)
Let C_{0} be the set of all such φ with: φ is $\Sigma_{1}^{(i)}$ for an $i<n$. Let C be the closure of C_{0} under sentential operation and bounded quantifications of the form $\bigwedge v^{n} \in w^{n} \varphi, \bigvee v^{n} \in w^{n} \varphi$. The claim holds for $\varphi \in C_{0}$ by (15). We then show by induction on φ that it holds for $\varphi \in C$. In passing from φ to $\Lambda v^{n} \in w^{n} \varphi$ we use the fact that w^{n} is interpreted by an element of H_{n}.

QED (17)
Since $\pi^{\prime \prime \prime} H_{M}^{i} \subset H_{i}$ for $i \leq n$, we then conclude:
(18) $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$.

It now remains only to show:
(19) $[f, x]=\pi^{\prime}(f)(x)$.

Proof: Let $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$, where G is $\Sigma_{1}^{(j)}$ good for a $j<n$. Let $a=\operatorname{dom}(f)$. Let $\Psi(u, v, w)$ be a good $\Sigma_{1}^{(j)}$ definition of G. Set:

$$
e=\left\{\langle z, y, w\rangle \mid M \models \Psi\left[f(z), \operatorname{id}_{a}(y), \operatorname{const}_{p}(w)\right]\right\} .
$$

Then $z \in a \rightarrow\langle z, z, 0\rangle \in e$. Hence the same holds of $\pi(a), \pi(e)$. But $x \in \pi(a)$. Hence:

$$
M^{\prime} \models \Psi\left[[f, x],\left[\mathrm{id}_{a}, x\right],\left[\text { const }_{p}, x\right]\right],
$$

where $\left[\mathrm{id}_{a}, x\right]=x,\left[\operatorname{const}_{p}, 0\right]=\pi^{\prime}(p)$. Hence:

$$
[f, x]=G^{\prime}\left(x, \pi^{\prime}(p)\right)=\pi^{\prime}(f)(x),
$$

where G^{\prime} has the same $\Sigma_{1}^{(j)}$ definition.
QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)
As a corollary of the proof we have:
Lemma 2.7.21. Let $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ be the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$. Let $i<n$. Then
(a) $\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime}$
(b) If $\rho_{M}^{i} \in M$, then $\pi^{\prime}\left(\rho_{M}^{i}\right)=\rho_{M}^{i}$.
(c) If $\rho_{M}^{i}=\mathrm{On}_{M}$, then $\rho_{M^{\prime}}^{i}=\mathrm{On}_{M^{\prime}}$.

Proof:

(a) follows by (9) and (14).
(b) In M we have:

$$
\bigwedge \xi^{0} \bigvee \xi^{i}\left(\xi^{0}<\rho_{M}^{i} \leftrightarrow \xi^{0}=\xi^{i}\right)
$$

This has the form $\bigwedge \xi^{0} \Psi\left(\xi^{0}, \rho_{M}^{i}\right)$ where Ψ is $\Sigma_{0}^{(n)}$. But then the same holds of $\pi^{\prime}\left(\rho_{M}^{i}\right)$ in M^{\prime} by (8) and (14) - i.e.

$$
\bigwedge \xi^{0} \bigvee \xi^{i}\left(\xi^{0}<\pi\left(\rho_{M}^{i}\right) \leftrightarrow \xi^{0}=\xi^{i}\right)
$$

(c) In M we have $\bigwedge \xi^{0} \bigvee \xi^{i} \xi^{0}=\xi^{i}$, hence the same holds in M^{\prime} just as above.

QED (Lemma 2.7.21)

The interpolation lemma for $\Sigma_{0}^{(n)}$ liftups reads:
Lemma 2.7.22. Let $\sigma: H^{\prime} \rightarrow_{\Sigma_{0}}\left|M^{*}\right|$ and $\pi^{*}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\pi^{*} \supset \sigma \pi$. Then the $\Sigma_{0}^{(n)}$ liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ of $\langle M, \pi\rangle$ exists. Moreover there is a unique map $\sigma^{\prime}: M^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\sigma^{\prime} \upharpoonright H^{\prime}=\sigma$ and $\sigma^{\prime} \pi^{\prime}=\pi^{*}$.

Proof: $\tilde{\epsilon}$ is well founded since:

$$
\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow \pi^{*}(f)(\sigma(x)) \in \pi^{*}(g)(\sigma(y))
$$

Thus $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ exists. But for $\Sigma_{0}^{(n)}$ formulae $\varphi=\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ we have:

$$
\begin{aligned}
& \left.M^{\prime} \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right) v_{r}\right)\right] \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e) \\
& \leftrightarrow\left\langle\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right\rangle \in \sigma(\pi(e))=\pi^{*}(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(\sigma\left(x_{1}\right)\right), \ldots, \pi^{*}\left(f_{r}\right)\left(\sigma\left(x_{r}\right)\right)\right]
\end{aligned}
$$

where:

$$
e=\left\{\left\langle x_{1}, \ldots, x_{r}\right\rangle|M|=\varphi\left[f_{1}\left(x_{1}\right), \ldots, f_{r}\left(x_{r}\right)\right]\right\}
$$

and $\left\langle f_{l}, x_{l}\right\rangle \in \Gamma_{i_{l}}^{n}$ for $i=1, \ldots, r$. Hence there is a $\Sigma_{0}^{(n)}$-preserving embed$\operatorname{ding} \sigma: M^{\prime} \rightarrow M^{*}$ defined by:

$$
\sigma^{\prime}\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(\sigma(x)) \text { for }\langle f, x\rangle \in \Gamma^{n} .
$$

Clearly $\sigma^{\prime} \upharpoonright H^{\prime}=\sigma$ and $\sigma^{\prime} \pi^{\prime}=\pi^{*}$. But σ^{\prime} is the unique such embedding, since if $\tilde{\sigma}$ were another one, we have

$$
\tilde{\sigma}\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(\sigma(x))=\sigma^{\prime}\left(\pi^{\prime}(f)(x)\right)
$$

QED (Lemma 2.7.22)
We can improve this result by making stronger assumptions on the map π, for instance:

Lemma 2.7.23. Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$. Let $\pi^{*} \upharpoonright \rho_{M}^{n+1}=\mathrm{id}$ and $\mathbb{P}\left(\rho_{M}^{n+1}\right) \cap M^{*} \subset M$. Then $\rho_{M^{*}}^{n}=\sup \pi^{*^{\prime \prime}} \rho_{M}^{n}$.
(Hence the pseudo interpretation is correct and π^{*} is $\Sigma_{1}^{(n)}$ preserving.)
Proof: Suppose not. Let $\tilde{\rho}=\sup \pi^{*^{\prime \prime}} \rho_{M}^{n}<\rho_{M^{*}}^{n}$. Set:

$$
H^{n}=H_{M}^{n}=J_{\rho_{M}^{n}}^{A_{M}} ; \tilde{H}=J_{\tilde{\rho}}^{A_{M}} .
$$

Then $\tilde{H} \in M^{*}$. Let A be $\Sigma_{1}^{(n)}(M)$ in p such that $A \cap \rho_{M}^{n+1} \notin M$. Let:

$$
A x \leftrightarrow \bigvee y^{n} B\left(y^{n}, x\right),
$$

where B is $\Sigma_{0}^{(n)}$ in p. Let B^{*} be $\Sigma_{0}^{(n)}\left(M^{*}\right)$ in $\pi^{*}(p)$ by the same definition. Then

$$
\pi^{*} \upharpoonright H^{n}:\left\langle H^{n}, B \cap H^{n}\right\rangle \rightarrow_{\Sigma_{1}}\left\langle\tilde{H}, B^{*} \cap \tilde{H}\right\rangle .
$$

Then $A \cap \rho_{M}^{n+1}=\tilde{A} \cap \rho_{M}^{n+1}$, where:

$$
\tilde{A}=\left\{x \mid \bigvee y^{n} \in \tilde{H} B^{*}(y, x)\right\}
$$

But \tilde{A} is $\Sigma_{1}^{(n)}\left(M^{*}\right)$ in $\pi^{*}(p)$ and \tilde{H}. Hence

$$
A \cap \rho_{M}^{n+1}=\tilde{A} \cap \rho_{M}^{n+1} \in \mathbb{P}\left(\rho_{M}^{n+1}\right) \cap M^{*} \subset M
$$

Contradiction!
QED (Lemma 2.7.23)

