2.7 Liftups

2.7.1 The Σ_0 liftup

A concept which, under a variety of names, is frequently used in set theory is the *liftup* (or as we shall call it here, the Σ_0 *liftup*). We can define it as follows:

Definition 2.7.1. Let M be a J-model. Let $\tau > \omega$ be a cardinal in M. Let $H = H_{\tau}^{M} \in M$ and let $\pi : H \to_{\Sigma_{0}} H'$ cofinally. We say that $\langle M', \pi' \rangle$ is a Σ_{0} *liftup* of $\langle M, \pi \rangle$ iff M' is transitive and:

- (a) $\pi' \supset \pi$ and $\pi' : M \to_{\Sigma_0} M'$
- (b) Every element of M' has the form $\pi'(f)(x)$ for an $x \in H'$ and an $f \in \Gamma^0$, where $\Gamma^0 = \Gamma^0(\tau, M)$ is the set of functions $f \in M$ such that $\operatorname{dom}(f) \in H$.

Note. The condition of being a J-model can be relaxed considerably, but that is uninteresting for our purposes.

Until further notice we shall use the word 'liftup' to mean ' Σ_0 liftup'.

If $\langle M', \pi' \rangle$ is a liftup of $\langle M, \pi \rangle$ it follows easily that:

Lemma 2.7.1. $\pi': M \to_{\Sigma_0} M'$ cofinally.

Proof: Let $y \in M'$, $y = \pi'(f)(x)$ where $x \in H'$ and $f \in \Gamma^0$, then $y \in \pi'(\operatorname{rng}(f))$. QED (Lemma 2.7.1)

Lemma 2.7.2. $\langle M', \pi' \rangle$ is the only liftup of $\langle M, \pi \rangle$.

Proof: Suppose not. Let $\langle M^*, \pi^* \rangle$ be another liftup. Let $\varphi(v_1, \ldots, v_n)$ be Σ_0 . Then

$$M' \models \varphi[\pi'(f_1)(x_1), \dots, \pi'(f_n)(x_n)] \leftrightarrow$$

$$\langle x_1, \dots, x_n \rangle \in \pi(\{\langle \vec{z} \rangle | M \models \varphi[\vec{f}(\vec{z})]\}) \leftrightarrow$$

$$M^* \models \varphi[\pi^*(f_1)(x_1), \dots, \pi^*(f_n)(x_n)].$$

Hence there is an isomorphism σ of M' onto M^* defined by:

$$\begin{aligned} \sigma(\pi'(f)(x)) &= \pi^*(f)(x) \\ \text{for } f \in \Gamma^0, \; x \in \pi(\operatorname{dom}(f)) \end{aligned}$$

But M', M^* are transitive. Hence $\sigma = id$, $M' = M^*$, $\pi' = \pi^*$. QED (Lemma 2.7.2)

Note. $M \models \varphi[\vec{f}(\vec{z})]$ means the same as

$$\bigvee y_1 \dots y_n (\bigwedge_{i=1}^n y_i = f_i(z_i) \land M \models \varphi[\vec{y}]).$$

Hence if $e = \{\langle \vec{z} \rangle | M \models \varphi[\vec{f}(\vec{z})]\}$, then $e \subset \underset{i=1}{\overset{n}{\times}} \operatorname{dom}(f_i) \in H$. Hence $e \in M$ by rud closure, since e is $\underline{\Sigma}_0(M)$. But then $e \in H$, since $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

But when does the liftup exist? In answering this question it is useful to devise a 'term model' for the putative liftup rather like the ultrapower construction:

Definition 2.7.2. Let $M, \tau, \pi : H \to_{\Sigma_0} H'$ be as above. The term model $\mathbb{D} = \mathbb{D}(M, \pi)$ is defined as follows. Let e.g. $M = \langle J_{\alpha}^A, B \rangle$. $\mathbb{D} =: \langle D, \cong , \tilde{\in}, \tilde{A}, \tilde{B} \rangle$ where

D = the set of pairs $\langle f, x \rangle$ such that $f \in \Gamma_0$ and $x \in H'$

$$\begin{split} \langle f, x \rangle &\cong \langle g, y \rangle \leftrightarrow : \langle x, y \rangle \in \pi(\{\langle z, w \rangle | f(z) = g(y)\}) \\ \langle f, x \rangle \tilde{\in} \langle g, y \rangle \leftrightarrow : \langle x, y \rangle \in \pi(\{\langle z, w \rangle | f(z) \in g(y)\}) \\ \tilde{A} \langle f, x \rangle \leftrightarrow : x \in \pi(\{z | Af(z)\}) \\ \tilde{B} \langle f, x \rangle \leftrightarrow : x \in \pi(\{z | Bf(z)\}) \end{split}$$

Note. \mathbb{D} is an 'equality model', since the identity predicate = is interpreted by \cong rather than the identity.

Los theorem for \mathbb{D} then reads:

Lemma 2.7.3. Let $\varphi = \varphi(v_1, \ldots, v_n)$ be Σ_0 . Then

$$\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_n, x_n \rangle] \leftrightarrow \langle x_1, \dots, x_n \rangle \in \pi(\{\langle \vec{z} \rangle | M \models \varphi[f(\vec{z})]\}).$$

Proof: (Sketch)

We prove this by induction on the formula φ . We display a typical case of the induction. Let $\varphi = \bigvee u \in v_1 \Psi$. By bound relettering we can assume *w.l.o.g.* that *u* is not among v_1, \ldots, v_n . Hence u, v_1, \ldots, v_n is a good sequence for Ψ . We first prove (\rightarrow) . Assume:

$$\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_n, x_n \rangle].$$

Claim $\langle x_1, \ldots, x_n \rangle \in \pi(e)$ where

$$e = \{ \langle z_1, \dots, z_n \rangle | M \models \varphi[f_1(z_1) \dots f_n(z_n)] \}.$$

Proof: By our assumption there is $\langle g, y \rangle \in D$ such that $\langle g, y \rangle \tilde{\in} \langle f_1, x_1 \rangle$ and:

$$\mathbb{D} \models \Psi[\langle g, y \rangle, \langle f_1, x_1 \rangle, \dots, \langle f_n, x_n \rangle].$$

By the induction hypothesis we conclude that $\langle y, \vec{x} \rangle \in \pi(\tilde{e})$ where:

$$\tilde{e} = \{ \langle w, \vec{z} \rangle | g(w) \in f_1(z_1) \land M \models \Psi[g(w), \vec{f}(\vec{z}) \}.$$

Clearly $e, \tilde{e} \in H$ and

$$H \models \bigwedge w, \vec{z} (\langle w, \vec{z} \rangle \in \tilde{e} \to \langle \vec{z} \rangle \in e).$$

Hence

$$H' \models \bigwedge w, \vec{z}(\langle w, \vec{z} \rangle \in \pi(e) \to \langle \vec{z} \rangle \in \pi(e)).$$

Hence $\langle \vec{x} \rangle \in \pi(e)$.

We now prove (\leftarrow) We assume that $\langle x_1, \ldots, x_n \rangle \in \pi(e)$ and must prove:

Claim $\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_n, x_n \rangle].$

Proof: Let $r \in M$ be a well ordering of $\operatorname{rng}(f_1)$. For $\langle \vec{z} \rangle \in e$ set:

$$g(\langle \vec{z} \rangle) =$$
 the *r*-least *w* such that
 $M \models \Psi[w, f_1(z_1), \dots, f_n(z_n)].$

Then $g \in M$ and dom $(g) = e \in H$. Now let \tilde{e} be defined as above with this g. Then:

$$H \models \bigwedge z_1, \dots, z_n(\langle \vec{z} \rangle \in e \leftrightarrow \langle \langle \vec{z} \rangle, \vec{z} \rangle \in \tilde{e})$$

But then the corresponding statement holds of $\pi(e), \pi(\tilde{e})$ in H'. Hence

$$\langle \langle \vec{x} \rangle, \vec{x} \rangle \in \pi(\tilde{e}).$$

By the induction hypothesis we conclude:

$$\mathbb{D} \models \Psi[\langle g, \langle \vec{x} \rangle \rangle, \langle f_1, x_1 \rangle, \dots, \langle f_n, x_n \rangle].$$

The conclusion is immediate.

QED (Lemma 2.7.3)

QED (\rightarrow)

The liftup of $\langle M, \pi \rangle$ can only exist if the relation \tilde{e} is well founded:

Lemma 2.7.4. Let $\tilde{\in}$ be ill founded. Then there is no $\langle M', \pi' \rangle$ such that $\pi' : M \to_{\Sigma_0} M'$. M' is transitive, and $\pi' \supset \pi$.

Proof: Suppose not. Let $\langle f_{i+1}, x_{i+1} \rangle \in \langle f_i, x_i \rangle$ for i < w. Then

$$\langle x_{i+1}, x_i \rangle \in \pi\{\langle z, w \rangle | f_{i+1}(z) \in f_i(w)\}.$$

Hence $\pi'(f_{i+1})(x_{i+1}) \in \pi'(f_i)(x_i)(i < w)$. Contradiction!

QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let $\tilde{\in}$ be well founded. Then the liftup of $\langle M, \pi \rangle$ exists.

Proof: We shall explicitly construct a liftup from the term model \mathbb{D} . The proof will stretch over several subclaims.

Definition 2.7.3. $x^* = \pi^*(x) =: \langle \text{const}_x, 0 \rangle$, where $\text{const}_x =: \{\langle x, 0 \rangle\} =$ the constant function x defined on $\{0\}$.

Then:

(1) $\pi^*: M \to_{\Sigma_0} \mathbb{D}.$ **Proof:** Let $\varphi(v_1, \ldots, v_n)$ be Σ_0 . Set:

$$e = \{ \langle z_1, \dots, z_n \rangle | M \models \varphi[\operatorname{const}_{x_1}(z_1), \dots, \operatorname{const}_{x_n}(z_n)] \}.$$

Obviously:

$$e = \begin{cases} \{ \langle 0, \dots, 0 \rangle \} \text{ if } M \models \varphi[x_1, \dots, x_n] \\ \emptyset \text{ if not.} \end{cases}$$

Hence by Łoz theorem:

$$\mathbb{D} \models \varphi[x_1^*, \dots, x_n^*] \quad \leftrightarrow \langle 0, \dots, 0 \rangle \in \pi(e)$$
$$\leftrightarrow M \models \varphi[x_1, \dots, x_n]$$

(2) $\mathbb{D} \models$ Extensionality.

Proof: Let $\varphi(u, v) =: \bigwedge w \in u \ w \in v \land \bigwedge w \in v \ w \in u$.

Claim $\mathbb{D} \models \varphi[a, b] \rightarrow a \cong b$ for $a, b \in \mathbb{D}$. This reduces to the Claim: Let $a = \langle f, x \rangle, b = \langle g, y \rangle$. Then

$$\begin{split} \mathbb{D} &\models \varphi[\langle f, x \rangle, \langle g, y \rangle] &\leftrightarrow \langle x, y \rangle \in \pi(e) \\ &\leftrightarrow \langle f, x \rangle \cong \langle g, y \rangle \end{split}$$

where

$$e = \{ \langle z, w \rangle | M \models \varphi[z, w] \}$$
$$= \{ \langle z, w \rangle | f(z) = g(w) \}$$

QED(2)

Since \cong is a congruence relation for \mathbb{D} we can factor \mathbb{D} by \cong , getting:

$$\hat{\mathbb{D}} = (\mathbb{D} \setminus \cong) = \langle \hat{D}, \hat{\in}, \hat{A}, \hat{B} \rangle$$

where:

$$D = \{\hat{s} | s \in D\}$$

$$\hat{s} =: \{t | t \cong s\} \text{ for } s \in D$$

$$\hat{s} \in \hat{t} \leftrightarrow: s \in t$$

$$\hat{A}\hat{s} \leftrightarrow: \tilde{A}s, \hat{B}\hat{s} \leftrightarrow: \tilde{B}s.$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M', where $M' = \langle |M'|, \in, A', B' \rangle$ is transitive.

Set:

$$[s] =: k(\hat{s}) \text{ for } s \in D$$
$$\pi'(x) =: [x^*] \text{ for } x \in M$$

Then by (1):

(3) $\pi': M \to_{\Sigma_0} M'$. Lemma 2.7.5 will then follow by:

Lemma 2.7.6. $\langle M', \pi' \rangle$ is the liftup of $\langle M, \pi \rangle$.

We shall often write [f, x] for $[\langle f, x \rangle]$. Clearly every $s \in M'$ has the form [f, x] where $f \in M$; dom $(f) \in H$, $x \in H'$.

Definition 2.7.4. $\tilde{H} =:$ the set of [f, x] such that $\langle f, x \rangle \in D$ and $f \in H$.

We intend to show that $[f, x] = \pi(f)(x)$ for $x \in \tilde{H}$. As a first step we show:

(4) \tilde{H} is transitive.

Proof: Let $s \in [f, x]$ where $f \in H$.

Claim s = [g, y] for a $g \in H$.

Proof: Let s = [g', y]. Then $\langle y, x \rangle \in \pi(e)$ where: $e = \{\langle u, v \rangle | g'(u) \in f(v)\}$ set:

$$e' = \{u | g'(u) \in \operatorname{rng}(f)\}, \ g = g' \restriction e'$$

Then $g \subset \operatorname{rng}(f) \times \operatorname{dom}(g') \in H$. Hence $g \in H$. Then [g', y] = [g, y]since $\pi(g')(y) = \pi(g)(y)$ and hence

 $\begin{array}{l} \langle y,y\rangle \in \pi(\{\langle u,v\rangle | g'(u)=g(v)\}). \mbox{ But } e=\{\langle u,v\rangle | g(u)\in f(v)\}. \mbox{ Hence } [g,y]\in [f,x]. \end{array}$

But then:

(5) $[f, x] = \pi(f)(x)$ for $f \in H, \langle f, x \rangle \in D$. **Proof:** Let $f, g \in H, \langle f, x \rangle, \langle g, y \rangle \in D$. Then:

$$\begin{aligned} [f,x] \in [g,y] & \leftrightarrow \langle x,y \rangle \in \pi(e) \\ & \leftrightarrow \pi(f)(x) \in \pi(g)(y) \end{aligned}$$

where $e = \{\langle u, v \rangle | f(u) \in g(v)\}$. Hence there is an \in -isomorphism σ of H onto \tilde{H} defined by:

$$\sigma(\pi(f)(x)) =: [f, x].$$

But then $\sigma = id$, since H, \tilde{H} are transitive. (5) But then:

(6) $\pi' \supset \pi$.

Proof: Let $x \in H$. Then $\pi'(x) = [\text{const}_x, 0] = \pi(\text{const}_x)(0) = \pi(x)$ by (5).

(7) $[f, x] = \pi'(f)(x)$ for $\langle f, x \rangle \in D$.

Proof: Let a = dom(f). Then $[\text{id}_a, x] = \text{id}_{\pi(a)}(x) = x$ by (5). Hence it suffices to show:

$$[f, x] = [\operatorname{const}_f, 0]([\operatorname{id}_a, x]).$$

But this says that $\langle x, 0 \rangle \in \pi(e)$ where:

$$e = \{ \langle z, u \rangle | f(z) = \operatorname{const}_f(u)(\operatorname{id}_a(z)) \}$$
$$= \{ \langle z, 0 \rangle | f(z) = f(z) \} = a \times \{0\}.$$

QED(7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let $\pi^* \supset \pi$ such that $\pi^* : M \to_{\Sigma_0} M^*$. Then the liftup $\langle M', \pi' \rangle$ of $\langle M, \pi \rangle$ exists. Moreover there is a $\sigma : M' \to_{\Sigma_0} M^*$ uniquely defined by the condition:

$$\sigma \upharpoonright H' = \mathrm{id}, \ \sigma \pi' = \pi^*.$$

Proof: $\langle M', \pi' \rangle$ exists, since $\tilde{\in}$ is well founded, since $\langle f, x \rangle \tilde{\in} \langle g, y \rangle \leftrightarrow \pi^*(f)(x) \in \pi^*(g)(y)$. But then:

$$M' \models \varphi[\pi'(f_1)(x_1), \dots, \pi'(f_r)(x_r)] \leftrightarrow$$

$$\leftrightarrow \langle x_1, \dots, x_r \rangle \in \pi(e)$$

$$\leftrightarrow M^* \models \varphi[\pi^*(f_1)(x_1), \dots, \pi^*(f_r)(x_r)]$$

where $e = \{\langle z_1, \ldots, z_r \rangle | M \models \varphi[\vec{f}(\vec{z})] \}$. Hence there is $\sigma : M' \to_{\Sigma_0} M^*$ defined by:

$$\sigma(\pi'(f)(x)) = \pi^*(f)(x) \text{ for } \langle f, x \rangle \in D.$$

Now let $\tilde{\sigma}: M' \to_{\Sigma_0} M^*$ such that $\tilde{\sigma} \upharpoonright H' = \text{id and } \tilde{\sigma} \pi' = \pi^r$.

Claim $\tilde{\sigma} = \sigma$. Let $s \in M'$, $s = \pi'(f)(x)$. Then $\tilde{\sigma}(\pi'(f)) = \pi^*(f)$, $\tilde{\sigma}(x) = x$. Hence $\tilde{\sigma}(s) = \pi^*(f)(x) = \sigma(s)$. QED (Lemma 2.7.7)

2.7.2 The $\Sigma_0^{(n)}$ liftup

From now on suppose M to be acceptable. We now attempt to generalize the notion of Σ_0 liftup. We suppose as before that $\tau > w$ is a cardinal in M and $H = H_{\tau}^M$. As before we suppose that $\pi' : H \to_{\Sigma_0} H'$ cofinally. Now let $\rho^n \ge \tau$. The Σ_0 -liftup was the "minimal" $\langle M', \pi' \rangle$ such that $\pi' \supset \pi$ and $\pi' : M \to_{\Sigma_0} M'$. We shall now consider pairs $\langle M', \pi' \rangle$ such that $\pi' \supset \pi$ and $\pi' : M \to_{\Sigma_0} M'$. Among such pairs $\langle M', \pi' \rangle$ we want to define a "minimal" one and show, if possible, that it exists. The minimality of the Σ_0 liftup was expressed by the condition that every element of M' have the form $\pi'(f)(x)$, where $x \in H'$ and $f \in \Gamma^0(\tau, M)$. As a first step to generalizing this definition we replace $\Gamma^0(\tau, M)$ by a larger class of functions $\Gamma^n(\tau, M)$.

Definition 2.7.5. Let n > 0 such that $\tau \leq \rho_M^n$. $\Gamma^n = \Gamma^n(\tau, M)$ is the set of maps f such that

- (a) $\operatorname{dom}(f) \in H$
- (b) For some i < n there is a good $\Sigma_1^{(i)}(M)$ function G and a parameter $p \in M$ such that f(x) = G(x, p) for all $x \in \text{dom}(f)$.

Note. Good $\Sigma_1^{(i)}$ functions are many sorted, hence any such function can be identified with a pair consisting of its field and its arity. An element of Γ^n , on the other hand, is 1–sorted in the classical sense, and can be identified with its field.

Note. This definition makes sense for the case $n = \omega$, and we will not exclude this case. A $\Sigma_0^{(\omega)}$ formula (or relation) then means any formula (or relation) which is $\Sigma_0^{(i)}$ for an $i < \omega$ — i.e. $\Sigma_0^{(\omega)} = \Sigma^*$.

We note:

Lemma 2.7.8. Let $f \in \Gamma^n$ such that $\operatorname{rng}(f) \subset H^i$, where i < n. Then f(x) = G(x,p) for $x \in \operatorname{dom}(f)$ where G is a good $\Sigma_1^{(h)}$ function to H^i for some h < n.

Proof: Let f(x) = G'(x, p) for $x \in \text{dom}(f)$ where G' is a good $\Sigma_1^{(h)}$ function to H^j where h, j < n. Since every good $\Sigma_1^{(h)}$ function is a good Σ_1^k function for $k \ge h$, we can assume w.l.o.g. that $i, j \le h$. Let F be the identity function defined by $v^i = u^j$ (i.e. $y^i = F(x^j) \leftrightarrow y^i = x^j$). Set: $G(x, y) \simeq F(G'(x, y))$. Then F is a good $\Sigma_1^{(h)}$ function and so is G, where f(x) = G(x, p) for $x \in \text{dom}(f)$.

QED (Lemma 2.7.8)

Lemma 2.7.9. $\Gamma^i(\tau, M) \subset \Gamma^n(\tau, M)$ for i < n.

Proof: For 0 < i this is immediat by the definition. Now let i = 0. If $f \in \Gamma^0$, then f(x) = G(x, f) for $x \in \text{dom}(f)$ where G is the $\Sigma_0^{(0)}$ function defined by

$$y = G(x, f) \leftrightarrow$$
: (f is a function \land
 $\land \langle y, x \rangle \in f$).

QED (Lemma 2.7.9)

The "natural" minimality condition for the $\Sigma_0^{(n)}$ liftup would then read: Each element of M has the form $\pi'(f)(x)$ where $x \in H'$ and $f \in \Gamma^n$. But what sense can we make of the expression " $\pi'(f)(x)$ " when f is not an element of M? The following lemma rushes to our aid:

Lemma 2.7.10. Let $\pi': M \to_{\Sigma_0^{(n)}} M'$ where n > 0 and $\pi' \supset \pi$. There is a unique map π'' on $\Gamma^n(\tau, M)$ with the following property:

* Let $f \in \Gamma^n(\tau, M)$ such that f(x) = G(x, p) for $x \in \text{dom}(f)$ where Gis a good $\Sigma_1^{(i)}$ function for an i < n and χ is a good $\Sigma_1^{(i)}$ definition of G. Let G' be the function defined on M' by χ . Let $f' = \pi''(f)$. Then $\text{dom}(f') = \pi(\text{dom}(f))$ and $f'(x) = G'(x, \pi'(p))$ for $x \in \text{dom}(f')$.

Proof: As a first approximation, we simply pick G, χ with the above properties. Let G' then be as above. Let d = dom(f). The statement $\bigwedge x \in d \bigvee y = G(x, p)$ is $\Sigma_0^{(n)}$ is d, p, so we have:

$$\bigwedge x \in \pi(d) \bigvee y \ y = G'(x, \pi(p)).$$

Define f_0 by dom $(f_0) = \pi(d)$ and $f_0(x) = G'(x, \pi(p))$ for $x \in \pi(d)$. The problem is, of course, that G, χ were picked arbitrarily. We might also have:

$$f(x) = H(x,q)$$
 for $x \in d$,

where H is $\Sigma_1^{(j)}(M)$ for a j < n and Ψ is a good $\Sigma_1^{(j)}$ definition of H. Let H' be the good function on M' defined by Ψ . As before we can define f_1

by dom $(f_1) = \pi(d)$ and $f_1(x) = H'(x, \pi'(q))$ for $x \in \pi(d)$. We must show: $f_0 = f_1$. We note that:

$$\bigwedge x \in dG(x,p) = H(x,q).$$

But this is a $\Sigma_0^{(n)}$ statement. Hence

$$\bigwedge x \in \pi(d)G'(x,p) = H'(x,q).$$

Then $f_0 = f_1$.

QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let $n, \pi, \tau, \pi', \pi''$ be as above. Then $\pi''(f) = \pi'(f)$ for $f \in \Gamma^0(\tau, M)$.

Proof: We know f(x) = G(x, f) for $x \in d = \text{dom}(f)$, where:

$$y = G(x, f) \leftrightarrow : (f \text{ is a function } \land y = f(x)).$$

Then $\pi''(f)(x) = G'(x, \pi'(f)) = \pi'(f)(x)$ for $x \in \pi(d)$, where G' has the same definition over M'. QED (Lemma 2.7.11)

Thus there is no ambiguity in writing $\pi'(f)$ instead of $\pi''(f)$ for $f \in \Gamma^n$. Doing so, we define:

Definition 2.7.6. Let $\omega < \tau < \rho_M^n$ where $n \leq \omega$ and τ is a cardinal in M. Let $H = H_{\tau}^M$ and let $\pi : H \to_{\Sigma_0} H'$ cofinally. We call $\langle M', \pi' \rangle$ a $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$ iff the following hold:

- (a) $\pi' \supset \pi$ and $\pi' : M \to_{\Sigma_{\alpha}^{(n)}} M'$.
- (b) Each element of M' has the form $\pi'(f)(x)$, where $f \in \Gamma^n(\tau, M)$ and $x \in H'$.

(Thus the old Σ_0 liftup is simply the special case: n = 0.)

Definition 2.7.7. $\Gamma_i^n(\tau, M) =:$ the set of $f \in \Gamma^n(\tau, M)$ such that either i < n and $\operatorname{rng}(f) \subset H_M^i$ or $i = n < \omega$ and $f \in H_M^i$.

(Here, as usual, $H^i = J_{\rho^i_M}[A]$ where $M = \langle J^A_{\alpha}, B \rangle$.)

Lemma 2.7.12. Let $f \in \Gamma_i^n(\tau, M)$. Let $\pi' : M \to_{\Sigma_0^{(n)}} M'$ where $\pi' \supset \pi$. Then $\pi'(f) \in \Gamma_i^n(\pi'(\tau), M')$.

Proof:

Case 1 i = n. Then $f \in H^M_{\rho^n_M}$. Hence $\pi'(f) \in H^{M'}_{\rho^n_M}$. Case 2 i < n.

By Lemma 2.7.9 for some h < n there is a good $\Sigma_1^{(n)}(M)$ function G(u, v) to H^i and a parameter p such that

$$f(x) = G(x, p)$$
 for $x \in \text{dom}(f)$.

Hence:

$$\pi'(f)(x) = G'(x, \pi'(p)) \text{ for } x \in \operatorname{dom}(\pi(f)),$$

where G' is defined over M' by the same good $\Sigma_1^{(n)}$ definition. Hence $\operatorname{rng}(\pi'(f)) \subset H^i_M$. QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding $\Sigma_0^{(n)}$ liftups.

Lemma 2.7.13. Let $R(x_1^{i_1}, \ldots, x_r^{i_r})$ be $\Sigma_0^{(n)}$ where $i_1, \ldots, i_r \leq n$. Let $f_l \in \Gamma_{i_l}^n (l = 1, \ldots, r)$. Then:

(a) The relation P is $\Sigma_0^{(n)}$ in a parameter p where:

$$P(\vec{z}) \leftrightarrow : R(f_1(z_1), \dots, f_r(z_r)).$$

(b) Let $\pi' \supset \pi$ such that $\pi' : M \to_{\Sigma_0^{(n)}} M'$. Let R' be $\Sigma_0^{(n)}(M')$ by the same definition as R. Then P' is $\Sigma_0^{(n)}(M')$ in $\pi'(p)$ by the same definition as P in p, where:

$$P'(\vec{z}) \leftrightarrow : R'(\pi'(f_1)(z_1), \ldots, \pi'(f_r)(z_r)).$$

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Let $e = \{\langle \vec{z} \rangle | P(\vec{z}) \}$. Then $e \in H$ and $\pi(e) = \{\langle \vec{z} \rangle | P'(\vec{z}) \}$.

Proof: Clearly $e \subset d = \underset{l=1}{\overset{r}{\times}} \operatorname{dom}(f_l) \in H$. But then $d \in H_{\rho^n}$ and $e \in H_{\rho^n}$ since $\langle H_{\rho^n}, P \cap H_{\rho^n} \rangle$ is amenable. Hence $e \in H$, since $H = H_{\tau}^M$ and therefore $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

Now set $e' = \{\langle \vec{z} \rangle | P'(\vec{z}) \}$. Then $e' \subset \pi(d) = \underset{l=1}{\overset{r}{\times}} \operatorname{dom}(\pi(f_l))$ since $\pi' \supset \pi$ and hence $\pi(\operatorname{dom}(f_l)) = \operatorname{dom}(\pi(f_l))$. But

$$\bigwedge \langle \vec{z} \rangle \in d(\langle \vec{z} \rangle \in e \leftrightarrow P(\vec{z}))$$

which is a $\Sigma_0^{(n)}$ statement about e, p. Hence the same statement holds of $\pi(e), \pi(p)$ in M'. Hence

$$\bigwedge \langle \vec{z} \rangle \in \pi(d)(\langle \vec{z} \rangle \in \pi(e) \leftrightarrow P'(\vec{z})).$$

Hence $\pi(e) = e'$.

QED (Corollary 2.7.14)

Corollary 2.7.15. $\langle M, \pi \rangle$ has at most one $\Sigma_0^{(n)}$ liftup $\langle M', \pi' \rangle$.

Proof: Let $\langle M^*, \pi^* \rangle$ be a second such. Let $\varphi(v_1^{i_1}, \ldots, v_r^{i_r})$ be a $\Sigma_0^{(n)}$ formula. (In fact, we could take it here as being $\Sigma_0^{(0)}$.) Let $e = \{\langle \vec{z} \rangle | M \models \varphi[f_1(z_1), \ldots, f_r(z_r)]\}$ where $f_l \in \Gamma_{i_l}^n (l = 1, \ldots, r)$. Then:

$$M' \models \varphi[\pi'(f_1)(x_1), \dots, \pi'(f_r)(x_r)] \leftrightarrow$$

$$\leftrightarrow \langle x_1, \dots, x_r \rangle \in \pi(e)$$

$$\leftrightarrow M^* \models \varphi[\pi^*(f_1)(x_1), \dots, \pi^*(f_r)(x_r)]$$

for $x_l \in \pi(\text{dom}(f_l) (l = 1, ..., r))$.

Hence there is an isomorphism $\sigma: M' \xrightarrow{\sim} M^*$ defined by:

$$\sigma(\pi'(f)(x)) =: \pi^*(f)(x)$$

for $f \in \Gamma^n$, $x \in \pi(\operatorname{dom}(f))$. But M', M^* are transitive. Hence $\sigma = \operatorname{id}, M' = M^*, \pi' = \pi^*$. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n = 0.

Then $f_1, \ldots, f_r \in M$ and P is Σ_0 in $p = \langle f_1, \ldots, f_r \rangle$, since f_i is rudimentary in p and for sufficiently large h we have:

$$P(\vec{z}) \leftrightarrow \bigvee_{y_1,\dots,y_r} \in C_h(p)(\bigwedge_{i=1}^r y_i = f_i(\vec{z}_i) \land R(\vec{y}))$$

where R is Σ_0 . If P' has the same Σ_0 definition over M' in $\pi'(p)$, then

$$P'(z) \quad \leftrightarrow \bigvee_{y_1, \dots, y_r} \in C_h(\pi(p)) (\bigwedge_{n=1}^r y_i = \pi(f_i)(z_i) \wedge R(\vec{y})) \\ \leftrightarrow R(\pi(\vec{f})(\vec{z}))$$

QED

Case 2 $n = \omega$.

Then $\Sigma_0^{\omega} = \bigcup_{\substack{h < w}} \Sigma_1^{(h)}$. Let $R(x_1^{i_1}, \dots, x_r^{l_r})$ be $\Sigma_1^{(h)}$. Since every $\Sigma_1^{(h)}$

relation is $\Sigma_1^{(k)}$ for $k \ge h$, we can assume h taken large enough that $i_1, \ldots, i_r \le h$. We can also choose it large enough that:

$$f_l(z) \simeq G_l(z, p)$$
 for $l = 1, \ldots, v$

where G_l is a good $\Sigma_1^{(h)}$ map to H^{i_l} . (We assume *w.l.o.g.* that *p* is the same for $l = 1, \ldots, r$ and that $d_l = \text{dom}(f_l)$ is rudimentary in *p*.) Set:

$$P(\vec{z}, y) \leftrightarrow : R(G_1x_1, y), \dots, G(x_r, y)).$$

By §6 Lemma 2.6.24, P is $\Sigma_1^{(h)}$ (uniformly in the $\Sigma_1^{(h)}$ definition of R and G_1, \ldots, G_r). Moreover:

$$P(\vec{z}) \leftrightarrow P(\vec{z}, p).$$

Thus P is uniformly $\Sigma_1^{(h)}$ in p, which proves (a). But letting P' have the same $\Sigma_1^{(h)}$ definition in $\pi'(p)$ over M', we have:

$$P'(\vec{z}) \quad \leftrightarrow P'(\vec{z}, \pi'(p)) \\ \leftrightarrow R'(\pi'(f_1)(z_1), \dots, \pi'(f_r)(z_r)),$$

which proves (b).

4

Case 3 0 < n < w.

Let n = m + 1. Rearranging arguments as necessary, we can take R as given in the form:

$$R(y_1^n,\ldots,y_s^n,x_1^{i_1},\ldots,x_r^{i_r})$$

where $i_1, \ldots, i_r \leq m$. Let $f_l \in \Gamma_{i_l}^n$ for $l = 1, \ldots, r$ and let $g_1, \ldots, g_1 \in \Gamma_n^n$.

Claim

(a) P is $\Sigma_0^{(n)}$ in a parameter p where

$$P(\vec{w}, \vec{z}) \leftrightarrow : R(\vec{g}(\vec{w}), \vec{f}(\vec{z})).$$

(b) If π', M' are as above and P' is $\Sigma_0^{(n)}(M')$ in $\pi'(p)$ by the same definition, then

$$P'(w, \vec{z}) \leftrightarrow R'(\pi'(\vec{g})(\vec{w}), \pi'(\vec{f})(\vec{z}))$$

where R' has the same $\Sigma_0^{(n)}$ definition over M'.

QED (Case 2)

We prove this by first substituting $\vec{f}(\vec{z})$ and then $\vec{g}(\vec{w})$, using two different arguments. The claim then follows from the pair of claims:

Claim 1 Let:

$$P_0(\vec{y}^n, \vec{z}) \leftrightarrow = R(y^n, f_1(z_1), \dots, f_r(z_r)).$$

Then:

- (a) P_0 is $\Sigma_0^{(n)}(M)$ in a parameter p_0 .
- (b) Let π', M', R' be as above. Let P'_0 have the same $\Sigma_0^{(n)}(M')$ definition in $\pi'(p_0)$. Then:

$$P'_0(\vec{y}^n, \vec{z}) \leftrightarrow R'(y^n, \pi'(\vec{f})(\vec{z})).$$

 ${\bf Claim} \ {\bf 2} \ {\rm Let}$

$$P(\vec{w}, \vec{z}) \leftrightarrow : P_0(g_1(w_1), \dots, g_s(w_s), \vec{z}).$$

Then:

- (a) P is $\Sigma_0^{(n)}(M)$ in a parameter p.
- (b) Let π', M', P'_0 be as above. Let P' have the same $\Sigma_1^{(n)}(M')$ definition in $\pi'(p)$. Then

$$P'(\vec{w}, \vec{z}) \leftrightarrow P'_0(\pi'(\vec{g})(\vec{w}), \vec{z})$$

We prove Claim 1 by imitating the argument in Case 2, taking h = m and using §6 Lemma 2.6.11. The details are left to the reader. We then prove Claim 2 by imitating the argument in Case 1: We know that $g_1, \ldots, g_s \in H^n$. Set: $p = \langle g_1, \ldots, g_n, p \rangle$. Then P is $\Sigma_0^{(n)}(M)$ in p, since:

$$P(\vec{w}, \vec{z}) \leftrightarrow \bigvee y_1 \dots y_s \in C_h(p)(\bigwedge_{i=1}^s y_i = g_i(w_i) \wedge P_0(\vec{y}, \vec{z}))$$

where g_i, p_0 are rud in P, for a sufficiently large h. But if P' is $\Sigma_0^{(n)}(M')$ in $\Pi'(P)$ by the same definition, we obviously have:

$$P'(\vec{w}, \vec{z}) \quad \leftrightarrow \bigvee y_1 \dots y_r(\bigwedge_{i=1}^s y_i = \pi'(g)(w_i) \wedge P'_0(\vec{y}, \vec{z})) \\ P'_0(\pi'(\vec{g})(\vec{w}), \vec{z}).$$

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments \vec{u}^n . Thus, after rearranging arguments we would have $R(\vec{u}^n, \vec{y}^n, x_1^{i_1}, \ldots, x_r^{i_r})$ where $i_1, \ldots, i_r < n$. We would then define

$$P(\vec{u}^n, \vec{w}, \vec{z}) \leftrightarrow : R(\vec{u}^n, \vec{g}(\vec{w}), \vec{f}(\vec{z})).$$

This gives us:

Corollary 2.7.16. Let n < w. Let $R(\vec{u}^n, x_1^{i_1}, ..., x_r^{i_r})$ be $\Sigma_0^{(n)}$ where $i_1, ..., i_p \le n$. Let $f_l \in \Gamma_{i_l}^n$ for l = 1, ..., r. Set:

$$P(\vec{u}^n, \vec{z}) \leftrightarrow : R(\vec{u}^n, f_1(z_1), \dots, f_r(z_r))$$

Then:

- (a) $P(\vec{u}^n, \vec{z})$ is $\Sigma_0^{(n)}$ in a parameter p.
- (b) Let $\pi' \supset \pi$ such that $\pi' : M \to_{\Sigma_0^{(n)}} M'$. Let R' be $\Sigma_0^{(n)}(M')$ by the same definition. Let P' be $\Sigma_0^{(n)}(M')$ in $\pi'(p)$ by the same definition. Then

$$P'(\vec{u}^n, \vec{z}) \leftrightarrow R'(\vec{u}^n, \pi'(f_1)(z_1), \dots, \pi'(f_r)(z_r)).$$

By Corollary 2.7.15 $\langle M, \pi \rangle$ can have at most one $\Sigma_0^{(n)}$ liftup. But when does it have a liftup? In order to answer this — as before — define a term model $\mathbb{D} = \mathbb{D}^{(n)}$ for the supposed liftup, which will then exist whenever \mathbb{D} is well founded.

Definition 2.7.8. Let M, τ, H, H', π be as above where $\rho_M^n \geq \tau, n \leq w$. The $\Sigma_0^{(n)}$ term model $\mathbb{D} = \mathbb{D}^{(n)}$ is defined as follows: (Let e.g. $M = \langle J_\alpha^A, B \rangle$.) We set: $\mathbb{D} = \langle D, \cong, \tilde{\in}, \tilde{A}, \tilde{B} \rangle$ where:

$$D = D^{(n)} =:$$
 the set of pairs $\langle f, x \rangle$
such that $f \in \Gamma^n(\tau, M)$ and
 $x \in \pi(\operatorname{dom}(f))$

 $\langle f, x \rangle \cong \langle g, y \rangle \leftrightarrow : \langle x, y \rangle \in \pi(e)$, where

$$e = \{ \langle z, w \rangle | f(z) = g(w) \}.$$

 $\langle f, x \rangle \tilde{\in} \langle g, y \rangle \leftrightarrow : \langle x, y \rangle \in \pi(e)$, where

$$e = \{ \langle z, w \rangle | f(z) \in g(w) \}$$

(similarly for \tilde{A}, \tilde{B}).

We shall interpret the model \mathbb{D} in a many sorted language with variables of type $i < \omega$ if $n = \omega$ and otherwise of type $i \leq n$. The variables v^i will range over the domain D_i defined by:

Definition 2.7.9.
$$D_i = D_i^{(n)} =: \{\langle f, x \rangle \in D | f \in \Gamma_i^n \}.$$

Under this interpretation we obtain Los theorem in the form:

Lemma 2.7.17. Let $\varphi(v_1^{i_1}, \ldots, v_r^{i_r})$ be $\Sigma_0^{(n)}$. Then:

$$\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle] \leftrightarrow \langle x_1, \dots, x_r \rangle \in \pi(e)$$

where $e = \{\langle \vec{z} \rangle | M \models \varphi[f_1(z_1), \dots, f_r(z_r)] \}$ and $\langle f_l, x_l \rangle \in D_{i_l}$ for $l = 1, \dots, r$.

Proof: By induction on i we show:

Claim If i < n or $i = n < \omega$, then the assertion holds for $\Sigma_0^{(i)}$ formulae.

Proof: Let it hold for j < i. We proceed by induction on the formula φ .

- **Case 1** φ is primitive (i.e. φ is $v_i \in v_j$, $v_i = v_j$, $\dot{A}v_i$ or $\dot{B}v_i$ (for $M = \langle J_{\alpha}^A, B \rangle$). This is immediate by the definition of \mathbb{D} .
- **Case 2** φ is $\Sigma_h^{(j)}$ where j < i and h = 0 or 1. If h = 0 this is immediate by the induction hypothesis. Let h = 1. Then $\varphi = \bigvee u^j \Psi$, where Ψ is $\Sigma_0^{(i)}$. By bound relettering we can assume *w.l.o.g.* that u^i is not in our good sequence $v_1^{i_1}, \ldots, v_r^{i_r}$. We prove both directions, starting with (\rightarrow) :

Let $\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle]$. Then there is $\langle g, y \rangle \in D_j$ such that

$$\mathbb{D} \models \Psi[\langle g, y \rangle, \langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle]$$

 $(u^j, \vec{v} \text{ being the good sequence for } \Psi)$. Set $e' = \{\langle w, \vec{z} \rangle | M \models \Psi[g(w), \vec{z}(\vec{x})] \}$. Then $\langle y, \vec{x} \rangle \in \pi(e')$ by the induction hypothesis on *i*. But in *M* we have:

$$\bigwedge w, \vec{z}(\langle w, \vec{z} \rangle \in e' \to \langle \vec{z} \rangle \in e).$$

This is a Π_1 statement about e', e. Since $\pi : H \to_{\Sigma_1} H'$ we can conclude:

$$\bigwedge w, \vec{z}(\langle w, \vec{z} \rangle \in \pi(e') \to \langle \vec{z} \in \pi(e)).$$

But $\langle y, \vec{x} \rangle \in \pi(e')$ by the induction hypothesis. Hence $\langle \vec{x} \in \pi(e)$. This proves (\rightarrow) . We now prove (\leftarrow) . Let $\langle \vec{x} \rangle \in \pi(e)$. Let R be the $\Sigma_0^{(j)}$ relation

$$R(w, z_1, \ldots, z_r) \leftrightarrow = M \models \varphi[w, z_1, \ldots, z_r].$$

Let G be a $\Sigma_0^{(j)}(M)$ map to H^j which uniformizes R. Then G is a specialization of a function $G'(z_1^{h_1}, \ldots, z_r^{h_r})$ such that $h_l \leq j$ for $l \leq j$. Thus G' is a good $\Sigma_0^{(j)}$ function. But

$$f_l(z) = F_l(z, p)$$
 for $z \in \text{dom}(f_l)$ for $l = 1, \dots, r$

where F_l is a good $\Sigma_0^{(k)}$ map to H^{h_l} for $l = 1, \ldots, r$ and $j \leq k < i$. (We assume *w.l.o.g.* that the parameter *p* is the same for all $l = 1, \ldots, r_n$.) Define $G''(u^k, w)$ by:

$$G''(u,w) \simeq: G'((u)_0^{r-1},\ldots,(u)_{r-1}^{r-1},w)$$

then G'' is a good $\Sigma_1^{(k)}$ function. Define g by: $\operatorname{dom}(g) = \underset{i=1}{\overset{r}{\times}} \operatorname{dom}(f_i)$ and: $g(\langle \vec{z} \rangle) = G''(\langle \vec{z} \rangle, p)$ for $\langle \vec{z} \rangle \in \operatorname{dom}(g)$. Then $g \in \Gamma^n$ and $g(\langle \vec{z} \rangle) = G(f_1(z_1), \ldots, f_r(z_r))$. Hence, letting:

$$e' = \{ \langle w, \vec{z} \rangle | M \models \Psi[g(w), \vec{f}(\vec{z})] \},\$$

we have:

$$\bigwedge \vec{z}(\langle \vec{z} \rangle \in e \leftrightarrow \langle \langle \vec{z} \rangle, \vec{z} \rangle \in e').$$

This is a Π_1 statement about e, e' in H. Hence in H' we have:

$$\bigwedge \vec{z}(\langle \vec{z} \rangle \in \pi(e) \leftrightarrow \langle \langle \vec{z} \rangle, \vec{z} \rangle \in \pi(e')).$$

But then $\langle \langle \vec{z} \rangle, \vec{z} \rangle \in \pi(e')$. By the induction hypothesis we conclude:

$$\mathbb{D} \models \Psi[\langle g, \langle \vec{z} \rangle \rangle, \langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle].$$

Hence:

$$\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle].$$

QED (Case 2)

Case 3 φ is $\Psi_0 \land \Psi_1, \Psi_0 \land \Psi_1, \Psi_0 \to \Psi_1, \Psi_0 \leftrightarrow \Psi_1$, or $\neg \Psi$.

This is straightforward and we leave it to the reader.

Case 4 $\varphi = \bigvee u^i \in v_l \chi$ or $\bigwedge u^i \in v_l \chi$, where v_l has type $\geq i$. We display the proof for the case $\varphi = \bigvee u^i \in v_l \chi$. We again assume w.l.o.g. that $u' \neq v_j$ for $j = 1, \ldots, r$. Set: $\Psi = (u^i \in v_l \land \chi)$. Then φ is equivalent to $\bigvee u^i \Psi$. Using the induction hypothesis for χ we easily get:

(*)
$$\mathbb{D} \models \Psi[\langle g, y \rangle, \langle f_1, x_i \rangle, \dots, \langle f_r, x_r \rangle] \leftrightarrow \\ \langle y, x_1, \dots, x_n \rangle \in \pi(e')$$

where $e' = \{ \langle w, \vec{z} \rangle | M \models \Psi[g(w), \vec{f}(\vec{z})] \}$. Using (*), we consider two subcases:

Case 4.1 i < n.

We simply repeat the proof in Case 2, using (*) and with i in place of j.

Case 4.2 i = n < w.

(Hence v_l has type n.) For the direction (\rightarrow) we can again repeat the proof in Case 2. For the other direction we essentially revert to the proof used initially for Σ_0 liftups.

We know that $e \in H$ and $\langle \vec{x} \rangle \in \pi(e)$, where $e = \{\langle \vec{z} \rangle | M \models \varphi[f_1(z_1), \dots, f_r(z_r)] \}$. Set:

$$R(w^n, \vec{z}) \leftrightarrow M \models \Psi[w^n, f_1(z_1), \dots, f_r(z_r)].$$

Then R is $\underline{\Sigma}_{0}^{(n)}$ by Corollary 2.7.16. Moreover $\bigvee w^{n}R(w^{n}, \vec{z}) \leftrightarrow \langle \vec{z} \rangle \in e$. Clearly $f_{l} \in H_{M}^{n}$ since $f_{l} \in \Gamma_{n}^{n}$. Let $s \in H_{M}^{n}$ be a well odering of $\bigcup \operatorname{rng}(f_{l})$. Clearly:

$$R(w^n, \vec{z}) \to w^n \in f_l(z_l)$$
$$\to w^n \in \bigcup \operatorname{rng}(f_l).$$

We define a function g with domain e by:

 $g(\langle \vec{z} \rangle)$ = the *s*-least *w* such that $R(w, \vec{z})$.

Since R is $\underline{\Sigma}_{0}^{(n)}$, it follows easily that $g \in H_{\rho^{n}}^{M}$. Hence $g \in \Gamma_{n}^{n}$. But then

 $\bigwedge \vec{z}(\langle \vec{z} \rangle \in e \leftrightarrow \langle \langle \vec{z} \rangle, \vec{z} \rangle \in e'), \text{ where } e' \text{ is defined as above, using this } g.$

Hence in H' we have:

$$\bigwedge \vec{z}(\langle \vec{z} \rangle \in \pi(e) \leftrightarrow \langle \langle \vec{z} \rangle, \vec{z} \rangle \in \pi(e')).$$

Since $\langle \vec{x} \rangle \in \pi(e)$ we conclude that $\langle \langle \vec{x} \rangle, \vec{x} \rangle \in \pi(e')$. Hence:

$$\mathbb{D} \models \Psi[\langle g, \langle \vec{x} \rangle \rangle, \langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle].$$

Hence:

$$\mathbb{D} \models \varphi[\langle f_1, x_1 \rangle, \dots, \langle f_r, x_r \rangle].$$

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If $\tilde{\in}$ is ill founded, then the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$ does not exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If $\tilde{\in}$ is well founded, then the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$ exists.

Proof: We shall again use the term model \mathbb{D} to define an explicit $\Sigma_0^{(n)}$ liftup. We again define:

Definition 2.7.10. $x^* = \pi^*(x) =: \langle \text{const}_x, 0 \rangle$, where $\text{const}_x =: \{\langle x, 0 \rangle\} =$ the constant function x defined on $\{0\}$.

Using Los theorem Lemma 2.7.17 we get:

(1) $\pi^*: M \to_{\Sigma_0^{(n)}} \mathbb{D}$

(where the variables v^i range over D_i on the \mathbb{D} side).

The proof is exactly like the corresponding proof for Σ_0 -liftups ((1) in Lemma 2.7.5). In particular we have: $\pi^* : M \to_{\Sigma_0} \mathbb{D}$. Repeating the proof of (2) in Lemma 2.7.5 we get:

(2) $\mathbb{D} \models$ Extensionality.

Hence \cong is again a congruence relation and we can factor \mathbb{D} , getting:

$$\hat{\mathbb{D}} = (\mathbb{D} \setminus \cong) = \langle \hat{D}, \hat{\in}, \hat{A}, \hat{B} \rangle$$

where

$$D :=: \{\hat{s} | s \in D\}, \ \hat{s} :=: \{t | t \cong s\} \text{ for } s \in D$$
$$\hat{s} \in \hat{t} \leftrightarrow: s \in t$$
$$\hat{A}\hat{s} \leftrightarrow: \tilde{A}s, \ \hat{B}\hat{s} \leftrightarrow: \tilde{B}s$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M', where $M' = \langle |M'|, \in, A', B' \rangle$ is transitive. Set:

$$[s] =: k(\hat{s}) \text{ for } s \in D$$

$$\pi'(x) =: [x^*] \text{ for } x \in M$$

$$H_i =: \{\hat{s}|s \in D_i\}(i < n \text{ or } i = n < \omega)$$

We shall *initially* interpret the variables v^i on the M' side as ranging over H_i . We call this the *pseudo interpretation*. Later we shall show that it (almost) coincides with the intended interpretation. By (1) we have

(3) $\pi': M \to_{\Sigma_0^{(n)}} M'$ in the pseudo interpretation. (Hence $\pi': M \to_{\Sigma_0^{(n)}} M'$.)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. $\langle M', \pi' \rangle$ is the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$.

For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again use the abbreviation:

$$[f, x] =: [\langle f, x \rangle] \text{ for } \langle f, x \rangle \in D.$$

Defining \tilde{H} exactly as in the proof of Lemma 2.7.6, we can literally repeat our previous proofs to get:

(4) \tilde{H} is transitive.

(5)
$$[f, x] = \pi(f)(x)$$
 if $f \in H$ and $\langle f, x \rangle \in D$. (Hence $H = H'$.)

(6) $\pi' \supset \pi$.

(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that $\pi: M \to_{\Sigma^{(n)}} M'$ in the intended interpretation we must show that $H_i = H_M^i$, for i < n and that $H_n \subset H_M^n$. As a first step we show:

(7) H_i is transitive for $i \leq n$.

Proof: Let $s \in H_i, t \in s$. Let s = [f, x] where $f \in \Gamma_i^n$. We must show that t = [g, y] for $g \in \Gamma_i^n$. Let t = [g', y]. Then $\langle y, x \rangle \in \pi(e)$ where

$$e = \{ \langle u, v \rangle | g'(u) \in f(v) \}.$$

Set:

$$a \coloneqq \{u | g'(u) \in \operatorname{rng}(f)\}, g = g' \restriction a.$$

Claim 1 $g \in \Gamma_i^n$.

Proof: $a \subset \operatorname{dom}(q')$ is $\underline{\Sigma}_{0}^{(n)}$. Hence $a \in H$ and $g \in \Gamma^{n}$. If i < n, then $\operatorname{rng}(g) \subset \operatorname{rng}(f) \subset H_{M}^{i}$. Hence $g \in \Gamma_{i}^{n}$. Now let i = n. Then $\operatorname{rng}(f) \in \Gamma_{n}^{n}$ and the relation z = g(y) is $\underline{\Sigma}_{0}^{(n)}$. Hence $g \in H_{M}^{n}$. QED (Claim 1)

Claim 2 t = [g, y]Proof:

$$\bigwedge u, v(\langle u, v \rangle \in e \to \langle u, u \rangle \in e')$$

where $e' = \{ \langle u, w \rangle | g(u) = g'(w) \}$. Hence the same Π_1 statement holds of $\pi(e), \pi(e')$ in H'. Hence $\langle y, y \rangle \in \pi(e')$. Hence [g, y] = [g', y] = t. QED (7)

We can improve (3) to:

(8) Let $\Psi = \bigvee v_{v_1}^{i_1}, \ldots, v_r^{i_r} \varphi$, where φ is $\Sigma_0^{(n)}$ and $i_l < n$ or $i_l = n < \omega$ for $l = 1, \ldots, r$. Then π' is " Ψ -elementary" in the sense that:

 $M \models \Psi[\vec{x}] \leftrightarrow M' \models \Psi[\pi'(\vec{x})]$ in the pseudo interpretation.

Proof: We first prove (\rightarrow) . Let $M \models \varphi[\vec{z}, \vec{x}]$. Then $M' \models \varphi[\pi'(\vec{z}), \pi'(\vec{x})]$ by (3).

We now prove (\leftarrow) . Let:

$$M' \models \varphi[[f_1, z_1], \dots, [f_r, z_r], \pi'(\vec{x})]$$

where $f_l \in \Gamma_{i_l}^n$ for l = 1, ..., r. Since $\pi'(x) = [\text{const}_x, 0]$, we then have: $\langle z_1, \ldots, z_r, 0 \\ \ldots 0 \rangle \in \pi(e)$, where:

$$e = \{ \langle u_1, \dots, u_r, 0 \dots 0 \rangle : M \models \varphi[\tilde{f}(\vec{u}), \vec{x}] \}.$$

Hence $e \neq \emptyset$. Hence

$$\bigvee v_1 \dots v_r M \models \varphi[\vec{f}(\vec{v}), \vec{x}]$$

where $\operatorname{rng}(f_l) \subset H^{i_l}$ for $l = 1, \ldots, r$. Hence $M \models \Psi[\vec{x}]$. QED(8)If i < n, then every $\Pi_1^{(i)}$ formula is $\Sigma_0^{(n)}$. Hence by (8):

(9) If i < n then

 $\pi': M \rightarrow_{\Sigma^{(i)}_{\alpha}} M'$ in the pseudo interpretation.

We also get:

(10) Let n < w. Then:

$$\pi' \upharpoonright H_M^n : H_M^n \to_{\Sigma_0} H_n$$
 cofinally.

Proof: Let $x \in H_n$. We must show that $x \in \pi'(a)$ for an $a \in H^n_M$. Let x = [f, y], where $f \in \Gamma_n^n$. Let $d = \operatorname{dom}(f), a = \operatorname{rng}(f)$. Then $y \in \pi(d)$ and: $\bigwedge z \in d \langle z, 0 \rangle \in e$

$$\bigwedge z \in d \langle z, 0 \rangle$$

where

$$e = \{ \langle u, v \rangle | f(u) \in \text{const}_a(v) \}$$
$$= \{ \langle u, 0 \rangle | f(u) \in a \}.$$

This is a Σ_0 statement about d, e. Hence the same statement holds of $\pi(d), \pi(e)$ in H_n . Hence $\langle z, 0 \rangle \in \pi(e)$. Hence $[f, y] \in \pi'(a)$. QED (10)

(Note: (10) and (3) imply that $\pi': M \to_{\Sigma_{\tau}^{(n)}} M'$ is the pseudo interpretation, but this also follows directly from (8).)

Letting $M = \langle J_{\alpha}^{A}, B \rangle$ and $M' = \langle |M'|, A', B' \rangle$ we define:

$$M_i = \langle H_M^i, A \cap H_M^i, B \cap H_M^i \rangle, M_i' = \langle H_i, A' \cap H_i, B' \cap H_i \rangle$$

for i < n or i = n < w. Then each M_i is acceptable. It follows that:

(11) M'_i is acceptable.

Proof: If i = n, then $\pi' \upharpoonright M_n : M_n \to_{\Sigma_0} M'_n$ cofinally by (3) and (10). Hence M'_n is acceptable by §5 Lemma 2.5.5. If i < n, then $\pi' \upharpoonright M_i : M_i \to_{\Sigma_2^{(i)}} M'_i$ by (9). Hence M'_i is acceptable since acceptability is a Π_2 condition. QED (11)

We now examine the "correctness" of the pseudo interpretation. As a first step we show:

(12) Let $i + 1 \leq n$. Let $A \subset H_{i+1}$ be $\underline{\Sigma}_1^{(i)}$ in the pseudo interpretation. Then $\langle H_{i+1}, A \rangle$ is amenable.

Proof: Suppose not. Then there is $A' \subset H_{i+1}$ such that A' is $\underline{\Sigma}_1^{(i)}$ in the pseudo interpretation, but $\langle H_i, A' \rangle$ is not amenable. Let:

$$A'(x) \leftrightarrow B'(x,p)$$

where B' is $\Sigma_1^{(i)}$ in the pseudo interpretation. For $p \in M'$ we set:

$$A'_p :=: \{x | B'(x, p)\}.$$

Let B be $\Sigma_1^{(i)}(M)$ by the same definition. For $p \in M$ we set:

$$A_p \coloneqq \{x | B(x, p)\}.$$

Case 1 i + 1 < n.

Then $\bigvee p \bigvee a^{i+1} \wedge b^{i+1}b^{i+1} \neq a^{l+1} \cap A'_p$ holds in the pseudo interpretation. This has the form: $\bigvee p \bigvee a^{i+1}\varphi(p, a^{i+1})$ where φ is $\Pi_1^{(i+1)}$, hence $\Sigma_0^{(n)}$ in the pseudo interpretation. By (8) we conclude that $M \models \varphi(p, a^{i+1})$ for some $p, a^{i+1} \in M$. Hence $\langle H_M^{i+1}, A_p \rangle$ is not amenable, where A_p is $\Sigma_1^{(i)}(M)$. Contradiction! QED (Case 1)

Case 2 Case 1 fails.

Then i + 1 = n. Since π' takes H_M^n cofinally to H_n . There must be $a \in H_M^n$ such that $\pi(a) \cap A' \notin H_n$. From this we derive a contradiction. Let $A' = A'_p$ where p = [f, z]. Set: $\tilde{B} = \{\langle z, w \rangle | B(w, f(z)) \}$. Then \tilde{B} is $\underline{\Sigma}_1^{(i)}(M)$. Set: $b = (d \times a) \cap \tilde{B}$, where $d = \operatorname{dom}(f)$. Then $b \in H_M^n$. Define $g: d \to H_M^n$ by:

$$g(z) =: A_{f(z)} \cap a = \{ x \in a | \langle z, x \rangle \in b \}.$$

Then $g \in H^n_M$, since it is rudimentary in $a, b \in H^n_M$. Let $\varphi(u^n, v^n, w)$ be the $\Sigma_0^{(n)}$ statement expressing

$$u = A_w \cap v^n$$
 in M .

Then setting:

$$e = \{ \langle v, 0, w \rangle | M \models \varphi[g(v), a, f(z)] \}$$

we have:

$$\bigwedge v \in d \langle v, 0, v \rangle \in e.$$

But then the same holds of $\pi(d), \pi(e)$ in H_n . Hence $\langle z, 0, z \rangle \in \pi(e)$. Hence: $[g, z] = A_{[f,z]} \cap \pi(a) \in H_n$. Contradiction! QED (12)

On the other hand we have:

(13) Let i + 1 < n. Let $A \subset H_M^{i+1}$ be $\Sigma_1^{(i)}(M)$ in the parameter p such that $A \notin M$. Let A' be $\Sigma_1^{(i)}(M')$ in $\pi'(p)$ by the same $\Sigma_1^{(i)}(M')$ definition in the pseudo interpretation. Then $A' \cap H_{i+1} \notin M'$.

Proof: Suppose not. Then in M' we have:

$$\bigvee a \bigwedge v^{i+1} (v^{i+1} \in a \leftrightarrow A'(v^{i+1})).$$

This has the form $\bigvee a\varphi(a, \pi(p))$ where φ is $\Pi_1^{(i+1)}$ hence $\Sigma_0^{(n)}$. By (8) it then follows that $\bigvee a\varphi(a, p)$ holds in M. Hence $A \in M$. Contradiction! QED (13)

Recall that for any acceptable $M = \langle J^A_{\alpha}, B \rangle$ we can define ρ^i_M, H^i_M by:

$$\begin{split} \rho^0 &= & \alpha \\ \rho^{i+1} &= \text{the least } \rho \text{ such that there is } A \text{ which is} \\ & \underline{\Sigma}_1^{(i)}(M) \text{ with } A \cap \rho \notin M \\ H^i &= & J_{\rho_i}[A]. \end{split}$$

Hence by (11), (12), (13) we can prove by induction on *i* that:

- (14) Let i < n. Then
 - (a) $\rho^{i}_{M'} = \rho_{i}, \ H^{i}_{M'} = H_{i}$
 - (b) The pseudo interpretation is correct for formulae φ , all of whose variables are of type $\leq i$.

By (9) we then have:

(15) $\pi' : M \to_{\Sigma_{\alpha}^{(i)}} M'$ for i < n.

This means that if $n = \omega$, then π' is automatically Σ^* -preserving. If $n < \omega$, however, it is not necessarily the case that $H_n = H_M^n$, — i.e. the pseudo interpretation is not always correct. By (12), however we do have:

- (16) $\rho_n \leq \rho_M^n$, (hence $H_n \subset H_{M'}^n$). Using this we shall prove that π' is $\Sigma_0^{(n)}$ -preserving. As a preliminary we show:
- (17) Let n < w. Let φ be a $\Sigma_0^{(n)}$ formula containing only variables of type $i \leq n$. Let $v_1^{i_1}, \ldots, v_r^{i_r}$ be a good sequence for φ . Let $x_1, \ldots, x_r \in M'$ such that $x_l \in H_{i_l}$ for $l = 1, \ldots, r$. Then $M \models \varphi[x_1, \ldots, x_r]$ holds in the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let C_0 be the set of all such φ with: φ is $\Sigma_1^{(i)}$ for an i < n. Let C be the closure of C_0 under sentential operation and bounded quantifications of the form $\bigwedge v^n \in w^n \varphi$, $\bigvee v^n \in w^n \varphi$. The claim holds for $\varphi \in C_0$ by (15). We then show by induction on φ that it holds for $\varphi \in C$. In passing from φ to $\bigwedge v^n \in w^n \varphi$ we use the fact that w^n is interpreted by an element of H_n . QED (17)

Since $\pi''' H_M^i \subset H_i$ for $i \leq n$, we then conclude:

(18) $\pi': M \to_{\Sigma_{\alpha}^{(n)}} M'.$

It now remains only to show:

(19)
$$[f, x] = \pi'(f)(x).$$

Proof: Let f(x) = G(x, p) for $x \in \text{dom}(f)$, where G is $\Sigma_1^{(j)}$ good for a j < n. Let a = dom(f). Let $\Psi(u, v, w)$ be a good $\Sigma_1^{(j)}$ definition of G. Set:

$$e = \{ \langle z, y, w \rangle | M \models \Psi[f(z), \mathrm{id}_a(y), \mathrm{const}_p(w)] \}.$$

Then $z \in a \to \langle z, z, 0 \rangle \in e$. Hence the same holds of $\pi(a), \pi(e)$. But $x \in \pi(a)$. Hence:

$$M' \models \Psi[[f, x], [\mathrm{id}_a, x], [\mathrm{const}_p, x]],$$

where $[id_a, x] = x$, $[const_p, 0] = \pi'(p)$. Hence:

$$[f, x] = G'(x, \pi'(p)) = \pi'(f)(x),$$

where G' has the same $\Sigma_1^{(j)}$ definition.

Lemma 2.7.20 is then immediate from (6), (18) and (19).

QED (Lemma 2.7.19)

QED (19)

As a corollary of the proof we have:

Lemma 2.7.21. Let $\langle M', \pi' \rangle$ be the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$. Let i < n. Then

- (a) $\pi': M \to_{\Sigma_2^{(i)}} M'$
- (b) If $\rho_M^i \in M$, then $\pi'(\rho_M^i) = \rho_M^i$.
- (c) If $\rho_M^i = \operatorname{On}_M$, then $\rho_{M'}^i = \operatorname{On}_{M'}$.

Proof:

- (a) follows by (9) and (14).
- (b) In M we have:

$$\bigwedge \xi^0 \bigvee \xi^i (\xi^0 < \rho^i_M \leftrightarrow \xi^0 = \xi^i).$$

This has the form $\bigwedge \xi^0 \Psi(\xi^0, \rho_M^i)$ where Ψ is $\Sigma_0^{(n)}$. But then the same holds of $\pi'(\rho_M^i)$ in M' by (8) and (14) — i.e.

$$\bigwedge \xi^0 \bigvee \xi^i (\xi^0 < \pi(\rho_M^i) \leftrightarrow \xi^0 = \xi^i).$$

(c) In M we have $\bigwedge \xi^0 \bigvee \xi^i \xi^0 = \xi^i$, hence the same holds in M' just as above.

QED (Lemma 2.7.21)

The interpolation lemma for $\Sigma_0^{(n)}$ liftups reads:

Lemma 2.7.22. Let $\sigma : H' \to_{\Sigma_0} |M^*|$ and $\pi^* : M \to_{\Sigma_0^{(n)}} M^*$ such that $\pi^* \supset \sigma \pi$. Then the $\Sigma_0^{(n)}$ liftup $\langle M', \pi' \rangle$ of $\langle M, \pi \rangle$ exists. Moreover there is a unique map $\sigma' : M' \to_{\Sigma_0^{(n)}} M^*$ such that $\sigma' \upharpoonright H' = \sigma$ and $\sigma' \pi' = \pi^*$.

Proof: $\tilde{\in}$ is well founded since:

$$\langle f, x \rangle \tilde{\in} \langle g, y \rangle \leftrightarrow \pi^*(f)(\sigma(x)) \in \pi^*(g)(\sigma(y)).$$

Thus $\langle M', \pi' \rangle$ exists. But for $\Sigma_0^{(n)}$ formulae $\varphi = \varphi(v_1^{i_1}, \ldots, v_r^{i_r})$ we have:

$$M' \models \varphi[\pi'(f_1)(x_1), \dots, \pi'(f_r)v_r)]$$

$$\leftrightarrow \langle x_1, \dots, x_n \rangle \in \pi(e)$$

$$\leftrightarrow \langle \sigma(x_1), \dots, \sigma(x_n) \rangle \in \sigma(\pi(e)) = \pi^*(e)$$

$$\leftrightarrow M^* \models \varphi[\pi^*(f_1)(\sigma(x_1)), \dots, \pi^*(f_r)(\sigma(x_r))]$$

where:

$$e = \{ \langle x_1, \dots, x_r \rangle | M \models \varphi[f_1(x_1), \dots, f_r(x_r)] \}$$

and $\langle f_l, x_l \rangle \in \Gamma_{i_l}^n$ for $i = 1, \ldots, r$. Hence there is a $\Sigma_0^{(n)}$ -preserving embedding $\sigma : M' \to M^*$ defined by:

$$\sigma'(\pi'(f)(x)) = \pi^*(f)(\sigma(x)) \text{ for } \langle f, x \rangle \in \Gamma^n.$$

Clearly $\sigma' \upharpoonright H' = \sigma$ and $\sigma' \pi' = \pi^*$. But σ' is the unique such embedding, since if $\tilde{\sigma}$ were another one, we have

$$\tilde{\sigma}(\pi'(f)(x)) = \pi^*(f)(\sigma(x)) = \sigma'(\pi'(f)(x)).$$

QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map π , for instance:

Lemma 2.7.23. Let $\langle M^*, \pi^* \rangle$ be the $\Sigma_0^{(n)}$ liftup of $\langle M, \pi \rangle$. Let $\pi^* \upharpoonright \rho_M^{n+1} = \operatorname{id}$ and $\mathbb{P}(\rho_M^{n+1}) \cap M^* \subset M$. Then $\rho_{M^*}^n = \sup \pi^{*''} \rho_M^n$.

(Hence the pseudo interpretation is correct and π^* is $\Sigma_1^{(n)}$ preserving.)

Proof: Suppose not. Let $\tilde{\rho} = \sup \pi^{*''} \rho_M^n < \rho_{M^*}^n$. Set:

$$H^n=H^n_M=J^{A_M}_{\rho^n_M};\;\tilde{H}=J^{A_M}_{\tilde{\rho}}.$$

Then $\tilde{H} \in M^*$. Let A be $\Sigma_1^{(n)}(M)$ in p such that $A \cap \rho_M^{n+1} \notin M$. Let:

$$Ax \leftrightarrow \bigvee y^n B(y^n, x),$$

where B is $\Sigma_0^{(n)}$ in p. Let B^* be $\Sigma_0^{(n)}(M^*)$ in $\pi^*(p)$ by the same definition. Then

$$\pi^* \upharpoonright H^n : \langle H^n, B \cap H^n \rangle \to_{\Sigma_1} \langle \tilde{H}, B^* \cap \tilde{H} \rangle.$$

Then $A \cap \rho_M^{n+1} = \tilde{A} \cap \rho_M^{n+1}$, where:

$$\tilde{A} = \{x | \bigvee y^n \in \tilde{H} B^*(y, x)\}.$$

But \tilde{A} is $\Sigma_1^{(n)}(M^*)$ in $\pi^*(p)$ and \tilde{H} . Hence

$$A \cap \rho_M^{n+1} = \tilde{A} \cap \rho_M^{n+1} \in \mathbb{P}(\rho_M^{n+1}) \cap M^* \subset M.$$

Contradiction!

QED (Lemma 2.7.23)