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2.7 Liftups

2.7.1 The ⌃0 liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the ⌃0 liftup). We can define it as
follows:

Definition 2.7.1. Let M be a J–model. Let ⌧ > ! be a cardinal in M . Let
H = HM

⌧ 2M and let ⇡ : H !⌃0 H 0 cofinally. We say that hM 0,⇡0i is a ⌃0

liftup of hM,⇡i iff M 0 is transitive and:

(a) ⇡0 � ⇡ and ⇡0
: M !⌃0 M 0

(b) Every element of M 0 has the form ⇡0
(f)(x) for an x 2 H 0 and an

f 2 �0, where �0 = �
0
(⌧,M) is the set of functions f 2 M such that

dom(f) 2 H.

Note. The condition of being a J–model can be relaxed considerably, but
that is uninteresting for our purposes.

Until further notice we shall use the word ’liftup’ to mean ’⌃0 liftup’.

If hM 0,⇡0i is a liftup of hM,⇡i it follows easily that:

Lemma 2.7.1. ⇡0
: M !⌃0 M 0 cofinally.

Proof: Let y 2 M 0, y = ⇡0
(f)(x) where x 2 H 0 and f 2 �0, then y 2

⇡0
(rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. hM 0,⇡0i is the only liftup of hM,⇡i.

Proof: Suppose not. Let hM⇤,⇡⇤i be another liftup. Let '(v1, . . . , vn) be
⌃0. Then

M 0 |= '[⇡0
(f1)(x1), . . . ,⇡0

(fn)(xn)]$

hx1, . . . , xni 2 ⇡({h~zi|M |= '[~f(~z)]})$
M⇤ |= '[⇡⇤

(f1)(x1), . . . ,⇡⇤
(fn)(xn)].

Hence there is an isomorphism � of M 0 onto M⇤ defined by:

�(⇡0
(f)(x)) = ⇡⇤

(f)(x)

for f 2 �0, x 2 ⇡(dom(f)).

But M 0,M⇤ are transitive. Hence � = id, M 0
= M⇤, ⇡0

= ⇡⇤.
QED (Lemma 2.7.2)
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Note. M |= '[~f(~z)] means the same as

_
y1 . . . yn(

n^

i=1

yi = fi(zi) ^M |= '[~y]).

Hence if e = {h~zi|M |= '[~f(~z)]}, then e ⇢
n

⇥
i=1

dom(fi) 2 H. Hence e 2 M

by rud closure, since e is ⌃0(M). But then e 2 H, since P(u) \M ⇢ H for
u 2 H.

But when does the liftup exist? In answering this question it is useful to
devise a ’term model’ for the putative liftup rather like the ultrapower con-
struction:

Definition 2.7.2. Let M, ⌧,⇡ : H !⌃0 H 0 be as above. The term model
D = D(M,⇡) is defined as follows. Let e.g. M = hJA

↵ , Bi. D =: hD,⇠=
, 2̃, Ã, B̃i where

D = the set of pairs hf, xi such that f 2 �0 and x 2 H 0

hf, xi ⇠= hg, yi $: hx, yi 2 ⇡({hz, wi|f(z) = g(y)})
hf, xi2̃hg, yi $: hx, yi 2 ⇡({hz, wi|f(z) 2 g(y)})

Ãhf, xi $: x 2 ⇡({z|Af(z)})

B̃hf, xi $: x 2 ⇡({z|Bf(z)})

Note. D is an ’equality model’, since the identity predicate = is interpreted
by ⇠= rather than the identity.

Łos theorem for D then reads:

Lemma 2.7.3. Let ' = '(v1, . . . , vn) be ⌃0. Then

D |= '[hf1, x1i, . . . , hfn, xni]$ hx1, . . . , xni 2 ⇡({h~zi|M |= '[~f(~z)]}).

Proof: (Sketch)
We prove this by induction on the formula '. We display a typical case of the
induction. Let ' =

W
u 2 v1 . By bound relettering we can assume w.l.o.g.

that u is not among v1, . . . , vn. Hence u, v1, . . . , vn is a good sequence for  .
We first prove (!). Assume:

D |= '[hf1, x1i, . . . , hfn, xni].

Claim hx1, . . . , xni 2 ⇡(e) where

e = {hz1, . . . , zni|M |= '[f1(z1) . . . fn(zn)]}.
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Proof: By our assumption there is hg, yi 2 D such that hg, yi2̃hf1, x1i and:

D |=  [hg, yi, hf1, x1i, . . . , hfn, xni].

By the induction hypothesis we conclude that hy, ~xi 2 ⇡(ẽ) where:

ẽ = {hw, ~zi|g(w) 2 f1(z1) ^M |=  [g(w), ~f(~z)}.

Clearly e, ẽ 2 H and

H |=
^

w, ~z(hw, ~zi 2 ẽ! h~zi 2 e).

Hence
H 0 |=

^
w, ~z(hw, ~zi 2 ⇡(e)! h~zi 2 ⇡(e)).

Hence h~xi 2 ⇡(e). QED (!)

We now prove ( )

We assume that hx1, . . . , xni 2 ⇡(e) and must prove:

Claim D |= '[hf1, x1i, . . . , hfn, xni].

Proof: Let r 2M be a well ordering of rng(f1). For h~zi 2 e set:

g(h~zi) = the r–least w such that

M |=  [w, f1(z1), . . . , fn(zn)].

Then g 2 M and dom(g) = e 2 H. Now let ẽ be defined as above with this
g. Then:

H |=
^

z1, . . . , zn(h~zi 2 e$ hh~zi, ~zi 2 ẽ).

But then the corresponding statement holds of ⇡(e),⇡(ẽ) in H 0. Hence

hh~xi, ~xi 2 ⇡(ẽ).

By the induction hypothesis we conclude:

D |=  [hg, h~xii, hf1, x1i, . . . , hfn, xni].

The conclusion is immediate. QED (Lemma 2.7.3)

The liftup of hM,⇡i can only exist if the relation ẽ is well founded:

Lemma 2.7.4. Let 2̃ be ill founded. Then there is no hM 0,⇡0i such that
⇡0

: M !⌃0 M 0. M 0 is transitive, and ⇡0 � ⇡.
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Proof: Suppose not. Let hfi+1, xi+1i2̃hfi, xii for i < w. Then

hxi+1, xii 2 ⇡{hz, wi|fi+1(z) 2 fi(w)}.

Hence ⇡0
(fi+1)(xi+1) 2 ⇡0

(fi)(xi)(i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let 2̃ be well founded. Then the liftup of hM,⇡i exists.

Proof: We shall explicitly construct a liftup from the term model D. The
proof will stretch over several subclaims.

Definition 2.7.3. x⇤ = ⇡⇤
(x) =: hconstx, 0i, where constx =: {hx, 0i} =

the constant function x defined on {0}.

Then:

(1) ⇡⇤
: M !⌃0 D.

Proof: Let '(v1, . . . , vn) be ⌃0. Set:

e = {hz1, . . . , zni|M |= '[constx1(z1), . . . , constxn(zn)]}.

Obviously:

e =

(
{h0, . . . , 0i} if M |= '[x1, . . . , xn]

; if not.

Hence by Łoz theorem:

D |= '[x⇤
1
, . . . , x⇤n] $ h0, . . . , 0i 2 ⇡(e)

$M |= '[x1, . . . , xn]

(2) D |= Extensionality.
Proof: Let '(u, v) =:

V
w 2 uw 2 v ^

V
w 2 v w 2 u.

Claim D |= '[a, b]! a ⇠= b for a, b 2 D. This reduces to the Claim:
Let a = hf, xi, b = hg, yi. Then

D |= '[hf, xi, hg, yi] $ hx, yi 2 ⇡(e)

$ hf, xi ⇠= hg, yi

where
e = {hz, wi|M |= '[z, w]}

= {hz, wi|f(z) = g(w)}
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QED (2)
Since ⇠= is a congruence relation for D we can factor D by ⇠=, getting:

D̂ = (D\ ⇠=) = hD̂, 2̂, Â, B̂i

where:
D̂ = {ŝ|s 2 D}
ŝ =: {t|t ⇠= s} for s 2 D

ŝ2̂t̂$: s2̃t

Âŝ$: Ãs, B̂ŝ$: B̃s.

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism k of D̂ onto
M 0, where M 0

= h|M 0|,2, A0, B0i is transitive.
Set:

[s] =: k(ŝ) for s 2 D

⇡0
(x) =: [x⇤] for x 2M.

Then by (1):

(3) ⇡0
: M !⌃0 M 0.

Lemma 2.7.5 will then follow by:

Lemma 2.7.6. hM 0,⇡0i is the liftup of hM,⇡i.

We shall often write [f, x] for [hf, xi]. Clearly every s 2 M 0 has the
form [f, x] where f 2M ; dom(f) 2 H, x 2 H 0.

Definition 2.7.4. H̃ =: the set of [f, x] such that hf, xi 2 D and
f 2 H.

We intend to show that [f, x] = ⇡(f)(x) for x 2 H̃. As a first step we
show:

(4) H̃ is transitive.
Proof: Let s 2 [f, x] where f 2 H.
Claim s = [g, y] for a g 2 H.
Proof: Let s = [g0, y]. Then hy, xi 2 ⇡(e) where: e = {hu, vi|g0(u) 2
f(v)} set:

e0 = {u|g0(u) 2 rng(f)}, g = g0 �e0.
Then g ⇢ rng(f) ⇥ dom(g0) 2 H. Hence g 2 H. Then [g0, y] = [g, y]
since ⇡(g0)(y) = ⇡(g)(y) and hence
hy, yi 2 ⇡({hu, vi|g0(u) = g(v)}). But e = {hu, vi|g(u) 2 f(v)}. Hence
[g, y] 2 [f, x]. QED (4)
But then:
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(5) [f, x] = ⇡(f)(x) for f 2 H, hf, xi 2 D.
Proof: Let f, g 2 H, hf, xi, hg, yi 2 D. Then:

[f, x] 2 [g, y] $ hx, yi 2 ⇡(e)

$ ⇡(f)(x) 2 ⇡(g)(y)

where e = {hu, vi|f(u) 2 g(v)}. Hence there is an 2–isomorphism � of
H onto H̃ defined by:

�(⇡(f)(x)) =: [f, x].

But then � = id, since H, H̃ are transitive. (5)
But then:

(6) ⇡0 � ⇡.
Proof: Let x 2 H. Then ⇡0

(x) = [constx, 0] = ⇡(constx)(0) = ⇡(x)
by (5).

(7) [f, x] = ⇡0
(f)(x) for hf, xi 2 D.

Proof: Let a = dom(f). Then [ida, x] = id⇡(a)(x) = x by (5). Hence
it suffices to show:

[f, x] = [constf , 0]([ida, x]).

But this says that hx, 0i 2 ⇡(e) where:

e = {hz, ui|f(z) = constf (u)(ida(z))}
= {hz, 0i|f(z) = f(z)} = a⇥ {0}.

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let ⇡⇤ � ⇡ such that ⇡⇤
: M !⌃0 M⇤. Then the liftup

hM 0,⇡0i of hM,⇡i exists. Moreover there is a � : M 0 !⌃0 M⇤ uniquely
defined by the condition:

� �H 0
= id, �⇡0

= ⇡⇤.

Proof: hM 0,⇡0i exists, since 2̃ is well founded, since hf, xi2̃hg, yi $ ⇡⇤
(f)(x) 2

⇡⇤
(g)(y). But then:

M 0 |= '[⇡0
(f1)(x1), . . . ,⇡0

(fr)(xr)]$
$ hx1, . . . , xri 2 ⇡(e)

$M⇤ |= '[⇡⇤
(f1)(x1), . . . ,⇡⇤

(fr)(xr)]
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where e = {hz1, . . . , zri|M |= '[~f(~z)]}. Hence there is � : M 0 !⌃0 M⇤

defined by:
�(⇡0

(f)(x)) = ⇡⇤
(f)(x) for hf, xi 2 D.

Now let �̃ : M 0 !⌃0 M⇤ such that �̃ �H 0
= id and �̃⇡0

= ⇡r.

Claim �̃ = �.
Let s 2 M 0, s = ⇡0

(f)(x). Then �̃(⇡0
(f)) = ⇡⇤

(f), �̃(x) = x. Hence
�̃(s) = ⇡⇤

(f)(x) = �(s). QED (Lemma 2.7.7)

2.7.2 The ⌃(n)

0
liftup

From now on suppose M to be acceptable. We now attempt to generalize
the notion of ⌃0 liftup. We suppose as before that ⌧ > w is a cardinal in
M and H = HM

⌧ . As before we suppose that ⇡0
: H !⌃0 H 0 cofinally. Now

let ⇢n � ⌧ . The ⌃0–liftup was the "minimal" hM 0,⇡0i such that ⇡0 � ⇡ and
⇡0

: M !⌃0 M 0. We shall now consider pairs hM 0,⇡0i such that ⇡0 � ⇡ and
⇡0

: M !⌃n
0
M 0. Among such pairs hM 0,⇡0i we want to define a "minimal"

one and show, if possible, that it exists. The minimality of the ⌃0 liftup was
expressed by the condition that every element of M 0 have the form ⇡0

(f)(x),
where x 2 H 0 and f 2 �0(⌧,M). As a first step to generalizing this definition
we replace �0(⌧,M) by a larger class of functions �n(⌧,M).

Definition 2.7.5. Let n > 0 such that ⌧  ⇢n
M

. �n = �
n
(⌧,M) is the set

of maps f such that

(a) dom(f) 2 H

(b) For some i < n there is a good ⌃(i)

1
(M) function G and a parameter

p 2M such that f(x) = G(x, p) for all x 2 dom(f).

Note. Good ⌃(i)

1
functions are many sorted, hence any such function can be

identified with a pair consisting of its field and its arity. An element of �n,
on the other hand, is 1–sorted in the classical sense, and can be identified
with its field.
Note. This definition makes sense for the case n = !, and we will not
exclude this case. A ⌃

(!)

0
formula (or relation) then means any formula (or

relation) which is ⌃(i)

0
for an i < ! — i.e. ⌃(!)

0
= ⌃

⇤.

We note:

Lemma 2.7.8. Let f 2 �n such that rng(f) ⇢ H i, where i < n. Then
f(x) = G(x, p) for x 2 dom(f) where G is a good ⌃(h)

1
function to H i for

some h < n.
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Proof: Let f(x) = G0
(x, p) for x 2 dom(f) where G0 is a good ⌃(h)

1
function

to Hj where h, j < n. Since every good ⌃(h)

1
function is a good ⌃k

1
function

for k � h, we can assume w.l.o.g. that i, j  h. Let F be the identity function
defined by vi = uj (i.e. yi = F (xj)$ yi = xj). Set: G(x, y) ': F (G0

(x, y)).
Then F is a good ⌃(h)

1
function and so is G, where f(x) = G(x, p) for

x 2 dom(f).
QED (Lemma 2.7.8)

Lemma 2.7.9. �i(⌧,M) ⇢ �n(⌧,M) for i < n.

Proof: For 0 < i this is immediat by the definition. Now let i = 0. If
f 2 �0, then f(x) = G(x, f) for x 2 dom(f) where G is the ⌃(0)

0
function

defined by
y = G(x, f)$: (f is a function ^

^hy, xi 2 f).

QED (Lemma 2.7.9)

The "natural" minimality condition for the ⌃(n)

0
liftup would then read: Each

element of M has the form ⇡0
(f)(x) where x 2 H 0 and f 2 �n. But what

sense can we make of the expression "⇡0
(f)(x)" when f is not an element of

M? The following lemma rushes to our aid:

Lemma 2.7.10. Let ⇡0
: M !

⌃
(n)
0

M 0 where n > 0 and ⇡0 � ⇡. There is a
unique map ⇡00 on �n(⌧,M) with the following property:

⇤ Let f 2 �n(⌧,M) such that f(x) = G(x, p) for x 2 dom(f) where G

is a good ⌃(i)

1
function for an i < n and � is a good ⌃(i)

1
definition of

G. Let G0 be the function defined on M 0 by �. Let f 0
= ⇡00

(f). Then
dom(f 0

) = ⇡(dom(f)) and f 0
(x) = G0

(x,⇡0
(p)) for x 2 dom(f 0

).

Proof: As a first approximation, we simply pick G,� with the above prop-
erties. Let G0 then be as above. Let d = dom(f). The statementV
x 2 d

W
y y = G(x, p) is ⌃(n)

0
is d, p, so we have:

^
x 2 ⇡(d)

_
y y = G0

(x,⇡(p)).

Define f0 by dom(f0) = ⇡(d) and f0(x) = G0
(x,⇡(p)) for x 2 ⇡(d). The

problem is, of course, that G,� were picked arbitrarily. We might also have:

f(x) = H(x, q) for x 2 d,

where H is ⌃(j)

1
(M) for a j < n and  is a good ⌃(j)

1
definition of H. Let

H 0 be the good function on M 0 defined by  . As before we can define f1
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by dom(f1) = ⇡(d) and f1(x) = H 0
(x,⇡0

(q)) for x 2 ⇡(d). We must show:
f0 = f1. We note that:

^
x 2 dG(x, p) = H(x, q).

But this is a ⌃(n)

0
statement. Hence

^
x 2 ⇡(d)G0

(x, p) = H 0
(x, q).

Then f0 = f1. QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let n,⇡, ⌧,⇡0,⇡00 be as above. Then ⇡00
(f) = ⇡0

(f) for
f 2 �0(⌧,M).

Proof: We know f(x) = G(x, f) for x 2 d = dom(f), where:

y = G(x, f)$: (f is a function ^ y = f(x)).

Then ⇡00
(f)(x) = G0

(x,⇡0
(f)) = ⇡0

(f)(x) for x 2 ⇡(d), where G0 has the
same definition over M 0. QED (Lemma 2.7.11)

Thus there is no ambiguity in writing ⇡0
(f) instead of ⇡00

(f) for f 2 �n.
Doing so, we define:

Definition 2.7.6. Let ! < ⌧ < ⇢n
M

where n  ! and ⌧ is a cardinal in M .
Let H = HM

⌧ and let ⇡ : H !⌃0 H 0 cofinally. We call hM 0,⇡0i a ⌃(n)

0
liftup

of hM,⇡i iff the following hold:

(a) ⇡0 � ⇡ and ⇡0
: M !

⌃
(n)
0

M 0.

(b) Each element of M 0 has the form ⇡0
(f)(x), where f 2 �n(⌧,M) and

x 2 H 0.

(Thus the old ⌃0 liftup is simply the special case: n = 0.)

Definition 2.7.7. �n
i
(⌧,M) =: the set of f 2 �n(⌧,M) such that either

i < n and rng(f) ⇢ H i

M
or i = n < ! and f 2 H i

M
.

(Here, as usual, H i
= J

⇢
i
M
[A] where M = hJA

↵ , Bi.)

Lemma 2.7.12. Let f 2 �n
i
(⌧,M). Let ⇡0

: M !
⌃

(n)
0

M 0 where ⇡0 � ⇡.
Then ⇡0

(f) 2 �n
i
(⇡0

(⌧),M 0
).
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Proof:

Case 1 i = n. Then f 2 HM

⇢
n
M

. Hence ⇡0
(f) 2 HM

0
⇢
n
M

.

Case 2 i < n.

By Lemma 2.7.9 for some h < n there is a good ⌃(n)

1
(M) function G(u, v)

to H i and a parameter p such that

f(x) = G(x, p) for x 2 dom(f).

Hence:
⇡0
(f)(x) = G0

(x,⇡0
(p)) for x 2 dom(⇡(f)),

where G0 is defined over M 0 by the same good ⌃
(n)

1
definition. Hence

rng(⇡0
(f)) ⇢ H i

M
. QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding ⌃(n)

0
liftups.

Lemma 2.7.13. Let R(xi1
1
, . . . , xirr ) be ⌃(n)

0
where i1, . . . , ir  n. Let fl 2

�
n

il
(l = 1, . . . , r). Then:

(a) The relation P is ⌃(n)

0
in a parameter p where:

P (~z)$: R(f1(z1), . . . , fr(zr)).

(b) Let ⇡0 � ⇡ such that ⇡0
: M !

⌃
(n)
0

M 0. Let R0 be ⌃(n)

0
(M 0

) by the same

definition as R. Then P 0 is ⌃(n)

0
(M 0

) in ⇡0
(p) by the same definition

as P in p, where:

P 0
(~z)$: R0

(⇡0
(f1)(z1), . . . ,⇡

0
(fr)(zr)).

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Let e = {h~zi|P (~z)}. Then e 2 H and ⇡(e) = {h~zi|P 0
(~z)}.

Proof: Clearly e ⇢ d =
r

⇥
l=1

dom(fl) 2 H. But then d 2 H⇢n and e 2 H⇢n

since hH⇢n , P\H⇢ni is amenable. Hence e 2 H, since H = HM
⌧ and therefore

P(u) \M ⇢ H for u 2 H.

Now set e0 = {h~zi|P 0
(~z)}. Then e0 ⇢ ⇡(d) =

r

⇥
l=1

dom(⇡(fl)) since ⇡0 � ⇡ and

hence ⇡(dom(fl)) = dom(⇡(fl)). But
^
h~zi 2 d(h~zi 2 e$ P (~z))
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which is a ⌃(n)

0
statement about e, p. Hence the same statement holds of

⇡(e),⇡(p) in M 0. Hence
^
h~zi 2 ⇡(d)(h~zi 2 ⇡(e)$ P 0

(~z)).

Hence ⇡(e) = e0. QED (Corollary 2.7.14)

Corollary 2.7.15. hM,⇡i has at most one ⌃(n)

0
liftup hM 0,⇡0i.

Proof: Let hM⇤,⇡⇤i be a second such. Let '(vi1
1
, . . . , virr ) be a ⌃(n)

0
for-

mula. (In fact, we could take it here as being ⌃(0)

0
.) Let e = {h~zi|M |=

'[f1(z1), . . . , fr(zr)]} where fl 2 �nil(l = 1, . . . , r). Then:

M 0 |= '[⇡0
(f1)(x1), . . . ,⇡0

(fr)(xr)]$
$ hx1, . . . , xri 2 ⇡(e)

$M⇤ |= '[⇡⇤
(f1)(x1), . . . ,⇡⇤

(fr)(xr)]

for xl 2 ⇡(dom(fl)(l = 1, . . . , r).

Hence there is an isomorphism � : M 0!̃M⇤ defined by:

�(⇡0
(f)(x)) =: ⇡⇤

(f)(x)

for f 2 �n, x 2 ⇡(dom(f)). But M 0,M⇤ are transitive. Hence � = id,M 0
=

M⇤,⇡0
= ⇡⇤. QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n = 0.
Then f1, . . . , fr 2 M and P is ⌃0 in p = hf1, . . . , fri, since fi is rudi-
mentary in p and for sufficiently large h we have:

P (~z)$
_

y1,...,yr 2 Ch(p)(
r^

i=1

yi = fi(~zi) ^R(~y))

where R is ⌃0. If P 0 has the same ⌃0 definition over M 0 in ⇡0
(p), then

P 0
(z) $

W
y1,...,yr

2 Ch(⇡(p))(
rV

n=1

yi = ⇡(fi)(zi) ^R(~y))

$ R(⇡(~f)(~z))

QED
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Case 2 n = !.
Then ⌃!

0
=

S
h<w

⌃
(h)

1
. Let R(xi1

1
, . . . , xlrr ) be ⌃(h)

1
. Since every ⌃(h)

1

relation is ⌃(k)

1
for k � h, we can assume h taken large enough that

i1, . . . , ir  h. We can also choose it large enough that:

fl(z) ' Gl(z, p) for l = 1, . . . , v

where Gl is a good ⌃(h)

1
map to H il . (We assume w.l.o.g. that p is the

same for l = 1, . . . , r and that dl = dom(fl) is rudimentary in p.) Set:

P (~z, y)$: R(G1x1, y), . . . , G(xr, y)).

By §6 Lemma 2.6.24, P is ⌃(h)

1
(uniformly in the ⌃(h)

1
definition of R

and G1, . . . , Gr). Moreover:

P (~z)$ P (~z, p).

Thus P is uniformly ⌃(h)

1
in p, which proves (a). But letting P 0 have

the same ⌃(h)

1
definition in ⇡0

(p) over M 0, we have:

P 0
(~z) $ P 0

(~z,⇡0
(p))

$ R0
(⇡0

(f1)(z1), . . . ,⇡0
(fr)(zr)),

which proves (b). QED (Case 2)

Case 3 0 < n < w.
Let n = m+1. Rearranging arguments as necessary, we can take R as
given in the form:

R(yn1 , . . . , y
n

s , x
i1
1
, . . . , xirr )

where i1, . . . , ir  m. Let fl 2 �nil for l = 1, . . . , r and let g1, . . . , g1 2
�
n
n.

Claim

(a) P is ⌃(n)

0
in a parameter p where

P (~w, ~z)$: R(~g(~w), ~f(~z)).

(b) If ⇡0,M 0 are as above and P 0 is ⌃(n)

0
(M 0

) in ⇡0
(p) by the same

definition, then

P 0
(w, ~z)$ R0

(⇡0
(~g)(~w),⇡0

(~f)(~z))

where R0 has the same ⌃(n)

0
definition over M 0.



138 CHAPTER 2. BASIC FINE STRUCTURE THEORY

We prove this by first substituting ~f(~z) and then ~g(~w), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
P0(~y

n, ~z)$= R(yn, f1(z1), . . . , fr(zr)).

Then:

(a) P0 is ⌃(n)

0
(M) in a parameter p0.

(b) Let ⇡0,M 0, R0 be as above. Let P 0
0

have the same ⌃(n)

0
(M 0

) defi-
nition in ⇡0

(p0). Then:

P 0
0(~y

n, ~z)$ R0
(yn,⇡0

(~f)(~z)).

Claim 2 Let
P (~w, ~z)$: P0(g1(w1), . . . , gs(ws), ~z).

Then:

(a) P is ⌃(n)

0
(M) in a parameter p.

(b) Let ⇡0,M 0, P 0
0

be as above. Let P 0 have the same ⌃(n)

1
(M 0

) defi-
nition in ⇡0

(p). Then

P 0
(~w, ~z)$ P 0

0(⇡
0
(~g)(~w), ~z).

We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that g1, . . . , gs 2 Hn.
Set: p = hg1, . . . , gn, pi. Then P is ⌃(n)

0
(M) in p, since:

P (~w, ~z)$
_

y1 . . . ys 2 Ch(p)(
s^

i=1

yi = gi(wi) ^ P0(~y, ~z))

where gi, p0 are rud in P , for a sufficiently large h. But if P 0 is ⌃(n)

0
(M 0

) in
⇧

0
(P ) by the same definition, we obviously have:

P 0
(~w, ~z) $

W
y1 . . . yr(

sV
i=1

yi = ⇡0
(g)(wi) ^ P 0

0
(~y, ~z))

P 0
0
(⇡0

(~g)(~w), ~z).

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments ~un. Thus, after re-
arranging arguments we would have R(~un, ~yn, xi1

1
, . . . , xirr ) where i1, . . . , ir <

n. We would then define

P (~un, ~w,~z)$: R(~un,~g(~w), ~f(~z)).

This gives us:
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Corollary 2.7.16. Let n < w. Let R(~un, xi1
1
, . . . , xirr ) be ⌃(n)

0
where i1, . . . , ip 

n. Let fl 2 �nil for l = 1, . . . , r. Set:

P (~un, ~z)$: R(~un, f1(z1), . . . , fr(zr)).

Then:

(a) P (~un, ~z) is ⌃(n)

0
in a parameter p.

(b) Let ⇡0 � ⇡ such that ⇡0
: M !

⌃
(n)
0

M 0. Let R0 be ⌃(n)

0
(M 0

) by the same

definition. Let P 0 be ⌃(n)

0
(M 0

) in ⇡0
(p) by the same definition. Then

P 0
(~un, ~z)$ R0

(~un,⇡0
(f1)(z1), . . . ,⇡

0
(fr)(zr)).

By Corollary 2.7.15 hM,⇡i can have at most one ⌃(n)

0
liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D(n) for the supposed liftup, which will then exist whenever D is well
founded.

Definition 2.7.8. Let M, ⌧, H,H 0,⇡ be as above where ⇢n
M
� ⌧, n  w.

The ⌃(n)

0
term model D = D(n) is defined as follows: (Let e.g. M = hJA

↵ , Bi.)
We set: D = hD,⇠=, 2̃, Ã, B̃i where:

D = D(n)
=: the set of pairs hf, xi

such that f 2 �n(⌧,M) and

x 2 ⇡(dom(f))

hf, xi ⇠= hg, yi $: hx, yi 2 ⇡(e), where

e = {hz, wi|f(z) = g(w)}.

hf, xi2̃hg, yi $: hx, yi 2 ⇡(e), where

e = {hz, wi|f(z) 2 g(w)}

(similarly for Ã, B̃).

We shall interpret the model D in a many sorted language with variables of
type i < ! if n = ! and otherwise of type i  n. The variables vi will range
over the domain Di defined by:

Definition 2.7.9. Di = D(n)

i
=: {hf, xi 2 D|f 2 �n

i
}.

Under this interpretation we obtain Łos theorem in the form:
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Lemma 2.7.17. Let '(vi1
1
, . . . , virr ) be ⌃(n)

0
. Then:

D |= '[hf1, x1i, . . . , hfr, xri]$ hx1, . . . , xri 2 ⇡(e)

where e = {h~zi|M |= '[f1(z1), . . . , fr(zr)]} and hfl, xli 2 Dil for l = 1, . . . , r.

Proof: By induction on i we show:

Claim If i < n or i = n < !, then the assertion holds for ⌃(i)

0
formulae.

Proof: Let it hold for j < i. We proceed by induction on the formula '.

Case 1 ' is primitive (i.e. ' is vi2̇vj , vi=̇vj , Ȧvi or Ḃvi (for M = hJA
↵ , Bi).

This is immediate by the definition of D.

Case 2 ' is ⌃(j)

h
where j < i and h = 0 or 1. If h = 0 this is immediate

by the induction hypothesis. Let h = 1. Then ' =
W
uj , where  

is ⌃(i)

0
. By bound relettering we can assume w.l.o.g. that ui is not in

our good sequence vi1
1
, . . . , virr . We prove both directions, starting with

(!):

Let D |= '[hf1, x1i, . . . , hfr, xri]. Then there is hg, yi 2 Dj such that

D |=  [hg, yi, hf1, x1i, . . . , hfr, xri]

(uj ,~v being the good sequence for ). Set e0 = {hw, ~zi|M |=  [g(w), ~z(~x)]}.
Then hy, ~xi 2 ⇡(e0) by the induction hypothesis on i. But in M we
have: ^

w, ~z(hw, ~zi 2 e0 ! h~zi 2 e).

This is a ⇧1 statement about e0, e. Since ⇡ : H !⌃1 H 0 we can
conclude: ^

w, ~z(hw, ~zi 2 ⇡(e0)! h~z 2 ⇡(e)).

But hy, ~xi 2 ⇡(e0) by the induction hypothesis. Hence h~x 2 ⇡(e). This
proves (!). We now prove ( ). Let h~xi 2 ⇡(e). Let R be the ⌃(j)

0

relation
R(w, z1, . . . , zr)$= M |= '[w, z1, . . . , zr].

Let G be a ⌃(j)

0
(M) map to Hj which uniformizes R. Then G is a

spezialization of a function G0
(zh1

1
, . . . , zhr

r ) such that hl  j for l  j.
Thus G0 is a good ⌃(j)

0
function. But

fl(z) = Fl(z, p) for z 2 dom(fl) for l = 1, . . . , r
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where Fl is a good ⌃(k)

0
map to Hhl for l = 1, . . . , r and j  k < i. (We

assume w.l.o.g. that the parameter p is the same for all l = 1, . . . , rn.)
Define G00

(uk, w) by:

G00
(u,w) ': G0

((u)r�1

0
, . . . , (u)r�1

r�1
, w)

then G00 is a good ⌃(k)

1
function. Define g by: dom(g) =

r

⇥
i=1

dom(fi)

and: g(h~zi) = G00
(h~zi, p) for h~zi 2 dom(g). Then g 2 �n and g(h~zi) =

G(f1(z1), . . . , fr(zr)). Hence, letting:

e0 = {hw, ~zi|M |=  [g(w), ~f(~z)]},

we have: ^
~z(h~zi 2 e$ hh~zi, ~zi 2 e0).

This is a ⇧1 statement about e, e0 in H. Hence in H 0 we have:
^

~z(h~zi 2 ⇡(e)$ hh~zi, ~zi 2 ⇡(e0)).

But then hh~zi, ~zi 2 ⇡(e0). By the induction hypothesis we conclude:

D |=  [hg, h~zii, hf1, x1i, . . . , hfr, xri].

Hence:
D |= '[hf1, x1i, . . . , hfr, xri].

QED (Case 2)

Case 3 ' is  0 ^ 1, 0 ^ 1, 0 !  1, 0 $  1, or ¬ .

This is straightforward and we leave it to the reader.

Case 4 ' =
W
ui 2 vl� or

V
ui 2 vl�, where vl has type � i. We display

the proof for the case ' =
W
ui 2 vl�. We again assume w.l.o.g. that

u0 6= vj for j = 1, . . . , r. Set:  = (ui 2 vl ^ �). Then ' is equivalent
to

W
ui . Using the induction hypothesis for � we easily get:

(*)
D |=  [hg, yi, hf1, xii, . . . , hfr, xri]$

hy, x1, . . . , xni 2 ⇡(e0)

where e0 = {hw, ~zi|M |=  [g(w), ~f(~z)]}. Using (⇤), we consider two
subcases:

Case 4.1 i < n.
We simply repeat the proof in Case 2, using (⇤) and with i in place of
j.
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Case 4.2 i = n < w.
(Hence vl has type n.) For the direction (!) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for ⌃0 liftups.

We know that e 2 H and h~xi 2 ⇡(e), where e = {h~zi|M |= '[f1(z1), . . . , fr(zr)]}.
Set:

R(wn, ~z)$: M |=  [wn, f1(z1), . . . , fr(zr)].

Then R is ⌃(n)

0
by Corollary 2.7.16. Moreover

W
wnR(wn, ~z)$ h~zi 2 e.

Clearly fl 2 Hn

M
since fl 2 �nn. Let s 2 Hn

M
be a well odering ofS

rng(fl). Clearly:

R(wn, ~z) ! wn 2 fl(zl)

! wn 2
S
rng(fl).

We define a function g with domain e by:

g(h~zi) = the s–least w such that R(w, ~z).

Since R is ⌃(n)

0
, it follows easily that g 2 HM

⇢n . Hence g 2 �nn. But
then
^

~z(h~zi 2 e$ hh~zi, ~zi 2 e0), where e0 is defined as above, using this g.

Hence in H 0 we have:
^

~z(h~zi 2 ⇡(e)$ hh~zi, ~zi 2 ⇡(e0)).

Since h~xi 2 ⇡(e) we conclude that hh~xi, ~xi 2 ⇡(e0). Hence:

D |=  [hg, h~xii, hf1, x1i, . . . , hfr, xri].

Hence:
D |= '[hf1, x1i, . . . , hfr, xri].

QED (Lemma 2.7.17)

Exactly as before we get:

Lemma 2.7.18. If 2̃ is ill founded, then the ⌃(n)

0
liftup of hM,⇡i does not

exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If 2̃ is well founded, then the ⌃(n)

0
liftup of hM,⇡i exists.
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Proof: We shall again use the term model D to define an explicit ⌃(n)

0
liftup.

We again define:

Definition 2.7.10. x⇤ = ⇡⇤
(x) =: hconstx, 0i, where constx =: {hx, 0i} =

the constant function x defined on {0}.

Using Łos theorem Lemma 2.7.17 we get:

(1) ⇡⇤
: M !

⌃
(n)
0

D
(where the variables vi range over Di on the D side).

The proof is exactly like the corresponding proof for ⌃0–liftups ((1) in
Lemma 2.7.5). In particular we have: ⇡⇤

: M !⌃0 D. Repeating the
proof of (2) in Lemma 2.7.5 we get:

(2) D |= Extensionality.
Hence ⇠= is again a congruence relation and we can factor D, getting:

D̂ = (D\ ⇠=) = hD̂, 2̂, Â, B̂i

where
D̂ =: {ŝ|s 2 D}, ŝ =: {t|t ⇠= s} for s 2 D

ŝ2̂t̂$: s2̃t

Âŝ$: Ãs, B̂ŝ$: B̃s

Then D̂ is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism k of D̂ onto
M 0, where M 0

= h|M 0|,2, A0, B0i is transitive. Set:

[s] =: k(ŝ) for s 2 D

⇡0
(x) =: [x⇤] for x 2M

Hi =: {ŝ|s 2 Di}(i < n or i = n < !).

We shall initially interpret the variables vi on the M 0 side as ranging
over Hi. We call this the pseudo interpretation. Later we shall show
that it (almost) coincides with the intended interpretation. By (1) we
have

(3) ⇡0
: M !

⌃
(n)
0

M 0 in the pseudo interpretation. (Hence ⇡0
: M !

⌃
(n)
0

M 0.)

Lemma 2.7.19 then follows from:

Lemma 2.7.20. hM 0,⇡0i is the ⌃(n)

0
liftup of hM,⇡i.



144 CHAPTER 2. BASIC FINE STRUCTURE THEORY

For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again
use the abbreviation:

[f, x] =: [hf, xi] for hf, xi 2 D.

Defining H̃ exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

(4) H̃ is transitive.

(5) [f, x] = ⇡(f)(x) if f 2 H and hf, xi 2 D. (Hence H̃ = H 0.)

(6) ⇡0 � ⇡.
(However (7) in Lemma 2.7.6 will have to be proven later.)
In order to see that ⇡ : M !

⌃(n) M 0 in the intended interpretation we
must show that Hi = H i

M
, for i < n and that Hn ⇢ Hn

M
. As a first

step we show:

(7) Hi is transitive for i  n.
Proof: Let s 2 Hi, t 2 s. Let s = [f, x] where f 2 �n

i
. We must show

that t = [g, y] for g 2 �n
i
. Let t = [g0, y]. Then hy, xi 2 ⇡(e) where

e = {hu, vi|g0(u) 2 f(v)}.

Set:
a =: {u|g0(u) 2 rng(f)}, g = g0 �a.

Claim 1 g 2 �n
i
.

Proof: a ⇢ dom(q0) is ⌃(n)

0
. Hence a 2 H and g 2 �n. If i < n,

then rng(g) ⇢ rng(f) ⇢ H i

M
. Hence g 2 �n

i
. Now let i = n. Then

rng(f) 2 �nn and the relation z = g(y) is ⌃(n)

0
. Hence g 2 Hn

M
.

QED (Claim 1)
Claim 2 t = [g, y]

Proof: ^
u, v(hu, vi 2 e! hu, ui 2 e0)

where e0 = {hu,wi|g(u) = g0(w)}. Hence the same ⇧1 statement
holds of ⇡(e),⇡(e0) in H 0. Hence hy, yi 2 ⇡(e0). Hence [g, y] =
[g0, y] = t. QED (7)

We can improve (3) to:

(8) Let  =
W
vi1v1 , . . . , v

ir
r ', where ' is ⌃(n)

0
and il < n or il = n < ! for

l = 1, . . . , r. Then ⇡0 is " –elementary" in the sense that:

M |=  [~x]$M 0 |=  [⇡0
(~x)] in the pseudo interpretation.
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Proof: We first prove (!). Let M |= '[~z, ~x]. Then M 0 |= '[⇡0
(~z),⇡0

(~x)]
by (3).
We now prove ( ). Let:

M 0 |= '[[f1, z1], . . . , [fr, zr],⇡
0
(~x)]

where fl 2 �nil for l = 1, . . . , r. Since ⇡0
(x) = [constx, 0], we then have:

hz1, . . . , zr, 0 . . . 0i 2 ⇡(e), where:

e = {hu1, . . . , ur, 0 . . . 0i : M |= '[~f(~u), ~x]}.

Hence e 6= ;. Hence
_

v1 . . . vrM |= '[~f(~v), ~x]

where rng(fl) ⇢ H il for l = 1, . . . , r. Hence M |=  [~x]. QED (8)

If i < n, then every ⇧(i)

1
formula is ⌃(n)

0
. Hence by (8):

(9) If i < n then

⇡0
: M !

⌃
(i)
2

M 0 in the pseudo interpretation.

We also get:

(10) Let n < w. Then:

⇡0 �Hn

M : Hn

M !⌃0 Hn cofinally.

Proof: Let x 2 Hn. We must show that x 2 ⇡0
(a) for an a 2 Hn

M
. Let

x = [f, y], where f 2 �nn. Let d = dom(f), a = rng(f). Then y 2 ⇡(d)
and: ^

z 2 d hz, 0i 2 e

where
e = {hu, vi|f(u) 2 consta(v)}

= {hu, 0i|f(u) 2 a}.

This is a ⌃0 statement about d, e. Hence the same statement holds of
⇡(d),⇡(e) in Hn. Hence hz, 0i 2 ⇡(e). Hence [f, y] 2 ⇡0

(a). QED (10)
(Note: (10) and (3) imply that ⇡0

: M !
⌃

(n)
1

M 0 is the pseudo inter-
pretation, but this also follows directly from (8).)
Letting M = hJA

↵ , Bi and M 0
= h|M 0|, A0, B0i we define:

Mi = hH i

M , A \H i

M , B \H i

M i,M 0
i = hHi, A

0 \Hi, B
0 \Hii

for i < n or i = n < w. Then each Mi is acceptable. It follows that:
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(11) M 0
i

is acceptable.

Proof: If i = n, then ⇡0 �Mn : Mn !⌃0 M 0
n cofinally by (3) and (10).

Hence M 0
n is acceptable by §5 Lemma 2.5.5. If i < n, then ⇡0 �Mi :

Mi !
⌃

(i)
2

M 0
i

by (9). Hence M 0
i

is acceptable since acceptability is a
⇧2 condition. QED (11)

We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

(12) Let i + 1  n. Let A ⇢ Hi+1 be ⌃(i)

1
in the pseudo interpretation.

Then hHi+1, Ai is amenable.

Proof: Suppose not. Then there is A0 ⇢ Hi+1 such that A0 is ⌃(i)

1
in

the pseudo interpretation, but hHi, A0i is not amenable. Let:

A0
(x)$ B0

(x, p)

where B0 is ⌃(i)

1
in the pseudo interpretation. For p 2M 0 we set:

A0
p =: {x|B0

(x, p)}.

Let B be ⌃(i)

1
(M) by the same definition. For p 2M we set:

Ap =: {x|B(x, p)}.

Case 1 i+ 1 < n.
Then

W
p
W
ai+1

V
bi+1bi+1 6= al+1 \ A0

p holds in the pseudo in-
terpretation. This has the form:

W
p
W
ai+1'(p, ai+1

) where '

is ⇧(i+1)

1
, hence ⌃(n)

0
in the pseudo interpretation. By (8) we

conclude that M |= '(p, ai+1
) for some p, ai+1 2 M . Hence

hH i+1

M
, Api is not amenable, where Ap is ⌃(i)

1
(M).

Contradiction! QED (Case 1)
Case 2 Case 1 fails.

Then i + 1 = n. Since ⇡0 takes Hn

M
cofinally to Hn. There

must be a 2 Hn

M
such that ⇡(a) \ A0 /2 Hn. From this we

derive a contradiction. Let A0
= A0

p where p = [f, z]. Set:
B̃ = {hz, wi|B(w, f(z))}. Then B̃ is ⌃(i)

1
(M). Set: b = (d⇥a)\B̃,

where d = dom(f). Then b 2 Hn

M
. Define g : d! Hn

M
by:

g(z) =: Af(z) \ a = {x 2 a|hz, xi 2 b}.

Then g 2 Hn

M
, since it is rudimentary in a, b 2 Hn

M
. Let '(un, vn, w)

be the ⌃(n)

0
statement expressing

u = Aw \ vn in M.
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Then setting:

e = {hv, 0, wi|M |= '[g(v), a, f(z)]}

we have: ^
v 2 d hv, 0, vi 2 e.

But then the same holds of ⇡(d),⇡(e) in Hn. Hence hz, 0, zi 2
⇡(e). Hence: [g, z] = A[f,z] \ ⇡(a) 2 Hn.
Contradiction! QED (12)

On the other hand we have:

(13) Let i+1 < n. Let A ⇢ H i+1

M
be ⌃(i)

1
(M) in the parameter p such that

A /2 M . Let A0 be ⌃(i)

1
(M 0

) in ⇡0
(p) by the same ⌃(i)

1
(M 0

) definition
in the pseudo interpretation. Then A0 \Hi+1 /2M 0.
Proof: Suppose not. Then in M 0 we have:

_
a
^

vi+1
(vi+1 2 a$ A0

(vi+1
)).

This has the form
W
a'(a,⇡(p)) where ' is ⇧(i+1)

1
hence ⌃(n)

0
. By (8)

it then follows that
W
a'(a, p) holds in M . Hence A 2M .

Contradiction! QED (13)
Recall that for any acceptable M = hJA

↵ , Bi we can define ⇢i
M
, H i

M
by:

⇢0 = ↵

⇢i+1
= the least ⇢ such that there is A which is

⌃
(i)

1
(M) with A \ ⇢ /2M

H i
= J⇢i [A].

Hence by (11), (12), (13) we can prove by induction on i that:

(14) Let i < n. Then

(a) ⇢i
M 0 = ⇢i, H i

M 0 = Hi

(b) The pseudo interpretation is correct for formulae ', all of whose
variables are of type  i.

By (9) we then have:

(15) ⇡0
: M !

⌃
(i)
2

M 0 for i < n.
This means that if n = !, then ⇡0 is automatically ⌃⇤–preserving. If
n < !, however, it is not necessarily the case that Hn = Hn

M
, — i.e.

the pseudo interpretation is not always correct. By (12), however we
do have:
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(16) ⇢n  ⇢n
M

, (hence Hn ⇢ Hn

M 0).
Using this we shall prove that ⇡0 is ⌃(n)

0
–preserving. As a preliminary

we show:

(17) Let n < w. Let ' be a ⌃(n)

0
formula containing only variables of type

i  n. Let vi1
1
, . . . , virr be a good sequence for '. Let x1, . . . , xr 2 M 0

such that xl 2 Hil for l = 1, . . . , r. Then M |= '[x1, . . . , xr] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)
Let C0 be the set of all such ' with: ' is ⌃(i)

1
for an i < n. Let C be the

closure of C0 under sentential operation and bounded quantifications
of the form

V
vn 2 wn',

W
vn 2 wn'. The claim holds for ' 2 C0

by (15). We then show by induction on ' that it holds for ' 2 C. In
passing from ' to

V
vn 2 wn' we use the fact that wn is interpreted

by an element of Hn. QED (17)

Since ⇡000H i

M
⇢ Hi for i  n, we then conclude:

(18) ⇡0
: M !

⌃
(n)
0

M 0.
It now remains only to show:

(19) [f, x] = ⇡0
(f)(x).

Proof: Let f(x) = G(x, p) for x 2 dom(f), where G is ⌃(j)

1
good for

a j < n. Let a = dom(f). Let  (u, v, w) be a good ⌃(j)

1
definition of

G. Set:

e = {hz, y, wi|M |=  [f(z), ida(y), constp(w)]}.

Then z 2 a ! hz, z, 0i 2 e. Hence the same holds of ⇡(a),⇡(e). But
x 2 ⇡(a). Hence:

M 0 |=  [[f, x], [ida, x], [constp, x]],

where [ida, x] = x, [constp, 0] = ⇡0
(p). Hence:

[f, x] = G0
(x,⇡0

(p)) = ⇡0
(f)(x),

where G0 has the same ⌃(j)

1
definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let hM 0,⇡0i be the ⌃(n)

0
liftup of hM,⇡i. Let i < n. Then
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(a) ⇡0
: M !

⌃
(i)
2

M 0

(b) If ⇢i
M
2M , then ⇡0

(⇢i
M
) = ⇢i

M
.

(c) If ⇢i
M

= OnM , then ⇢i
M 0 = OnM 0 .

Proof:

(a) follows by (9) and (14).

(b) In M we have:
^

⇠0
_

⇠i(⇠0 < ⇢iM $ ⇠0 = ⇠i).

This has the form
V
⇠0 (⇠0, ⇢i

M
) where  is ⌃(n)

0
. But then the same

holds of ⇡0
(⇢i

M
) in M 0 by (8) and (14) — i.e.

^
⇠0

_
⇠i(⇠0 < ⇡(⇢iM )$ ⇠0 = ⇠i).

(c) In M we have
V
⇠0

W
⇠i⇠0 = ⇠i, hence the same holds in M 0 just as

above.
QED (Lemma 2.7.21)

The interpolation lemma for ⌃(n)

0
liftups reads:

Lemma 2.7.22. Let � : H 0 !⌃0 |M⇤| and ⇡⇤
: M !

⌃
(n)
0

M⇤ such that

⇡⇤ � �⇡. Then the ⌃(n)

0
liftup hM 0,⇡0i of hM,⇡i exists. Moreover there is a

unique map �0
: M 0 !

⌃
(n)
0

M⇤ such that �0 �H 0
= � and �0⇡0

= ⇡⇤.

Proof: 2̃ is well founded since:

hf, xi2̃hg, yi $ ⇡⇤
(f)(�(x)) 2 ⇡⇤

(g)(�(y)).

Thus hM 0,⇡0i exists. But for ⌃(n)

0
formulae ' = '(vi1

1
, . . . , virr ) we have:

M 0 |= '[⇡0
(f1)(x1), . . . ,⇡0

(fr)vr)]

$ hx1, . . . , xni 2 ⇡(e)

$ h�(x1), . . . ,�(xn)i 2 �(⇡(e)) = ⇡⇤
(e)

$M⇤ |= '[⇡⇤
(f1)(�(x1)), . . . ,⇡⇤

(fr)(�(xr))]

where:
e = {hx1, . . . , xri|M |= '[f1(x1), . . . , fr(xr)]}
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and hfl, xli 2 �nil for i = 1, . . . , r. Hence there is a ⌃(n)

0
–preserving embed-

ding � : M 0 !M⇤ defined by:

�0
(⇡0

(f)(x)) = ⇡⇤
(f)(�(x)) for hf, xi 2 �n.

Clearly �0 �H 0
= � and �0⇡0

= ⇡⇤. But �0 is the unique such embedding,
since if �̃ were another one, we have

�̃(⇡0
(f)(x)) = ⇡⇤

(f)(�(x)) = �0
(⇡0

(f)(x)).

QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map ⇡,
for instance:

Lemma 2.7.23. Let hM⇤,⇡⇤i be the ⌃(n)

0
liftup of hM,⇡i. Let ⇡⇤ �⇢n+1

M
= id

and P(⇢n+1

M
) \M⇤ ⇢M . Then ⇢n

M⇤ = sup⇡⇤00⇢n
M

.

(Hence the pseudo interpretation is correct and ⇡⇤ is ⌃(n)

1
preserving.)

Proof: Suppose not. Let ⇢̃ = sup⇡⇤00⇢n
M

< ⇢n
M⇤ . Set:

Hn
= Hn

M = JAM
⇢
n
M

; H̃ = JAM
⇢̃

.

Then H̃ 2M⇤. Let A be ⌃(n)

1
(M) in p such that A \ ⇢n+1

M
/2M . Let:

Ax$
_

ynB(yn, x),

where B is ⌃(n)

0
in p. Let B⇤ be ⌃(n)

0
(M⇤

) in ⇡⇤
(p) by the same definition.

Then
⇡⇤ �Hn

: hHn, B \Hni !⌃1 hH̃, B⇤ \ H̃i.

Then A \ ⇢n+1

M
= Ã \ ⇢n+1

M
, where:

Ã = {x|
_

yn 2 H̃ B⇤
(y, x)}.

But Ã is ⌃(n)

1
(M⇤

) in ⇡⇤
(p) and H̃. Hence

A \ ⇢n+1

M
= Ã \ ⇢n+1

M
2 P(⇢n+1

M
) \M⇤ ⇢M.

Contradiction! QED (Lemma 2.7.23)


