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proving the following theorem: Let  be a measurable cardinal. Assume that
V has no inner model with a Woodin cardinal. Then there is V –definable
inner model K of V which, relativized to V, has he above two properties.
This result, which was exposited in [CMI] was an enormous breakthrough,
which laid the foundation for all that has been done in inner model theory
since then. There remained, however, the pesky problem of doing without
the measurable — i.e. constructing K and proving its properties assuming
only "ZFC+ there is no inner model with a Woodin". The first step was to
construct the model KC from this assumption. This was almost achieved
by Mitchell and Schindler in 2001, except that they needed the additional
hypothesis: GCH. Steel then showed that this hypothesis was superfluous.
These results were obtained by directly weakening the "background condi-
tion" originally used by Steel in constructing KC . The result of Mitchell
and Schindler were published in [UEM]. Independently, Jensen found a con-
struction of KC using a different background condition called "robustness".
This is exposited in [RE]. There reamained the problem of extracting a core
model K from KC . Jensen and Steel finally achieved this result in 2007. It
was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential
to the rest of the book. (We shall, however, deal only with so called "short
extenders", whose length is less than or equal to the image of the critical
point.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter
at  can be described by a two valued function on P(). An extender, on
the other hand, is characterized by a map of P() to P(�), where � > . � is
then called the length of the extender. Like a normal ultrafilter an extender
F induces a canonical elementary embedding of the universe V into an inner
model W . We express this in symbols by: ⇡ : V !F W . W is then called
the ultrapower of V by F and ⇡ is called the canonical embedding induced
by F . The pair hW,⇡i is called the extension of V by F . We will always
have: �  ⇡(). However, just as with ultrafilters, we shall also want to
apply extenders to transitive models M which may be smaller than V . F
might then not be an element of M . Moreover P() might not be a subset
of M , in which case F is defined on the smaller set U = P()\M . Thus we
must generalize the notion of extenders, countenancing "suitable" subsets of
P() as extender domains. (However, the ultrapower of M by F may not
exist.)
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We first define:

Definition 3.2.1. S is a base for  iff S is transitive and hS,2i models:

ZFC
�
+  is the largest cardinal.

By a suitable subset of P() we mean P() \ S, where S is a base for .

We note:

Lemma 3.2.1. Let S be a base for . Then S is uniquely determined by
P() \ S.

Proof: For a, e 2 P() \ S set:

u(a, e) ': that transitive u such that
hu,2i is isomorphic to ha, ẽi,
where ẽ = {h⌫, ⌧i| � ⌫, ⌧ �2 e}.

Claim S = the union of all u(a, e) such that a, e 2 P() \ S and u(a, e) is
defined.

Proof: To prove (⇢), note that if u 2 S is transitive, then there exist
↵  , f 2 S such that f : ↵ $ u. Hence u = u(↵, e) where e = {� ⌫, ⌧ �
| f(⌫) 2 f(⌧)}. Conversely, if u = u(a, e) and a, e 2 P() \ S, then u 2 S,
since the isomorphism can be constructed in S. QED (Lemma 3.2.1)

Definition 3.2.2. An ordinal � is called Gödel closed iff it is closed under
Gödel’s pair function �,� as defined in §2.4. (It follows that � is closed
under Gödel n–tuples � x1, . . . , xn �.)

We now define

Definition 3.2.3. Let S be a base for . Let � be Gödel closed. F is an
extender at  with length �, base S and domain P() \ S iff the following
hold:

• F is a function defined on P() \ S

• There exists a pair hS0,⇡i such that

(a) ⇡ : S � S0 where S0 is transitive
(b)  = crit(⇡),⇡() � � > 
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(c) Every element of S0 has the form ⇡(f)(↵) where ↵ < � and f 2 S
is a function defined on .

(d) F (X) = ⇡(X) \ � for X 2 P() \ S.

Note. If F is an extender at , then  is its critical point in the sense that
F � = id, F () is defined, and  < F (). Thus we set: crit(F ) =: .
Note. (c) can be equivalenly replaced by:

⇡ : S � S0 cofinally.

We leave this to the reader.
Note. P() \ S ⇢ S0 since X = ⇡(X) \  2 S0. But the proof of Lemma
3.2.1 then shows that S ⇢ S0. (We leave this to the reader.)
Note. As an immediate consequence of this definition we get a form of Łos
Theorem for the base:

S0 |='[⇡(f1)(↵1), . . . , (fn)(↵n)]$

� ~↵ �2 F ({h~⇠i|S |= '[f1(⇠1), . . . , fn(⇠n)]})

where ↵1, . . . ,↵n < � and fi 2 S is a function defined on  for i = 1, . . . , n.
Note. hS0,⇡i is uniquely determined by F since if hS̃, ⇡̃i were a second such
pair, we would have:

⇡(f)(↵) 2 ⇡(g)(�)$� ↵,� �2 F ({� ⇠, � � |f(⇠) 2 g(⇠)})
$ ⇡̃(f)(↵) 2 ⇡̃(g)(�).

Thus there is an isomorphism i : S0$̃S̃ defined by i(⇡(f)(↵)) = ⇡̃(f)(↵).
Since S0, S̃ are transitive, we conclude that i = id, S0

= S̃.

But then we can define:

Definition 3.2.4. Let S, F, S0,⇡ be as above. We call hS0,⇡i the extension
of S by F (in symbols: ⇡ : S !F S0).

Note. It is easily seen that:

• S0 is a base for ⇡()

• The embedding ⇡ : S ! S0 is cofinal (since ⇡(f)(↵) 2 ⇡(rng(f))).

Note. The concept of extender was first introduced by Bill Mitchell. He
regarded it as a sequence of ultrafilters (or measures) hF↵|↵ < �i, where
F↵ = {X|↵ 2 F (X)}. For this reason he called it a hypermeasure. We shall
retain this name and call hF↵|↵ < �i the hypermeasure representation of F .
We can recover F by: F (X) = {↵|X 2 F↵}.
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Definition 3.2.5. We call an extender F on  with base S and extension
hS0,⇡i full iff ⇡() is the length of F .

In later sections we shall work almost entirely with full extenders. We leave
it to the reader to show that if S is a ZFC

� model with largest cardinal 
and ⇡ : S � S0 cofinally. Then ⇡ � P() is a full extender with base S and
extension hS0,⇡i.

Lemma 3.2.2. Let F be an extender with base S and extension hS0,⇡i.
Then:

(a) hS0,⇡i is amenable

(b) If F is full, then hS0, F i is amenable.

(c) If ' is ⌃0, then {h~xi : hS,⇡i |= '[~x]} is uniformly ⌃1(hS, F i) in
x1, . . . , xn.

Proof: (b) follows from (a), since then:

F \ u = {hY,Xi 2 ⇡ \ u|X ⇢  ^ Y ⇢ �}.

We prove (a). Since ⇡ takes S to S0 cofinally, it suffices to show: ⇡\⇡(u) 2 S0

for u 2 S. We can assume w.l.o.g. that u is transitive and non empty. If
h⇡(X), Xi 2 ⇡ \ ⇡(u), then ⇡(X) 2 ⇡(u) by transitivity, hence X 2 u. Thus
⇡ \ ⇡(u) = (⇡ �u) \ ⇡(u) and it suffices to show:

Claim ⇡ �u 2 S0.
Let f = hf(i)|i < i enumerate u. Then ⇡ �u = {h⇡(f)(i), f(i)i|i < }.

This proves (a). We now prove (c). It suffices to show:
Claim. (⌫ 6= ? is transitive and y = ⇡ � ⌫) is uniformly ⌃1(hS, F i) in ⌫, y,
since then hS,⇡i |= '[~x] is expressed by:

_
w
_

u(u,w are transitive ^ ~x 2 u ^ ⇡ �u ⇢ w ^ hw,⇡ �ui) |= '[~x]

We prove the Claim. Let u 6= ? be transitive. Then:

y = ⇡ �u ()
_

f(f : k �! u ^ y = {h⇡(f)(i), f(i)i : i < }.)

{}, {⇡()} are uniformly ⌃1(hS, F i), since

h⇡(),i = the unique � �,↵ �2 F.
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Hence it suffices to show that {⇡(f)} is uniformly ⌃1(hS, F i) in f . Let:

X = {� j, i �2  : f(i) 2 f(j)}.

Then f is the unique function g such that

dom(g) =  ^ g(j) = {g(i) :� j, i �2 X} for i < .

Since F (X) = ⇡(X) we conclude that ⇡(f) is the unique function g such
that

dom(g) = ⇡() ^ g(j) = {g(i) :� j, i �2 F (X)} for i < ⇡().

The conclusion is immediate. QED (Lemma 3.2.2)

Definition 3.2.6. Let F be an extender at  with base S, length �, and
extension hS0,⇡i. The expansion of F is the function F ⇤ on

S
n<!

P(n) \ S

defined by:
F ⇤

(X) = ⇡(X) \ �n for X 2 P(n) \ S.

We also expand the hypermeasure by setting:

F ⇤
↵1,...,↵n

= {X|h~↵i 2 F ⇤
(X)}

for ↵1, . . . ,↵n < �. By an abuse of notation we shall usually not distinguish
between F and F ⇤, writing F (X) for F ⇤

(X) and F~↵ for F ⇤
~↵
.

Using this notation we get another version of Łos Lemma:

S0 |= '[⇡(f1)(~↵), . . . ,⇡(fn)(~↵)]$

{h~⇠i|S |= '[f1(~⇠), . . . , fn(~⇠)]} 2 F~↵

for ↵1, . . . ,↵m < � and fi 2M a function with domain km for i = 1, . . . , n.

Note. Most authors permit extenders to have length which are not Gödel
closed. We chose not to for a very technical reason: If � is not Gödel closed,
the expanded extender F ⇤ is not necessarily determined by F = F ⇤ �P().

Hence if we drop the requirement of Gödel completeness, we must work with
expanded extenders from the beginning. We shall, in fact, have little reason
to consider extenders whose length is not Gödel closed, but for the sake of
completeness we give the general definition:

Definition 3.2.7. Let S be a base for . Let � > . F is an expanded
extender at  with base S, length �, and extension hS0,⇡i iff the following
hold:
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• F is a function defined on
S

n<!
P(n) \ S

• ⇡ : S � S0 where S0 is transitive

•  = crit(⇡),⇡() � �

• Every element of S0 has the form ⇡(f)(↵1, . . . ,↵n) where ↵1, . . . ,↵n <
� and f 2 S is a function defined on n

• F (X) = ⇡(X) \ n for X 2 P(n) \ S.

This makes sense for any � > . If, indeed, � is Gödel closed and F is an
extender of length � as defined previously, then F ⇤ is the unique expanded
extender with F = F ⇤ �P().

Definition 3.2.8. Let F be an extender at  of length � with base S and
extension hS0,⇡i. X ⇢ � is a set of generators for F iff every � < � has the
form � = ⇡(f)(~↵) where ↵1, . . . ,↵n 2 X and f 2 S.

If X is a set of generators, then every x 2 S0 will have the form ⇡(f)(~↵)
where ↵1, . . . ,↵n 2 X and f 2 S. Thus only the generators are relevant. In
some cases {} will be a set of generators. (This will happen for instance
if � is the first admissible above  or if � =  + 1 and F is the expanded
extender.) This means that every element of S0 has the form ⇡(f)() and
that:

S0 |= '[⇡(~f)()]$ {⇠|S |= '[~f(⇠)]} 2 F.

Thus, in this case, S0 is the ultrapower of S by the normal ultrafilter F.

In §2.7 we used a "term model" construction to analyze the conditions under
which the liftup of a given embedding exists. This construction emulated
the well known construction of the ultrapower by a normal ultrafilter. We
could use a similar construction to determine wheter a given F is, in fact,
an extender with base S — i.e. whether the extension hS0,⇡i by F exists.
However, the only existence theorem for extenders which we shall actually
need is:

Lemma 3.2.3. Let S be a base for . Let ⇡⇤ : S � S⇤ such that  = crit(⇡⇤)
and  < �  ⇡⇤() where � is Gödel closed. Set

F (X) =: ⇡⇤(X) \ � for X 2 P() \ S.

Then

(a) F is an extender of length �.
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(b) Let hS0,⇡i be the extension by F . Then there is a unique � : S0 � S⇤

such that �⇡ = ⇡⇤ and ⇡ �� = id.

Proof: We first prove (a). Let Z be the set of ⇡⇤(f)(↵) such that ↵ < �
and f 2 S is a function on .

(1) Z � S⇤

Proof: Let S⇤ |=
W
v'[~x] where x1, . . . , xn 2 Z. We must show:

Claim V y 2 ZS⇤ |= '[y, ~x].
We know that there are functions fi 2 S and ↵i < X such that xi =

⇡⇤(fi)(↵i) for i = 1, . . . , n. By replacement there is a g 2 S such that
dom(g) =  and in S:

V
⇠1...⇠n

<  (
W
y'(y, f1(⇠1), . . . , fn(⇠n))!

'(g(� ⇠1, . . . , ⇠n �, f1(⇠1), . . . , fn(⇠n)))).

But then the corresponding statement holds of ⇡⇤(),⇡⇤(g),⇡⇤(f1), . . . ,⇡⇤(fn)
in S⇤. Hence, setting � =� ↵1, . . . ,↵n � we have:

S⇤ |= '[⇡⇤(g)(�),⇡⇤(f1)(↵1), . . . ,⇡
⇤
(fn)(↵n)].

QED (1)

Now let � : S0 ⇠$ Z where S0 is transitive. Set: ⇡ = ��1⇡⇤. Then S � S0.
� : S0 � S⇤, and �(⇡(f)(↵)) = ⇡⇤(f)(↵) for ↵ < �. It follows easily that F
is an extender and hS0,⇡i is the extension by F .

This proves (a). It also proves the existence part of (b), since � �� = id and
�⇡ = ⇡⇤. But if �0 also has the properties, then �0(⇡(f)(↵)) = ⇡⇤(f)(↵) =
�(⇡(f)(↵)). Then �0 = � and � is unique. QED (Lemma 3.2.3)

Definition 3.2.9. Let F be an extender at  with extension hS0,⇡i. Let
 < �  ⇡() where � is Gödel closed. F |� is the function F 0 defined by:
dom(F 0

) = dom(F ) and

F 0
(X) = ⇡(X) \ � for X 2 dom(F ).

It follows immediately from Lemma 3.2.3 that F |� is an extender at  with
length �.

The main use of an extender F with base S is to embed a larger model M
with P()\M = P()\ S 2M into another transitive model M 0, which we
then call the ultrapower of M by F . Ther is a wide class of models to which
F can be so applied, but we shall confine ourselves to J–models.
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Definition 3.2.10. Let M be a J–model. F is an extender at  on M iff F
is an extender with base S and P() \M = P() \ S 2 M , where  is the
largest cardinal in S. (In other words S = HM

⌧ 2M where ⌧ = +.)

Making use of the notion of liftups developed in §2.7.1 we define:

Definition 3.2.11. Let F be an extender at  on M . Let H = HM
⌧ be the

base of F and let hH 0,⇡0i be the extension of H by F . We call hN,⇡i the
extension of M by F (in symbols ⇡ : M !F N) iff hN,⇡i is the liftup of
hM,⇡0i.

We then call N the ultrapower of M by F . We call ⇡ the canonical embedding
given by F .
Note. that ⇡ is ⌃0 preserving but not necessarily elementary.

Lemma 3.2.4. Let F be an extender at  on M of length �. Let hN,⇡i be
the extension of M by F . Then every element of N has the form ⇡(f)(↵)
where ↵ < � and f 2M is a function with domain .

Proof: Let H = HM
⌧ and let hH 0,⇡0i be the extension of H by F , where

⌧ = +M . Each x 2 N has the form x = ⇡(f)(z), where f 2M is a function,
dom(f) 2 H and z 2 ⇡(dom(f)). But then z = ⇡(g)(↵) where ↵ < �, g 2 H
and dom(g) = . We may assume w.l.o.g. that rng(g) ⇢ dom(f). (Otherwise
redefine g slightly.) Thus x = ⇡(f � g)(↵). QED (Lemma 3.2.4)

Using the expanded extenders we then get Łos Theorem in the form:

Lemma 3.2.5. Let M,F,�, N,⇡ be as above. Let ↵1, . . . ,↵n < � and let
fi 2M be such that fi : m !M for i = 1, . . . , n. Let ' be ⌃0. Then

N |= '[⇡(~f(~↵)]$ {h~⇠i|M |= '[~f(~⇠)]} 2 F~↵.

Proof: As in §2.7.1 we set:

�
0
= �

0
(⌧,M) = the set of f 2M such that

f is a function and dom(f) 2 HM
⌧ .

Then fi 2 �
0, dom(fi) = m. By Łos Theorem for liftups we get:

N |= '[⇡(~f)(~↵)]$ h~↵i 2 ⇡(e) \ �m = F (e)

where
e = {h~⇠i|M |= '[~f(~⇠)]}.

QED (Lemma 3.2.5)

The following lemma is often useful:
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Lemma 3.2.6. Let F,,M,⇡ be as above. Let ⌧ be regular in M such that
⌧ 6= . Then ⇡(⌧) = sup⇡00⌧ .

Proof: If ⌧ <  this is trivial. Now let ⌧ > . Let ⇠ = ⇡(f)(↵) < ⇡(⌧),
where ↵ < �. Set � = sup f 00. Then � < ⌧ by regularity. Hence:

⇠ = ⇡(f)(↵)  sup⇡(f)00⇡() = ⇡(�) < ⇡(⌧).

QED (Lemma 3.2.6)

3.2.1 Extendability

Definition 3.2.12. Let F be an extender at  on M . M is extendible by F
iff the extension hN,⇡i of M by F exists.

Note. This requires that N be a transitive model.

hN,⇡i, if it exists, is the liftup of hM,⇡0i where H = HM
⌧ , ⌧ = +M and

hH 0,⇡0i is the extension of its base H by F . In §2.7.1 we formed a term
model D in order to investigate when this liftup exists. The points of D
consisted of pairs hf, zi where

f 2 �
0
(⌧,M) := the set of functions f 2M such that dom(f) 2 H.

The equality and set membership relation were defined by

hf, zi ' hg, wi $: hz, wi 2 ⇡0({hx, yi|f(x) = g(y)})
hf, zi2̃hg, wi $: hz, wi 2 ⇡0({hx, yi|f(x) = g(y)})

Now set:

Definition 3.2.13. �
0
⇤ = �

0
⇤(,M) =: {f 2 �

0| dom(f) = }.

Set D⇤
= D⇤

(,M) =: the restriction of D to terms ht,↵i such that t 2 �
0
⇤

and ↵ < �. The proof of Lemma 3.2.4 implicitly contains a barely disguised
proof that: ^

x 2 D
_

y 2 D⇤x ' y.

The set membership relation of D⇤ is:

hf,↵i 2⇤ hg,�i $� ↵,� �2 ⇡0({⇠, ⇣}|f(⇠) 2 g(⇣)}).

In §2.7.1. we used the term model to show that the liftup hN,⇡i exists if and
only if 2̃ is well founded. In this case D⇤ contains all the points of interest,
so we may conclude:
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Lemma 3.2.7. M is extendible iff 2⇤ is well founded.

Note. In the future, when dealing with extenders, we shall often fail to
distinguish notationally between �

0
⇤,D⇤,2⇤ and �

0,D, 2̃.

Using this principle we develop a further criterion of extendability. We define:

Definition 3.2.14. Let F be an extender on M at  of length �. Let F be
an extender on M at  of length �.

h⇡, gi : hM,F i ! hM,F i

means:

(a) ⇡ : M !⌃0 M and ⇡() = 

(b) g : �! �

(c) Let X ⇢ , ⇡(X) = X, ↵1, . . . ,↵n < �. Let �i = g(↵i) for i =

1, . . . , n. Then

� ~↵ �2 F (X)$� ~� �2 F (X).

Lemma 3.2.8. Let h⇡, gi : hM,F i ! hM,F i, where M is extendible by F .
Then M is extendible by F . Moreover, if hN,�i, hN,�i are the extensions
of M,N respectively, then there is a unique ⇡0 such that

⇡0 : N !⌃0 N, ⇡0� = �⇡, and ⇡0 �� = g.

⇡0 is defined by:
⇡0(�(f)(↵)) = �⇡(f)(g(↵))

for f 2 �
0 and ↵ < �.

Proof: We first show that M is extendible by F . Let � : M !F N . The
relation 2̃ on the term model D = D(,M) is well founded, since:

hf,↵i2̃hh,�i $� ↵,� �2 F ({� ⇠, ⇣ � |f(⇠) 2 h(⇣)})
$� g(↵), g(�) �2 F ({� ⇠, ⇣ � |⇡(f)(⇠) 2 ⇡(h)(⇣)})
$ �⇡(f)(g(↵)) 2 �⇡(h)(g(�))

Now let � : M ! N . Let ' be a ⌃0 formula.

Then:
N |= '[�(f1)(↵1), . . . ,�(fn)(↵n)]

$ h~↵i 2 F ({h~⇠i|M |= '[~f(~⇠)]})

$ hg(~↵)i 2 F ({~⇠|M |= '[⇡(~f)(~⇠)]})
$ N |= '[�⇡(f1)(g(↵1)), . . . ,�⇡(fn)(g(↵n))].
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Hence there is ⇡0 : N !⌃0 N defined by:

⇡0(�(f)(↵)) = �⇡(f)(g(↵)).

But any ⇡0 fulfilling the above conditions will satisfy this definition.
QED (Lemma 3.2.8)

3.2.2 Fine Structural Extensions

These lemmas show that N is the ultrapower of M in the usual sense. How-
ever, the canonical embedding can only be shown to be ⌃0–preserving. If,
however, M is acceptable and  < ⇢n

M
, the methods of §2.7.8 suggest another

type of ultrapower with a ⌃
(n)

0
–preserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F be an extender at  on M .
Let H = HM

⌧ be the base of F and let hH 0,⇡0i be the extension of H by F .
Let ⇢n

M
>  (hence ⇢n

M
� ⌧). We call hN,⇡i the ⌃

(n)

0
–extension of M by F

(in symbols: ⇡ : M !(n)

F
N) iff hN,⇡i is the ⌃

(n)

0
liftup of hM,⇡0i.

The extension we originally defined is then the ⌃0 ultrapower (or ⌃(0)

0
ultra-

power). The ⌃
(n)

0
analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained

by a virtual repetition of our proofs, which we leave to the reader.

Letting �
n
= �

n
(⌧,M) be defined as in §2.7.2 we get the analogue of Lemma

3.2.4.

Lemma 3.2.9. Let F be an extender at  on M of length �. Let ⇢n
M

> 

and let hN,⇡i be the ⌃
(n)

0
extension of M by F . Then every element of N

has the form ⇡(f)(↵) where ↵ < � and f 2 �
n such that dom(f) = .

Lemma 3.2.10. Let M,F,�, N,⇡ be as above. Let ↵1, . . . ,↵m < � and let
fi 2 �

n such that dom(fi) = m for i = 1, . . . , p. Let ' be a ⌃
(n)

0
formula.

Then:
N |= '[⇡(~f)(~↵)]$ {h~⇠i|M |= '[~f(~⇠)]} 2 F~↵.

Note. We remind the reader that an element f of �n is not, in general, an
element of M . The meaning of ⇡(f) is explained in §2.7.2.

Using Lemma 2.7.22 we get:

Lemma 3.2.11. Let ⇡⇤ : M !
⌃

(n)
0

M⇤ where  = crit(⇡⇤) and ⇡⇤() � �,
where � is Gödel closed. Assume: P() \M 2M . Set:

F (X) =: ⇡⇤(X) \ � for X 2 P() \M.

Then:
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(a) F is an extender at  of length � on M .

(b) The ⌃
(n)

0
extension hM 0,⇡i of M by F exists.

(c) There is a unique � : M 0 !
⌃

(n)
0

M⇤ such that �0 �� = id and �⇡ = ⇡⇤.

Proof: Let H = HM
⌧ , H⇤

= ⇡⇤(H). Then H is a base for  and ⇡⇤ �
H : H � H⇤. Hence by Lemma 3.2.3 F is an extender at  with base H
and extension hH 0,⇡0i. Moreover, there is a unique �0 : H 0 � H⇤ such that
�0 �� = id and �0⇡0 = ⇡⇤ �H. But by Lemma 2.7.22 the ⌃

(n)

0
liftup hM 0,⇡i

of hM,⇡0i exists. Moreover, there is a unique � : M 0 !
⌃

(n)
0

M⇤ such that
� �H 0

= �0 and �⇡0 = ⇡⇤. In particular, � � � = id. But � is then unique
with these properties, since if �̃ had them, we would have:

�̃(⇡(f)(↵)) = ⇡⇤(f)(↵) = �(⇡(f)(↵))

for f 2 �
n, dom(f) = ,↵ < �. QED (Lemma 3.2.11)

By Lemma 2.7.21 we get:

Lemma 3.2.12. Let ⇡ : M �!(n)

F
N . Let i < n. Then:

(a) ⇡ is ⌃
(i)

2
preserving.

(b) ⇡(⇢i
M
) = ⇢i

M 0 if ⇢i
M
2M .

(c) ⇢i
M 0 = On\M 0 if ⇢i

M
= On\M .

The following definition expresses an important property of extenders:

Definition 3.2.16. Let F be an extender at  of length � with base S. F is
weakly amenable iff whenever X 2 P(2)\ S, then {⌫ < |h⌫,↵i 2 F (X)} 2
S for ↵ < �.

Lemma 3.2.13. Let F be an extender at  with base S and extension hS0,⇡i.
Then F is weakly amenable iff P() \ S0 ⇢ S.

Proof:

(!) Let Y 2 P() \ S0, Y = ⇡(f)(↵),↵ < �. Set X = {h⌫, ⇠i 2 2|⌫ 2
f(⇠)}. Then ⇡(f)(↵) = {⌫ < |h⌫,↵i 2 F (X)} 2 S, since F (X) =

⇡(X) \ �.

( ) Let X 2 P(2)\ S, ↵ < �. Then {⌫ < |h⌫,↵i 2 ⇡(X)} 2 P()\ S0 ⇢
S.
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QED (Lemma 3.2.13)

Corollary 3.2.14. Let M be acceptable. Let F be a weakly amenable ex-
tender at  on M . Let hN,⇡i be the ⌃

(n)

0
extension of M by F . Then

P() \N ⇢M .

Proof: Let H = HM
⌧ , H̃ =

S
u2H ⇡(u), ⇡̃ = ⇡ �H. Then H is the base for

F and hH̃, ⇡̃i is the extension of H by F . Hence P()\ H̃ ⇢ H ⇢M . Hence
it suffices to show:

Claim P() \N ⇢ H̃.

Proof: Since ⇡() >  is a cardinal in N and N is acceptable, we have:

P() \N ⇢ HN

⇡()
= ⇡(HM

 ) 2 H̃.

QED (Corollary 3.2.14)

Corollary 3.2.15. Let M,F,N,⇡ be as above. Then  is inaccessible in M
(hence in N by Corollary 3.2.14).

Proof:

(1)  is regular in M .
Proof: If not there is f 2 M mapping a � <  cofinally to . But
then ⇡(f) maps � cofinally to ⇡(). But ⇡(f)(⇠) = ⇡(f(⇠)) = f(⇠) < 
for ⇠ < �. Hence sup{⇡(f)(⇠)|⇠ < �} ⇢ . Contradiction!

(2)  6= �+ in M for � < .
Proof: Suppose not. Then ⇡() = �+ in N where ⇡() > . Hence
 = � in N and N has a new subset of . Contradiction!

QED (Corollary 3.2.15)

By Corollary 3.2.14 and Lemma 2.7.23 we get:

Lemma 3.2.16. Let ⇡ : M !(n)

F
N where F is weakly amenable. Let n

be maximal such that ⇢n
M

> . Then ⇢n
N

= sup⇡”⇢n
M

. (Hence ⇡ is ⌃
(n)

1

preserving.)

With further conditions on F and n we can considerably improve this result.
We define:



168 CHAPTER 3. MICE

Definition 3.2.17. Let F be an extender at  on M of length �. F is close
to M if F is weakly amenable and F↵ is ⌃1(M) for all ↵ < �.

This very important notion is due to John Steel. Using it we get the following
remarkable result:

Theorem 3.2.17. Let M be acceptable. Let F be an extender at  on M
which is close to M . Let n  ! be maximal such that ⇢n >  in M . Let
hN,⇡i be the ⌃

(n)

0
extension of M by F . Then ⇡ is ⌃

⇤ preserving.

Proof: If n = ! this is immediate, so let n < !. Then ⇢n+1 ✓  < ⇢n in
M . By the previous lemma ⇡ is ⌃1–preserving. Hence ⇡() is regular in N .
Set: H = HM

 . Then H = HN
 by Corollary 3.2.14.

(1) Let D ⇢ H be ⌃
(n)

1
(N). Then D is ⌃

(n)

1
(M).

Proof: Let:
D(z)$

_
xnD0

(xn, z,⇡(f)(↵))

where ↵ < �, f 2 �
n such that dom(f) = , and D0 is ⌃

(n)

0
. Then by

Lemma 3.2.16:

D(z) $
W

u 2 Hn

M

W
x 2 ⇡(u)D0

(x, z,⇡(f)(↵))

$
W
u 2 Hn

M
↵ 2 ⇡(e)

$
W
u 2 Hn

M
e 2 F↵

where e = {⇠|
W

x 2 uD(x, z, f(⇠))} where D is ⌃
(n)

0
(M) by the same

definition as D0 over N . QED (1)

By induction on m > n we then prove:

(2) (a) Hm

M
= Hm

N

(b) ⌃
(m)

1
(M) \ P(H) = ⌃

(m)

1
(N) \ P(H)

(c) ⇡ is ⌃
(m)

1
–preserving.

Proof:

Case 1 m = n+ 1

(a) Let M = hJA
↵ , Bi, N = hJA

0
↵0 , B0i. Then: H = JA

 = JA
0

 . But

P(⇢) \M = P(⇢) \N = P(⇢) \H for ⇢  .
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But then in M and N we have:

⇢m = the least ⇢ <  such that D \ JA
⇢ /2 H for D 2 ⌃

(n)

1

and Hm
= JA

⇢m .

Hence ⇢m
M

= ⇢m
N
, Hm

M
= Hm

N
. QED (a)

(c) Let A(~xm, xi1 , . . . , xip) be ⌃
(m)

1
(M), where i1, . . . , ip  n. Let A be

⌃
(m)

1
(N) by the same definition. Then there are ⌃

(m)

1
(M) relations

B
j
(~xm, ~x)(j = 1, . . . , q) and a ⌃1 formula ' such that

A(~xm, ~x)$ H
m

~x |= '[~xm]

where H
m

~x = hHm, B
1

~x, . . . , B
q

~xi and

B
j

~x = {h~xmi|Bj
(~z m, ~x)}(j = 1, . . . , q).

Let Bj
(zm, ~x) have the same ⌃

(n)

1
definition over N . Define Hm

~x
the

same way, using B1, . . . , Bq in place of B1
, . . . , B

q. Then

A(~xm, ~x)$ Hm

~x
|= '[~xm].

But Hm

M
= Hm

N
. Hence, since ⇡ is ⌃

(n)

1
preserving, we have: B

j

~x =

Bj

⇡(~x)
. Hence H

m

~x = Hm

⇡(~x)
. But then:

A(~xm, ~x) $ H
m

~x |= '[~xm]

$ Hm

⇡(~x)
|= '[~xm]

$ A(~xm,⇡(~x))

$ A(⇡(~xm),⇡(~x))

since ⇡(~xm) = ~xm. QED (c)

(b) The direction ⇢ follows straightforwardly from (c). We prove the di-
rection �. Let A(~xm, xi1 , · · · , xir) be ⌃(m)

1
(N) such that A ⇢ H. Then

there are Bj
(j = 1, . . . , q) such that Bj is ⌃

(n)

1
(N) and

A~x(x
n
)$ Hn

~x
|= '[~x, s]

where s 2 Hm and ' is a ⌃1 formula and Hm

~x
= hHm, B1

~x
, . . . , Bq

~x
i. By

(1) there are B
j
(j = 1, . . . , q) such that B

j is ⌃
(n)

1
(M) and B

j

~x = Bj

~x

whenever xi1 , . . . , xir 2 H. The conclusion is immediate.

QED (Case 1)



170 CHAPTER 3. MICE

Case 2 m = h+ 1 where h > n.
This is virtually identical to Case 1 except that we use:

⌃
(h)

1
\ P(Hh

M ) = ⌃
(h)

1
\ P(Hh

N )

in place of (1). QED (Theorem 3.2.17)

Theorem 3.2.17 justifies us in defining:

Definition 3.2.18. Let F be an extender at  on M . Let n  ! be maximal
such that ⇢m

M
> . We call hN,⇡i the ⌃

⇤–extension of M by F (in symbols
⇡ : M !⇤

F
N) iff F is close to M and hN,⇡i is the ⌃

(n)

0
extension by F .

As a corollary of the proof of Lemma 3.2.16 we have:

Corollary 3.2.18. Let ⇡ : M �!⇤
F
N . Let H = HM

 and ⇢n+1

M
 . Then:

• H = HN


• M \ P(H) = N \ P(H).

• ⌃
(n)

1
(M) \ P(H) = ⌃

(n)

1
(N) \ P(H).

• Hn+1

M
= Hn+1

N
.

3.2.3 n–extendibility

Definition 3.2.19. Let F be an extender of length � at  on M . M is
n–extendible by F iff  < ⇢n

M
and the ⌃

(n)

0
extension hN,⇡i of M by F

exists.

hN,⇡i, if it exists, is the ⌃
(n)

0
liftup of hM,⇡0i where H = HM

⌧ is the base
of F , ⌧ = +M , and hM 0,⇡0i is the extension of H by F . To analyse this
situation we use the term model D = D(n)

(⇡0,M) defined in §2.7.2. The
points of D are pairs hf, zi such that f 2 �

n
= �

n
(⌧,M) as defined in §2.7.2.

and z 2 ⇡0(dom(f)). The equality and set membership relation of D are
again defined by:

hf, zi ' hg, wi $ hz, wi 2 ⇡0({hx, yi|f(x) = g(y)})
hf, zi2̃hg, wi $ hz, wi 2 ⇡0({hx, yi|f(x) = g(y)})

Set: �
n
⇤ = �

n
⇤ (,M) =: the set of f 2 �

n such that dom(f) = . Let
D⇤ = D(n)

⇤ (F,M) be the restriction of D to points hf, di such that f 2 �
n
⇤

and ↵ < �. The proof of Lemma 3.2.7 tells us that
^

x 2 D
_

y 2 D⇤x ' y.
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Hence M is ⌃
(n)

0
extendable iff the restriction 2⇤ of the relation 2̃ to D⇤ is

well founded.

We have:

hf,↵i 2⇤ hg,�i $ h↵,�i 2 F ({h⇠, ⇣i|f(⇠) 2 g(⇣)}).

Note. When dealing with extenders, we shall again sometimes fail to dis-
tinguish notationally between �

n
⇤ ,D

(n)

⇤ ,2⇤ and �
n,D(n), 2̃.

We now prove:

Lemma 3.2.19. Let h⇡, gi : hM,F i ! hM,F i, where M is m–extendible
by F . Let n  m and let ⇡ be ⌃

(n)

0
preserving with  < ⇢m in M , where

 = crit(F ). Then M is n–extendible by F . Moreover, if hN,�i is the ⌃
(m)

0

extension of M by F and hN,�i is the ⌃
(n)

0
extension of M by F , then there

is a unique ⇡0 such that

⇡0 : N !
⌃

(n)
0

N,⇡0� = �N,⇡0 �� = g.

⇡0 is defined by:
⇡0(�(f)(↵)) = �⇡(f)(g(↵))

for f 2 �
n
⇤ (,M),↵ < �.

Proof: Let 2⇤ be the set membership relation of D⇤ = D⇤(F ,M).

Then:

hf,↵i 2⇤ hh,�i $ h↵,�i 2 F ({h⇠, ⇣i|f(⇠) 2 g(⇣)})
$ hg(↵), g(�)i 2 F ({h⇠, ⇣i|⇡(f)(⇠) 2 ⇡(h(⇣)})
$ �⇡(f)(↵) 2 �⇡(f)(�).

Hence there is ⇡0 : N !
⌃

(n)
0

N defined by:

⇡0(�(f)(↵)) = �⇡(f)(g(↵)).

But any ⇡0 fulfilling the above conditions satisfies this definition.
QED (Lemma 3.2.19)

Taking ⇡, g as id, we get:

Corollary 3.2.20. Let M be ⌃
(m)

0
extendible by F . Let n  m. Then M is

⌃
(n)

0
extendible by F . Moreover, if � : M !(m)

F
N and � : M !(m)

F
N , there

is ⇡ : N !
⌃

(n)
0

N defined by:

⇡(�(f)(↵) = �(f)(↵) for f 2 �
n,↵ < �.
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Lemma 3.2.19 is normally applied to the case n = m. The condition  < ⇢n
M

will be satisfied if the map ⇡ is strictly ⌃
(n)

0
-preserving. However, it does not

follows that ⇡0 is strictly ⌃
(n)

0
-preserving. Similarly, even if we assume that

⇡ is fully ⌃
(n)

1
-preserving, we get no corresponding strengthening of ⇡0. We

can remedy this situation by strengthening our basic premiss:

h⇡, gi : hM,F i �! hM,F i

We define:

Definition 3.2.20. h⇡, gi : hM,F i !⇤ hM,F i iff the following hold:

• h⇡, gi : hM,F i ! hM,F i

• F , F are weakly amenable

• Let ↵ < � = length (F ). Then F↵ is ⌃1(M) in a parameter p and
Fg(↵) is ⌃1(M) in p = ⇡(p) by the same definition.

(Hence F is close to M .) Taking n = m in Lemma 3.2.19 we prove:

Lemma 3.2.21. Let h⇡, gi : hM,F i !⇤ hM,F i. Let � : M !(n)

F
N where

⇡ is ⌃
(n)

1
preserving. Let � : M !(n)

F
N, ⇡0 : N ! N be given by Lemma

3.2.19. Then ⇡0 is ⌃
(n)

1
preserving.

We derive this from a stronger lemma:

Lemma 3.2.22. Let h⇡, gi : hM,F i !⇤ hM,F i. Let n,N,N,⇡0 be as
above, where ⇡ is ⌃

(n)

1
preserving. Let D(y, x1, . . . , xr) be ⌃

(n)

1
(N) and

D(~y, x1, . . . , xr) be ⌃
(n)

1
(N) by the same definition. Let ⇡0(xi) = xi(i =

1, . . . , r). Then
{h~yi 2 HM

 |D(~y, x1, . . . , xr)}

is ⌃
(n)

1
(M) in a parameter p

and:
{h~yi 2 HM

 |D(~y, x1, . . . , xr)}

is ⌃
(n)

1
(M) in p = ⇡(p) by the same definition.

Before proving Lemma 3.2.22 we show that it implies Lemma 3.2.21. Let
D(x1, . . . , xr) be ⌃

(n)

1
(N) and let D(x1, . . . , xr) be ⌃

(n)

1
(N) by the same

definition. Set:

D0
(y, ~x)$: y = ? ^D(~x); D

0
(y, ~x)$: y = ? ^D(~x).
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Let ⇡0(xi) = xi (i = 1, . . . , r). Applying Lemma 3.2.22 and the ⌃
(n)

1
preser-

vation of ⇡ we have:

D(x1, . . . , xr) $ ? 2 {y 2 HM


|D0

(y, x1, . . . , xr)}
$ ? 2 {y 2 HM

 |D0
(y, x1, . . . , xr)}

$ D(x1, . . . , xr).

QED

We now prove Lemma 3.2.22. For the sake of simplicity we display the proof
for the case r = 1. Let D(~y, x) be ⌃

(n)

1
(N) and D(~y, x) be ⌃

(n)

1
(N) by the

same definition. We may assume:

D(~y, x)$
_

znB(zn, y, x), D(~y, x)$
_

znB(zn, y, x)

where B is ⌃(n)

0
(N) and B is ⌃(n)

0
(N) by the same definition. Let A have the

same definition over M and A the same definition over M . Let x = ⇡0(x).
Then x = �(f)(↵) for an f 2 �

n and ↵ < �. Hence x = �⇡(f)(g(↵)). Then
for ~y 2 HM


:

D(~y, x) $
W
znB(zn, ~y, x)

$
W
u 2 Hn

M

W
z 2 �(u)B(zn, ~y,�(f)(↵))

$
W
u 2 Hn

M

W
{⇠ < |

W
z 2 u A(z, ~y, f(⇠))} 2 F↵.

Similarly for ~y 2 H we get:

D(~y, x)$
_

u 2 Hn

M{⇠ < |
_

z 2 uA(z, ~y,⇡(f)(⇠))} 2 Fg(↵).

F↵ is ⌃1(M) in a parameter p and Fg(↵) is ⌃1(M) in a parameter p = ⇡(p).
But by the definition of �n we know that there are q, q such that either:

f = q 2 Hn

M
and q = ⇡(f)

or:
f(⇠) ' G(⇠, q) where G is a good ⌃

(i)

1
(M) map

and:

⇡(f)(⇠) ' G(⇠q) where G has the same good definition over M.

Hence:
{h~yi 2 HM

 |D(~y, x)}

is ⌃
(n)

1
(M) in , q, p and:

{h ~y 2iHM

 |D(~y, x)}

is ⌃
(m)

1
(M) in , q, p by the same definition. QED (Lemma 3.2.22)
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3.2.4 ⇤–extendability

Definition 3.2.21. Let F be an extender of length � at  on M . M is
⇤–extendible by F iff F is close to M and M is n–extendible by F , where
n  w is maximal such that  < ⇢n

M
.

(Hence ⇡ : M !⇤
F
N where hN,⇡i is the ⌃

(n)

0
–extension.)

Lemma 3.2.23. Assume h⇡, gi : hM,F i !⇤ hM,F i where M is ⇤–extendible
by F . Assume that ⇡ is ⌃

⇤ preserving. Then M is ⇤–extendible by E. More-
over, if � : M !⇤

F
N and � : M !⇤

F
N , there is a unique ⇡0 : N !⌃⇤ N

such that ⇡0� = �⇡ and ⇡0 �� = g.

Proof: Let n be maximal such that  < ⇢n
M

. Let � : M !(n)

F
N . By

Lemma 3.2.21 we have  < ⇢n
M

and there is � : M !(n)

F
M . Moreover there

is ⇡0 : N !
⌃

(n)
1

N such that ⇡0� = �⇡ and ⇡0 �� = g.

Claim 1 n is maximal such that  < ⇢n
M

.

Proof: If not, then n < w and ⇢n+1

M
  < ⇢n

M
. Hence

^
zn+1zn+1 6=  holds in M.

Thus
V
zn+1zn+1 6=  in M , since ⇡ is ⌃

(n+1)

0
preserving. Hence

⇢n+1

M
  < ⇢n

M
. (QED Claim 1)

Note. In the case n < w we needed only the ⌃
(n+1)

0
preservation of ⇡ to

establish Claim 1.

By Claim 1 we then have:

(1) ⇡ : M !⇤
F
N .

Hence M is ⇤–extendible by F . It remains only to show:

Claim 2 ⇡0 is ⌃
⇤ preserving.

Proof: If n = w, there is nothing to prove, so assume n < w. We
must show that ⇡0 is ⌃

(m)

0
preserving for n < m < w. Let n < m < w.

Since � : M !⇤
F
N , we know that:

(2) ⇢m
M

= ⇢m
N

and � �⇢m
M

= id.
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By Claim 1 an (1) we similarly conclude:

(3) ⇢m
M

= ⇢m
N

and � �⇢m
M

= id.

Using (2), (3) and Lemma 3.2.22 we can then show:

(4) Let D(~ym, ~x) be ⌃
(m)

j
(N). Let D(~ym, ~x) be ⌃

(m)

j
(N) by the same

definition. Let
⇡0(xi) = xi(i = 1, . . . , r).

Then:

Dx1,...,xr =: {hymi�D(~ym, x1, . . . , xr)}

is ⌃
(m)

j
(M) in a parameter p and:

Dx1,...,xr =: {h~ymi|D(~ym, x1, . . . , xr)}

is ⌃
(m)

j
(M) in p = ⇡(p) by the same definition.

Proof: By induction on m.

Case 1 m = n+ 1

We know:
D(~ym, ~x)$ H

m

~x |= '[~ym]

where ' is ⌃j and

H
m

~x = hHm

M
, B

1

~x, . . . , B
q

~xi

where B
i

~x = {h~zmi|Bi
(~zm, x)} and B

i is ⌃m

1
(N) for i = 1, . . . , q. Since

D(ym, ~x) has the same ⌃
(m)

j
definition, we can assume

D(~ym, ~x)$ Hm

~x
|= '[~ym]

where:
Hm

~x
= hHm

M , B1

~x
, . . . , Bq

~x
i

where Bi

~x
= {hzmi|Bi

(~zm, x)} and Bi is ⌃(n)

1
(N) by the same definition

as B
i over N . Letting ⇡0(xi) = xi (i = q, . . . , r), we know by Lemma

3.2.22 that each of Bi

x1,...,xr
is ⌃

(n)

1
(M) in a parameter p and Bi

x1,...,xr

is ⌃
(n)

1
(M) in p = ⇡(p) by the same definition. (We can without loss

of generality assume that p is the same for i = 1, . . . , r.) But then
Dx,...,xr is ⌃

(m)

j
(M) in p and Dx1,...,xr is ⌃

(m)

j
(M) in p = ⇡(p) by the

same definition. QED (Case 1)
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Case 2 m = h+ 1 where h > n.

We repeat the same argument using the induction hypothesis in place
of Lemma 3.2.22. QED (4)

But Claim 2 follows easily from Claim 4 and the fact that ⇡ is ⌃
⇤

preserving. Let D(~x) be ⌃
(m)

0
(N) and D(~x) be ⌃

(m)

0
(N) by the same

definition. Set:
D

0
(y, ~x)$: y = 0 ^D(~x)

D0
(y, ~x)$: y = 0 ^D(~x)

By (4) we have:

D(~x)$ 0 2 D~x $ 0 2 D⇡0(~x) $ D(⇡0(~x))

for x1, . . . , xr 2M , using the ⌃
(m)

0
preservation of ⇡ and ⇡(0) = 0.

QED (Lemma 3.2.23)

Note. The last part of the proof also shows that ⇡0 is ⌃
(m)

j
preserving if ⇡

is.

As a corollary of the proof we also get:

Lemma 3.2.24. Let h⇡, gi : hM,F i �! hM,F i. Let M be ⇤-extendible by
F . Let n be the maximal n such that  = crit(F ) < ⇢n

M
. Let n < r < ! and

suppose that ⇡ is ⌃
(r)

j
preserving, where j < !. Then:

(a) n is maximal such that  = crit(F ) < ⇢n
M

.

(b) M is ⇤-extendible by F .

(c) Let ⇡0 be the unique ⇡0 : N �!⌃0 N such that ⇡0� = �⇡ and ⇡0 �� = g.
Then ⇡0 is ⌃

(r)

j
preserving.

Proof. (a) follows by the proof of Claim 1 in Lemma 3.2.23, since that
only need that ⇡ is ⌃

n+1

0
-preserving. (1) then follows as before. Hence M

is ⇤-extendible by F . (2) and (3) follows for r � m > n, using the ⌃
(r)

0

preservation of ⇡. Hence (4) follows as before and we can conclude that ⇡0

is ⌃
(n)

j
preserving as before.

QED(Lemma 3.2.24)

Notation. �
n
⇤ (,M) = {f 2 �

n
(⌧,M) : dom(f) = } and �

⇤
(,M) =

�
n
⇤ (,M) where n  ! is maximal such that  < ⇢n

M
.
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3.2.5 Good Parameters

We now recall some concepts which were developed in §2.5. Let M = hJE
↵ , Bi

be acceptable. The set Pn+1

M
of n+ 1-good parameters can be defined by:

a 2 Pn+1

M
iff a 2 [OnM ]

<! and there is an A ⇢ Hn

M
which is

⌃
(n)

1
(M) in parameters from ⇢n+1 [ a such that A \Hn+1 /2M .

We then say that A confirms a 2 Pn+1. We also set: P 0

M
= [OnM ]

<!. It is
not hard to prove:

Fact 1. Let a 2 Pn. Then:

• a ⇢ b 2 [OnM ]
<! �! b 2 PM .

• ar ⇢n 2 Pn.

The definition of Pn+1

M
is equivalent to that given in §2.5. However, we thus

required a 2 Pn

M
in place of a 2 [OnM ]

<!. To show the equivalence of these
definitions, we must prove: Pn+1

M
⇢ Pn

M
(n < !). With a view to proving

this we recall the following definition, which was stated in an equivalent form
in §2.5.

With a view to proving this we recall the following definition, which was
stated in an equivalent form in §2.5.

Definition 3.2.22. Let M = hJA
↵ , Bi be acceptable. Let a 2 [↵]<!. For

n < ! we define the n-th reduct Mn,a and the n-th standard predicate Tn,a

M

with respect to a:
T 0

= B,Mn
= hJA

⇢M
, Tni,

Tn+1
= {hi, xi : i < ! ^Mn |= 'i[x, a

(n)
]}

where a(n) = a\ ⇢n and h'i : i < !i enumerates recursively all ⌃1 formulae
 = '(v0, v1) with at most the free variables v0, v1 in the language of M .

By induction on n we get:

Fact 2. Let a 2 [OnM ]
<!. Then:

• Tn,a is ⌃
(n)

1
(M) in a.
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• Let A ⇢ Hn be ⌃
(n)

1
(M) in a. There is an i < ! such that

Ax �! hi, xi 2 Tn,a

From this it follows that:

Fact 3. a 2 Pn+1 $ Tn,a confirms a 2 Pn+1. But then:

Fact 4. Pn+1 ⇢ Pn.

Proof. For n = 0 this is trivial. Now let n = m + 1. Let a 2 Pn+1. Then
Tn,a \Hn+1 /2M .

Claim. Tm,a \Hn /2M .

Suppose not. If ⇢n 2M , then:

hHn, Tm,a \Hni 2M

Hence Tn,a 2 M and Hn+1 \ Tn,a 2 M . Contradiction! Now let ⇢n = ⇢0.
Then for each x 2M , there is i  ! such that hi, xi 2 Tm,a. If Tm,a \Hn

=

Tm,a 2M , then hi, Tm,ai 2 Tm,a. Contradiction!

QED(Fact 4.)

We also mention:

Fact 5. a 2 Pn+1 iff there is A which is ⌃(n)

1
(M) in a such that A\⇢n+1 /2M .

Proof. (Sketch) If ⇢n+1
= ⇢0, take A = ⇢0. Now let ⇢n+1 < ⇢0. Then

Hn+1
= |JE

⇢n+1 | is a ZFC
� model. Note that for any N = JE

↵ , the function
fN is uniformly ⌃1(N), where

fN (↵) = the ↵-th element of N in the ordering <E .

Let A be ⌃
(n)

1
(M) such that A ⇢ Hn and A \Hn+1 /2M . Set:

A0
= {↵ < ⇢n : f(↵) 2 A}

where f = f
J
E
⇢n

. Then f � ⇢n+1
= f

J
E
⇢n

maps ⇢n+1 onto Hn+1. Hence, if
A0 \ ⇢n+1 2M , we have f”(A0 \ ⇢n+1

) = A \Hn+1 2M . Contradiction!

QED(Fact 5)

Thus A\Hn+1 could have been replaced by A\ ⇢n in the original definition
of Pn.

We now define:
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Definition 3.2.23. ⇡ is a strongly ⌃
⇤-preserving map of M to N (in sym-

bols: ⇡ : M �!⌃⇤ N strongly) iff the following hold:

• ⇡ : M �!⌃⇤ N

• If ⇢n+1
= ⇢! in M , then ⇢n+1

= ⇢! in N .

• If ⇢n+1
= ⇢! in M , A confirms a 2 Pn+1 in M , and A0 is ⌃

(n)

1
(N) in

⇡(a) by the same definition, then A0 confirms ⇡(a) 2 Pn+1 in N .

By Fact 3 and Fact 4 we conclude:

Lemma 3.2.25. Let ⇡ : M �!⌃⇤ N strongly. Let ⇢n+1
= ⇢! in M . Let

a 2 Pn+1 in M . Then T i,a confirms a 2 P i+1 in M and T i,⇡(a) confirms
⇡(a) 2 P i+1 in N for i  n.

We now prove:

Lemma 3.2.26. Let ⇡ : M �!⇤
F
N . Then ⇡ : M �!⌃⇤ N strongly.

Proof. Let  = crit(F ). We consider two cases.

Case 1. ⇢!
M
 .

The conclusion is immediate by Corollary 3.2.18.

Case 2.  < ⇢!
M

.

We show that for any n < !, if A confirms a 2 Pn+1 in M , then A0 confirms
⇡(a) 2 Pn+1 in N . Suppose not. Let A0 \Hn+1

M
2 N . Let y = A0 \Hn+1

N
.

Then y 2 Hn

N
and in N we have:

^
zn+1

(zn+1 2 y  ! zn+1 2 A0
),

which is a ⇧
(n+1)

1
statement in ⇡(a), y. Let y = ⇡(f)(↵), where ↵ < � = �F

and f 2 �
⇤
(,M). Thus dom(f) =  and:

f(⇠) = G(⇠, q)

where q 2 HM

+ and G is a good ⌃
(m)

1
function to Hn for an m < !. Assume

without lose of generality m > n+ 1.

The statement:
^zn+1

(zn+1 2 f(⇠) ! zn+1 2 A)
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is then ⌃
(m)

1
(M) in q, a, ⇠. Hence it is ⌃

m+1

0
(M) in q, a, ⇠. Set:

X = {⇠ <  :

^
zn+1

(zn+1 2 f(⇠) ! zn+1 2 A)}.

Then X 2M . But ↵ 2 ⇡(X). This is a contradiction, since X = ⇡(X) = ?
by the fact that A \Hn+1

M
/2M .

Finally we note that for all n < ! we have  < ⇢n+1

M
. Hence: ⇢n

M
= ⇡(⇢n

M
)

if ⇢n
M
2M and otherwise ⇢n

N
= OnN . Thus:

⇢n+1

M
= ⇢!M �! ⇢n+1

N
= ⇢!N .

QED(Lemma 3.2.26)

Obviously we have:

Lemma 3.2.27. If ⇡0 : M0 �!⌃⇤ M1 strongly and ⇡1 : M1 �!⌃⇤ M2

strongly, then ⇡1⇡0 is a strong ⌃
⇤-preserving map from M0 to M2.

We now prove:

Lemma 3.2.28. Let ⇡ij : Mi �!⌃⇤ Mj strongly (i  j < �) where the ⇡ij
commute. Suppose that:

hMi : i < �i, h⇡ij : i  j < �i

has a transitivized direct limit:

M, h⇡i : i < �i.

Then ⇡i : Mi �!⌃⇤ M strongly for i < �.

Proof. ⇡i is ⌃1-preserving, since each ⇡ij is. Hence M = hJE
↵ , Bi is accept-

able. If we set:
⇢n =

[

i<�

⇡i”⇢
n

Mi
, Hn =

[

i<�

⇡i”Hn,

it follows that Hn = HM
⇢n

= |JE
⇢n
|. By induction on n we prove:

Claim. ⇢n = ⇢n
M

and ⇡i : Mi �!
⌃

(n)
1

M .

Proof.

Case 1. n = 0 is trivial.
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Case 2. n = m+ 1.

Let r � n such that ⇢r
M0

= ⇢!
M0

. Let a 2 P r

M0
. Then Tm,ai

Mi
verifies ai 2 PMi

for i < � where ⇡0i(a0) = ai. Let a = ⇡i(ai) (i < �). By the induction
hypothesis ⇡i is ⌃

(m)

1
-preserving. Hence

x 2 Tm,ai
Mi

 ! ⇡i(x) 2 Tm,a

M
.

Claim. Tm,a

M
\Hn /2M .

Proof. Suppose not. Let y = Tm,a

M
\ Hn. Let i < � such that ⇡(yi) = y.

For x 2 Hn

Mi
we have:

x 2 Tm,ai
Mi

 ! ⇡i(x) 2 Tm,a

M
\Hn

 ! ⇡(x) 2 ⇡(y)
 ! x 2 yi.

Hence Tm,ai
Mi

\Hn

Mi
= yi \Hn

Mi
2Mi. Contradiction!

QED(Claim 1)

Claim 2. Let A ⇢ Hn be ⌃
(m)

1
(M). Then hHn, Ai is amenable.

Proof. Let A be ⌃
(m)

1
(M) in q. For i such that q 2 rng(⇡i), let qi = ⇡�1

i
(q)

and let Ai be ⌃
(m)

1
(M) in qi by the same definition. Now let x 2 Hn.

We claim that x \ A 2 Hn. Let i be large enough that q 2 rng(⇡i). Set
xi = ⇡�1

i
(x). Let zi = Ai\xi. Then xi 2 Hn

Mi
where hHn

Mi
, Aii is amenable.

Hence zi 2 Hn

Mi
where z = ⇡i(zi) = A \ x. Hence z 2 Hn

Mi
.

QED(Claim 2)

Hence ⇢n
M

= ⇢n and Hn

M
= HM . It follows straightforwardly that ⇡i :

Mi �!
⌃

(n)
1

M for i < �.

QED(Case 2)

It remains to show:

Claim 3. The embedding ⇡i is strong.

Proof. Let ⇢n+1
= ⇢! in Mi. Let A ⇢ Hn confirm a 2 Pn+1 in Mi. Let Aj

be ⌃
(n)

1
(Mj) in aj =: ⇡ij(a) for i  j < �. Then ⇢n+1

= ⇢! in Mj and Aj

confirms aj 2 ⇢n+1 in Mj . Let a0 = ⇡i(a), and let A0 be ⌃
(n)

1
(M) in a0 by the

same definition. We repeat the proof of Claim 1 to show that A0 confirms
a0 2 Pn+1 in M (i.e. A0 \Hn+1 /2M).
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QED(Lemma 3.2.28)

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of
infinity". These are principles which posit the existence of a large set or class,
not provable in ZFC. Among these principles are the embedding axioms,
which posit the existence of a non trivial elementary embedding of one inner
model into another. The best known example of this is the measurability
axiom, which posits the existence of a non trivial elementary embedding ⇡
of V into an inner model. ("Non trivial" here means simply that ⇡ 6= id.
Hence there is a unique critical point  = crit(⇡) such that ⇡ �  = id and
⇡() > .) The critical point  of ⇡ is then called a measurable cardinal ,
since the existence of such an embedding is equivalent to the existence of an
ultrafilter (or two valued measure) on .

This is a typical example of the recursing case that an axiom positing the
existence of a proper class (hence not formulable in ZFC) reduces to a state-
ment about set existence. The weakest embedding axiom posits the existence
of a non trivial embedding of L into itself. This is equivalent to the existence
of a countable transitive set called 0

#, which can be coded by a real number.
(There are many representations of 0#, but all have the same degree of con-
structability.) The "small" object 0

# in fact contains complete information
about both the proper class L and an embedding of L into itself. We can
then form L(0#), the smallest universe containing the set 0

#. If L(0#) is
embeddable into itself we get 0

##, which gives complete information about
L(0#) and its embedding . . . etc. This process can be continued very far.
Each stage in this progression of embeddings, leading to larger and larger
universes, is coded by a specific set, called a mouse. 0

# and 0
## are the

first two examples of mice. It is not yet known how far this process goes, but
it is conjectured that all stages can be represented by mice, as long as the
embeddings are representable by extenders. (Extenders in our sense are also
called short extenders, since one must modify the notion in order to go still
further.) The concept of mouse, however hard it is to explicate, will play a
central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which
takes a set a to a#, since applications of this operation give us the smallest
mice 0

#, 0##, etc.

Let a be a set such that a 2 L[a]. Suppose moreover that there is an
elementary embedding ⇡ of La

= hL[a],2, ai into itself such that a 2 La
,


