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(c) If �(⇠i) = ⇡0,⌘(⇠i) for i < n < !, then �(⇠n) � ⇡0,⌘(⇠n).

As before, this follows from:

Lemma 3.5.12. Let M, h⇠i|i < !i be as above. There is an !1+1–successful
n–full iteration strategy S to M such that whenever I is an S–conforming n
to n–full iteration from M to M 0 and � : M !

⌃(n) M 0, then:

(a) No i < lh(I) is a truncation point. (Hence the map ⇡ = ⇡(M,I) is a
total function on M .)

(b) If �(⇠i) = ⇡(⇠i) for i < n, then �(⇠n) � ⇡(⇠n).

The proofs are virtually unchanged.

3.6 Verifying full iterability

3.6.1 Introduction

As we said, full iterability is a difficult property to verify. A theorem that
every normally iterable mouse is fully iterable would be useful, if true, but
seems unlikely. We can, however, prove the following pair of theorems:

Theorem 3.6.1. If M is smoothly ↵–iterable, then it is fully ↵–iterable.

Theorem 3.6.2. Let  > ! be regular and let M be uniquely normally +1

iterable. Then M is smoothly + 1–iterable.

The proofs of these theorems are quite complex. To prove theorem 3.6.1, we
redo much of chapter 2, developing a theory of embeddings which are ⌃

⇤–
preserving modulo pseudo projecta, which may not be the real projecta, but
behave simiarly. The proof of theorem 3.6.2 requires us, in addition, to delve
rather deeply into the combinatorics of normal iteration, using technique
which, essentially, were developed by John Steel and Farmer Schlutzenberg.

This section (§3.6) is devoted to the proof of theorem 3.6.1. The following
section brings the proof of theorem 3.6.2. In later chapters we shall make
frequent use of both these theorems, but will seldom, if ever, refer to their
proofs. Hence it would be justifiable for a first time reader of this this book
to skip §3.6 and §3.7, taking the above theorems for granted and deferring
their proofs until later.
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3.6.2 Pseudo projecta

In order to prove theorem 3.6.1, we must redo §2.6, allowing “pseudo pro-
jecta” to play the role of the real projecta.

Definition 3.6.1. Let M = hJA
↵ , Bi be acceptable. Then ⇢ = h⇢i|i < !i is

a good sequence of pseudo projecta for M iff the following hold:

(a) ⇢i is p.r. closed if i > 0.

(b) !  ⇢i+1  ⇢i  ⇢iM for i < !.

(c) JA
⇢i

is cardinally absolute in M (i.e. if � 2 JA
⇢i

is a cardinal in JA
⇢i

, then
it is a cardinal in M).

Note. ⇢0 < ⇢0
M

= OnM is not excluded. Moreover, ⇢i itself need not be a
cardinal in M .

We shall generally write “⇢ is good for M ” instead of “⇢ is a good sequence
of pseudo projecta for M i”.

Definition 3.6.2. Let ⇢ be good for M = JA
↵ . Hi = Hi(M, ⇢) =: |JA

⇢i
| for

i < !.

We adopt the same language with typed variables vi(i < !) as before. The
formula classes ⌃(n)

h
(h, n < !) are defined exactly as before. The satisfaction

relation:
M |= '[x1, . . . , xn] mod ⇢

is defined as before except that the variables vi now range over Hi = Hi(M, ⇢)

instead of H i
= H i

M
. A relation R(xi1

1
, . . . , xinn ) is ⌃

(n)

j
(M, ⇢) (or ⌃

(n)

j
(M)

mod ⇢) iff it is M–definable mod ⇢ by a ⌃
(n)

j
formula.

Similarly for ⌃
(n)

j
,⌃⇤,⌃⇤. We then define:

Definition 3.6.3. � : M !
⌃

(n)
j

M 0
mod (⇢, ⇢0) iff the following hold:

(a) ⇢ is good for M and ⇢0 is good for M 0.

(b) �00Hi ⇢ H 0
i

for i < !, where Hi = Hi(M, ⇢), H 0
i
= Hi(M 0, ⇢0).

(c) Let ' be ⌃
(n)

i
,' = '(vi1

1
, . . . , v

ip
p ) where i1, . . . , ip  n. Then:

M |= '[~x] mod ⇢$M 0 |= '[�(~x)] mod ⇢0

for all x1, . . . , xp 2M such that xi 2 Hil(l = 1, . . . , p).
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We also define:

Definition 3.6.4. � : M !⌃⇤ M 0
mod (⇢, ⇢0) iff

� is ⌃
(n)

0
–preserving mod (⇢, ⇢0) for n < !.

As before, this is equivalent to:

� is ⌃
(n)

1
–preserving mod (⇢, ⇢0) for n < !.

We also write:
� : M !

⌃
(n)
j

M 0
mod ⇢0

to mean (
� : M !

⌃
(n)
j

M 0
mod (⇢, ⇢0),

where ⇢i = ⇢i
M

for i < !.

(Similarly for � : M !⌃⇤ M 0
mod ⇢0.)

Lemma 3.6.3. Let � : M !
⌃

(n)
j

M 0. Let ⇢ be good for M and define ⇢0 by:

⇢0i =

(
�(⇢i) if ⇢i < ⇢i

M

⇢i
M

if not.

Then � : M !
⌃

(n)
j

M 0
mod (⇢, ⇢0).

(Hence, if � is fully ⌃
⇤–preserving, it is also ⌃

⇤–preserving modulo (⇢, ⇢0).)

Proof: Clearly ⇢0 is good for M 0. Now let R(xil
1
, . . . , x

ip
p ) be ⌃

(n)

j
(M, ⇢),

where i1, . . . , ip  n. By an induction on n, R is uniformly ⌃
(n)

j
(M) in the

parameter u = h⇢i : l  n ^ ⇢l < ⇢l
M
i. (We leave the detail to the reader.)

But then, if R0 is ⌃
(n)

i
(M 0, ⇢0) by the same definition, it is ⌃

(n)

j
(M 0

) in �(u)
by the same definition. QED (Lemma 3.6.3)

Lemma 3.6.4. Let � : M !⌃⇤ M 0 and let ⇢, ⇢0 be as in lemma 3.6.3. Let
 = crit(�), where ⇢i+1   < ⇢i. Define ⇢00 by:

⇢00j =: ⇢0j for j 6= i, ⇢00i =: sup�00⇢i.

Then:
� : M !⌃⇤ M 0

mod (⇢, ⇢00).
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Proof: ⇢00 is still good for M 0. By induction on n it then follows that � is
⌃
(n)

1
–preserving modulo (⇢, ⇢00). QED (Lemma 3.6.4)

One might expect that most of §2.6 will not go through with pseudo projecta
in place of projecta, since hHi, Bi is not necessarily amenable when B is
⌃
(i)

0
(M, ⇢). As it turns out, however, a great many proofs in §2.6 do not use

this property (in contrast to the treatment in §2.5). In particular, lemmas
2.6.3 – 2.6.16 go through without change. Similarly, the definition of a good
function can be relativized to a good ⇢ in place of h⇢n

M
|n < !i. We define

Gn = Gn(M, ⇢);G⇤
= G⇤

(M, ⇢)

exactly as before with ⇢ in place of h⇢i
M
|i < !i. Lemma 2.6.22 — 2.6.25 then

go through exactly as before. Leaving the definition of good ⌃
(n)

1
definition

unchanged, we get the following version of Lemma 2.6.27: Let F be a good
⌃
(n)

1
function mod ⇢. There is a good ⌃

(n)

1
definition which defines F

mod ⇢.

Even some of §2.7 remains valid for pseudo projecta. In §2.7.1 we define
�
0
(⌧,M) (⌧ being a cardinal in M) as the set of maps f 2 M such that

dom(f) 2 H = HM
⌧ . In §2.7.2 we then introduce �

n
= �

n
(⌧,M) for the case

that n > 0 and ⌧  ⇢n
M

, defining �
n to be the set of f such that:

(a) dom(f) 2 H = HM
⌧ .

(b) For some i < n there is a good ⌃
(i)

1
(M) function G and a parameter

p 2M such that:

f(x) = G(x, p) for all x 2 dom(f).

Lemma 2.7.10 then told us that, whenever ⇡ : M !
⌃

(n)
0

M 0, there is a
canonical way of assigning to each f 2 �

n a definable partial map ⇡0(f)
on M 0. This continues to hold if ⇡ : M !

⌃
(n)
0

M 0
mod ⇢. The extended

version of 2.7.10 reads:

Lemma 3.6.5. Let ⇡ : M !
⌃

(n)
0

M 0
mod ⇢. There is a unique map ⇡0

which assigns to each f 2 �
n
(⌧,M) a function ⇡0(f) with the following prop-

erty:

(*) ⇡0(f) : ⇡(dom(f)) ! M 0. Moreover, if f(x) = G(x, p) for all x 2
dom(f), where G is a good ⌃

(i)

1
(M) function for an i < n and p 2M ,

then
⇡0(f)(x) = G0

(x,⇡(p)) for x 2 ⇡(dom(f)),

where G0 is a good ⌃
(i)

1
(M 0, ⇢) function by the same good definition.
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The proof is exactly as before. As before we get:

Lemma 3.6.6. Let u, ⌧,⇡,⇡0 be as above. Then ⇡0(f) = ⇡(f) for f 2
�
0
(⌧,M).

Thus, again, we could unambiguously write ⇡(f) instead of ⇡0(f) for f .
However , this is only unambiguous if we have previously specified the good
sequence ⇢. ⇡0 depends not only on ⇡ but also on the good sequence ⇢. For
this reason we shall write: ⇡⇢(f) for ⇡0(f). We can omit the subscript ⇢ if
the good sequence is clear from the context.

In §3.2 we then considered the special case that ⌧ = +M where  is a
cardinal inM . (This is mainly of interest when there is an extender F on M
at .) We then set:

�
n

⇤ (,M) =: {f 2 �
n
(,M)| dom(f) = }.

We also set:

�
⇤
(,M) =: �

n

⇤ (,M) where n  ! is maximal such that  < ⇢nM .

Let us call p a defining parameter for f 2 �
⇤
(,M) iff either p = f or else:

f(⇠) = G(⇠, p) for all ⇠ < 

where G is a good ⌃
(i)

1
(M) function for an i < n. By lemma 2.6.25 we can

then conclude:

Fact 1 Let R(~x, y1, . . . , yr) be a ⌃
(n)

0
(M) relation. Let fi 2 �

n
⇤ (,M) have

a defining parameter pi for i = 1, . . . , r. Then the relation:

Q(~x, ~⇠) !: R(~x, f1, (⇠1), . . . , fr(⇠)

is ⌃
(n)

0
(M) in the parameters , p1, . . . , pr.

Moreover, if:
� : M !

⌃
(n)
0

M 0
mod ⇢.

and R0 has the same ⌃
(n)

0
(M, ⇢) definition, then the relation:

Q0
(~x, ~⇠)$: R0

(~x,�⇢(f1)(⇠1), . . . ,�⇢(fr)(⇠r))

is ⌃
(n)

1
(M 0, ⇢) in ,�(p1), . . . ,�(pr) by the same definition as Q.

Now let a1, . . . , am 2M and set:

X = {h~⇠i|R(~a, ~f(⇠))}.

Then X 2 Hn

M
and hHn

M
, Qi is amenable.
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Fact 2 Let R,R0, Q,Q0, f1, . . . , fr,�,M,M 0 be as in Fact 1. Let ~a,X be as
above. Then:

�(X) = {� ~⇠ �2 �()|R0
(�(~a),�⇢(~f)(~⇠))}.

Proof (sketch)
We know: ^

~⇠ < (� ~⇠ �2 X $ Q(~a, ~⇠))

which is ⇧
(n)

0
(M) in the parameters HM

 ,~a, ~p. (We use here the fact
that  and the Gödel ⌫–tuple function on  are HM

 –definable.) But
then the corresponding ⇧

(n)

0
(M 0, ⇢) statement holds of Hn(M 0, ⇢),�(~a),

�(~↵),�(~p). QED (Fact 2)

Note. � is ⌃1 preserving mod ⇢, if n > 0. But then 0 = �() is a cardinal
in M 0, since it is a cardinal in H0 = H0(M 0, ⇢) and ⇢0 is cardinally absolute
in M 0.

We now recall the Q–quantifier:

Qzi'(zi) =:

^
ui

_
vi(vi � ui ^ '(vi)).

By a Q(i) formula we mean any formula of the form Qz0'(zi), where Q(⌫i)

is ⌃
(i)

1
. We write:

� : M !Q⇤ N mod (⇢, ⇢0)

to mean that � is elementary mod (⇢, ⇢0) with suspect to Q(n) formulae for
all n < !. Clearly, if � is Q⇤ preserving mod (⇢, ⇢0), then it is ⌃⇤–preserving
mod (⇢, ⇢0). If ⇢ = h⇢i

M
|i < !i, we write:

� : M !Q⇤ N mod ⇢.

In the following assume:

(1) � : M !⌃⇤ N mod ⇢0.
We define a minimal good sequence:

⇢ = min ⇢0 = min(�, N, ⇢0)

with the following properties:

(a) � : M !Q⇤ N mod ⇢.
(b) sup�00⇢i

M
 ⇢i  ⇢0i for i < !.

(c) Let ' be ⌃
(i)

0
. Let x 2M, z1, . . . , zp 2 Hi(N, ⇢). Then:

N |= '[~z,�(x)] mod ⇢$ N |= '[~z,�(x)] mod ⇢0.
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(d) ⇢ = min ⇢.

We define ⇢ as follows:

Definition 3.6.5. Let � : M !⌃⇤ N mod ⇢0. We define:

• ⇢i(0) =: sup�00⇢i
M
.

• ⇢i(n+ 1) =: the supremum of all F (⌘) such that ⌘ < ⇢i+1(n) and F is
a ⌃

(i)

1
(N, ⇢0) map to ⇢0

i
in parameters from rng(�).

• ⇢i =: sup
n<!

⇢i(n).

• ⇢ = h⇢i|i < !i.

Lemma 3.6.7. ⇢i(n)  ⇢i(n+ 1).

Proof: We show by induction on n that it holds for all i  !.

Case 1 n = 0.
If ⇠ < ⇢i

M
, then �(⇠) = F (0), where F = the constant function �(⇠).

But then F is ⌃
(i)

1
(N, ⇢0) in �(⇠). Hence �(⇠) < ⇢i(1).

Case 2 n > 0.
Then ⇢i+1(n) � ⇢i+1(n� 1). Hence:

F 00⇢(n)
i+1
� F 00⇢(n�1)

i+1

for all F which is a ⌃
(i)

1
(N, ⇢0) map to ⇢0

i
.

The conclusion is immediate. QED (Lemma 3.6.7)

Lemma 3.6.8. ⇢i(n) is p.r. closed for i > 0.

Proof: We show by induction on n that it holds for all i > 0.

Case 1 n = 0.
� �JA

⇢
i
M

: JA

⇢
i
M
!⌃0 JA

⇢i
cofinally, where ⇢i

M
is p.r. closed.

Case 2 n > 0. Let n = m+ 1.
Then ⇢i(m) is p.r. closed. Let f be a monotone p.r. function on On.
It suffices to show:
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Claim f“⇢i(n) ⇢ ⇢i(n).
Let ⌫ < ⇢i(n). Then ⌫ < F (⌘) where ⌘ < ⇢(m)

i+1
and F is ⌃

(i)

1
(N, ⇢0) to

⇢0
i

in �(x). But then f � F is ⌃
(i)

1
(N, ⇢0) to ⇢0

i
, since ⇢0

i
is p.r. closed.

Hence f(⌫) < f · F (⌘) < ⇢i(n). QED (Lemma 3.6.8)

Corollary 3.6.9. ⇢i is p.r. closed for i > 0.

Definition 3.6.6.

Hi(n) = Hi(N,�, ⇢i(n)) =: |JA
N

⇢i(n)
|

Hi = Hi(N, ⇢) =: |JA
N

⇢i
|

Lemma 3.6.10. (a) Hi(0) =
S
�00H i

M
.

(b) Hi(n + 1) = the union of all F (x) such that x 2 H(n)

i+1
and F is

⌃
(i)

1
(n, ⇢0) to ⇢0

i
in parameters from rng(�).

(c) Hi =
S
n

Hi(n).

Proof: (c) is immediate. (a) is immediate since:

� �H i

M : H i

M !⌃0 Hi(0) cofinally.

We prove (b). Let y = F (x), where F, x are as in (b).

Claim y 2 Hi(n+ 1).

Proof: We recall the function hSA
⌫ |⌫ <1i such that for all limit ↵:

JA
↵ =

S
⌫<↵

SA
⌫ and hSA

⌫ |⌫ < ↵i is

uniformly �1(JA
↵ ).

Since ⇢i+1(n) is p.r. closed, there is a ⌃1(Hi+1(n)) map f of ⇢i+1(n) onto
Hi+1(n). Set:

g(x) =: the least ⌫ sucht that x 2 S⌫ .

Then F̃ (⇠) ' gFf(⇠) is a ⌃
(i)

1
(N, ⇢0) map to ⇢0

i
in parameters from rng(�).

Hence, where f(⌘) = x, we have y 2 SA

F̃ (⌘)
⇢ Hi(n+ 1).

QED (Lemma 3.6.10)

By the definition 3.6.5 and Lemma 3.6.7:

Lemma 3.6.11. Let ⇢ = min ⇢0. Then:
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• �”⇢i
M
⇢ ⇢i  ⇢00  ⇢0N .

• ⇢i = supX, where X is the set of all F (⌫) such that ⌫ < ⇢i+1 and F

is a ⌃
(i)

1
(N, ⇢0) map to ⇢0

0
in some �(x).

Similarly by Lemma 3.6.10.

Lemma 3.6.12. Let ⇢ = min ⇢0. Then:

• �00H i

M
⇢ Hi ⇢ H 0

i
⇢ H i

N
.

• Hi =
S
X where S is the set of all F (x) such that z = Hi+1 and F is

a ⌃
(i)

1
(N, ⇢0) map to H 0

i
in some �(x).

We now can show:

Lemma 3.6.13. ⇢ is good for N .

Proof: By Lemma 3.6.11 we have:

!  ⇢i+1  ⇢i  ⇢0i  ⇢iN .

Moreover, ⇢i is p.r. closed for i > 0 by Lemma 3.6.8.

It remains only to show:

Claim Hi is cardinally absolute with respect to N .

Proof: We know: Hi =
S
X, where X = the set of F (z) such that z 2 Hi+1

and F is a ⌃
(i)

1
(N, ⇢0) map to H 0

i
= Hi(N, ⇢0). Moreover H 0

i
is cardinally

absolute in N .

(1) Let ↵ 2 X. Then ↵N 2 X and there is f 2 X such that f : ↵
N onto�! ↵.

Proof: Suppose not.

Define a ⌃1(Hi) map by:

F (�) ' the <SA –least pair h�, fi such that � < � and f : �
onto�! �.

Then F 00X ⇢ X. Set:

↵0 = ↵i↵i+1 ' (F (↵i))0.
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By induction on i it follows that ↵i exists and ↵i 2 X. But then ↵i+1 < ↵i

for i < !. Contradiction! QED (1)

Now let ↵ be a cardinal in Hi but not in N . Then ↵ /2 X by (1). But ↵ < �

for a � 2 X. Hence �
N

> ↵. (Otherwise, letting � = �
N

< ↵, we have
� 2 X ⇢ Hi and there is f 2 X ⇢ Hi such that f : �

onto�! �. Hence there is
g 2 Hi such that g : �

onto�! ↵, since 0 < ↵ < �. Hence ↵ is not a cardinal in
Hi.) But then, letting � = �

N

, ↵ is a cardinal in JA
� and � is a cardinal in

N . Hence ↵ is a cardinal in N by acceptability. QED (Lemma 3.6.13)

We now verify property (c) for ⇢ = min ⇢0.

Lemma 3.6.14. Let B(~wi
) be ⌃

(i)

0
(M) in the parameter x 2M . Let B0

(~wi
)

be ⌃
(i)

0
(N, ⇢0) in �(x) and B(~wi

) be ⌃
(i)

0
(N, ⇢) in �(x) by the same definition.

Then: ^
~z 2 Hi(B(~z)$ B0

(~z)).

Proof: By induction on i. The case i = 0 is trivial. Now let it hold for h

where i = h+ 1. It suffices to prove the claim for B which is ⌃
(h)

1
(M) in x.

We than have:
B(~z)$

_
ahD(ah, ~z)

where D is ⌃
(h)

0
(M) in x;

B0
(~z)$

_
ahD0

(ah, ~z)

where D0 is ⌃
(h)

0
(N, ⇢0) in �(x) by the same definition, and:

B(~z)$
_

ahD(ah, ~z)

where D is ⌃
(h)

0
(N, ⇢) in �(x) by the same definition.

Define a map F to ⇢0
h

which is ⌃
(h)

1
(N, ⇢0) in �(x) by:

⇠ = F (~z) $ (_u 2 S⇠D0
(u~z)\

^⇠0 < ⇠ ^ u 2 S⇠,¬D0
(u, ~z)

Hence for ~z 2 Hi:

B0
(~z) $ _u 2 HhD0

(u, ~z)

$ _u 2 SF (~z)D
0
(u, ~z)

$ _u 2 HhD0
(u, ~z)

$ _u 2 HhD(u, ~z)$ B(~z)
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(by the induction hypothesis). QED (Lemma 3.6.14)

Since � : M !
⌃(i) N mod ⇢0, we conclude that � : M !

⌃(i) N mod ⇢.

Since this holds for all i < !, we conclude:

Corollary 3.6.15. � : M !⌃⇤ N mod ⇢.

Another immediate corollary is:

Corollary 3.6.16. ⇢ = min(N,�, ⇢).

It remains only to prove:

Lemma 3.6.17. � : M !Q⇤ N mod ⇢.

Proof:

Assume: M |= Qui'(ui, x) where ' is ⌃
(i)

1
.

Claim N |= Qui'(ui, x) mod ⇢.
Let v 2 Hi. Then v ⇢ w = G(w), where w 2 Hi+1. Then v ⇢ w =

G(w), where w 2 Hi+1 and G is ⌃
(i)

1
(N, ⇢) map to Hi in parameter

from rng �. Let:

' =

_
zi (zi, ui, x) where  is ⌃

(i)

0
.

Define a ⌃
(i)

1
(N, ⇢) map to Hi in �(x) by:

F (w) ' the N–least hz, ui 2 H i such that

z ⇢ u ^  (z, u,�(x)).

The ⇧
(i+1)

1
–statement:
^

ai+1
(ai+1 2 dom(G)! ai+1

) 2 dom(F �G))

holds in N , since the corresponding statement holds in M by our
assumption. Let hz, ui = FG(w) = F (w). Then v ⇢ w ⇢ u and
 (z, u,�(x)). Hence:

N |= Qu'(u,�(x)) mod ⇢.

QED (Lemma 3.6.17)
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Then ⇢ = min ⇢0 possess all the properties that we ascribed to it.

As a corollary of Lemma 3.6.17 we get:

Corollary 3.6.18. Let B be ⌃
(i)

1
(N, ⇢) in parameters from rng �. Then

hHi, Bi is amenable.

Proof: Let B be ⌃
(i)

1
(M) in x and B be ⌃

(i)

1
(N, ⇢) in the same definition.

Since hH i

M
, Bi is amenable, we have:

Qui
_

yi yi = ui \B in M.

But then:
Qui

_
yi yi = ui \B in N mod ⇢.

Let u 2 Hi. There is then v � u, v 2 Hi such that v \ B 2 Hi. Hence
u \B = u \ v 2 Hi. QED (Corollary 3.6.18)

Definition 3.6.7. � : M !⌃⇤ N min ⇢ iff

[� : M !⌃⇤ N mod ⇢] ^ [⇢ = min(N,�, ⇢)].

(Similarly for ⌃
(n)

j
, Q(n)

j
, Q⇤ etc.)

In the following we shall always assume that M is acceptable,  2 M is
inaccessable in M , and that ⌧ = +M 2M .

Lemma 3.6.19. Let ⇡ : M !⌃⇤ M 0. Let  = crit(⇡), �  ⇡(), and
suppose an extender F at ,� on M to be defined by:

F (X) = � \ ⇡(X) for X 2 P() \M.

Let � : M !⌃⇤ M min ⇢, where �() = . Let F be a weakly amenable
extender at ,� on M . Assume:

h�, gi : hM,F i ! hM,F i, where g : �! �.

Let n  w be maximal such that  < ⇢n
M

.

Define a good sequence ⇢⇤ for M 0 by:

⇢⇤i =

8
><

>:

sup⇡00⇢n if i = n

⇡(⇢i) if i 6= n and ⇢i < ⇢i
M

⇢i
M 0 if i 6= n and ⇢i = ⇢i

M
.

(Hence ⇡ : M !⌃⇤ M 0
mod (⇢, ⇢⇤) by Lemma 3.6.3 and 3.6.4.) Then:
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(a) M is n–extendible by F .

(b) Let ⇡ : M !(n)

F
M

0. There is a map �0 such that

�0 : M
0 !

⌃
(n)
0

M 0
mod ⇢⇤ and �0⇡ = ⇡�,�0 �� = g.

Moreover, �0 is defined by:

�0(⇡(f)(↵)) = ((⇡�)⇢⇤(f))(g(↵))

for f 2 �
⇤
(,M), ↵ < �.

Proof: We obviously have:

⇡� : M !⌃⇤ M 0
mod ⇢⇤.

It is also clear that n is maximal such that  < ⇢n and also maximal such
that 0 = ⇡() < ⇢⇤n.

We now prove (a). We must show that the 2–relation 2⇤ of D⇤
(F ,M) is well

founded. Let hf,↵i, hf 0,↵0i 2 D⇤. Set:

e = {� ⇠, ⇣ �< |f(⇠) 2 f 0
(⇣)}.

Then:

hf,↵i 2⇤ hf 0,↵0i  ! ha,↵0i 2 F

 !� g(↵), g(↵0
) �2 F (�(e))

 !� g(↵), g(↵0
) �2 ⇡�(e)

 ! (⇡�)⇢⇤(f)(g(↵)) 2 (⇡�)f⇤(f 0
)(g(↵))

(The second line rises the assumption: h�, gi : hM,F i ! hM,F i. The third
uses: F (X) = �\⇡(X). The fourth uses Fact 2, which we established earlier
in the section. QED (a)

We now prove (b). Let R0 be a ⌃
(n)

0
(M

0
) relation and let R0 be ⌃

(n)

0
(M 0

) by
the same definition. We claim that: �0 : M 0 !

⌃
(n)
0

M 0 where �0 is defined
by:

�0(⇡(f)(↵)) = (⇡�)⇢⇤(f)(g(↵))

for f 2 �
⇤
(u,M),↵ < �.

Let R0 be a ⌃
(n)

0
(M

0
) relation and let R0 be ⌃

(n)

0
(M 0, ⇢⇤) by the same defini-

tion. Let ↵1, . . . ,↵m < � and f1, . . . , fm 2 �
⇤
(u,M). Writing e.g. ~f(~↵) for

f1(↵1), . . . , (↵m), it suffices to show:
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Claim R
0
(⇡(~f)(~↵))$ R0

(⇡�(~f), g(~↵)).

Proof: Let R be ⌃
(n)

0
(M) and R be ⌃

(n)

0
(M, ⇢) by the same definition. Set:

e = {� ~⇠ � |R(~f(~⇠)}.

Then:

R
0
(⇡(~f)(~↵)) !� ~↵ � 2 F (e)

 !� g(~↵) � 2 F (�(e))

 !� g(~↵) � 2 ⇡�(e)
 ! R0

((⇡�)⇢⇤(~f)(g(~↵)))

QED (Lemma 3.6.19)

We would like to prove something stronger namely that M is ⇤–extendible
by F and that:

�0 : M
0 !⌃⇤ M 0

mod ⇢⇤.

For this we must strengthen the condition:

h�, gi : hM,F i ! hM,F i.

In §3.2 we helped ourselves in a similar situation by strengthening the relation
! to !⇤. However !⇤ is too strong for our purposes and we adopt the
following weakening:

Definition 3.6.8. h�, gi : hM,F i !⇤⇤ hM,F i mod ⇢ iff the following hold:

(a) h�, gi : hM,F i ! hM,F i

(b) � : M !⌃0 M mod ⇢

(c) Let ↵ < lh(F ),↵ = g(↵). There are G,G,H,H such that letting

 = crit(F ), = crit(F )

we have:

(i) G,H are ⌃i(M) in a q 2 M and G,H are ⌃1(M, ⇢) in q = �(q)
by the same definition.

(ii) G = F↵, H = M \ (
P(u))

(iii) G ⇢ F↵

(iv) H ⇢ {X 2 P(u)|
V
⇠ < (X⇠ or  \X⇠ 2 G)}
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Note. Actually, only the first pseudo projectum ⇢0 is relevant in this defi-
nition. (b)says merely that ⇢ is good for M and that � is a ⌃0-preserving
map into M with �00On

M
 ⇢0. In (c) the statement “G,H are ⌃1(M, ⇢) in

q by the same definition” can be rephrased as: “G,H are ⌃1(M |⇢0) in q by
the same definition”, where M |⌘ =: hJA

⌘ , B \ JA
⌘ i for M = hJA

↵ , Bi.

(Note that M |⌘ is not necessarily amenable.) We set:

Definition 3.6.9. h�, gi : hM,F i !⇤⇤ hM,F i iff:

hX, gi : hM,F i !⇤⇤ hM,F i mod (h⇢nM |n < wi).

Note. This always holds if ⇢0 = OnM .

Note. Let � : hM,F i !⇤⇤ hM,F i mod ⇢. Let X 2 M \ (
P()). If

X = �(X), then X 2M and hence
V
⇠ < (X⇠ or ( \X⇠) 2 G).

Note. Let � : hM,F i !⇤ hM,F i. It follows easily that:

� : hM,F i !⇤⇤ hM,F i.

Note. Suppose that � : M !⌃⇤ M min ⇢. Set M |⇢0 = hJA
⇢0
, B \ JA

⇢0
i,

where M = hJA
� , Bi. Then M |⇢0 is amenable by Corollary 3.6.18. Clearly

⌧ = +M 2 M |⇢0 since ⌧ = +M 2 M . Hence P() \M ⇢ M |⇢0. But then
F is an extender at  on M |⇢0 and it makes sense to write:

h�, gi : hM,F i !⇤⇤ hM |⇢0, F i.

But this means exactly the same thing as:

h�, gi : hM,F i !⇤⇤ hM,F i mod ⇢.

We are now ready to prove:

Lemma 3.6.20. Let ⇡,�,M,M,M
0
,M 0, ⇢, ⇢⇤, ⌧ , ⌧,⇡,�0, g be as in lemma

3.6.19. Assume:

h�, gi : hM,F i !⇤⇤ hM,F i mod ⇢.

Then M is ⇤–extendible by F and:

�0 : M
0 !⌃⇤ M 0

mod ⇢⇤.

Proof: F is then close to M . Hence M is ⇤–extendible by F . By induction
on i we now show:
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Claim �0 : M
0 !

⌃
(i)
1

M 0
mod ⇢⇤.

For i < n this is given. Now let i = n. We prove a somewhat stronger
claim:

Subclaim 1 Let A ⇢  be ⌃
(n)

1
(M

0
) in a 2 M

0 and A ⇢  be ⌃
(n)

1
(M 0, ⇢⇤)

in a = �0(a) by the same definition. There is r 2 M such that A is
⌃
(n)

1
(M) in r and A is ⌃

n

1
(M, ⇢) in r = �(r) by the same definition.

(As we shall see, this proves the claim for the case i = n.)
We now prove the subclaim. Let:

A(i)$
W
yP

0
(y, i, a),

A(i)$
W
yP 0

(y, i, a)

where P
0 is ⌃0(M

0
) and P 0 is ⌃0(M 0, ⇢⇤) by the same definition.

Let P be ⌃
(n)

0
(M) and P be ⌃

(n)

0
(M) by the same definition. Let

a = ⇡(f)(↵) and a = ⇡�(f)(↵), where ↵ = g(↵). Let p be a "defining
parameter" for f (i.e. either p = f or else f(⇠) = B(⇠, p) where B

is a good ⌃
(i)

1
(M) function for an i < n.) Then p = �(p) is in the

same sense a defining parameter for �(f) and p0 = ⇡�(p) is a defining
parameter for ⇡�(f). (The good definition of B remaining unchanged.)
Finally, let G,G,H,H be as given for ↵,↵ = g(↵) by the principle:

h�, qi : hM,F i !⇤⇤ hM,F i mod ⇢⇤.

Since hM 0
,⇡i is the extension of hM,F i, we know that: ⇡“Hn

M
is

cofinal in Hn

M
.

Thus:

(1)
A(i) $

W
u 2 Hn

M

W
y 2 ⇡(u)P 0

(g, i,⇡(f)(↵))

$
W
u 2 Hn

M
↵ 2 ⇡(X(i, u))

$
W
u 2 Hn

M
X(i, u) 2 G,

where X(i, u) = {⇠ < u|P (y, i, f(⇠))}.
Thus A is ⌃

(n)

1
(M) in p, q,. We now show that A is ⌃

(n)

1
(M) in

p, q, by the same definition. Set:

Hn = Hn(M, ⇢), H 0
n = Hn(M

0, ⇢⇤).

It is easily seen that the relation:

Q(u, i, ⇠) !: (u 2 Hn ^
_

y 2 uP (y, i,�⇢(f)(⇠))
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is ⌃
(n)

0
(M, ⇢) in p and the relation:

Q0
(u, i, ⇠) !: (u 2 H 0

n ^
_

y 2 uP 0
(y, i, (⇡�)⇢⇤(⇠))

is ⌃
(n)

0
(M 0, ⇢⇤) in p0 by the same definition. Set: X(u, i) = {⇠ <

u|Q(u, i, ⇠)}. Then X(u, i) 2 Hn, since hHn, Qi is amenable by
lemma 3.6.14 and hence is rud closed. Since ⇢⇤n = sup�”⇢n, we
know that ⇡”Hn is cofinal in H 0

n. Thus:
(2)

A(i) $
W
u 2 Hn

W
y 2 ⇡(u)P 0

(y, i, ((⇡�)⇢⇤(f)(↵))

$
W
u 2 HnQ(⇡(u), i,↵)

$
W
u 2 Hn↵ 2 ⇡(X(u, i)) \X

$
W
u 2 Hn↵ 2 F (X(u, i))

$
W
u 2 HnX(u, i) 2 F↵.

If F↵ = G, we would be finished, but G might be a proper subset
of F↵. (Moreover, we don’t even know that F↵ is M–definable in
parameters.) However, we can prove:

(3) A(i)$
W
u 2 HnX(u, i) 2 G,

which establishes subclaim 1. The direction ( ) is trivial by (2),
since G ⇢ F↵. We prove (!). Assume A(i0), where i0 < .
We must show that u 2 Hn can be chosen large enough that
X(u, i0) 2 G. We know that it can be chosen large enough that
X(u, i0) 2 F↵. Since ⇢ = min(M,�, ⇢), we also know that the
set of S(⇠) such that S is a partial ⌃(n)

1
(M, ⇢) map to Hn in a

parameter s = �(s) and ⇠ < ⇢n+1 is cofinal in Hn. (This uses
Lemma 3.6.12.) Hence we can assume w.l.o.g. that u = S(⇠0) for
a ⇠0 < ⇢n+1. Now set:

Y (v) =: {x(v, i)|i < u} for v 2 Hn.

Then Y (v) 2 Hn by the rud closure of hHn, Qi. Moreover, the
function Y is ⌃1(hHn, Qi) and hence is a ⌃

(n)

1
(M, ⇢) function.

Hence Y � S in ⌃
(n)

1
(M, ⇢) in s. Let S be ⌃

(n)

1
(M) is s and Y be

⌃
(n)

1
(M) by the same definition. The ⇧

(n+1)
(M, ⇢) statement:

^
⇣ < ⇢n+1(⇣ 2 dom(Y · S)! Y · S(⇣) 2 H)

is true, since the corresponding statement:
^
⇣ < ⇢n+1

M
(⇣ 2 dom(Y · S)! Y · S(⇣) 2 H)

is true in M . Since u = S(⇣0), it follows that: Y (u) 2 H and:

X(, i0) 2 G _ ( \X(u, i0)) 2 G.
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But G ⇢ F↵( \ X(u, i0)) 2 G is therefore impossible, since we
would then have:

X(, i0) \ ( \X(u, i0)) = ; 2 F↵.

Hence, X(U, i0) 2 G. QED (Subclaim 1)

Subclaim 2 �0 : M
0 !

⌃
(n)
1

(M
0
) mod ⇢⇤.

Proof. Let Q be ⌃
(n)

1
(M 0, ⇢⇤) and Q be ⌃

(n)

1
(M

0
) by the same defini-

tion. Set:
P (i, x)$ (i = 0 ^Q(x)),

P (i, x)$ (i = 0 ^Q(x)).

Set:
A(x) = {i|P (i, x)}, A(x) = {i|P (i, x)}.

Then A is the characteristic function of Q and A is the characteristic
function of Q. But A(�0(x)) = A(x) for x 2M by Subclaim 1.

QED (Subclaim 2)

A slight reformulation of Subclaim 1 yields:

Subclaim 3 Let A be ⌃
(n)

1
(M 0, ⇢⇤) i p = �0(p). Let A be ⌃

(n)

1
(M

0
) in p

by the same definition. Set: H = HM


, H = HM

 . Then A \ H is
⌃
(n)

1
(M, ⇢) in a q = �(q) and A \ H is ⌃

(n)

1
(M) in q by the same

definition.

Proof: H = JE
 , where E = EM and H = JE


where E = EM . But

, are preclosed. Let f : 
onto�! H be primitive recursive in E and let

f : 
onto�! H be primitive recursive in E by the same definition. Apply

subclaim 1 to
B = f�100A,B = f

�100A.

Then B ⇢  is ⌃
(n)

1
(M, ⇢) in a q = �(q) and B ⇢  is ⌃

(n)

1
(M) in q.

But then the same holds for A = f 00B,A = f 00B.
QED (Subclaim 3)

For i > n, we know: ⇢i
M

= ⇢i
M

, so we can write ⇢i =: ⇢i
M

. By the
definition of ⇢⇤, we know: ⇢i = ⇢⇤

i
for i > n. We can also set:

H
i
= H i

M
= H i

M
, Hi = Hi(M, ⇢) = Hi(M

0, ⇢⇤).

We now prove:

Subclaim 4 Let i > n. Let A be ⌃
(i)

1
(M

0
) in a 2 M

0 and let A be
⌃
(i)

1
(M 0, ⇢⇤) in a = �0(a) by the same definition. Then there are B,B,

q, q such that
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(a) B is ⌃
(i)

0
(M) in q 2M .

(b) B is ⌃
(i)

0
(M, ⇢) in q = �(q) by the same definition.

(c) A \H
i
= B \H

i.

(d) A \Hi = B \Hi.

Proof: By induction on i. Let it hold below i. Then w.l.o.g. we can
assume:

(1) A(x) ! hH i
, P \H

ii |= '[x] for x 2 H
i where ' is ⌃1 and p is

⌃
i�1

0
(M

0
) in a.

(2) A(x) ! hH 0, P \Hii |= '[x] for x 2 Hi where ' is the same ⌃1

formula and P is ⌃
i�1

0
(M 0, ⇢⇤) in a by the same definition.

But then there are Q,Q, q, q such that

(3) P \H i
= Q \H i, where Q is ⌃

i�1

1
(M) in q 2M .

(4) P \Hi = Q\Hi, where Q is ⌃i�1

1
(M, ⇢) in q = �(q) by the same

definition.

This is by subclaim 3 if i = n + 1, and otherwise by the induction
hypothesis. QED (Sublemma 4)

The claim then follows easily, since � is ⌃
⇤–preserving mod ⇢⇤.

QED (Lemma 3.6.20)

We can then go on further and set:

⇢0 = min(M 0,�0, ⇢⇤).

It then follows that:
⇡“⇢i ⇢ ⇢0i  ⇢⇤i for i < !.

To see that ⇡00⇢i ⇢ ⇢0
i
, we recall that ⇢0

i
= sup{⇢0

i
(n) : n < !} where the

sequence h⇢0
i
(n)|i < wi is defined from ⇢⇤,M 0,�0 by a canonical recursion on

n (cf. Definition 3.6.5).

But since ⇢ = min(M,�, ⇢), we have: ⇢i = sup
n<w

⇢i(n), where h⇢i(n)|i < wi is

defined from ⇢,M,� by the same induction on n. Since ⇡0� = ⇡�, it follows
easily by induction on n that:

⇡“⇢i(n) ⇢ ⇢0i(n) for i < w.

The details are left to the reader.

Putting all of this together:
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Theorem 3.6.21. Let ⇡ : M !⌃⇤ M 0 with critical point . Let �  ⇡()
and let the extender F at ,� on M be defined by:

F (X) = ⇡(X) \ �.

Let � : M !⌃⇤ M min ⇢ with �() = . Assume:

h�, gi : hM,F i !⇤⇤ hM,F i mod ⇢

where F is a weakly amenable extender at ,� on M . Then

(a) M is ⇤–extendable by F , giving ⇡ : M !⇤
F
M

0.

(b) There are �0, ⇢0 such that

(i) �0 : M
0 !⌃⇤ M 0

min ⇢0

(ii) �0 is defined by:

�0(⇡(f)(↵)) = (⇡�)⇢(f)(g(↵))

for ↵ < ��, f 2 �
⇤
(,M). (Hence �0⇡ = ⇡� and �0 �� = g.)

(iii) ⇡00⇢i ⇢ ⇢0i  ⇡(⇢i) for i < w (taking ⇡(⇢i) = OnM , if ⇢i = OnM ).

(c) The above, in fact, holds for:

⇢0 =: min(⇢⇤) = min(M 0,�0⇢⇤).

where ⇢⇤ is defined by:

⇢⇤0 =

8
><

>:

sup
00⇢i if ⇢i+1  i

⇡(⇢i) if i < ⇢i+1 and ⇢i < ⇢i
M

⇢i
M

, if i < ⇢i+1 and ⇢i = ⇢i
M
.

This is the most important result on pseudo projecta.

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.22. Assume that Mi,M 0
i

are amenable for i < µ, where µ is a
limit ordinal. Assume further than:

(a) ⇡i,j : Mi �!⌃⇤ Mj (i  j < µ), where the ⇡i,j commute.
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(b) ⇡0
i,j

: M 0
i
�!⌃⇤ M 0

j
(i  j < µ), where the ⇡0

i,j
commute.

Moreover:
hM 0

i : i < µi, h⇡0i,j : i  j < µi

has a transitivized direct limit M 0, h⇡0
i,j

: i  j < µi.

(c) �i : M 0
i
�!⌃⇤ M 0

j
min ⇢i (i  j < µ).

(d) �j⇡i,j = ⇡0
i,j
�i.

(e) ⇡0
i,j
“⇢in ⇢ ⇢in  ⇡0i,j(⇢in) for i  j < µ, n < !.

Then:
hMi : i < µi, h⇡i,j : i  j < µi

has a transitivized direct limit M, h⇡i,j : i < µi.

There is then � : M �!M 0 defined by: �⇡i = ⇡0
i
�i(i < µ). Moreover:

(1) There is a unique ⇢ such that � : M �!⌃⇤ M 0
min ⇢ and:

⇡0“⇢in ⇢ ⇢n  ⇡0i(⇢in) for i < µ, n < !.

(2) There is i < µ such that ⇢n = ⇡0
j
(⇢in) for i  j < µ, n < !.

3.6.3 Mirrors

Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration of length ⌘. By a mirror
of I we shall mean a sequence:

I 0 = hhM 0
ii, h⇡0iji, h�ii, h⇢iii

such that �i : Mi !⌃⇤ M 0
i
min ⇢i for i < ⌘ and the sequence:

I 00 = hhM 0
ii, h⌫ 0ii, h⇡0iji, T i

"mirrors" the action of I, where ⌫ 0
i
=: �i(⌫i). However, I 00 will not necessarily

be an iteration. If i + 1 is not a drop point in I and h = T (i + 1), we will,
indeed, have:

⇡0
h,i+1 : M

0
h
!⌃⇤ M 0

i+1,

but M 0
i+1

is not necessarily an ultrapower of M 0
h
. None the less 0

i
=: �i(i)

will still be the critical point and we shall have:

P(0i) \M 0
h
= P(0i) \ JE

M0
i

⌫i
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and:
↵ 2 E

M
0
i

⌫i (X)$ ↵ 2 ⇡0
h,i+1

(X) for

X 2 P(0
i
) \M 0

h
and ↵ < �0

i
,

where �0
i
=: �i(�i).

We shall also require a measure of agreement among the maps �i. In partic-
ular, if h = T (i+ 1) is as above, then:

�i+1⇡h,i+1 = ⇡0
h,i+1�h; �i ��i = �i+1 ��i.

Note. that this gives:

h�h,�i ��ii : hMh, E
Mi
⌫i
i ! hM 0

h
, E

M
0
i

⌫i i.)

The formal definition is:

Definition 3.6.10. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration of
length ⌘. By a mirror of I we mean a sequence:

I 0 = hhM 0
i |i < ⌘i, h⇡0ij |i T ii, h�i < |i < ⌘i, h⇢i|i < ⌘ii

satisfying the following conditions:

(a) M 0
i

is a premouse and �i : Mi !⌃⇤ M 0
i
min ⇢i.

(b) ⇡0
ij

is a partial structure preserving map from M 0
i

to M 0
j
. Moreover

the ⇡0
ij

commute and ⇡ii = id �Mi. If � < ⌘ is a limit, then M 0
�
=S

i>�

rng(⇡0
i�
).

(c) �i⇡ij = ⇡0
ij
�i for i > j.

(d) �i ��i = �j ��i for i < j < ⌘.

In order to state the further clauses we need some notation. Set:

⌫ 0i = �i(⌫i) =:

8
<

:
�i(⌫i) if ⌫i 2Mi

On\M 0
i

if not

0
i
= �i(i), ⌧ 0i = �i(⌧i),�0i = �i(�i)

For h = T (i+ 1) set:

M 0⇤
i =

(
�h(M⇤

i
) if M⇤

i
2Mh

M 0
h

if not.

Noting that ⌧ 0
i
= �h(⌧i) by (d) we can easily see that:
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M 0⇤
i

= M 0
h
||µ, where µ  OnM 0

h
is maximal such that

⌧ 0o < µ and ⌧ 0
i

is a cardinal in M 0
h
||µ.

(To see that this holds for M 0⇤
i

= M 0
h
, we note that ⌧ 0

i
= �h(⌧i) is a

cardinal in M 0
h
||⇢h

0
and ⇢h

0
is cardinally absolute in M 0

h
.)

We now complete the definition of mirror :

(e) Let h = T (i+1), i+1 T i, and assume that there is no drop point in
(i+ 1, j)T . Then:

(i) ⇡0
h,i

: M 0⇤
i
!⌃⇤ M 0

j
.

(ii) 0
i
= crit(⇡0

hj
).

(iii) If X 2 P(0
i
) \ JE

Mi

⌧
0
i

, then X 2M 0⇤
i

and E
M

0
i

⌫
0
i
(X) = �0

i
\ ⇡0

h,j
(X).

(iv) Set:

⇢̂i =

(
⇢h if M 0⇤

i
= M 0

h

min(M 0⇤
i
, ⇢h �M⇤

i
, h⇢n

M
0⇤
i
|n < wi) if not.

Then:
⇡0
h,j

“⇢̂iM ⇢ ⇢jn  ⇡0h,j(⇢̂in) for n < w

(where ⇡0
hj
(⇢̂in) =: OnM 0

j
if ⇢̂in = OnM 0⇤

i
).

(Hence, if h T j and [h, j]T has no drop point, then ⇡0
h,j

“⇢hn ⇢
⇢jn  ⇡0h,j(⇢hn).)

This completes the definition.

Lemma 3.6.23. JE
M0

i

�
0
i

= JE
M0

i+1

�
0
i

for i+ 1 < ⌘i.

Proof: �0
i

is an inaccessible cardinal in JE
Mi

⌫i
. Hence there are arbitrarily

large primitive recursive closed ordinals ↵ < �0
i
and it suffices to show:

Claim JE
M0

i
↵ = J

M
0
i+1

↵ for primitive recursive closed ↵ < �0
i
.

Proof: Let h = T (i+ 1). Since x 2 JE
↵ is JE

↵ –definable from parame-
ters �1, . . . ,�n < ↵, it suffices to show:

Subclaim Let �1, . . . ,�n < ↵. Let ' be a first order formula. Then:

JE
M0

i

↵ |= '[~�] ! JE
M0

i+1

↵ |= '[~�].

Proof: Set: X = {� ~⇠, ⇣ �< 0
i
|JE

M0
i

⇣
mod '[~⇠]}. Then X 2 P(0

i
) \

JE
M0

i

⌫
0
i
⇢ M 0⇤

i
by (e) (iii). But JE

M
0
i


0
i

= JE
M

0⇤
i


0
i

= JE
M0

h


0
i

, by (e) (i), (ii).
Then: ^

~⇠, ⇣ < 0i(� ~⇠ �2 X $ JE

⇣
|= '[~⇠]),
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which is a first order statement in hJE


0
i
, Xi, where E = EM

0⇤
i . But

then the same first order statement holds in h⇡0(JE


0
i
),⇡0(X)i, where

⇡0 = ⇡0
h,i+1

. Clearly ⇡0(JE


0
0
) = JE

M0
i+1

⇡0(0
i)

. Thus:

⇡0(X) = {� ~⇠, ⇣ �< ⇡(0i)|JE
M0

i+1

⇣
|= '[~⇠]},

and we have:

JE
M0

i+1

↵ |= '[~�]  !� ~�,↵ �2 ⇡0(X)

 !� ~�,↵ �2 E
M

0
i

⌫
0
i
(X) by (e) (iii)

 ! JE
M0

i
↵ |= '[~�].

QED (Lemma 3.6.23)

We know that �0
i
= E

M
0
i

⌫
0
i
(0

i
)  ⇡0(0

i
), where h = T (i + 1), ⇡0 = ⇡h,i+1 (by

(e) (iii)). Set:

�⇤
i
=: ⇡0

h,i+1
(0

i
) where h = T (i+ 1), for i+ 1 < ⌘.

Lemma 3.6.24. Let i+ 1 < ⌘. Then �0
i
 �⇤

i
= �j(�i) for i < j < ⌘.

Proof: �0
i
 �⇤

i
is trivial. But then:

�i+1(�i) = �i+1⇡h,i+1(i) = ⇡0
h,i+1

�h(i)

= ⇡0
h,i+1

(0
i
) = �⇤

i
.

Hence �j(�i) = �i+1(�i) for j > i, since �i < �i+1. QED (Lemma 3.6.24)

Note. The main difference between a mirror of I and a simple copy of I in
our earlier sense is that we can have: �0

i
< �⇤

i
.

Corollary 3.6.25. �0
i
< �0

j
for i < j, j + 1 < ⌘.

Proof: �0
i
 �⇤

i
= �j(�i) < �j(�j) = �0

j
. QED (Corollary 3.6.25)

Corollary 3.6.26. If h = T (i + 1), h + 1 T j, then 0
i
< �0

h
 �⇤

h
 0

j

(since j � �h).

Lemma 3.6.27. JE
M0

i

�
0
i

= JE
M0

j

�
0
i

for i  j < ⌘.

Proof: By induction on j
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Case 1 j = i trivial.

Case 2 j = l + 1. Then it holds at l. But JE
Ml

�
0
l

= JE
Mj

�
0
l

where �0
i
 �0

l
.

The conclusion is immediate.

Case 3 j = µ is a limit ordinal.
By 3.6.26 we have: 0

i
< 0

j
for i + 1 T j + 1 T µ. Moreover

sup0
i
= sup�0

i
by 3.6.26, 3.6.25. Pick an l+1 T µ such that 0

l
> �0

i
.

Then JE
M0

l


0
l

= JE
M0

µ


0
l

by axiom e (i), (ii) and JE
M0

i

�
0
i

= JE
M0

l

�
0
i

, where
�0
i
< 0

l
.

The conclusion is immediate. QED (Lemma 3.6.27)

Lemma 3.6.28. JE
M0

i+1

�
⇤
i

= JE
M0

j

�
⇤
i

for i < j < ⌘.

Proof: For j = i+1 it is trivial. For j > i+1, we have �0
i+1

= �i+1(�i+1) >

�i+1(�i) = �⇤
i

and JE
M0

i+1

�
0
i+1

= JE
M0

j

�
0
i+1

. The conclusion is immediate. QED
(Lemma 3.6.28)

Lemma 3.6.29. �⇤
i

is a limit cardinal in M 0
j

for all j > i.

Proof: �⇤
i
= �j(�i) is a cardinal in M 0

j
, since �i is a cardinal in Mj . (This

uses that ⇢j
0

is cardinally absolute if ⇢i
0
< OnM 0

i
.) But then �⇤

i
is cardinally

absolute in M 0
j

and:

JE
M0

i

�
⇤
i

|= there are arbitrarily large cardinals,

since the same is true in JE
Mi

�i
. QED (Lemma 3.6.29)

Lemma 3.6.30. �0
i
is cardinally absolute in M 0

j
for j � i.

Proof: Let ↵ be a cardinal in JE

�
0
i
= JE

M0
i

�
0
i

= JE
M0

j

�
0
i

. Let h = T (i + 1) and
let:

X = {⇠ < 0i)J
E


0
i
|= ⇠ is a cardinal}.

Then: ↵ 2 E
M

0
i+1

⌫
0
i

(X) ⇢ ⇡0
h,i+1

(X). Hence:

JE
M0

i+1

�
⇤
i

|= ↵ is a cardinal.

But JE
M0

i+1

�
⇤
i

= JE
M0

j

�
⇤
i

and �⇤
i

is cardinally absolute in M 0
j
.

QED (Lemma 3.6.30)

But there are arbitrarily large cardinals in the sense of JE
M0

i

�
0
i

. Hence:
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Corollary 3.6.31. �0
i
is a limit cardinal in M 0

j
for i < j.

Lemma 3.6.32. Let h = T (i+ 1). Then JE
M0

h

⌧
0
i

= JE
M0

i

⌧
0
i

.

Proof: For h = i it is trivial. Let h < i. Then JE
M0

h

�
0
h

= JE
M0

i

�
0
h

, so we need
only show that ⌧ 0

i
< �0

h
. But �0

h
is a limit cardinal in M 0

i
and 0

i
< ⌧ 0

i
. Hence

in M 0
i

we have: ⌧ 0
i
 0+i < �0

h
. QED (Lemma 3.6.32)

Corollary 3.6.33. P(0
i
) \M 0⇤

i = P(0
i
) \ JE

M0
i

⌫
0
i

.

Proof: Since ⌧ 0
i
> 0

i
is a cardinal in M 0⇤

i
, we have by acceptability:

P(0i) \M 0⇤
i = P(0i) \ JE

M0
h

⌧
0
i

= P(0i) \ JE
M0

i

⌧
0
i

= P(0i) \ JE
M0

h

⌫
0
i

QED(Corollary 3.6.33)

Lemma 3.6.34. Let h = T (i+ 1), F = EMi
⌫i

, F 0
= E

M
0
i

⌫
0
i

. Then

h�h �M⇤
i ,�i ��ii : hM⇤

i , F i �! hM 0⇤
i , F 0i.

Proof. Clearly (�h � M⇤
i
) : M⇤

i
�!⌃0 M 0⇤

i
. Moreover, rng(�i � �i) ⇢ �0

i
.

Now let X ⇢ i, X 2M⇤
i
,↵i, . . . ,↵n < �i. Then:

� ~↵ �2 F (X) = ⇡h,i+1(X)

 !� �i+1(~↵) �2 �i+1⇡h,i+1(X) = ⇡0
h,j+1�h(X)

 !� �i(~↵) �2 F 0
(�h(X)),

since �i ��i = �i+1 ��i and F 0
(�h(X)) = �0

i
\ ⇡0

h,i+1
(�h(X)).

QED(Lemma 3.6.34)

We also note:

Lemma 3.6.35. Let � < ⌘ be a limit ordinal. Then for sufficiently large
i <T � we have:

⇢� = ⇡0
i,�
(pin) for n < !

Proof. Pick ⇠ < � such that [⇠,�)T has no drop points. For each n < !
and each i, j such that ⇠ T i T j T � we have:

⇡0i,j“⇢
i

n ⇢ ⇢jn  ⇡0ij(⇢in).
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(1) For each n < ! there is in 2 [⇠,�)T such that:

⇡0i,j(⇢
i

n) = ⇢in for in T i T j <T �.

Proof. Suppose not. Then there exist ir(r < !) such that ⇠ <T ir <T

ir+1 and ⇢ir+1
n < ⇡0

ir+1,�
(⇢ir+1

n ) < ⇡0
ir,�

(⇢irn ). Hence: ⇡0
ir+1,�

(⇢ir+1
n ) <

⇡0
ir,�

(⇢in) for r < !. Contradiction!
QED(1)

(2) ⇡0
i,�
(⇢in) = ⇢�n for in T<T �.

Proof. Since M, h⇡0
i,�

: in T i <T �i is a direct limit, we have:

⇡0
i,�
(⇢in) =

[

inT i<T�

⇡0
i,�
“⇢in ⇢ ⇢�n  ⇡0i,�(⇢in).

QED(2)

(3) If ⇢�n = ⇢n
M�

then in = ⇠.

Proof. If not, there is i 2 [⇠,�)T such that ⇢in < ⇢n
Mi

. Hence ⇢�n 
⇡0
i,�
(⇢in) < ⇢n

M�
. Contradiction!

QED(3)

But then the set {n : in > ⇠} is finite. Set: i = max{in : in > ⇠}. This has
the desired property.

QED(Lemma 3.6.35)

Corollary 3.6.36. Let � be a limit ordinal. Then

⇡0
i,�

: M 0
i �!⌃⇤ M 0

�
mod (⇢i, ⇢�)

for sufficiently large i T �.

Proof. Let i0 T i <T � such that ⇡0
i,�
(⇢in) = ⇢�n for i0 T i < �, n < !.

By Lemma 3.6.3 we need only show:

(1) ⇢in < ⇢n
Mi
�! ⇢�n = ⇡0

i,�
(⇢in)

(2) ⇢in = ⇢n
Mi
�! ⇢�n = ⇢n

M�

(1) is immediate. To prove (2) we note:

⇢�n = ⇡0
i,�
(⇢in) = ⇡i,�(⇢

n

Mi
) � ⇢nM�

� ⇢�n

QED Corollary 3.6.36
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Definition 3.6.11. By a mirror pair of length ⌘ we mean a pair hI, I 0i such
that I is a normal iteration of length ⌘ and I 0 is a mirror of I.

It is natural to ask whether, and in what circumstances, a mirror pair of
length ⌘ can be extended to one of length ⌘ + 1. For limit ⌘ the answer is
fairly straightforward:

Lemma 3.6.37. Let hI, I 0i be a mirror pair of limit length. Let b be a cofinal
branch in T = TI . Let the sequence:

hM 0
i : i 2 bi, h⇡0ij : i  j in bi

have a well founded direct limit. Then hI, I 0i extends uniquely to a mirror
pair hÎ , Î 0i of length ⌘ + 1 with b = T̂”{⌘} (where T̂ = T

Î
).

Proof. Let M 0
⌘, h⇡0i,⌘ : i 2 bi be the transitivized direct limit.

Note. By our convention this means that for some j0 2 b, brj0 is drop free
and:

hM 0
i : i 2 brj0i, h⇡0i,j : j0  i  j in bi

in the usual sense, and we define:

⇡0i⌘ = ⇡0j0,⌘ � ⇡
0
i,j0

for i < j0 in b

In the same sense the sequence:

hMi : i 2 bi, h⇡i,j : i  j in bi

has a transitivized limit:
M, hMi⌘ : i 2 bi

The maps ⇡i,⌘, ⇡0i,⌘ are easily seen to be ⌃
⇤�preserving for j0  i 2 b. We

extend T to T̂ by setting T̂”{⌘} = b. We define the map �⌘ : M⌘ �! M 0
⌘

by: �⌘⇡i⌘ = ⇡0
i⌘
�i for i < ⌘. We must then define a good sequence ⇢̂ = ⇢⌘

for M 0
⌘. We first imitate the proof of Lemma 3.6.35 by showing that there is

i0 2 b such that bri0 has no drop points and for all j 2 bri0:

⇡0i,j(⇢
i

n) = ⇢jn for n < !

Thus, setting: ⇢̂n =: ⇡0
i0,⌘

(⇢i0n ), we have:

⇢̂n = ⇡0j,⌘(⇢
j

n) for n < !, i0 T j 2 b

It is easily shown that ⇢̂ = h⇢̂n : n < !i is a good sequence for M 0
⌘. Repeating

the proof of Lemma 3.6.36 we then have:
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(1) ⇡0
j⌘

: M 0
j
�!⌃⇤ M 0

⌘ mod (⇢i, ⇢̂) for i0 T j T ⌘.

Using this we show:

Claim 1. �⌘ : M⌘ �!⌃⇤ M 0
⌘ mod ⇢̂.

Proof. Let x1, . . . , xn 2 M⌘. Then ~x = ⇡i⌘(~z) for an i 2 [i0, ⌘). Hence for
any ⌃

(n)

0
formula:

M⌘ |= '[~x] !Mi |= '[~z]

 !M 0
i |= '[�i(~z)] mod ⇢i

 !M 0
i |= '[⇡0i,⌘�i(~z)] mod ⇢̂

where ⇡0
i,⌘
�i(~z) = �⌘⇡i,⌘(~z) = �⌘(~x).

QED(Claim 1)

We must also show:

Claim 2. �⌘ : M⌘ �!⌃⇤ M 0
⌘ min ⇢̂.

Proof. We must show:
⇢̂ = min(M⌘,�⌘, ⇢̃)

Let h⇢̂l(n) : l < !i be defined by induction on n < ! as in Definition 3.6.5.
We must show: ⇢̂l =

S
n<!

⇢̂l(n). Let ⇠ < ⇢̂l. Then ⇠ = ⇡0
i,⌘
(⇠̄) where

i0 T<T ⌘ and ⌘̄ < ⇢i
l
. But ⇢i

l
=

S
n<!

⇢i
l
(n). Thus ⇠̄ < ⇢i

l
(n) for some n.

Using (1) and Definition 3.6.5, we easily get:

⇡0i,⌘”⇢
i

l
(n) ⇢ ⇢̂l(n) by induction on n

But then ⇠ = ⇡0
i,⌘
(⇠̄) 2 ⇢̂l(n).

QED(Claim 2)

Using these facts it is easy to see that the extension hÎ , Î 0i we have defined
satisfies the axiom (a)-(e) and is, therefore a mirror pair of length ⌘ + 1.
(We leave the detail to the reader). The uniqueness of the maps ⇡i,⌘,⇡0i,⌘,�⌘
is immediate from our construction. Finally, we must show that ⇢̂ = ⇢⌘ is
unique. This is because ⇢̂n = ⇡0

i0,�
(⇢i0n ) where ⇡0

i0,�
is unique.

QED(Lemma 3.6.37)

We now ask how we can extend a mirror pair of length ⌘+1 to one of length
⌘ + 2. This will turn out to be more complex.
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If I = hhMii, h⌫ii, h⇡iji, T i is a normal iteration of length ⌘+ 1, we can turn
it into a potential iteration of length ⌘ + 2 simply by appointing a ⌫⌘ such
that EM⌘

⌫⌘ 6= ? and ⌫⌘ > ⌫i for i < ⌘. This then determines h = T (⌘+1) and
M⇤

⌘ . (The notion of potential iteration was introduced in §3.4, where we gave
a more formal definition). If hI, I 0i is a mirror pair of length ⌘ + 1, we can
then form a potential mirror pair of length ⌘+2 by appointing ⌫ 0⌘ =: �⌘(⌫⌘).
This determines M 0⇤

⌘ . Our main lemma on “1-step extension” of mirror pair
reads:

Lemma 3.6.38. Let hI, I 0i be a mirror pair of length ⌘+1. Form a potential
pair of length ⌘ + 2 by appointing ⌫⌘ and ⌫ 0⌘ = �⌘(⌫⌘). Let:

⇡0 : M 0⇤
⌘ �!⌃⇤ M 0 such that 0⌘ = crit(⇡0)

and
E

M
0
⌘

⌫⌘ (X) = �0⌘ \ ⇡0(X) for X 2 P(0⌘) \ JE
M0

⌘

⌫0⌘

Our potential pair then extends to a full mirror pair with:

M 0
= M 0

⌘+1, ⇡
0
= ⇡0

h,⌘+1 where h = T (⌘ + 1)

In order to prove this, we must first form a ⇤-ultrapower:

⇡ : M⇤
⌘ �!⇤

F M where F = E
M⌘
⌫⌘

We must then define �, ⇢ such that:

⇡0“⇢̂n ⇢ ⇢n  ⇡0(⇢̂n) for n < !

where ⇢̂ is defined as in axiom (e)(iv). If we then set:

M⌘+1 =: M,M 0
⌘+1 =: M 0,⇡h,⌘+1 =: ⇡,⇡0

h,⌘+1 =: ⇡0,�⌘+1 = �, ⇢⌘+1
= ⇢

we will have defined the desired extension. (We leave it to the reader to
verify the axioms (a)-(e)). By the proof of Lemma 3.6.34 we have:

h�h �M⇤
⌘ ,�⌘ ��⌘i : hM⇤

i , F i �! hM⇤
i , F

0i

where F = E
M⌘
⌫⌘ , F 0

= E
M

0
⌘

⌫0⌘
.

Lemma 3.6.19 then points us in the right direction. In order to get the full
result, however, we must use Theorem 3.6.21 together with:

Lemma 3.6.39. Let hI, I 0i, ⌫⌘, ⌫ 0⌘,⇡0 be as in Lemma 3.6.38. Set: ⇠ =

T (⌘ + 1), F = E
M⌘
⌫⌘ , F 0

= E
M

0
⌘

⌫0⌘
. Set:

⇢̂ =

(
⇢⇠ if M 0⇤

⌘ = M 0
⇠

min(M 0⇤
⌘ ,�h �M 0⇤

⌘ , h⇢n
M 0⇤

⌘
: n < !i) if not

Then:
�h �M⇤

h
,�⌘ ��⌘ : hM⇤

⌘ , F i �!⇤⇤ hM 0⇤
⌘ , F 0i mod ⇢̂
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We leave it to the reader to see that Theorem 3.6.21 and Lemma 3.6.39 give
the desired result.
Note. It is clear that ⇡h,⌘+1,⇡0h,⌘+1

,�⌘+1 are uniquely determined by the
choice of ⌫⌘, ⌫ 0⌘,⇡0. If we wished, we could use clause (c) of Theorem 3.6.21
to make ⇢⌘+1 unique.

We are actually in familiar territory here. The notion of mirror is clearly
analogous to that of copy developed in §3.4.2. The analogue of mirror pair
was there called a duplication. The role of Lemma 3.4.16 is now played by
Lemma 3.6.38 and that of Theorem 3.4.16 by Lemma 3.6.39, which verifies
the weaker principle �!⇤⇤ in place of �!⇤ (which was, in turn, patterned
on the proof of Theorem 3.4.3), which said that, if I is a potential normal
iteration of length ⌘ + 2, then E

M⌘
⌘ is close to M⇤

⌘ ).

We now turn to the proof of lemma 3.6.39. Just as in §3.4.2 we derive it
from a stronger lemma. In order to formulate this properly we define:

Definition 3.6.12. Let M be acceptable. Let  2 M be inaccessible in M
such that P()\M 2M . A ⇢ P()\M is strongly ⌃1(M) in the parameter
p iff there is B ⇢M such that B is ⌃0(M) and:

• x 2 A !
W
zB(z, x, p)

• If u 2M such that u ⇢ P() and u
M  , then:

_
v 2M

^
X 2 u

_
z 2 v(B(z,X, p) _B(z,rX, p))

We shall derive:

Lemma 3.6.40. Let hI, I 0i, ⌘, ⇠, ⌫⌘, ⌫ 0⌘,⇡0 be as in Lemma 3.6.39. Let A ⇢
P(⌘) be strongly ⌃1(M⌘||⌫⌘) in p. Let A0 ⇢ P(0⌘) be ⌃1(M 0

⌘||⌫ 0⌘) in p0 =
�⌘(p) by the same definition. Then there is q 2M⇤

⌘ such that

• A is strongly ⌃1(M⇤
⌘ ) in q.

• Let A00 be ⌃1(M 0⇤
⌘ ) in q0 = �⇠(q) by the same definition. Then A00 ⇢ A0.

Before proving this, we show that it implies Lemma 3.6.39:

Lemma 3.6.41. Assume Lemma 3.6.40. Let ⇢⇤ be good for M 0⇤ and let:

�⇠ �M⇤
⌘ : M⇤

⌘ �!⌃⇤ M 0⇤
⌘ mod ⇢⇤.

Then:
h�⇠ �M⇤

⌘ ,�⌘ ��⌘i : hM⇤
⌘ , F i �!⇤⇤ hM 0⇤

⌘ , F 0i mod ⇢⇤.
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Proof. Let ↵ < �⌘,↵0
= �⌘(↵). Then F↵ is ⌃1(JE

M⌘

⌫⌘
) in ↵, since:

X 2 F↵  !
_

Y (Y = F (X) ^ ↵ 2 Y )

We know, however, that if u 2 JE
M⌘

⌫⌘
, u ⇢ P(), and u   in JE

M⌘

⌫⌘
, then:

_
v 2 JE

M⌘

⌫⌘
^X 2 u

_
Y 2 v(Y = F (X) ^ (↵ 2 Y _ ↵ 2 (rY )))

Hence F↵ is strongly ⌃1(JE
M⌘

⌫⌘
) in ↵. Obviously F↵

0
↵0 is ⌃1(JE

M0
⌘

⌫0⌘
) in ↵0

=

�⌘(↵) by the same definition. Hence G = F↵ is strongly ⌃1(M⇤
⌘ ) in a pa-

rameter q. Moreover, if G0 in ⌃1(M 0⇤
⌘) in �⇠(q) by the same definition, then

G0 ⇢ F 0
↵0 . Now let G be ⌃1(M 0⇤

⌘ , ⇢⇤) in �⇠(q) by the same definition. Then
G ⇢ G0 ⇢ F 0

↵0 . Now let:

X 2 G !
_

zB(z,X, q)

be the strongly ⌃1(M⇤
⌘ )-definition of G in q. Then:

X 2 G !
_

zB(z,X, q0)

where q0 = �⌘(q) and B is ⌃0(M⇤
⌘ , ⇢

⇤
) by the same definition. (In other

words, B is ⌃0(M 0⇤
⌘|⇢⇤0) by the same definition). Now let H be the set of

f 2M⇤
⌘ \ P() such that

_
z
^

i < (B(z, f(i), q) _B(z,rf(i), q))

Then H = M⇤
⌘ \ P() by the strongness of our definition. But if H has the

same ⌃1(M⇤
⌘ , ⇢

⇤
) definition in q0, then we obviously have:

f 2 H �!
^

i < 0(f(i) 2 G _ rf(i) 2 G)

QED(Lemma 3.6.41)

(In the application we, of course, take ⇢⇤ = p̂, where p̂ is defined as in Lemma
3.6.39).

We now turn to the proof of Lemma 3.6.40. Suppose not. Let ⌘ be the least
counterexample. We again have fixed ⌫⌘ and ⌫ 0⌘ = �⌘(⌫⌘), which gives us
⌘,0⌘⌧⌘, ⌧

0
⌘,�⌘,�

0
⌘, ⇠ = T (⌘ + 1),M⇤

⌘ ,M
0⇤
⌘ and ⇢⇤.

(1) ⇠ < ⌘.
Proof. Suppose not. Let A ⇢ P() be strongly ⌃1(M⌘||⌫⌘) in p and
let A0 ⇢ P(0⌘) be ⌃1(M 0

⌘||⌫ 0⌘) in p0 = �⌘(p) by the same definition.
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Clearly ⌧⌘ is a cardinal in M⌘||⌫1, so M⇤
⌘ = M⌘||µ for a µ � ⌫⌘.

Similarly M 0⇤
⌘ = M 0

⌘||µ0 where:

µ0
=

(
�⌘(µ) if µ 2M⌘

ON \M⌘ if not

Now suppose ⌫⌘ 2 M⇤
⌘ (i.e. µ > ⌫⌘). Then A 2 M⇤

⌘ and A0 2 M 0⇤
⌘

where �⌘(A) = A0. Then A is trivially strongly ⌃1(M⇤
⌘ ) in the param-

eter A and A0 is ⌃1(M⇤0
⌘ ) in A0

= �⌘(A) by the same definition, where
A0 ⇢ A0. Contradiction!

Now let M⇤
⌘ = M⌘||⌫⌘. Then M 0⇤

⌘ = M 0
⌘||⌫ 0⌘ and A0 is ⌃1(M 0⇤

⌘ ) definable
in p0 = �⌘(p) by the same definition. But A is strongly ⌃1(M⇤

⌘ ) in p,
since M⇤

⌘ = M⌘|⌫⌘. Contradiction!

QED(1)

(2) ⌫⌘ = ON \M⌘.

Proof. Suppose not. Then �⇠ > ⌧⌘ is inaccessible in M⌘. Hence

A 2 JE
M⌘

�⇠
= JE

M⇠

�⇠
⇢ M⇤

⌘ . Similarly A0 2 JE
M0

⌘

�
0
⇠

= JE
M0

⇠

�
0
⇠
⇢ M 0⇤

⌘|⇢⇤0.
Then A is strongly ⌃1(M⇤

⌘ ) in A0
= �⇠(A) by the same definition.

Contradiction!

QED(2)

(3) ⌧⌘ � ⇢1M⌘
.

Proof. Suppose not. Then ⌧⌘ < ⇢1
M⌘

. Hence A 2 JE
M⌘

⇢
1
M⌘

since A ⇢

JE
M⌘

⌧⌘
. Hence A 2 JE

M⌘

�⇠
= JE

M⇠

�⇠
⇢ M⇤

⌘ . Hence A is strongly ⌃1(M⇤
⌘ )

in the parameter Ar. Now let A00 be ⌃1(M 0
⌘|⇢

⌘

0
) in p0 = �⌘(p) by the

same definition. Then A00 ⇢ A0. But since

�⌘ : M⌘ �!⌃⇤ M 0
⌘ min(⇢⌘),

we have: A00
= �⌘(A). But �00

⇠
is inaccessible in M 0

⌘; hence A00 2
JE

M⌘

�
0
⇠

= JE
M⇠

�
0
⇠
⇢ M

0⇤
⌘ . Hence A00

= �⇠(A) is ⌃1(M
0⇤
⌘ ) in A00

= �⇠(A)

by the same definition. Contradiction!

QED(3)

(4) ⌘ is not a limit ordinal.

Proof. Suppose not. Pick ⌘ <T ⌘ such that ⌘ = µ + 1. ⇡⌘⌘ is
total on M⌘, = crit(⇡⌘,⌘) > �⌘ and p 2 rng(⇡⌘,⌘). Then ⇡0

⌘,⌘
is

total in M 0
⌘
, 0 = crit(⇡0

⌘,⌘
) > �0⌘ and p0 2 rng(⇡0

⌘,⌘
), where p0 =

�⌘(p). Set p = ⇡�1

⌘,⌘
(p), p0 = ⇡�1

⌘,⌘
(p0). Then �⌘(p) = p. Then M⌘ =
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hJE
M⌘

⌫
, F i,M 0

⌘
= hJE

M0
⌘

⌫
0 , F i. Extend the mirror hI|⌘ + 1, I 0|⌘ + 1i to

a potential mirror hI, I 0i of length ⌘ + 2, by setting: ⌫⌘ = ⌫, ⌫ 0
⌘
= ⌘0.

Then M
⇤
⌘ = M⇤

⌘ ,M
0⇤
⌘ = M

0⇤
⌘

= M
0⇤
⌘ , ⇠ = T (⌘ + 1) = T (⌘ + 1) and

�⇠ � M⇤
⌘
: M

⇤
⌘ �!⌃⇤ M

0⇤
⌘ min ⇢⇤. It is easily seen that A is ⌃1(M⌘)

in p0 by the same definition. By the minimality of ⌘ we conclude that
there is q 2 M⇤

⌘ = M
⇤
⌘ such that A is strongly ⌃1(M⇤

⌘ ) in q and A is
⌃1(M

0⇤
⌘ ) in q0 = �⇠(q) by the same definition. Contradiction!

QED(4)
Now let ⌘ = µ + 1. Let ⇣ = T (µ + 1). Then ⇡⇣,⌘ : M⇤

µ �!⌃⇤ M⌘ and
µ = crit(⇡⇣,⌘). Hence M⇤

µ has the form M = hJE

⌫
, F i where F 6= ?.

Set:  = crit(F ), ⌧ = ⌧(F ) =: +M ,� = �(F ) =: F (). Similarly M
0⇤
µ

has the form M
0
= hJE

0

⌫
0 , F

0i and we define 0, ⌧ 0,�0 accordingly.
Set: ⇡ = ⇡⇣,⌘,⇡0 = ⇡0

⇣,⌘
.

(5) µ > ,
since otherwise ⌘ = ⇡() � ⇡(µ) = �µ � �⇠ > ⌘. Contradiction!

QED(5)
But then µ > ⌧ and hence ⌧ = ⌧⌘, = ⌘. Similarly 0µ > ⌧ 0 and
⌧ 0 = ⌧ 0⌘,

0
= 0⌘. But then:

(6) µ > ⇢1
M

,

since otherwise ⇢1
M⌘
� ⇡(µ) = �µ > ⌧⌘. Contradiction! by (3).

QED(6)
Hence, since ⇡ : M �!⇤

E⌫µ
M⌘, we have:

(7) ⇡ : M �!E⌫µ
: M⌘ is a ⌃0 ultraproduct and ⇢1

M
= ⇢1

M⌘
.

Recall that A is strongly ⌃1(M⌘) in p and A0 is ⌃1(M 0
⌘) in p0 = �⌘(p)

by the same definition. By (7) we know:

(8) p = ⇡(f)(↵) where ↵ < �µ, f 2M and f : µ �!M . Hence

(9) p0 = ⇡0(f 0
)(↵0

) where f 0
= �f (f),↵0

= �µ(↵).
Proof. p0 = �⌘(⇡(f)(↵)) = (�⌘⇡(f))(�⌘(↵)) = (⇡0�⇣(f))(�µ(↵)).

QED(9)
Note. �µ ��µ = �⌘ ��µ since µ < ⌘.

Let A be strongly ⌃1(M⌘) in p as witnessed by
W
zB(z,X, p), where

B is ⌃0(M⌘). Set:

B0(u,X, p) !:

_
z 2 uB(z,X, p).
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Then A is strongly ⌃1(M⌘) in p as witnessed by
W
uB0(u,X, p). Note

that for all u, u0:

(10) (B0(u,X, p) ^ u ⇢ u0) �! B0(u0, X, p).

Let B1 be ⌃0(M) by the same definition as B0 over M⌘. Set F̃ =:

E
Mµ
⌫µ , F̃ 0

= E
M

0
µ

⌫0µ
. By the cofinality of the map p : M �!M⌘ and (10)

we have:

(11)

AX  !
_

u 2MB0(⇡(u), X, p)

 !
_

u 2M{� < µ : B�(u,X, f(�))} 2 F̃↵.

But F̃↵ is strongly ⌃1(Mµ||⌫µ) in ↵ and F̃ 0
↵0 is ⌃1(M 0

µ||⌫ 0µ) in ↵0 by the
same definition.

Hence by the minimality of ⌘ we conclude:

(12) There is q 2M such that the following hold:

(a) G = F̃↵ is strongly ⌃1(M) in q.

(b) Let G0 be ⌃1(M
0
) in q0 = ��(q) by the same definition. Then

G0 ⇢ F̃ 0
↵0 , where ↵0

= �µ(↵).

Let:
W
zG0(z,X, q) witness the fact that G is strongly ⌃1(M) in q.

Then:

AX  !
_

u 2MB0(⇡(u), X,⇡(f)(↵))

 !
_

u 2M{� < µ : B1(u,X, f(�))} 2 G

 !
_

v 2M
_

u 2 v
_
2 v

_
z 2 v

(Y = {� < µ : B1(u,X, f(�))} ^G0(z, Y, q))

This has the form:

(13) AX  !
W
vB2(v,X, r), where r = hq, fi and B2 is ⌃0(M).

For this B2 we claim:

(14) A is strongly ⌃1(M) in r are witnessed by
W
B2(v,X, r).

Proof. Let w ⇢ P() \M,w <  in M .

Claim. There is v 2M such that
^

X 2 w(B2(v,X, r) ^B2(v,rX, r))
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For the sake of simplicity we can assume without lose of generality that
X 2 w  ! (rM) 2 !. Fix u 2M such that

^
X 2 w(B0(⇡(u), X, p) ^B0(⇡(u), (rX), p))

For X 2 w set:

✓(X) =: {� < µ : B1(u,X, f(�))}

Then: ^
x 2 w(✓(X) 2 G _ ✓(rX) 2 G)

By rudimentary closure, h✓(X) : X 2 wi 2 M . Hence ✓“w 2 M and
card(✓“w)   < µ in M . Thus there is z 2M such that:

^
X 2 w(G0(z, ✓(X), q) _G0(z,µr✓(X), q))

Claim.
V
X 2 w(G0(z, ✓(X), q) _G0(z, ✓(rX), q)).

Proof. Suppose not. Then there is X 2 w such that:

µr✓(X), µr✓(rX) 2 G = F̃↵.

Hence ¬B0(⇡(u), X, p) and ¬B0(⇡(u),rX, p). Contradiction!
QED(Claim)

Pick V 2M such that u 2 v, z 2 v and ✓”w ⇢ v. Then:
^

X 2 w(B2(v,X, r) _B2(v,rX), r)

QED(14)

(15) Let A00 be ⌃(M) in r0 = �⇣(r) by the same definition. Then A00 ⇢ A0.
Proof. Let B0

0
be ⌃0(M 0

) by the same definition as B0 over M . Let
B0

1
be ⌃0(M) by the same definition. A00X says that there is u 2 M

with:
{� < 0µ : B0

1(u,X, f 0
(�))} 2 G0

where f 0
= �⇣(f). But G0 ⇢ F̃↵0 . Hence B0

0
(⇡(u), X,⇡0(f 0

)(↵0
)), where

p0 = ⇡0(f 0
)(↵0

). Hence A0X.
QED(15)

Now extend hI|⇣+1, I 0(⇣+1)i to a potential mirror pair hÎ , Î 0i of length
⇣ + 2 by setting: ⌫⇣ = ⌫, ⌫ 0

⇣
= ⌫ 0. Since  = ⌘, ⌧ = ⌧⌘, we have:

⇠ = T̂ (⇣ + 1), M̂⇤
⇣
= M⇤

⌘ , M̂
0⇤
⇣

= M
0⇤
⌘

But ⇣  µ < ⌘. By the minimality of ⌘ and by (14), (15), we conclude
that there is a parameter s 2M⇤

⌘ such that:
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• A is strongly ⌃1(M⇤
⌘ ) in s.

• If A000 has the same ⌃1(M
0⇤
⌘ ) definition in s0(�⇠(s)), then

A000 ⇢ A00 (hence A000 ⇢ A0).

This contradicts the fact that ⌘ was a counterexample.

QED(Lemma 3.6.40)

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.42. Assume that Mi,M 0
i

are amenable for i < µ, where µ is a
limit ordinal. Assume further that:

(a) ⇡i,j : Mi �!⌃⇤ Mj (i  j < µ), where the ⇡i,j commute.

(b) ⇡0
i,j

: M 0
i
�!⌃⇤ M 0

j
(i  j < µ), where the ⇡0

i,j
commute. Moreover:

hM 0
i : i < µi, h⇡0i,j : i  j < µi

has a transitivized direct limit M 0, h⇡0
i
: i < µi.

(c) �i : M 0
i
�!⌃⇤ M 0

j
min ⇢i (i  j < µ).

(d) ⇡0
i,j
“⇢in ⇢ ⇢

j
n  ⇡0i,j(⇢in) for i  j < µ, n < !. Then

hMi : i < µi, h⇡i,j : i  j < µi

has a transitivized direct limit M, h⇡i : i < µi. There is then � : M �!
M 0 defined by: �⇡i = ⇡0

i
�i (i < µ). Moreover:

(1) There is a unique ⇢ such that � : M �!⌃⇤ M 0
min ⇢ and:

⇡0i“⇢
i

n ⇢ ⇢n  ⇡0i(⇢in) for i < µ, n < !.

(2) There is i < µ such that ⇢n = ⇡0
j
(⇢jn) for i  j < µ, n < !.

3.6.4 The conclusion

In this section we show that every smoothly iterable premouse is fully iter-
able. We first define some auxiliary concepts:
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Definition 3.6.13. Let hI, I 0i be a mirror pair of length ⌘ with:

I = hhMii, h⌫ii, h⇡iji, T i and I 0 = hhM 0
ii, h⇡0iji, h�ii, h⇢iii

Let N be a premouse such that M 0
0
= N ||µ for some µ  ONN . As usual

set: ⌫ 0
i
= �i(⌫i). Let:

I 00 = hhNii, h⌫ 00i i, h⇡00iji, T i

be an iteration on N of length ⌘. (T being the same as in I). Set:

µi =

(
⇡00
0j
(µ) if µ 2 dom(⇡00

0j
)

ONNi if not.

We say that the mirror pair hI, I 0i is backed by I 00 (or M -backed by I 00) iff:

M 0
i = Ni||µi, ⌫

0
i = ⌫ 00i ,⇡

0
ij = ⇡00ij �M 0

i for i T j < ⌘.

Now suppose that hI, I 0i is a mirror pair of length ⌘ + 1 backed by I 00.
Extend I to a potential iteration I+ of length ⌘ + 2 by appointing ⌫⌘ such
that E

M⌘
⌫⌘ 6= ? and ⌫⌘ > ⌫i for i < ⌘. This determines ⇣ = T (⌘ + 1) and

M⇤
⌘ . If we then set: ⌫ 0⌘ = �⌘(⌫⌘), we have determined M

0⇤
⌘ and turned

hI, I 0i into a potential mirror pair hI+, I 0
+i. But ⌫ 0⌘ also extends I 00 to a

potential iteration I
00
+ of length ⌘ + 2, determining N⇤

⌘ . We then say that
I
00
+ potentially backs hI+, I 0

+i.

Note that if M⇤
⌘ 2M⇠, then:

M
0⇤
⌘ = �⇠(M

⇤
⌘ ) = N⇤

⌘ .

If, however, M⇤
⌘ = M⇠, then we have M

0⇤
⌘ = M 0

⇠
, but if is still possible that

M
0⇤
⌘ 2 N⇤

⌘ and even that N⇤
⌘ 2 N⇠. This can happen if M 0

⇠
= N⇠||µ⇠ and

µ⇠ 2 N⇠. There might then be � > µ⇠ such that ⌧ 0⌘ is a cardinal in N⇠||�.
Hence M

0⇤
⌘ = M 0

⇠
2 N 0

⇠
||� ⇢ N⇤

⌘ . But if the largest such � is an element of
N⇠, we then have N⇤

⌘ 2 N⇠.

Note. If I+, I 0
+, I

00
+ are as above, we certainly have: E

M
0
⌘

⌫0⌘
= E

N⌘

⌫0⌘
.

Using Lemma 3.6.38 we can then prove:

Lemma 3.6.43. Let I+, I 0
+, I

00
+ be as above. Suppose that N⇤

⌘ is ⇤-extendible
by F 0

= E
N⌘

⌫0⌘
. Then hI+, I 0

+i extends to an actual mirror pair hÎ , Î 0i with

⌫̂⌘ = ⌫⌘ and I
00
+ extends to an iteration Î 00 which backs hÎ , Î 0i.
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Proof. Set ⇡00 : N⇤
⌘ �!⇤

F 0 N 0. Then I
00
+ extends uniquely to Î 00 with:

N⌘+1 = N 0,⇡00
⇠,⌘+1

= ⇡00.

Set: ⇡0 =: ⇡00 �M 0
+
⌘ . Then:

⇡0 : M
0⇤
⌘ �!⌃⇤ M 0

where:

M 0
=

(
⇡00(M

0⇤
⌘ ) if M 0⇤

⌘ 2 N⇤
⌘

M 0 if not

Then crit(⇡0) = 0⌫ and F 0
= E

M
0
⌘

⌫0⌘
. Hence by Lemma 3.6.38, hI, I 0i extends

to a mirror hÎ , Î 0i of length ⌘ + 2 with: M 0
= M 0

⌘+2
. Obviously, Î 00 backs

hÎ , Î 0i.

QED(Lemma 3.6.43)

Note. If M
0⇤
⌘ 2 N⇤

⌘ , then h⇡0,M 0i is not necessarily an ultraproduct of
hM 0⇤

⌘ , F 0i.

Using Lemma 3.6.37 we also get:

Lemma 3.6.44. Let hI, I 0i be a mirror pair of limit length ⌘ which is backed
by I 00. Let b be a well founded cofinal branch in I 00. Then hI, I 0i extend
uniquely to hÎ , Î 0i of length ⌘+1 such that b = T̂“{⌘}. Moreover I 00 extends
uniquely to Î 00 which backs hÎ , Î 0i.

The proof is straightforward and is left to the reader.

But by the same lemmata we get:

Lemma 3.6.45. Suppose that N is normally iterable. Let M = N ||µ. Then
M is normally ↵-iterable.

Proof. Fix a successful iteration strategy S for N . We must define a strategy
S⇤ for M . Let:

I = hhMii, h⌫ii, h⇡iji, T i

be an iteration of M of length ⌘. We first note:

Claim. There is at most one pair hI 0, I 00i such that hI, I 0i is a mirror pair
backed by I 00 and I 00 is S-conforming.

Proof. By induction on lh(I). We leave this to the reader.
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We now define an iteration strategy S⇤ for M . Let I be a normal iteration
of M of limit length ⌘. If there is no pair hI 0, I 00i satisfying the above claim,
then S⇤

(I) is undefined. If not, we set:

S⇤
(I) =: S(I 00)

b = S⇤
(I) is then a cofinal well founded branch is I. (Clearly, if we extend

each of I, I 0, I 00 by the branch b, we obtain hĨ , Ĩ 0, Ĩ 00i satisfying the Claim).
It is then obvious that if I is of length ⌘ + 1 and we pick ⌫ > ⌫i(i < ⌘) such
that EM⌘

⌫ 6= ?, then I extends to an S⇤-conforming iteration of length ⌘+1.
Hence S⇤ is successful.

QED(Lemma 3.6.45)

This is fairly weak result which could have been obtained more cheaply. We
now show, however, that our methods establish Theorem 3.6.1. We begin by
defining the notion of a full mirror I 0 of a full iteration I.

Definition 3.6.14. Let I = hIi : i < µi be a full iteration of M , inducing
Mi,⇡ij (i  j < µ). Let:

Ii = hhM i

h
i, h⌫i

h
i, h⇡hji, T ii

By a full mirror of I we mean I 0 = hI 0
i
: i < µi such that

I
0
i
= hhM 0

i

h
i, h⇡0

i

hj
i, h�i

h
i, h⇢i,hii

is a mirror of Ii for i < µ, and I 0 induces hM 0
i
: i < µi, h⇡0

ij
: i  j < µi, h�i :

i < µi, h⇢i : i < µi such that:

(a) �i : Mi �!⌃⇤ M 0
i
min ⇢i

(b) ⇡0
ij

is a partial structure preserving map from M 0
i

to M 0
j
. Moreover,

they commute and ⇡0
i,i

= id � M 0
i
. If ↵ < µ is a limit ordinal, then

M 0
↵ =

S
i<↵

rng(⇡0
i,↵

).

(c) �j⇡ij = ⇡0
ij
�i for i  j < µ.

(d) If i  j < µ and [i, j) has no drop point in I, then:

⇡0ij : M
0
i �!⌃⇤ M 0

j and ⇡0ij“⇢i ⇢ ⇢i  ⇡0ij(⇢i)

(e) M 0
0
= M0 = M ;�0 = id�M , and

⇢0 = h⇢nM : n < !i

(f) M 0
i+1

= M
0
i

li
where Ii has length li + 1. Moreover, �i+1 = �i

li
and

⇢i+1
= ⇢i,li and ⇡i,i+1 = ⇡i

i,li
.
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We leave it to a reader to see that hMi : i < µi, h⇡0
ij
: i  j < µi, h�i : i < µi

are uniquely characterized by (a)-(f), given the triple hM, I, I 0i. In particular
if ↵ < µ is a limit ordinal, then:

M 0
↵, h⇡0i↵ : i < ↵i

is the transitivized direct limit of

hM 0
i : i < ↵i, h⇡0ij : i  j < ↵i.

(This makes sense by (d), since I has only finitely drop points i < ↵). �↵
is then defined by: �↵⇡i↵ = ⇡0

i↵
�i. By the method of §3.6.2 it follows that

there is only one ⇢↵ satisfying our conditions and that, in fact, for sufficiently
large i < ↵ we have:

⇢↵n = ⇡0i↵(⇢
i

n) for i < !.

hI, I 0i is then called a full mirror pair.

We leave to the reader to verify:

Lemma 3.6.46. Let hI, I 0i be a full mirror pair of limit length µ. Suppose
further, that, if [io, µ) has no drop point, then:

hM 0
i : i0  i < µi, h⇡0ij : i0  i  j < µi

has a well founded limit. Then hI, I 0i extends uniquely to a mirror pair of
length µ+ 1.

We recall that a full iteration I = hIi : i < µi is called smooth iff Mi = M i

0

for all i < µ. We define:

Definition 3.6.15. Let I = hIi : i < µi be a full iteration of M . Let hI, I 0i
be a full mirror pair. Let:

I 00 = hI 00i : i < µi

be a smooth iteration of M inducing

hM 00
i : i < µi, h⇡000ij : i  j < µi

such that M
0
i

0
C M 0

i
C M 00

i
and I

00
i backs hIi, I 0

ii for i < µ.

We then say that I 00 backs hM, I, I 0i.

It is obvious that, if I 00 backs hM, I, I 0i then I 00 is uniquely determined by
hM, I, I 0i. Building on the last lemma we get:
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Lemma 3.6.47. Let hI, I 0i be a full mirror pair of limit length µ. Let I 00

be a smooth iteration of M of length µ + 1, such that I 00|µ backs hM, I, I 0i.
Then hI, I 0i extends uniquely to a pair of length µ+1 which is backed by I 00.

Proof. (Sketch). The extension is easily defined using Lemma 3.6.46 if we
can show:
Claim. I has finitely many drop points.

We first note that if Ii has a truncation on the main branch, then so do
I
0
i and I

00
i. Hence there are only finitely many such Ii. Now suppose that

M i

0
6= Mi for infinitely many i. Let hin : n < !i be a monotone sequence

of such i such that [in, in+1) has no drop. Then, letting M 0
i
= M 00

in
||µn for

n < !, we have: µn+1 < ⇡00
in,in+1

(µn).

Hence ⇡00
in+1,µ

(µn+1) < ⇡00
in,µ

(µn). Contradiction!

QED(Lemma 3.6.47)

Now let S be a successful smooth iteration strategy for M . (Thus S is defined
only on smooth iterations I = hIi : i  ⌘i such that I⌘ is a normal iteration
of limit length. S(I), if defined, is then a well founded cofinal branch b in
I⌘. We call S successful for M iff every S-conforming smooth iteration I of
M can be extended in an M -conforming manner. (This is defined precisely
in §3.5.2).).

Claim. Let I be a full iteration of M . There is at most one pair hI 0, I 00i
such that hI, I 0i is a full mirror pair, I 00 backs hI, I 0i and is S-conforming.

Proof. By induction on lh(I) and for lh(I) = i + 1 by induction on lh(Ii).
The details are left to the reader.

We now define a full iteration of length i + 1 where Ii is of limit length. If
there exist hI 0, I 00i as in the above claim, we set S⇤

(I) = S(I 00). If not, then
S⇤

(I) is undefined. It follows as before that an S⇤-conforming full iteration
of M can be properly extended in any permissible way to an S⇤-conforming
iteration. More precisely:

• If I is of length i+ 1 and Ii is of limit length, then S⇤
(I) exists.

• If I is of length i + 1 and Ii is of successor length j + 1 and ⌫ > ⌫i
h

for h < j, where EM
i
⌫

⌫ 6= ?, then I extends to and S⇤-conforming Î, Îi
extends Ii and ⌫j = ⌫ in Îi.

• If I, i, j are as before and M̃CM i

j
, then I extends to an S⇤-conforming

Î of length i+ 1 such that M̃ = M i+1

0
.
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• If I is of limit length µ, then it extends uniquely to an S⇤-conforming
iteration of length µ+ 1.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excur-
sion into the combinatorics of normal iteration, using methods which were
manly developed by John Steel and Farmer Schluzenberg. We first answer
a somewhat easier question: Let M be uniquely normally iterable and let
M 0 be a normal iterate of M . Is M 0 normally iterable? Our basis tool in
dealing with this is the reiteration: Given a normal iteration I 0 from M 0

to M 00, we “reiterate” I, gradually turning it into a normal iteration I⇤ to
an M⇤. The process of reiteration mimics the iteration I 0. This results in
an embedding � from M 00 to M⇤, thus showing that M 00 is well-founded.
However, � is not necessarily ⌃

⇤-preserving but rather ⌃⇤-preserving modulo
pseudoprojecta. This means that, in order to finish the argument, we must
draw on the theory of pesudoprojecta developed in §3.6. The above result is
proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous,
however. It is mainly due to Schluzenberg and employs his original and sur-
prising notion of “inflation”. In order to complete the argument (in §3.7.6) we
again need recourse to pseudo projecta. The remaining subsections (§3.7.1,
§3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudoprojecta, and
are of some interest in their own right.

We begin by describing a class of operations on normal iteration called in-
sertions. An insertion embeds or “inserts” a normal iteration into another
one.

3.7.1 Insertions

Let I be a normal iteration of M of length ⌘. Let I 0 be a normal iteration
of the same M having length ⌘0. An insertion of I into I 0 is a monotone
function e : ⌘ �! ⌘0 such that EMi

⌫i
plays the same role in Mi as E

M
0
e(i)

⌫
0
ẽ(i)

in

M 0
ẽ(i)

. (This is far from exact, of course, but we will shortly give a proper
definition).

In one form or other, insertions have long played a role in set theory. They are
implicit in the observation that iterating a single normal measure produces


