
3.4. ITERATING PREMICE 201

Each Mi is a premouse for i < ⌘. But this condition is uniformly ⇧3(Mi) by
Lemma 3.3.12. Hence M⌘ is a premouse. If M0 is of type 1, then CMi = ;
for i < ⌘. But this condition is uniformly ⇧2(Mi); Hence M⌘ is of type 1.

Now let M0 be of type 2 and let µ0 = maxCM0 . Then Mi is of type 2
and µi = maxCMi for i < ⌘, where µi = ⇧0i(µ0). Let e0 = F0|µ0 where
M0 = hJE0

⌫0
, F0i. Then ei = Fi|µi for i < ⌘, since e = F |µ is a ⇧1 condition.

Thus for i < ⇢ each Mi satisfies the ⇧2 condition in ei, µi:

e0 = Fi|µi ^ CFi \ µi = ;.

Hence M⌘ satisfies the corresponding condition. Hence M⌘ is of type 2
and µ⌘ = max(C⌘). Clearly CMi = CFi [{maxCMi} for i ⌘. Hence
⇡ij(CMi) = CMi .

Now assume that M0 is of type 3. Then each Mi(i < ⌘) satisfies the ⇧3

condition: V
⇠ < �i

W
⇣ < �i(⇠ < ⇣ 2 CMi),

V
⇣ 2 CMi

W
e 2 JEi

�i
e = Fi|⇣.

But then M⌘ satisfies the corresponding conditions. Hence M⌘ is of type 3.
QED (Theorem 3.3.23)

3.4 Iterating premice

3.4.1 Introduction

We have stated that a mouse will be an iterable premouse, but left the mean-
ing of the term "iterable" and "iteration" vague. Iteration turns out, indeed,
to be a rather complex notion. Let us begin with the simplest example. most
logicians are familiar with the iteration of a structure hM,Ui, where M is,
say, a transitive ZFC

� model and U 2M is a normal ultrafilter on P(U)\M .
Set: M0 = M,U0 = U . Applying U0 to M0 gives the ultraproduct hM1, U1i
and the extension ⇧0,1 : hM0, U0i ! hM1, U1i by U0. We then repeat the
process at hM1, U1i to get hM2, U2i etc. After 1 + µ repetitions we get an
iteration of length µ, consisting of a sequence hhMi, Uii|i < µi of models and
a commutative sequence h⇡ij |i j < µi of iteration maps ⇡ij : Mi ! Mj .
These sequences are characterized by the conditions:

• ⇡i,i+1 : hMi, Uii ! hMi+1, Uii is the extension by Ui.

• The ⇡ij commute — i.e. ⇡ij = id and ⇡ij⇡hi = ⇡hj for h i j < µ.

202 CHAPTER 3. MICE

• If � < µ is a limit ordinal, then M, h⇡i�|i < �i is the direct limit of:

hMi|i < �i, hMij |i j < �i.

Now suppose we are given a structure hM,Si where S = {hX,i|X 2 U}
and for each 2 M , eiter U = ; or else is a measurable cardinal in M
and U 2M is a normal ultrafilter on P()^M . An iteration of hM,Si then
consists of sequences hhMi, Sii|i < µi, hMij |i j < µi and hi|i+ 1 < µi.

The first condition above is then replaced by:

⇡i,i+1 : hMi, Sii ! hMi+1, Si+1i is the extension by the ultrafilter

Ui = {X|hX,ii 2 Si}

The other conditions remain unchanged. i|i+1 µi is called the sequence
of indices. i must always be so chosen that Ui is an ultrafilter.

Note. Since we are allowed considerable leeway in the choice of the index
i, the purist may question whether the word "iteration" is still appropriate.
In fact, the mathematical meaning of this word has rapidly changed as the
structures to which it is applied have grown more complex.

An iteration is called normal iff the indices are increasing — i.e. i < j for
i < j < µ.

We now attempt to apply these ideas to premice. Let M be a premouse. An
iteration of length µ will yield a sequence hMi|i < µi of premice. In passing
from Mi to Mi+1 we apply any of the extenders EM

⌫ such that Mi||⌫ =

hJE
⌫ , E⌫i is active. v = ⌫i is then the i–th index. (It would be ambiguous

to regard i = crit(E⌫i) as the index, since Mi might have many extenders
with this critical point.) In a normal iteration we have that, whenever i < j,
then:

JE
Mi

⌫i
= JE

Mj

⌫i
and ⌫i is a cardinal in Mj .

(In fact, ⌫i = �+
Mj

i
, where �i = E⌫i(i) is inaccessible in Mj .) This follows

easily by induction on j. It was originally envisaged that E⌫0 would be
applied directly to Mi to get Mi+1. It turns out, however, that such iterations
are unsuitable for may purposes. (In particular, they are unsuited to use in
comparison iteration, which we shall describe below.) The problem is that
i = crit(E⌫i) could be much smaller than �i, where �i = E⌫i(i) is the
largest cardinal in the model JE

Mi
⌫i

. In particular, we might have i < �h for
an h < i. Since �h is an inaccessible cardinal in Mi, it follows by acceptability
that:

P() \Mi = P() \ JE
Mh

�h
⇢Mh.

3.4. ITERATING PREMICE 203

Hence it should be possible to apply E⌫i to Mh rather than Mi. It turns out
that it is most effective to apply E⌫i to the smalles place possible: we apply
it to MT (i+1), where

T (i+ 1) =: the least h such that either h = i

or h < i and i < �h.

This should give us
⇡h,i+1 : Mh !Mi+1.

Here, however, we must deal with a second problem, which can arise even
when T (i + 1) = i. We know that E⌫i is an extender at i on JE

⌫i
. Then

P(i) \ JE
Mi

⌫i
= P(i) \ JE

Mi
⌧i

= P(i) \ JE
Mh

⌧i
, where ⌧i =

+J
E
⌫i

i
. But Mh

might contain subsets of i which do not lie in JE
⌧i

(hence ⌧i is not a cardinal
in Mh, by acceptability). E⌫i is then only a partial function on Mh and
cannot be applied to Mh. The resolution of this difficulty is to apply E⌫i to
the largest possible segment of Mh. We set:

M⇤
i
=: Mh||⌘h, where ⌘i OnMh is maximal such that

⌧h is a cardinal in Mh||⌘.

By acceptability, P(i) \M⇤
i
= P(i) \ JE

⌧i
and ⇢!

M
⇤
i
 i if ⌘i < OnMh .

We then say that Mh drops (or truncates) to M⇤
i
, if Mh 6= M⇤

i
. i + 1 is

then called a drop point (or truncation point). ⇡h,i+1 : M⇤
i
! Mi+1 is then

a partial map of Mh to Mi+1

This means that iteration is no longer a linear process. Previously ⇡ij was
defined whenever i j < µ, µ being the length of the iteration. Now it is
defined only when i is less than or equal to j in a tree T on µ. (We write
i T j for i = j _ iTj .) 0 is the unique minimal point of T . T (i + 1) is the
unique T–predecessor of i+ 1. The ⇡ij are partial maps and we again have:

⇡ij · ⇡hi = ⇡hj for h T i T j.

We will always have: iTj ! i < j, but the converse may not hold. If µ = !,
these conditions completely define T ⇢ !2. But how do we then extend
the iteration to an iteration of length ! + 1? Previously we simply took a
transitivized direct limit of hMi|i < !i, h⇡ij |i j < !i. Now we must first
find a branch b in T which is cofinal in ! (i.e. sup b = !). We also require
that b have at most finitely may drop points. Pick any i 2 b such that b\i has
no drop point. Then ⇡hj : Mh ! Mj is a total map on Mh for iTh

T i

2 b.

Form the direct limit:
Mb, h⇡hi |i h 2 bi

204 CHAPTER 3. MICE

of:
hMh|i h 2 bi, h⇡hj |i T h j 2 bi.

If Mb is well founded, we call b a well founded branch and take Mb are being
transitive. We can then continue the iteration by setting:

M! =: Mb;hT! $: h 2 b for h < !.

⇡j! is then defined for i T j <T !. If hT i, we set ⇡h! =: ⇡j! · ⇡hi.

The same procedure is applied at all limit points �. We then have:

• � is a limit point of T

• T 00{�} is cofinal in �

• T 00{�} contains at most finitely many truncation points.

By now we have almost given a virtual definition of what is meant by a
"normal iteration of a premouse". The only point left vague is what we
mean by "applying" the extender E⌫i to M⇤

i
. We shall, in fact, take the

⌃
(n)

0
–ultrapower:

⇡ : M⇤
i !

(n)

E⌫i
Mi+1,

where n ! is maximal such that i < ⇢n
M

⇤
i
.

3.4.2 Normal iteration

We are now ready to write out the formal definition of "normal iteration".
We shall employ the following notational devices:

Definition 3.4.1. Let T be a tree. We set:

• i <T j $: �Tj

• i T j $: i = j _ iTj

• [i, j]T =: {h|i T h T j} (similarly for [i, j]T , [i, j]T , [i, j]T)

• T (i) =: The immediate T–predecessor of i (if it exists).

We can now define:

3.4. ITERATING PREMICE 205

Definition 3.4.2. Let M be a premouse. By a normal iteration of M of
length µ we mean:

hhMi|i < µi, h⌫i|i+ 1 < µi, h⇡ij |i T ji, T i

where.

(a) T is a tree on µ such that iTj ! j < j

(b) Mi is a premouse for i < µ

(c) ⌫i < ⌫j if i < j. Moreover Mi||⌫i = hJE
⌫i
, E⌫ii with E⌫i 6= ;. (We set:

i =: crit(E⌫i), ⌧i =: +
i
JE
⌫i

, �i =: E⌫i(i) = the largest cardinal in
JE
⌫i

.)

(d) Let h be least such that h = i or h < i and i < �h. Then h = T (i+1)

and JE
Mh

⌧i+1
= JE

Mi
⌧i+1

.

(e) ⇡ij is a partial map of Mi to Mj . Moreover ⇡ij � ⇡hi = ⇡hj for h T

i T j.

(f) Let h = T (i+ 1). Set: M⇤
i
= Mh||⌘i, where ⌘i is maximal such that ⌧i

is a cardinal in Mh||⌘i. Then ⇡h,i+1 : M⇤
i
!(n)

E
Mi
⌫i

Mi+1, where n ! is

maximal such that i < ⇢n
M

⇤
i
. (We call i+1 a drop point or truncation

point iff M⇤
i
6= Mh)

(g) If k j and (i, j]T has no drop point, then ⇡ij : Mi ! Mj is a total
function on Mi.

(h) Let � be a limit ordinal. Then T 00{�} is club in � and contains at most
finitely many drop points. Moreover, if iT� and (i,�)T is free of drops,
then:

M�, h⇡j�|i T j <T �i

is the transitivized direct limit of:

hMj |i T j <T �i, h⇡hj |i T h T j <T �i.

This completes the definition.

Lemma 3.4.1. Let I = hhMii, h⌫ii, h⇡i,ji, T i be a normal iteration. Then

(a) JE
Mi

⌫i
= JE

Mi+1

⌫i

(b) In Mi+1, �i is inaccessible and ⌫i = �+

i
.

206 CHAPTER 3. MICE

Proof: ⌧i is a cardinal in M⇤
i
. Since i is inaccessible in JE

Mi
⌧i

and is the
largest cardinal in JE

Mi
⌧i

, it follows by acceptability that:

⌧i = +
i

and i is inaccessible in M⇤
i

F = EMi
⌫i is a full extender of length �i with base H = |JE

Mi
⌧i

| and extension
h⇡, H 0i, where H 0

= |JE
Mi

⌫i
|. By acceptability we have:

P(i) \M⇤
i = P(i) \ JE

Mi

⌧i

Hence F is an extender on M⇤
i

(and the condition (f) makes sense). But
then hMi+1,⇡i,i+1i is the ⌃

(n)

i
-liftup of hM⇤

i
,⇡i, where n is maximal such

that i < ⇢n
M

⇤
i
. Hence:

⇡i,i+1(⌧i) = sup⇡”⌧i = ⌫i and ⇡i,i+1(i) = �i

Hence (b) holds, since the corresponding statement is function of i, ⌧i in
M⇤

i
.

To see that (a) holds, note that each element of H 0 has the form ⇡(f)(↵),
where ↵ < �0 and f 2 H is a function on . But then:

⇡(f)(↵) 2 EMi ! ⇡(f)(↵) 2 EMi+1 ! ↵ 2 ⇡(X)

where X = {⇠ < i : f(⇠) 2 EMi}. Hence

EMi \H 0
= EMi+1 \H i and JE

Mi

⌫i
= JE

Mi+1

⌫i

QED(Lemma 3.4.1)

Using these facts we prove:

Lemma 3.4.2. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration. Let
h < i. Then

(a) JE
Mh

⌫h
= JE

Mi
⌫h

(b) �h is inaccessible in Mi and ⌫h = �+

h
in Mi

(c) Let h < j <T i. Then �h crit(⇡j,i) < �i.

(d) Let h <T i. ⇡h,i is a total function on Mh iff [H, i]T is drop free.

The proof is by induction on i. We leave the details to the reader.
Note. h < i implies ⌫h < �i, since ⌫h < ⌫i is a successor cardinal in Mi;
hence ⌫h /2 [�i, ⌫i).

3.4. ITERATING PREMICE 207

Definition 3.4.3. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration.

• lh(I) denotes the length of I

• If ⌘ lh(I) we set:

I|⌘ =: hhMi|i < ⌘i, h⌫i|i+ 1 < ⌘i, h⇡ij |i T i < ⌘i, T \ ⌘2i.

Definition 3.4.4. Let I = hhMii, . . . , T i be a normal iteration of limit
length ⌘. By a well founded cofinal branch in I we mean a branch b in T
such that

• sup b = ⌘

• b has at most finitely many truncation points

• Let i 2 b such that b \ i is truncation free. Then

hMj |j 2 bi, h⇡hi|i h j in bi

has a well founded direct limit.

We leave it to the reader to prove:

Lemma 3.4.3. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration of limit
length ⌘. Let b be a well founded cofinal branch in I. I has a unique extension
I 0 of length ⌘+1 such that I 0|⌘ = I and T 000{�} = b. (Moreover, if i 2 b and
b \ i is drop free then:

M 0
⌘, h⇡0

h,⌘
|h 2 b \ ii

is the transitivized direct limit of

hMh|h 2 b \ ii, h⇡h,j |h 2 b \ ii.

Note. We use Theorem 3.3.23 to show that M 0
⌘ is a premouse.

Note. It will be easier to talk about such limits if we have a notion of direct
limit which can be applied to directed systems of partial maps. This could be
defined quite generally, but the following version suffices for our purposes:
Let S = hS,<i be a linear ordering. Let Ai be a model and let ⇡ij be a
partial injection of Ai to Aj for i j in S. Assume that the maps commute
(i.e. ⇡ij⇡i = ⇡j) and that for sufficiently large i 2 S we have:

⇡ij is a total map on A8 for all j � i in I.

208 CHAPTER 3. MICE

Let S0 be the set of such i. We call:

A, h⇡i|i 2 Si

a direct limit of:
hAi|i 2 Si, h⇡ij |i j in Si

iff:
A, h⇡i|i 2 S0i

in a direct limit of:
hAi|i 2 S0i, h⇡ij |i j in S0i

and ⇡h is defined by: ⇡h = ⇡i⇡hi for h /2 S0
1
i 2 S.

In §3.2 we defined N to be a ⌃
⇤–ultrapower of M by F with ⌃

⇤–extension
⇡ (in symbols ⇡ : M !⇤

F
N) iff F is close to M and ⇡ : M !(n)

F
N where

n ! is maximal such that crit(F) < ⇢n
M

. Theorem 3.2.17 said that in this
case ⇡ is ⌃

⇤–preserving. We shall now show that in a normal iteration EMi
⌫i

is always close to M⇤
i
. In order to utilize the full strength of this fact, we

shall formulate it not only for normal iteration, but also for potential normal
iteration in the following sense:

Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration of length i + 1. If we
attempt to extend I to an I 0 of length i + 2 by appointing the next ⌫i, we
call this attempt a potential normal iteration. The formal definition is:

Definition 3.4.5. A potential normal iteration of length i+2 is a structure

T0
= hhMj |j ii, h⌫j |j ii, h⇡ij |i j ii, T 0i

where:

• I = hhMji, h⌫j |j < ii, h⇡iji, T i is a normal iteration of length i + 1,
where T = T 0 \ (i+ 1)

2

• EMi
⌫i
6= ; and ⌫i > ⌫j for j < i

• hT 0j $ (hTj _ (h T ⇠ ^ j = i)) where:

⇠ = T 0
(i+ 1) =: the least ⇠ such that i < �⇠.

If I 0 is a potential iteration and ⇠ = T 0
(i + 1), we define M⇤

i
= M⇠U is in

the usual way, (but we do not yet know whether M⇤
i

is extendable by EMi
⌫i

).

3.4. ITERATING PREMICE 209

Note. (a)-(d) in the definition of normal iteration continue to hold. ((d) is
trivial if ⇠ = i. If ⇠ < i, then ⌧i < �⇠ and JE

M⇠

�⇠
= JE

Mi

�⇠
). But then M⇤

i
is

defined and ⌧i 2 M⇤
i

is a cardinal in M⇤
i
. Let n ! be maximal such that

i < ⇢n
M

⇤
i
. It is easily seen that, if the ⌃

(n)

0
extension:

⇡0
: M⇤

i �!
(n)

E
Mi⌫i

M 0

exists, we can turn I 0 into a normal iteration of length i+ 2 by setting:

Mi+1 = M 0, ⇡⇠,i+1 = ⇡0

We now prove a basic fact about normal iteration:

Theorem 3.4.4. Let I be a potential normal iteration of length i + 2. Let
⇠ = T (i+ 1). Then EMi

⌫i
is close to M⇤

i
.

Before proving this we note the obvious corollary:

Corollary 3.4.5. Let I be a normal iteration. If h = T (i+ 1) in I, then:

⇡h,i+1 : M
⇤
i !⇤

E⌫i
Mi.

Lemma 3.4.6. Let I be a normal iteration. Let h = T (i + 1), i + 1 T j,
where (i+ 1, j]T has no truncation point. Then:

⇡h,j : M
⇤
i �!⌃⇤ Mj strongly.

In particular ⇡h,j”Pn

M
⇤
i
⇢ Pn

Mj
for ⇢n+1

= ⇢! in M⇤
i
.

Proof. By induction on j using Lemma 3.2.26, Lemma 3.2.27 and Lemma
3.2.28.

QED(Lemma 3.4.6)

We shall derive Theorem 3.4.4 from an even stronger statement:

Lemma 3.4.7. Let I be a potential normal iteration of length i+ 2. Then

P(⌧i) \ ⌃1(Mi||⌫i) ⇢ ⌃1(M
⇤
i).

We first show that Lemma 3.4.7 implies theorem 3.4.4. Since F = E⌫i is
weakly amenable, we need only show that F↵ 2 ⌃1(M

⇤
i
) for ↵ < �i, where:

F↵ = {x ⇢ i|x 2Mi||⌫i ^ ↵ 2 F (x)}.

210 CHAPTER 3. MICE

Let k 2Mi||⌫i map ⌧i onto JE
⌧i

. Then k 2M⇤
i
, since either i = T (i+ 1) and

M⇤ �Mi||⌫i, or else h = T (i+ 1) < i, whence follows: k 2 JE
Mi

�h
= JE

M⇤
i

�h
⇢

M⇤
i
. Set:

F̃↵ = {⇠ < ⌧i|k(⇠) 2 F↵}.

Then F̃↵ ⇢ P(⌧i) is ⌃1(M
⇤
i
) by Lemma 3.4.7. Hence F↵ = k00F̃↵ 2 ⌃1(M

⇤
i
).

QED

We now prove Lemma 3.4.7. Suppose not. Let I be a counterexample of
length i+ 2, where i is chosen minimally. Let h = T (i+ 1). Then:

(1) h < i

Proof: Suppose not. Then M⇤
i

= Mi||µ where µ � ⌫. Hence
⌃1(Mi||⌫i) ⇢ ⌃1(M

⇤
i
). Contradiction!

(2) ⌫i = OnMi and ⇢1
Mi
 ⌧i.

Proof: Suppose not. Let A ⇢ ⌧i be ⌃1(Mi||⌫i). Then A 2 P(⌧i)^Mi ⇢
JE

Mi

�n
, since �h > ⌧i is inaccessible in ???. But JE

Mi

�n
= JE

Mi

�n
⇢ M⇤

i
.

Contradiction!

(3) i is not a limit ordinal.

Proof: Suppose not. Then sup{crit(⇡li)(<
T

i} = sup
l<i

�l, so we can pick

L <
T

i such that crit(⇡l,i) > �h > ⌧i and ⇡l,i is a total function on

Ml. Then ⇡l,i : Ml !⌃1 Mi, where Mi = hJEi
⌫i

, F i, where F 6= ;.
Hence Ml = hJE

⌫
, F i where F 6= ;. Let A ⇢ ⌧i be ⌃1(Mi) such

that A /2 ⌃1(M
⇤
i
). We can assume l to be chosen large enough that

p 2 rng(⇡li), where A is ⌃1(Mi) in the parameter p. Thus A 2 ⌃1(Ml).
Clearly ⌫ > ⌫j for all j < l, since ⌫j 2Ml = hJF

⌫
, F).

Extend I|l + 1 to a potential iteration I 0 of cf length l + 2 by setting
⌫l = ⌫. Since crit(⇡l,i) > Ii, it follows easily that ⌧ 0

l
= ⌧i,0l = i,

where ⌧l,0l are defined in the usual way. But then M⇤
i
= (M 0

l
)
⇤ and

A 2 ⌃1(M
⇤
i
) by the minimality of i. Contradiction! QED (3)

Now let i = j+1, ⇠ = T (i). Since ⇡⇠,i : M⇤
j
!⌃1 Mi = hJE

⌫i
, E⌫i where

E⌫i 6= ;i we have:

(4) M⇤
j
= hJE

⌫
, E⌫i where E⌫ 6= ;.

(5) ⌧i < j

Proof: ⌧i < �j since ⌧i = +Mi
i

and i < �h �j , where �j

is inaccessible in Mi. But obviously i, ⌧i 2 rng(⇡⇠,i) by (4) where
[j ,�j) \ rng(⇡⇠i) = ;. QED (5)

3.4. ITERATING PREMICE 211

(6) ⇡⇠i : M⇤
j
!E⌫j

Mi is a ⌃0 ultrapower.

Proof: Suppose not. Then j < ⇢1
M

⇤
j
. Hence ⇡⇠,i is ⌃

(1)

0
–preserving.

Hence ⇡⇠i00⇢1M⇤
i
⇢ ⇢1

Mi
. Hence ⌧i = ⇡⇠i(⌧j) < ⇢1

Mi
, contradicting (2).

QED (6)
But then:

(7) P(⌧i) \ ⌃1(Mi) ⇢ P(⌧i) \ ⌃1(M
⇤
j
).

Proof: Let A ⇢ ⌧i be ⌃1(Mi) in the parameter p. Let p = ⇡⇠i(f)(↵),
where f : i !M⇤

i
, f 2M⇤

i
, and � < �j . Then

A(⇠)$
_

xA0
(⇣, x, p)

where A0 is ⌃0(Mi). Let A
0 be ⌃0(M⇤

j
) by the same ⌃0 definition.

Then, since ⇡⇠i takes M⇤
j

cofinally to Mi by (6), we have

A(⇣)$
_

u 2M⇤
j

_
x 2 ⇡⇠,i(u)A

0
(⇣, x, p).

By the minimality of i we know that (E⌫j)↵ 2 ⌃1(M
⇤
j
) for ↵ < �j .

But then:

A(⇣)$
_

u 2 m⇤
j{� < j |A

0
(⇣, x, f(�)} 2 (E⌫i)↵.

Hence A is ⌃1(M
⇤
j
). QED (7)

Now extend I|⇠ + 1 to a potential iteration I 0 of length ⇠ + 2 by setting
⌫ 0
⇠
= ⌫, where M⇤

j
= M⇠||⌫ = hJE

⌫
, E⌫i. Then i = 0

⇠
and ⌧i = ⌧ 0

⇠
, since

⇡⇠i � j = id. Hence h = T (i + 1) = T 0
(⇠ + 1) and M⇤

i
= (M⇤

⇠
)
0. By the

minimal choice of i we conclude

P(⌧i) \ ⌃1(M
⇤
j) ⇢ ⌃1(M

⇤
i).

Hence P(⌧i)\⌃1(Mi) ⇢ ⌃(M
⇤
i
) by (7). Contradiction! QED (Lemma 3.4.7)

3.4.3 Padded iterations

Normal iterations are often used to "compare" two premice M and M 0. The
comparison iteration or coiteration consists of a pair hI, I 0i of iteration I of M
and I 0 of M 0. When we have reached Mi,M 0

i
, we proceed as follows: We look

for the least point of difference — i.e. the least ⌫ such that Mi||⌫ 6= M 0
i
||⌫.

Then JE
Mi

⌫ = JE
M0

i
⌫ and EMi

⌫ 6= E
M

0
i

⌫ . Then at least one of EMi
⌫ , E

M
0
i

⌫ is
an extender. If both are extenders, we continue on the I–side with the

212 CHAPTER 3. MICE

index ⌫i = ⌫. However, if, say, EMi
⌫ is an extender and E

M
0
i

⌫ = ;, we
iterate by ⌫i = ⌫ on the I–side and on the I 0–side do nothing. We then
call i an inactive point on the I 0–side and set: M 0

i+1
= M 0

i
,⇡0

i,i+1
= id with

i = T 0
(i + 1) in I. Thus i is active on one or the other side and we have

achieved: Mi+1||⌫ = M 0
i+1

||⌫ = ;. (This is called "iterating away the least
point of difference".) At a limit � we choose on either side a well founded
branch and continue with that.

If all goes well, we eventually reach a point i such that Mi,M 0
i

or one of
Mi = M 0

i
is a proper segment of the other.

In order to carry this out we need a slightly more flexible definition of "normal
iteration", which admits inactive points. We therefore define:

Definition 3.4.6. A padded normal iteration of length µ is a sequence:

I = hhMi|i < µi, h⌫i|i 2 Ai, h⇡ij |iT ji, T i

such that:

(1) A ⇢ {i : j + 1 < µ} is called the set of active points in I.

(2) (a)-(h) of the previous definition hold, where (d)-(f) both require the
assumption: i 2 A.

(3) Let h < j < µ such that [h, j) \A = ?. Then:

• h T j,Mk = Mj ,⇡hj = id.

• i h �! (i T h ! i <T j) for i < µ.

• j i �! (j T i ! h <T i) for i < µ. (In particular, if
i+ 1 < µ, i /2 A, then i = T (i+ 1),Mi = Mi+1, and ⇡i,i+1 = id.)

Note. This gives a new way of potentially extending I of length i + 1.
Instead of appointing ⌫i, we could set: i /2 A,Mi+1 = Mi.

All previous results go through a mutatis mutandis. We shall often use the
term "normal iteration" so as to include padded normal iteration. We then
call normal iterations in the sense of our previous definition strict . We can
turn a padded iteration into a strict iteration simply by omitting the inactive
points.

Conversely, we can turn a strict iteration into a padded iteration simply by
inserting inactive points. The relevant lemmas are:

3.4. ITERATING PREMICE 213

Lemma 3.4.8. Let I = hhMii, h⌫ii, h⇡iji, T i be a (possibly padded) normal
iteration of length µ. Let A be the set of active points in I. Set:

A0
=: {i : i 2 A _ i+ 1 = µ}

Let B ⇢ µ such that A0 ⇢ B. Let f be the monotone enumeration of B.
Then:

I 0 = hhMf(i)i, h⌫f(i)i, h⇡f(i),f(j)i, T 0i

is a normal iteration , where T 0
= {hi, ji : f(i)Tf(j)}. (Moreover I 0 is strict

if B = A0).

Proof. (a)-(i) are satisfied by I 0.

Conversely:

Lemma 3.4.9. Let I, µ be as above. Let f : µ �! µ0 be monotone such that
lub f”µ = µ0 if µ is a limit ordinal. Set: f(i) = lub f”i for i < µ. For i < µ0

set:

⇠i = that ⇠ such that either f(⇠) i f(⇠), or else ⇠ + 1 = µ and f(⇠) < i.

Define:
I 0 = hhM 0

ii, h⌫ 0ii, h⇡0
iji, T 0i

by:
M 0

i = M⇠i ,⇡
0
ij = ⇡⇠i,⇠j , T

0
= {hi, ji : ⇠iT ⇠j}

and:

⌫ 0i =

(
⌫⇠i if i = f(⇠i)

otherwise undefined

Then I 0 is a normal iteration.

Proof: I 0 satisfies (a)-(i).

Note. Lemma 3.4.9 enables to recover I form the I 0 in Lemma 3.4.8.

We leave the proof to the reader.

3.4.4 n–iteration

In a normal iteration we always take ⌃
⇤ ultrapowers. For technical reasons,

however, we may sometimes want to bound the degree of preservation of our
ultraproducts. In a 0–iteration for instance, we would use the ordinary ⌃0

214 CHAPTER 3. MICE

ultrapower to pass from Mi to Mi+1, as long as no h T i+1 is a truncation
point. If, on the other hand, we have reached a truncation point h T i+1,
we then revert to the full ⌃⇤–ultrapowers. More generally:

Definition 3.4.7. Let n !. By a normal n–iteration of M of length µ we
mean

hhMi|i < µi, h⌫i|i+ 1 < µi, h⇡ij |iT i, T i,
where (a) – (e) and (g) ,(h) in the definition of "normal iteration" hold, and
in addition:

(f) Let h = T (i + 1). If ⌧i is a cardinal in Mh and ⇡jh is a total map on
Mj for jTh, then ⇡h,i+1 : Mh !

(m)

E⌫i
Mi+1, where m n is maximal

such that i < ⇢m
Mh

.

Otherwise ⇡h,i+1 : M⇤
i
!(m)

E⌫i
Mi+1, where M⇤

i
is defined as before and m !

is maximal such that i < ⇢m
M

⇤
i
.

Note. An !–iteration is then the same as a normal iteration n the sense
of our previous definition. We also call such iterations ⇤–iterations, since
we then always take the ⌃

⇤ ultrapowers. ⇤–iterations are the ones we are
interested in.

It is easily seen that the conclusions of Lemma 3.4.2 hold for normal n–
iterations. Lemma 3.4.3 also holds for these iterations and Lemma 3.4.7
holds mutatis mutandis . We leave this to the reader. More suprising is:

Theorem 3.4.10. Theoem 3.4.4 holds for normal n–iterations.

Before proving this, we again note some consequences. It follows easily that:

Corollary 3.4.11. Let I be a normal n–iteration. Let h = T (i+ 1). Let m
be maxiomal such that i < ⇢m

M
⇤
i
. Assume either that m n or that there is

a j T i+ 1 which is a drop point. Then:

⇡h,i+1 : M
⇤
i !⇤

E⌫i
Mi+1.

In all other cases we have:

⇡h,i+1 : M
⇤
i !

(n)

E⌫i
Mi+1.

But then by induction on i we get:

Corollary 3.4.12. Let I be as above. Let ⇡ij be a total map on Mi. If there
is a drop point j such that jT i, then ⇡ij is ⌃

⇤–preserving. Otherwise it is
⌃
(n)

0
–preserving.

3.4. ITERATING PREMICE 215

As before, we derive Lemma 3.4.10 from:

Lemma 3.4.13. Let I = hhMii, h⌫ii, h⇡iji, T i be a potential n–iteration of
length i+ 2. Then P(⌧i) \ ⌃i(Mi||⌫i) ⇢ ⌃1(M

⇤
i
).

The derivation of Lemma 3.4.10 from Lemma 3.4.13 is exactly as before.
We prove Lemma 3.4.13. Almost all steps in the proof of Lemma 3.4.7 go
through as before. The only difficulty occurs in the proof of (6), where
we derived that ⇡⇠,i is ⌃

(1)

0
–preserving from: j < ⇢1

M
⇤
j
. If n � 1, this is

unproblematical. Now assume n = 0. If there is a drop point l T i, then
⇡⇠,i is ⌃⇤–preserving and there is nothing to prove. Now suppose there is no
such drop point.

By the definition of "0–iteration" we then have: ⇡⇠,i : M⇤
j
!0

E⌫j
Mi, which

was to be proven.

All other steps in the proof go through. QED (Lemma 3.4.13)

This proves Theorem 3.4.10.

The concept "padded n–iteration" is defined exactly as before. As before,
every padded iteration can be converted into a strict iteration by omitting
the inactive points, and every strict iteration can be expanded to a padded
iteration by inserting inactive points. We leave this to the reader.

3.4.5 Copying an iteration

Suppose that I is a normal iteration of a premouse M and � : M !⌃⇤ M 0,
where M 0 is a premouse. We can attempt to "copy" I onto an iteration I 0

of M 0 by repeating the same steps modulo �. We define:

Definition 3.4.8. Let I = hhMii, h⌫ii, h⇡iji, T i be a strict normal iter-
ation of M . Let � : M !⌃⇤ M , where M 0 is a premouse. We call
I 0 = hhM 0

i
i, h⌫ 0

i
i, h⇡0

ij
i, T 0i a copy of I induced by h�,M 0i with copying map

h�i|i < lh(I)i iff the following hold:

(a) lh(I 0) = lh(I) and T 0
= T

(b) �i : Mi !⌃⇤ M 0
i

and �0 = �

(c) �i⇡li = ⇡0
li
�j for l T i

(d) �i ��l = �l ��l for l i

216 CHAPTER 3. MICE

(e) ⌫ 0
i
= �i(⌫i) for ⌫i 2Mi. Otherwise ⌫ 0

i
= On\M 0

i
.

Note. This definition can easily be extended to padded normal iterations.
(b) – (e) are then stipulated for active points, and for inactive points we
stipulate:

(f) If i is inactive in I, it is inactive in I 0 and �i+1 = �i.

We shall often formulate our definitions and theorems for strict iteration,
leaving it to the reader to discover — mutatis mutandis — the correct version
for padded iterations. In particular, the remaining theorems in this section
will assume strictness.

We also define:

Definition 3.4.9. hI, I 0, h�i|i < lh(I)ii is a duplication iff I, I 0 are normal
iterations and I 0 is a copy of I with copying maps h�ii.

Lemma 3.4.14. Let I 0 be a copy of I with copying maps h�ii. Let h =

T (i+ 1).

(i) If i + 1 is a drop point in I, then it is a drop point in I 0 and M 0⇤
i =

�h(M⇤
i
).

(ii) If i + 1 is not a drop point in I, it is not a drop point in I 0. (Hence
M⇤

i
= Mh,M 0⇤

i = M 0
h
.)

(iii) Let F = EMi
⌫i

, F 0
= E

M
0
i

⌫
0
i

. Then:

h�h �M⇤
i ,�i ��ii : hM⇤

i , F i ! hM 0⇤
i , F

0i

as defined in §3.2.

(iv) �i+1(⇡h,i+1(f)(↵)) = ⇡0
h,i+1

�h(f)(�i(↵)) for f 2 �
⇤
(i,M⇤

i
)↵ < �i.

(v) �j(⌫i) = ⌫ 0
i
for i < j.

Proof:

(i) Let h = T (i+ 1). Then M⇤
i
= Mh||µ, where µ 2 Mh is maximal such

that ⌧i is a cardinal in Mh||µ. But ⌧ 0
i
= �i(⌧i) = �h(⌧i) by (d), (e).

Hence �h(µ) = µ0, where µ0 is maximal such that ⌧ 0
i

is a cardinal in
M 0

h
, and �h(Mh||µ) = M 0

h
||µ0.

3.4. ITERATING PREMICE 217

(ii) If ⌧ is a cardinal in Mh, then ⌧ 0
i
= ⌧h(⌧) is a cardinal in M 0

h
, since �h

is ⌃1–preserving.

(iii) Clearly �h �M⇤
i
: M⇤

i
!⌃⇤ M 0

i

⇤ by (i) and (ii). Now let x 2 P(i)\M⇤
i

and ↵1, . . . ,↵n < �0. Since �i : Mi �!M 0
i

is ⌃
⇤-preserving we have:

h~↵i 2 F (x)$ h�i(~↵)i 2 F 0
(�i(x)).

But �i(x) = �h(x), since by (d) we have: �i �JE
Mi

�n
= �h �JE

Mh

�h
.

(iv) If f 2M⇤
i
, then by (c):

�i+1⇡h,i+1(f) = ⇡0
h,i+1�h(f).

Otherwise f(⇠) ' G(⇠, q) where q 2 M⇤
i

and G is a good ⌃
(n)

1
(M⇤

i
)

function for an n such that i < ⇢n+1

M
⇤
i

. But then:

�i+1⇡h,i+1(f)(⇠) ' G0
(⇠,�i+1⇡h,i+1(q))

' G0
(⇠,⇡0

h,i+1
�h(q))

' ⇡0
h,i+1

�h(f)

where G0 is ⌃
(n)

1
(M 0

i

⇤
) by the same good definition.

(v) If j > i + 1, then ⌫i < �i+1 and �j(⌫i) = �i+1(⌫i). But letting h =

T (i+ 1), we have:

�i+1(⌫i) = �i+1⇡h,i+1(⌧i) = ⇡0
h,i+1�h(⌧i),

where
�h(⌧i) = �i(⌧i) = ⌧ 0i , since ⌧i < �h.

Hence �i+1(⌫i) = ⇡0
h,i+1

(⌧ 0
h
) = ⌫ 0

i
.

QED (Lemma 3.4.14)

It is apparent from Lemma 3.4.14 that there is only one way to extend a
copy of I|i+1 to a copy of I|i+2. Moreover, the copying map �i is unique.
Similarly, if ⌘ is a limit ordinal and I 0 is a copy of I|µ with copying maps
h�i|i < ⌘i, ther is only one way to extend I 0 to a copy of I|⌘ + 1, for then:

M 0, h⇡0
i,⌘|iT⌘i

is the direct limit of:

hM 0
i |i < ⌘i, h⇡0

ij |i T j <T ⌘i,

and �⌘ is defined by:
�⌘⇡i⌘ = ⇡0

i⌘�i for i <T ⌘.

Hence, by induction on lh(I) we get:

218 CHAPTER 3. MICE

Lemma 3.4.15. Let I be a normal iteration of M . Let � : M !⌃⇤ M 0.
Then there is at most one copy I 0 of I induced by �. Moreover, the copying
maps �i are unique.

Now suppose that I is a normal iteration of length i+1 and I 0 is a copy of I
with copying maps h�h |h ii. Extend I to a potential iteration Ĩ of length
i+ 2 by appointing ⌫i. Extend I 0 to a potential iteration Ĩ 0 by appointing:

⌫ 0i =

(
�i(⌫i) if ⌫i 2Mi

On\M 0
i

if ⌫i = On\Mi.

We call hĨ , Ĩ 0, h�j || iii a potential duplication of length i + 2. The formal
definition is:

Definition 3.4.10. Let I, I 0 be potential iteration of length i+2. hĨ , Ĩ 0, h�j |j
iii is a potential duplication of length i+ 2 iff

• hI, I 0, h�j |j iii is a duplication of length i+1, where I = Ĩ|i+1, I
0
=

I 0|i+ 1.

• �i(⌫i) = ⌫ 0
i
if ⌫i 2Mi. Otherwise ⌫ 0

i
= On^M 0

i
.

Note. It is then easily seen that T (i + 1) = T 0
(i + 1). We also know that

EMi
⌫i

is close to Mn

i
and E

M
0
i

⌫
0
i

is clost to M 0
i
. The following theorem is an

analogue of theorem 3.4.7

Lemma 3.4.16. Let hI, I 0, h�iii be a potential duplication of length i + 2.
Let h = T (i+ 1). Then:

h�h �M⇤
i ,�i ��ii : hM⇤

i , F i !⇤ hM 0⇤
i , F

0i

(as defined in §3.2) where F = EMi
⌫i

, F 0
= E

M
0
i

⌫
0
i

.

Before proving the theorem, we note some of its consequences. It gives us
exact criteria for determining whether the copying process can be continued
one step further.

Lemma 3.4.17. Let I be a normal iteration of M of length i + 2. Let
� : M !M 0 induce a copy I 0 of I|0 + 1 with copying maps h�j |j ii. Set:

⌫ 0i =

(
�i(⌫i) if ⌫i 2Mi

On\M 0
0

if ⌫i = On\Mi

Then � induces a copy of I iff M 0⇤
i is ⌃

⇤–extendible by E
M

0
i

⌫
0
i

.

3.4. ITERATING PREMICE 219

Proof: If M 0⇤
i is not extendible, then no such copy can exist. Now let

M 0⇤
i be extendible. Let ⇡0

h,i+1
: M 0⇤

i !⇤
E

M0⇤
i

⌫0i

M 0⇤
i+1. By theorem 3.4.16 and

Lemma 3.2.23 it follows that there is a unique � : Mi+1 !⌃⇤ M 0
i+1

such that
�⇡h,i+1 = ⇡0

h,i+1
· h�h �M⇤

i
), where h = T (i+ 1). Set: �i+1 =: �. This gives

us the copy I 00 of I with copying maps h�j |j 0 + 1i.
QED (Lemma 3.4.17)

We also have:

Lemma 3.4.18. Let I be a normal iteration of M of length ⌘+1, where ⌘ is
a limit ordinal. Let � : M !E⇤ M 0 induce a copy I 0 of I|⌘. We can extend
I 0 to a copy of I induced by � iff b = T 00{⌘} is a well founded branch in I 0.

The proof is left to the reader.

We also note:

Lemma 3.4.19. Let I be a normal iteration of limit length. Let I 0 be a
copy of I. If b is a cofinal well founded branch in I 0, then it is a cofinal well
founded branch in I.

The proof is left to the reader.

We now turn to the proof of theorem 3.4.16. As with theorem 3.4.7 we derive
it from an even stronger lemma:

Lemma 3.4.20. Let hI, I 0, h�iii be a potential duplication of length i + 2.
Let A ⇢ ⌧i be ⌃1(Mi||⌫i) in a parameter p. Let A0 ⇢ ⌧ 0

i
be ⌃1(Mi||⌫i) in

�i(p) by the same definition. Then A is ⌃1(M⇤
i
) in a parameter q and A0 is

⌃1(M 0⇤
i) in �h(q) by the same definition, where h = T (i+ 1).

The derivation of theorem 3.4.16 from lemma 3.4.20 is a virtual repetition
of the proof of theorem 3.4.4 from lemma 3.4.7. We leave it to the reader.

Lemma 3.4.20 is proven by a virtual repetition of the proof of lemma 3.4.7,
making changes as necessary. We give a brief sketch of the proof:

Suppose not. Let I, I 0, ⌫i, ⌫ 0i be counterexamples of length i + 1, where i is
chosen minimally. Let h = T (i+ 1) = T 0

(i+ 1). Then:

(1) h < i.
Suppose not. Then Mi||⌫i ⇢ M⇤

i
and M 0

i
||⌫ 0

i
⇢ M 0⇤

i as before. If
⌫i 2 M⇤

i
, then �i(M ||⌫i) = M 0

i
||⌫ 0

i
. Hence A 2 M⇤

i
and �i(A) = A0.

Contradiction!

220 CHAPTER 3. MICE

(2) ⌫i = OnMi and ⇢i
Mi
 ⌧i.

Otherwise, as before A 2 P(⌧i) \M⇤
i
, A0 2 P(⌧i) \M 0⇤

i and �h(A) =

�i(A) = A0. Contradiction!

(3) i is not a limit cardinal.
The proof of this is a virtual repetition of the argument given in the
proof of lemma 3.4.7. We leave it to the reader.

Now let i = j + 1, ⇠ = T (i). Exactly as before we have:

(4) M⇤
j
= hJE

⌫ , E⌫i,M 0⇤
j = hJE

0
⌫0 , E

0
⌫0i where E⌫ , E0

⌫ 6= ;.

(5) ⌧i < j .

(6) ⇡⇠,i : M⇤
j
!E⌫j

Mi is a ⌃0 ultrapower (and therefore cofinal). Similarly
for ⇡0

⇠,i
: M 0⇤

j !E⌫0j
M 0

i
. By the minimality of � we know that for

all ↵ < �j , (EMj
j)↵ is ⌃1(M⇤

j
) in a parameter r and (EMi

⌫
0
i
)�i(↵)

is
⌃1(M 0⇤

j
) in �⇠(r) by the same definition. Using this we can repeat the

argument in the proof of Lemma 3.4.7 to get:

(7) A is ⌃1(M⇤
j
) in a q and A0 is ⌃1(M 0⇤

j) in �⇠(q) by the same definition.

Now extend I|⇠ + 1 to a potential iteration Ĩ of length ⇠ + 2 by setting
⌫̃⇠ = ⌫, where ⌫ is as in (4). Extend I 0|⇠ + 1 to Ĩ 0 by setting ⌫̃⇠ = ⌫ 0 where
⌫ 0 is as in (4). Then i = ̃⇠, ⌧i = ⌧̃⇠,0i = ̃⇠, ⌧ 0i = ⌧̃ 0

⇠
as before. Hence

h = T̃ (⇠ + 1) = T̃ 0
(⇠ + 1) and M⇤

i
= M̃⇤

⇠
,M 0⇤

i = M̃ 0⇤
⇠ . By this minimality

of i we conclude that A is ⌃1(M⇤
i
) ia a q and A0 is ⌃1(M 0⇤

i) in �h(q) by the
same definition. Contradiction! QED (Lemma 3.4.20)

3.4.6 Copying an n–iteration

Definition 3.4.11. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal n–iteration
(n !). Let � : M !

⌃M
1
,M 0. We call:

I 0 = hhM 0
ii, h⌫ 0ii, h⇡0

iji, T 0i

a copy (or n–copy) of I induced by h�,M 0i iff I 0 is an n–iteration satisfying
(a), (c), (d), (e) of the previous definition together with

(b’) �0 = � and � : Mi !
⌃

(n)
1

M 0
i
. Moreover, if some h T i is a truncation

point, then �i is ⌃
⇤–preserving.

3.5. ITERABILITY 221

The notion "n–duplication" and "potential n–duplication" are defined as
before. Lemma 3.4.14 goes through as before exept (iv) must be reformulated
as:

(iv’) If no l T i+ 1 is a truncation point and i < ⇢n
Mh

, then:

�i+1(⇡h,i+1(f))(↵) = ⇡0
h,i+1�i(f)(�i(↵))

for f 2 �
n
⇤ (i,Mh),↵ < �i. In all other cases the equation holds for

f 2 �
⇤
(i,M

⇤
i),↵ < �i.

Lemma 3.4.15 then holds as before. Theorem 3.4.16 and lemma 3.4.17 –
3.4.19 then go through as before. By theorem 3.4.16 we also get:

Lemma 3.4.21. Let hI, I 0, h�iii be an n–duplication. Let i <T j in I such
that ⇡ij is total on Mi.

(a) If no l T i is a truncation point and i < ⇢n
Mi

, then ⇡ij : Mi !
⌃

(n)
1

Mj.

(b) In all other cases ⇡ij is ⌃
⇤–preserving.

These lemmas and theorems hold mutatis mutandis for padded n–iterations.
The details are left to the reader.

3.5 Iterability

A mouse is a premouse which is iterable. Iterability is, however, as complex
a notion as that of iterating itself. We begin with normal iterability which
says that any normal iteration of M constructed accordig to an appropriate
strategy, can be continued.

3.5.1 Normal iterability

Definition 3.5.1. A premouse M has the normal uniqueness property (NUP)
iff every normal iteration of M of limit length has at most one cofinal well
founded branch. The simplest mice, such as 0

#, 0## etc. are easily seen to
have this property. Unfortunately, however, there are mice which do not. If
a premouse M does satisfy NUP, then normal iterability can be defined by:

