(c) If $\sigma\left(\xi_{i}\right)=\pi_{0, \eta}\left(\xi_{i}\right)$ for $i<n<\omega$, then $\sigma\left(\xi_{n}\right) \geq \pi_{0, \eta}\left(\xi_{n}\right)$.

As before, this follows from:
Lemma 3.5.12. Let $M,\left\langle\xi_{i} \mid i<\omega\right\rangle$ be as above. There is an $\omega_{1}+1$-successful n-full iteration strategy S to M such that whenever I is an S-conforming n to n-full iteration from M to M^{\prime} and $\sigma: M \rightarrow_{\Sigma^{(n)}} M^{\prime}$, then:
(a) No $i<\operatorname{lh}(I)$ is a truncation point. (Hence the map $\pi=\pi^{(M, I)}$ is a total function on M.)
(b) If $\sigma\left(\xi_{i}\right)=\pi\left(\xi_{i}\right)$ for $i<n$, then $\sigma\left(\xi_{n}\right) \geq \pi\left(\xi_{n}\right)$.

The proofs are virtually unchanged.

3.6 Verifying full iterability

3.6.1 Introduction

As we said, full iterability is a difficult property to verify. A theorem that every normally iterable mouse is fully iterable would be useful, if true, but seems unlikely. We can, however, prove the following pair of theorems:

Theorem 3.6.1. If M is smoothly α-iterable, then it is fully α-iterable.
Theorem 3.6.2. Let $\kappa>\omega$ be regular and let M be uniquely normally $\kappa+1$ iterable. Then M is smoothly $\kappa+1$-iterable.

The proofs of these theorems are quite complex. To prove theorem 3.6.1, we redo much of chapter 2 , developing a theory of embeddings which are Σ^{*} preserving modulo pseudo projecta, which may not be the real projecta, but behave simiarly. The proof of theorem 3.6.2 requires us, in addition, to delve rather deeply into the combinatorics of normal iteration, using technique which, essentially, were developed by John Steel and Farmer Schlutzenberg.

This section (§3.6) is devoted to the proof of theorem 3.6.1. The following section brings the proof of theorem 3.6.2. In later chapters we shall make frequent use of both these theorems, but will seldom, if ever, refer to their proofs. Hence it would be justifiable for a first time reader of this this book to skip $\S 3.6$ and $\S 3.7$, taking the above theorems for granted and deferring their proofs until later.

3.6.2 Pseudo projecta

In order to prove theorem 3.6.1, we must redo $\S 2.6$, allowing "pseudo projecta" to play the role of the real projecta.

Definition 3.6.1. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable. Then $\rho=\left\langle\rho_{i} \mid i<\omega\right\rangle$ is a good sequence of pseudo projecta for M iff the following hold:
(a) ρ_{i} is p.r. closed if $i>0$.
(b) $\omega \leq \rho_{i+1} \leq \rho_{i} \leq \rho_{M}^{i}$ for $i<\omega$.
(c) $J_{\rho_{i}}^{A}$ is cardinally absolute in M (i.e. if $\gamma \in J_{\rho_{i}}^{A}$ is a cardinal in $J_{\rho_{i}}^{A}$, then it is a cardinal in M).

Note. $\rho_{0}<\rho_{M}^{0}=\mathrm{On}_{M}$ is not excluded. Moreover, ρ_{i} itself need not be a cardinal in M.

We shall generally write " ρ is good for M " instead of " ρ is a good sequence of pseudo projecta for M^{i} ".

Definition 3.6.2. Let ρ be good for $M=J_{\alpha}^{A} . H_{i}=H_{i}(M, \rho)=:\left|J_{\rho_{i}}^{A}\right|$ for $i<\omega$.

We adopt the same language with typed variables $v^{i}(i<\omega)$ as before. The formula classes $\Sigma_{h}^{(n)}(h, n<\omega)$ are defined exactly as before. The satisfaction relation:

$$
M \models \varphi\left[x_{1}, \ldots, x_{n}\right] \quad \bmod \rho
$$

is defined as before except that the variables v^{i} now range over $H_{i}=H_{i}(M, \rho)$ instead of $H^{i}=H_{M}^{i}$. A relation $R\left(x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right)$ is $\Sigma_{j}^{(n)}(M, \rho)\left(\right.$ or $\Sigma_{j}^{(n)}(M)$ $\bmod \rho$) iff it is M-definable $\bmod \rho$ by a $\Sigma_{j}^{(n)}$ formula.
Similarly for $\underline{\Sigma}_{j}^{(n)}, \Sigma^{*}, \underline{\Sigma}^{*}$. We then define:
Definition 3.6.3. $\sigma: M \rightarrow_{\Sigma_{j}^{(n)}} M^{\prime} \bmod \left(\rho, \rho^{\prime}\right)$ iff the following hold:
(a) ρ is good for M and ρ^{\prime} is good for M^{\prime}.
(b) $\sigma^{\prime \prime} H_{i} \subset H_{i}^{\prime}$ for $i<\omega$, where $H_{i}=H_{i}(M, \rho), H_{i}^{\prime}=H_{i}\left(M^{\prime}, \rho^{\prime}\right)$.
(c) Let φ be $\Sigma_{i}^{(n)}, \varphi=\varphi\left(v_{1}^{i_{1}}, \ldots, v_{p}^{i_{p}}\right)$ where $i_{1}, \ldots, i_{p} \leq n$. Then:

$$
M \models \varphi[\vec{x}] \quad \bmod \rho \leftrightarrow M^{\prime} \models \varphi[\sigma(\vec{x})] \quad \bmod \rho^{\prime}
$$

for all $x_{1}, \ldots, x_{p} \in M$ such that $x_{i} \in H_{i_{l}}(l=1, \ldots, p)$.

We also define:
Definition 3.6.4. $\sigma: M \rightarrow \Sigma^{*} M^{\prime} \bmod \left(\rho, \rho^{\prime}\right)$ iff

$$
\sigma \text { is } \Sigma_{0}^{(n)} \text {-preserving } \bmod \left(\rho, \rho^{\prime}\right) \text { for } n<\omega .
$$

As before, this is equivalent to:

$$
\sigma \text { is } \Sigma_{1}^{(n)}-\text { preserving } \bmod \left(\rho, \rho^{\prime}\right) \text { for } n<\omega .
$$

We also write:

$$
\sigma: M \rightarrow_{\Sigma_{j}^{(n)}} M^{\prime} \bmod \rho^{\prime}
$$

to mean

$$
\left\{\begin{array}{l}
\sigma: M \rightarrow_{\Sigma_{j}^{(n)}} M^{\prime} \bmod \left(\rho, \rho^{\prime}\right), \\
\text { where } \rho_{i}=\rho_{M}^{i} \text { for } i<\omega .
\end{array}\right.
$$

(Similarly for $\sigma: M \rightarrow_{\Sigma^{*}} M^{\prime} \bmod \rho^{\prime}$.)
Lemma 3.6.3. Let $\sigma: M \rightarrow_{\Sigma_{j}^{(n)}} M^{\prime}$. Let ρ be good for M and define ρ^{\prime} by:

$$
\rho_{i}^{\prime}= \begin{cases}\sigma\left(\rho_{i}\right) & \text { if } \rho_{i}<\rho_{M}^{i} \\ \rho_{M}^{i} & \text { if not. }\end{cases}
$$

Then $\sigma: M \rightarrow_{\Sigma_{j}^{(n)}} M^{\prime} \bmod \left(\rho, \rho^{\prime}\right)$.
(Hence, if σ is fully Σ^{*}-preserving, it is also Σ^{*}-preserving modulo $\left(\rho, \rho^{\prime}\right)$.)
Proof: Clearly ρ^{\prime} is good for M^{\prime}. Now let $R\left(x_{1}^{i_{l}}, \ldots, x_{p}^{i_{p}}\right)$ be $\Sigma_{j}^{(n)}(M, \rho)$, where $i_{1}, \ldots, i_{p} \leq n$. By an induction on n, R is uniformly $\Sigma_{j}^{(n)}(M)$ in the parameter $u=\left\langle\rho_{i}: l \leq n \wedge \rho_{l}\left\langle\rho_{M}^{l}\right\rangle\right.$. (We leave the detail to the reader.)

But then, if R^{\prime} is $\Sigma_{i}^{(n)}\left(M^{\prime}, \rho^{\prime}\right)$ by the same definition, it is $\Sigma_{j}^{(n)}\left(M^{\prime}\right)$ in $\sigma(u)$ by the same definition.

QED (Lemma 3.6.3)
Lemma 3.6.4. Let $\sigma: M \rightarrow_{\Sigma^{*}} M^{\prime}$ and let ρ, ρ^{\prime} be as in lemma 3.6.3. Let $\kappa=\operatorname{crit}(\sigma)$, where $\rho_{i+1} \leq \kappa<\rho_{i}$. Define $\rho^{\prime \prime}$ by:

$$
\rho_{j}^{\prime \prime}=: \rho_{j}^{\prime} \text { for } j \neq i, \rho_{i}^{\prime \prime}=: \sup \sigma^{\prime \prime} \rho_{i} .
$$

Then:

$$
\sigma: M \rightarrow_{\Sigma^{*}} M^{\prime} \bmod \left(\rho, \rho^{\prime \prime}\right) .
$$

Proof: $\rho^{\prime \prime}$ is still good for M^{\prime}. By induction on n it then follows that σ is $\Sigma_{1}^{(n)}$-preserving modulo ($\rho, \rho^{\prime \prime}$).

QED (Lemma 3.6.4)
One might expect that most of $\S 2.6$ will not go through with pseudo projecta in place of projecta, since $\left\langle H_{i}, B\right\rangle$ is not necessarily amenable when B is $\Sigma_{0}^{(i)}(M, \rho)$. As it turns out, however, a great many proofs in $\S 2.6$ do not use this property (in contrast to the treatment in $\S 2.5$). In particular, lemmas 2.6.3-2.6.16 go through without change. Similarly, the definition of a good function can be relativized to a good ρ in place of $\left\langle\rho_{M}^{n} \mid n<\omega\right\rangle$. We define

$$
\mathbb{G}_{n}=\mathbb{G}_{n}(M, \rho) ; \mathbb{G}^{*}=\mathbb{G}^{*}(M, \rho)
$$

exactly as before with ρ in place of $\left\langle\rho_{M}^{i} \mid i<\omega\right\rangle$. Lemma 2.6.22 - 2.6.25 then go through exactly as before. Leaving the definition of good $\Sigma_{1}^{(n)}$ definition unchanged, we get the following version of Lemma 2.6.27: Let F be a good $\Sigma_{1}^{(n)}$ function $\bmod \rho$. There is a good $\Sigma_{1}^{(n)}$ definition which defines F $\bmod \rho$.

Even some of $\S 2.7$ remains valid for pseudo projecta. In $\S 2.7 .1$ we define $\Gamma^{0}(\tau, M)(\tau$ being a cardinal in $M)$ as the set of maps $f \in M$ such that $\operatorname{dom}(f) \in H=H_{\tau}^{M}$. In §2.7.2 we then introduce $\Gamma^{n}=\Gamma^{n}(\tau, M)$ for the case that $n>0$ and $\tau \leq \rho_{M}^{n}$, defining Γ^{n} to be the set of f such that:
(a) $\operatorname{dom}(f) \in H=H_{\tau}^{M}$.
(b) For some $i<n$ there is a good $\Sigma_{1}^{(i)}(M)$ function G and a parameter $p \in M$ such that:

$$
f(x)=G(x, p) \text { for all } x \in \operatorname{dom}(f) .
$$

Lemma 2.7.10 then told us that, whenever $\pi: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$, there is a canonical way of assigning to each $f \in \Gamma^{n}$ a definable partial map $\pi^{\prime}(f)$ on M^{\prime}. This continues to hold if $\pi: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime} \bmod \rho$. The extended version of 2.7.10 reads:

Lemma 3.6.5. Let $\pi: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime} \bmod \rho$. There is a unique map π^{\prime} which assigns to each $f \in \Gamma^{n}(\tau, M)$ a function $\pi^{\prime}(f)$ with the following property:
$\left({ }^{*}\right) \pi^{\prime}(f): \pi(\operatorname{dom}(f)) \rightarrow M^{\prime}$. Moreover, if $f(x)=G(x, p)$ for all $x \in$ $\operatorname{dom}(f)$, where G is a good $\Sigma_{1}^{(i)}(M)$ function for an $i<n$ and $p \in M$, then

$$
\pi^{\prime}(f)(x)=G^{\prime}(x, \pi(p)) \text { for } x \in \pi(\operatorname{dom}(f)),
$$

where G^{\prime} is a good $\Sigma_{1}^{(i)}\left(M^{\prime}, \rho\right)$ function by the same good definition.

The proof is exactly as before. As before we get:
Lemma 3.6.6. Let $u, \tau, \pi, \pi^{\prime}$ be as above. Then $\pi^{\prime}(f)=\pi(f)$ for $f \in$ $\Gamma^{0}(\tau, M)$.

Thus, again, we could unambiguously write $\pi(f)$ instead of $\pi^{\prime}(f)$ for f. However, this is only unambiguous if we have previously specified the good sequence $\rho . \pi^{\prime}$ depends not only on π but also on the good sequence ρ. For this reason we shall write: $\pi_{\rho}(f)$ for $\pi^{\prime}(f)$. We can omit the subscript ρ if the good sequence is clear from the context.

In $\S 3.2$ we then considered the special case that $\tau=\kappa^{+M}$ where κ is a cardinal in M. (This is mainly of interest when there is an extender F on M at κ.) We then set:

$$
\Gamma_{*}^{n}(\kappa, M)=:\left\{f \in \Gamma^{n}(\kappa, M) \mid \operatorname{dom}(f)=\kappa\right\}
$$

We also set:

$$
\Gamma^{*}(\kappa, M)=: \Gamma_{*}^{n}(\kappa, M) \text { where } n \leq \omega \text { is maximal such that } \kappa<\rho_{M}^{n} .
$$

Let us call p a defining parameter for $f \in \Gamma^{*}(\kappa, M)$ iff either $p=f$ or else:

$$
f(\xi)=G(\xi, p) \text { for all } \xi<\kappa
$$

where G is a good $\Sigma_{1}^{(i)}(M)$ function for an $i<n$. By lemma 2.6.25 we can then conclude:

Fact 1 Let $R\left(\vec{x}, y_{1}, \ldots, y_{r}\right)$ be a $\Sigma_{0}^{(n)}(M)$ relation. Let $f_{i} \in \Gamma_{*}^{n}(\kappa, M)$ have a defining parameter p_{i} for $i=1, \ldots, r$. Then the relation:

$$
Q(\vec{x}, \vec{\xi}) \longleftrightarrow: R\left(\vec{x}, f_{1},\left(\xi_{1}\right), \ldots, f_{r}(\xi)\right.
$$

is $\Sigma_{0}^{(n)}(M)$ in the parameters $\kappa, p_{1}, \ldots, p_{r}$.
Moreover, if:

$$
\sigma: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime} \quad \bmod \rho
$$

and R^{\prime} has the same $\Sigma_{0}^{(n)}(M, \rho)$ definition, then the relation:

$$
Q^{\prime}(\vec{x}, \vec{\xi}) \leftrightarrow: R^{\prime}\left(\vec{x}, \sigma_{\rho}\left(f_{1}\right)\left(\xi_{1}\right), \ldots, \sigma_{\rho}\left(f_{r}\right)\left(\xi_{r}\right)\right)
$$

is $\Sigma_{1}^{(n)}\left(M^{\prime}, \rho\right)$ in $\kappa, \sigma\left(p_{1}\right), \ldots, \sigma\left(p_{r}\right)$ by the same definition as Q.
Now let $a_{1}, \ldots, a_{m} \in M$ and set:

$$
X=\{\langle\vec{\xi}\rangle \mid R(\vec{a}, \vec{f}(\xi))\}
$$

Then $X \in H_{M}^{n}$ and $\left\langle H_{M}^{n}, Q\right\rangle$ is amenable.

Fact 2 Let $R, R^{\prime}, Q, Q^{\prime}, f_{1}, \ldots, f_{r}, \sigma, M, M^{\prime}$ be as in Fact 1 . Let \vec{a}, X be as above. Then:

$$
\sigma(X)=\left\{\prec \vec{\xi} \succ \in \sigma(\kappa) \mid R^{\prime}\left(\sigma(\vec{a}), \sigma_{\rho}(\vec{f})(\vec{\xi})\right)\right\}
$$

Proof (sketch)

We know:

$$
\bigwedge \vec{\xi}<\kappa(\prec \vec{\xi} \succ \in X \leftrightarrow Q(\vec{a}, \vec{\xi}))
$$

which is $\Pi_{0}^{(n)}(M)$ in the parameters $H_{\kappa}^{M}, \vec{a}, \vec{p}$. (We use here the fact that κ and the Gödel ν-tuple function on κ are H_{κ}^{M}-definable.) But then the corresponding $\Pi_{0}^{(n)}\left(M^{\prime}, \rho\right)$ statement holds of $H_{n}\left(M^{\prime}, \rho\right), \sigma(\vec{a})$, $\sigma(\vec{\alpha}), \sigma(\vec{p})$.

QED (Fact 2)
Note. σ is Σ_{1} preserving $\bmod \rho$, if $n>0$. But then $\kappa^{\prime}=\sigma(\kappa)$ is a cardinal in M^{\prime}, since it is a cardinal in $H_{0}=H_{0}\left(M^{\prime}, \rho\right)$ and ρ_{0} is cardinally absolute in M^{\prime}.

We now recall the Q-quantifier:

$$
Q z^{i} \varphi\left(z^{i}\right)=: \bigwedge u^{i} \bigvee v^{i}\left(v^{i} \supset u^{i} \wedge \varphi\left(v^{i}\right)\right)
$$

By a $Q^{(i)}$ formula we mean any formula of the form $Q z^{\prime} \varphi\left(z^{i}\right)$, where $Q\left(\nu^{i}\right)$ is $\Sigma_{1}^{(i)}$. We write:

$$
\sigma: M \rightarrow_{Q^{*}} N \quad \bmod \left(\rho, \rho^{\prime}\right)
$$

to mean that σ is elementary $\bmod \left(\rho, \rho^{\prime}\right)$ with suspect to $Q^{(n)}$ formulae for all $n<\omega$. Clearly, if σ is Q^{*} preserving $\bmod \left(\rho, \rho^{\prime}\right)$, then it is Σ^{*}-preserving $\bmod \left(\rho, \rho^{\prime}\right)$. If $\rho=\left\langle\rho_{M}^{i} \mid i<\omega\right\rangle$, we write:

$$
\sigma: M \rightarrow_{Q^{*}} N \quad \bmod \rho .
$$

In the following assume:
(1) $\sigma: M \rightarrow_{\Sigma^{*}} N \bmod \rho^{\prime}$.

We define a minimal good sequence:

$$
\rho=\min \rho^{\prime}=\min \left(\sigma, N, \rho^{\prime}\right)
$$

with the following properties:
(a) $\sigma: M \rightarrow_{Q^{*}} N \bmod \rho$.
(b) $\sup \sigma^{\prime \prime} \rho_{M}^{i} \leq \rho_{i} \leq \rho_{i}^{\prime}$ for $i<\omega$.
(c) Let φ be $\Sigma_{0}^{(i)}$. Let $x \in M, z_{1}, \ldots, z_{p} \in H_{i}(N, \rho)$. Then:

$$
N \models \varphi[\vec{z}, \sigma(x)] \quad \bmod \rho \leftrightarrow N \models \varphi[\vec{z}, \sigma(x)] \quad \bmod \rho^{\prime} .
$$

(d) $\rho=\min \rho$.

We define ρ as follows:
Definition 3.6.5. Let $\sigma: M \rightarrow_{\Sigma^{*}} N \bmod \rho^{\prime}$. We define:

- $\rho_{i}(0)=: \sup \sigma^{\prime \prime} \rho_{M}^{i}$.
- $\rho_{i}(n+1)=$: the supremum of all $F(\eta)$ such that $\eta<\rho_{i+1}(n)$ and F is a $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to ρ_{i}^{\prime} in parameters from $\operatorname{rng}(\sigma)$.
- $\rho_{i}=: \sup _{n<\omega} \rho_{i}(n)$.
- $\rho=\left\langle\rho_{i} \mid i<\omega\right\rangle$.

Lemma 3.6.7. $\rho_{i}(n) \leq \rho_{i}(n+1)$.

Proof: We show by induction on n that it holds for all $i \leq \omega$.

Case $1 n=0$.
If $\xi<\rho_{M}^{i}$, then $\sigma(\xi)=F(0)$, where $F=$ the constant function $\sigma(\xi)$.
But then F is $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ in $\sigma(\xi)$. Hence $\sigma(\xi)<\rho_{i}(1)$.
Case $2 n>0$.
Then $\rho_{i+1}(n) \geq \rho_{i+1}(n-1)$. Hence:

$$
F^{\prime \prime} \rho_{i+1}^{(n)} \supset F^{\prime \prime} \rho_{i+1}^{(n-1)}
$$

for all F which is a $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to ρ_{i}^{\prime}.

The conclusion is immediate.
QED (Lemma 3.6.7)
Lemma 3.6.8. $\rho_{i}(n)$ is p.r. closed for $i>0$.

Proof: We show by induction on n that it holds for all $i>0$.

Case $1 n=0$.
$\sigma \upharpoonright J_{\rho_{M}^{i}}^{A}: J_{\rho_{M}^{i}}^{A} \rightarrow \Sigma_{0} J_{\rho_{i}}^{A}$ cofinally, where ρ_{M}^{i} is p.r. closed.
Case $2 n>0$. Let $n=m+1$.
Then $\rho_{i}(m)$ is p.r. closed. Let f be a monotone p.r. function on On.
It suffices to show:

Claim $f^{\prime \prime} \rho_{i}(n) \subset \rho_{i}(n)$.
Let $\nu<\rho_{i}(n)$. Then $\nu<F(\eta)$ where $\eta<\rho_{i+1}^{(m)}$ and F is $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ to ρ_{i}^{\prime} in $\sigma(x)$. But then $f \circ F$ is $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ to ρ_{i}^{\prime}, since ρ_{i}^{\prime} is p.r. closed. Hence $f(\nu)<f \cdot F(\eta)<\rho_{i}(n)$.

QED (Lemma 3.6.8)
Corollary 3.6.9. ρ_{i} is p.r. closed for $i>0$.

Definition 3.6.6.

$$
\begin{aligned}
& H_{i}(n)=H_{i}\left(N, \sigma, \rho_{i}(n)\right)=:\left|J_{\rho_{i}(n)}^{A^{N}}\right| \\
& H_{i}=H_{i}(N, \rho)=:\left|J_{\rho_{i}}^{A^{N}}\right|
\end{aligned}
$$

Lemma 3.6.10. (a) $H_{i}(0)=\bigcup \sigma^{\prime \prime} H_{M}^{i}$.
(b) $H_{i}(n+1)=$ the union of all $F(x)$ such that $x \in H_{i+1}^{(n)}$ and F is $\Sigma_{1}^{(i)}\left(n, \rho^{\prime}\right)$ to ρ_{i}^{\prime} in parameters from $\operatorname{rng}(\sigma)$.
(c) $H_{i}=\bigcup_{n} H_{i}(n)$.

Proof: (c) is immediate. (a) is immediate since:

$$
\sigma \upharpoonright H_{M}^{i}: H_{M}^{i} \rightarrow_{\Sigma_{0}} H_{i}(0) \text { cofinally. }
$$

We prove (b). Let $y=F(x)$, where F, x are as in (b).

Claim $y \in H_{i}(n+1)$.

Proof: We recall the function $\left\langle S_{\nu}^{A} \mid \nu<\infty\right\rangle$ such that for all limit α :

$$
\begin{aligned}
& J_{\alpha}^{A}=\bigcup_{\nu<\alpha} S_{\nu}^{A} \text { and }\left\langle S_{\nu}^{A} \mid \nu<\alpha\right\rangle \text { is } \\
& \text { uniformly } \sigma_{1}\left(J_{\alpha}^{A}\right) .
\end{aligned}
$$

Since $\rho_{i+1}(n)$ is p.r. closed, there is a $\Sigma_{1}\left(H_{i+1}(n)\right)$ map f of $\rho_{i+1}(n)$ onto $H_{i+1}(n)$. Set:

$$
g(x)=: \text { the least } \nu \text { sucht that } x \in S_{\nu} .
$$

Then $\tilde{F}(\xi) \simeq g F f(\xi)$ is a $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to ρ_{i}^{\prime} in parameters from $\operatorname{rng}(\sigma)$. Hence, where $f(\eta)=x$, we have $y \in S_{\tilde{F}(\eta)}^{A} \subset H_{i}(n+1)$.

QED (Lemma 3.6.10)
By the definition 3.6.5 and Lemma 3.6.7:
Lemma 3.6.11. Let $\rho=\min \rho^{\prime}$. Then:

- $\sigma " \rho_{M}^{i} \subset \rho_{i} \leq \rho_{0}^{\prime} \leq \rho_{N}^{0}$.
- $\rho_{i}=\sup X$, where X is the set of all $F(\nu)$ such that $\nu<\rho_{i+1}$ and F is a $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to ρ_{0}^{\prime} in some $\sigma(x)$.

Similarly by Lemma 3.6.10.
Lemma 3.6.12. Let $\rho=\min \rho^{\prime}$. Then:

- $\sigma^{\prime \prime} H_{M}^{i} \subset H_{i} \subset H_{i}^{\prime} \subset H_{N}^{i}$.
- $H_{i}=\bigcup X$ where S is the set of all $F(x)$ such that $z=H_{i+1}$ and F is $a \Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to H_{i}^{\prime} in some $\sigma(x)$.

We now can show:
Lemma 3.6.13. ρ is good for N.

Proof: By Lemma 3.6.11 we have:

$$
\omega \leq \rho_{i+1} \leq \rho_{i} \leq \rho_{i}^{\prime} \leq \rho_{N}^{i} .
$$

Moreover, ρ_{i} is p.r. closed for $i>0$ by Lemma 3.6.8.
It remains only to show:

Claim H_{i} is cardinally absolute with respect to N.

Proof: We know: $H_{i}=\bigcup X$, where $X=$ the set of $F(z)$ such that $z \in H_{i+1}$ and F is a $\Sigma_{1}^{(i)}\left(N, \rho^{\prime}\right)$ map to $H_{i}^{\prime}=H_{i}\left(N, \rho^{\prime}\right)$. Moreover H_{i}^{\prime} is cardinally absolute in N.
(1) Let $\alpha \in X$. Then $\overline{\bar{\alpha}}^{N} \in X$ and there is $f \in X$ such that $f: \overline{\bar{\alpha}}^{N} \xrightarrow{\text { onto }} \alpha$.

Proof: Suppose not.
Define a $\Sigma_{1}\left(H_{i}\right)$ map by:

$$
F(\beta) \simeq \text { the }<_{S A} \text {-least pair }\langle\gamma, f\rangle \text { such that } \gamma<\beta \text { and } f: \gamma \xrightarrow{\text { onto }} \beta \text {. }
$$

Then $F^{\prime \prime} X \subset X$. Set:

$$
\alpha_{0}=\alpha_{i} \alpha_{i+1} \simeq\left(F\left(\alpha_{i}\right)\right)_{0} .
$$

By induction on i it follows that α_{i} exists and $\alpha_{i} \in X$. But then $\alpha_{i+1}<\alpha_{i}$ for $i<\omega$. Contradiction!

QED (1)
Now let α be a cardinal in H_{i} but not in N. Then $\alpha \notin X$ by (1). But $\alpha<\beta$ for a $\beta \in X$. Hence $\overline{\bar{\beta}}^{N}>\alpha$. (Otherwise, letting $\gamma=\overline{\bar{\beta}}^{N}<\alpha$, we have $\gamma \in X \subset H_{i}$ and there is $f \in X \subset H_{i}$ such that $f: \gamma \xrightarrow{\text { onto }} \beta$. Hence there is $g \in H_{i}$ such that $g: \gamma \xrightarrow{\text { onto }} \alpha$, since $0<\alpha<\beta$. Hence α is not a cardinal in H_{i}.) But then, letting $\gamma=\overline{\bar{\beta}}^{N}, \alpha$ is a cardinal in J_{γ}^{A} and γ is a cardinal in N. Hence α is a cardinal in N by acceptability. \quad QED (Lemma 3.6.13)

We now verify property (c) for $\rho=\min \rho^{\prime}$.
Lemma 3.6.14. Let $\bar{B}\left(\vec{w}^{i}\right)$ be $\Sigma_{0}^{(i)}(M)$ in the parameter $x \in M$. Let $B^{\prime}\left(\vec{w}^{i}\right)$ be $\Sigma_{0}^{(i)}\left(N, \rho^{\prime}\right)$ in $\sigma(x)$ and $B\left(\vec{w}^{i}\right)$ be $\Sigma_{0}^{(i)}(N, \rho)$ in $\sigma(x)$ by the same definition. Then:

$$
\bigwedge \vec{z} \in H_{i}\left(B(\vec{z}) \leftrightarrow B^{\prime}(\vec{z})\right)
$$

Proof: By induction on i. The case $i=0$ is trivial. Now let it hold for h where $i=h+1$. It suffices to prove the claim for \bar{B} which is $\Sigma_{1}^{(h)}(M)$ in x. We than have:

$$
\bar{B}(\vec{z}) \leftrightarrow \bigvee a^{h} D\left(a^{h}, \vec{z}\right)
$$

where \bar{D} is $\Sigma_{0}^{(h)}(M)$ in x;

$$
B^{\prime}(\vec{z}) \leftrightarrow \bigvee a^{h} D^{\prime}\left(a^{h}, \vec{z}\right)
$$

where D^{\prime} is $\Sigma_{0}^{(h)}\left(N, \rho^{\prime}\right)$ in $\sigma(x)$ by the same definition, and:

$$
B(\vec{z}) \leftrightarrow \bigvee a^{h} D\left(a^{h}, \vec{z}\right)
$$

where D is $\Sigma_{0}^{(h)}(N, \rho)$ in $\sigma(x)$ by the same definition.
Define a map F to ρ_{h}^{\prime} which is $\Sigma_{1}^{(h)}\left(N, \rho^{\prime}\right)$ in $\sigma(x)$ by:

$$
\begin{aligned}
\xi=F(\vec{z}) & \leftrightarrow\left(\vee u \in S_{\xi} D^{\prime}(u \vec{z}) \cap\right. \\
& \wedge \xi^{\prime}<\xi \wedge u \in S_{\xi}, \neg D^{\prime}(u, \vec{z})
\end{aligned}
$$

Hence for $\vec{z} \in H_{i}$:

$$
\begin{aligned}
B^{\prime}(\vec{z}) & \leftrightarrow \vee u \in H_{h} D^{\prime}(u, \vec{z}) \\
& \leftrightarrow \vee u \in S_{F(\vec{z})} D^{\prime}(u, \vec{z}) \\
& \leftrightarrow \vee u \in H_{h} D^{\prime}(u, \vec{z}) \\
& \leftrightarrow \vee u \in H_{h} D(u, \vec{z}) \leftrightarrow B(\vec{z})
\end{aligned}
$$

(by the induction hypothesis).
QED (Lemma 3.6.14)
Since $\sigma: M \rightarrow_{\Sigma^{(i)}} N \bmod \rho^{\prime}$, we conclude that $\sigma: M \rightarrow_{\Sigma^{(i)}} N \bmod \rho$.
Since this holds for all $i<\omega$, we conclude:
Corollary 3.6.15. $\sigma: M \rightarrow_{\Sigma^{*}} N \bmod \rho$.

Another immediate corollary is:
Corollary 3.6.16. $\rho=\min (N, \sigma, \rho)$.

It remains only to prove:
Lemma 3.6.17. $\sigma: M \rightarrow_{Q^{*}} N \bmod \rho$.

Proof:

Assume: $M \neq Q u^{i} \varphi\left(u^{i}, x\right)$ where φ is $\Sigma_{1}^{(i)}$.
Claim $N \models Q u^{i} \varphi\left(u^{i}, x\right) \bmod \rho$.
Let $v \in H_{i}$. Then $v \subset w=G(\bar{w})$, where $\bar{w} \in H_{i+1}$. Then $v \subset w=$ $G(\bar{w})$, where $\bar{w} \in H_{i+1}$ and G is $\Sigma_{1}^{(i)}(N, \rho)$ map to H_{i} in parameter from $\operatorname{rng} \sigma$. Let:

$$
\varphi=\bigvee z^{i} \psi\left(z^{i}, u^{i}, x\right) \text { where } \psi \text { is } \Sigma_{0}^{(i)}
$$

Define a $\Sigma_{1}^{(i)}(N, \rho)$ map to H_{i} in $\sigma(x)$ by:

$$
\begin{aligned}
& F(w) \simeq \text { the } N \text {-least }\langle z, u\rangle \in H^{i} \text { such that } \\
& z \subset u \wedge \psi(z, u, \sigma(x))
\end{aligned}
$$

The $\Pi_{1}^{(i+1)}$-statement:

$$
\left.\bigwedge a^{i+1}\left(a^{i+1} \in \operatorname{dom}(G) \rightarrow a^{i+1}\right) \in \operatorname{dom}(F \circ G)\right)
$$

holds in N, since the corresponding statement holds in M by our assumption. Let $\langle z, u\rangle=F G(\bar{w})=F(w)$. Then $v \subset w \subset u$ and $\psi(z, u, \sigma(x))$. Hence:

$$
N \models Q u \varphi(u, \sigma(x)) \quad \bmod \rho .
$$

QED (Lemma 3.6.17)

Then $\rho=\min \rho^{\prime}$ possess all the properties that we ascribed to it.
As a corollary of Lemma 3.6.17 we get:
Corollary 3.6.18. Let B be $\Sigma_{1}^{(i)}(N, \rho)$ in parameters from $\operatorname{rng} \sigma$. Then $\left\langle H_{i}, B\right\rangle$ is amenable.

Proof: Let \bar{B} be $\Sigma_{1}^{(i)}(M)$ in x and B be $\Sigma_{1}^{(i)}(N, \rho)$ in the same definition. Since $\left\langle H_{M}^{i}, \bar{B}\right\rangle$ is amenable, we have:

$$
Q u^{i} \bigvee y^{i} y^{i}=u^{i} \cap \bar{B} \text { in } M
$$

But then:

$$
Q u^{i} \bigvee y^{i} y^{i}=u^{i} \cap B \text { in } N \quad \bmod \rho
$$

Let $u \in H_{i}$. There is then $v \supset u, v \in H_{i}$ such that $v \cap B \in H_{i}$. Hence $u \cap B=u \cap v \in H_{i}$.

QED (Corollary 3.6.18)
Definition 3.6.7. $\sigma: M \rightarrow_{\Sigma^{*}} N \min \rho$ iff

$$
\left[\sigma: M \rightarrow_{\Sigma^{*}} N \quad \bmod \rho\right] \wedge[\rho=\min (N, \sigma, \rho)]
$$

(Similarly for $\Sigma_{j}^{(n)}, Q_{j}^{(n)}, Q^{*}$ etc.)

In the following we shall always assume that M is acceptable, $\kappa \in M$ is inaccessable in M, and that $\tau=\kappa^{+M} \in M$.

Lemma 3.6.19. Let $\pi: M \rightarrow{ }_{\Sigma^{*}} M^{\prime}$. Let $\kappa=\operatorname{crit}(\pi), \lambda \leq \pi(\kappa)$, and suppose an extender F at κ, λ on M to be defined by:

$$
F(X)=\lambda \cap \pi(X) \text { for } X \in \mathbb{P}(\kappa) \cap M
$$

Let $\sigma: \bar{M} \rightarrow_{\Sigma^{*}} M \min \rho$, where $\sigma(\bar{\kappa})=\kappa$. Let F be a weakly amenable extender at $\bar{\kappa}, \bar{\lambda}$ on \bar{M}. Assume:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle, \text { where } g: \bar{\lambda} \rightarrow \lambda
$$

Let $n \leq w$ be maximal such that $\bar{\kappa}<\rho \frac{n}{M}$.
Define a good sequence ρ^{*} for M^{\prime} by:

$$
\rho_{i}^{*}=\left\{\begin{array}{l}
\sup \pi^{\prime \prime} \rho_{n} \text { if } i=n \\
\pi\left(\rho_{i}\right) \text { if } i \neq n \text { and } \rho_{i}<\rho_{M}^{i} \\
\rho_{M^{\prime}}^{i} \text { if } i \neq n \text { and } \rho_{i}=\rho_{M^{\prime}}^{i}
\end{array}\right.
$$

(Hence $\pi: M \rightarrow \Sigma^{*} M^{\prime} \bmod \left(\rho, \rho^{*}\right)$ by Lemma 3.6.3 and 3.6.4.) Then:
(a) \bar{M} is n-extendible by \bar{F}.
(b) Let $\bar{\pi}: \bar{M} \rightarrow \frac{(n)}{\bar{F}} \bar{M}^{\prime}$. There is a map σ^{\prime} such that

$$
\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime} \quad \bmod \rho^{*} \text { and } \sigma^{\prime} \bar{\pi}=\pi \sigma, \sigma^{\prime} \upharpoonright \bar{\lambda}=g
$$

Moreover, σ^{\prime} is defined by:

$$
\sigma^{\prime}(\bar{\pi}(f)(\alpha))=\left((\pi \sigma)_{\rho^{*}}(f)\right)(g(\alpha))
$$

for $f \in \Gamma^{*}(\bar{\kappa}, \bar{M}), \alpha<\lambda$.

Proof: We obviously have:

$$
\pi \sigma: \bar{M} \rightarrow_{\Sigma^{*}} M^{\prime} \bmod \rho^{*}
$$

It is also clear that n is maximal such that $\kappa<\rho_{n}$ and also maximal such that $\kappa^{\prime}=\pi(\kappa)<\rho_{n}^{*}$.

We now prove (a). We must show that the \in-relation \in^{*} of $\mathbb{D}^{*}(\bar{F}, \bar{M})$ is well founded. Let $\langle f, \alpha\rangle,\left\langle f^{\prime}, \alpha^{\prime}\right\rangle \in \mathbb{D}^{*}$. Set:

$$
e=\left\{\prec \xi, \zeta \succ<\bar{k} \mid f(\xi) \in f^{\prime}(\zeta)\right\} .
$$

Then:

$$
\begin{aligned}
\langle f, \alpha\rangle \in^{*}\left\langle f^{\prime}, \alpha^{\prime}\right\rangle & \longleftrightarrow\left\langle a, \alpha^{\prime}\right\rangle \in \bar{F} \\
& \longleftrightarrow \prec g(\alpha), g\left(\alpha^{\prime}\right) \succ \in F(\sigma(e)) \\
& \longleftrightarrow \prec g(\alpha), g\left(\alpha^{\prime}\right) \succ \in \pi \sigma(e) \\
& \longleftrightarrow(\pi \sigma)_{\rho^{*}}(f)(g(\alpha)) \in(\pi \sigma)_{f^{*}}\left(f^{\prime}\right)(g(\alpha))
\end{aligned}
$$

(The second line rises the assumption: $\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle$. The third uses: $F(X)=\lambda \cap \pi(X)$. The fourth uses Fact 2 , which we established earlier in the section.

QED (a)
We now prove (b). Let \bar{R}^{\prime} be a $\Sigma_{0}^{(n)}\left(\bar{M}^{\prime}\right)$ relation and let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ by the same definition. We claim that: $\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ where σ^{\prime} is defined by:

$$
\sigma^{\prime}(\bar{\pi}(f)(\alpha))=(\pi \sigma)_{\rho^{*}}(f)(g(\alpha))
$$

for $f \in \Gamma^{*}(\bar{u}, \bar{M}), \alpha<\lambda$.
Let \bar{R}^{\prime} be a $\Sigma_{0}^{(n)}\left(\bar{M}^{\prime}\right)$ relation and let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}, \rho^{*}\right)$ by the same definition. Let $\alpha_{1}, \ldots, \alpha_{m}<\bar{\lambda}$ and $f_{1}, \ldots, f_{m} \in \Gamma^{*}(\bar{u}, \bar{M})$. Writing e.g. $\vec{f}(\vec{\alpha})$ for $f_{1}\left(\alpha_{1}\right), \ldots,\left(\alpha_{m}\right)$, it suffices to show:

Claim $\bar{R}^{\prime}(\bar{\pi}(\vec{f})(\vec{\alpha})) \leftrightarrow R^{\prime}(\pi \sigma(\vec{f}), g(\vec{\alpha}))$.
Proof: Let \bar{R} be $\Sigma_{0}^{(n)}(\bar{M})$ and R be $\Sigma_{0}^{(n)}(M, \rho)$ by the same definition. Set:

$$
e=\{\prec \vec{\xi} \succ \mid \bar{R}(\vec{f}(\overline{\vec{\xi}})\} .
$$

Then:

$$
\begin{aligned}
\bar{R}^{\prime}(\bar{\pi}(\vec{f})(\vec{\alpha})) & \longleftrightarrow \prec \vec{\alpha} \succ \in \bar{F}(e) \\
& \longleftrightarrow \prec g(\vec{\alpha}) \succ \in F(\sigma(e)) \\
& \longleftrightarrow \prec g(\vec{\alpha}) \succ \in \pi \sigma(e) \\
& \longleftrightarrow R^{\prime}\left((\pi \sigma)_{\rho^{*}}(\vec{f})(g(\vec{\alpha}))\right)
\end{aligned}
$$

QED (Lemma 3.6.19)
We would like to prove something stronger namely that \bar{M} is *-extendible by \bar{F} and that:

$$
\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma^{*}} M^{\prime} \bmod \rho^{*}
$$

For this we must strengthen the condition:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle .
$$

In $\S 3.2$ we helped ourselves in a similar situation by strengthening the relation \rightarrow to \rightarrow^{*}. However \rightarrow^{*} is too strong for our purposes and we adopt the following weakening:

Definition 3.6.8. $\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow{ }^{* *}\langle M, F\rangle \bmod \rho$ iff the following hold:
(a) $\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle$
(b) $\sigma: \bar{M} \rightarrow_{\Sigma_{0}} M \bmod \rho$
(c) Let $\bar{\alpha}<\operatorname{lh}(\bar{F}), \alpha=g(\bar{\alpha})$. There are \bar{G}, G, \bar{H}, H such that letting

$$
\bar{\kappa}=\operatorname{crit}(\bar{F}), \kappa=\operatorname{crit}(F)
$$

we have:
(i) \bar{G}, \bar{H} are $\Sigma_{i}(\bar{M})$ in a $\bar{q} \in \bar{M}$ and G, H are $\Sigma_{1}(M, \rho)$ in $q=\sigma(\bar{q})$ by the same definition.
(ii) $\bar{G}=\bar{F}_{\bar{\alpha}}, \bar{H}=\bar{M} \cap\left(\overline{{ }_{\kappa}} \mathbb{P}(\bar{u})\right)$
(iii) $G \subset F_{\alpha}$
(iv) $H \subset\left\{X \in{ }^{\kappa} \mathbb{P}(u) \mid \bigwedge \xi<\kappa\left(X_{\xi}\right.\right.$ or $\left.\left.\kappa \backslash X_{\xi} \in G\right)\right\}$

Note. Actually, only the first pseudo projectum ρ_{0} is relevant in this definition. (b)says merely that ρ is good for M and that σ is a Σ_{0}-preserving map into M with $\sigma^{\prime \prime} \mathrm{On}_{\bar{M}} \leq \rho_{0}$. In (c) the statement " G, H are $\Sigma_{1}(M, \rho)$ in q by the same definition" can be rephrased as: " G, H are $\Sigma_{1}\left(M \mid \rho_{0}\right)$ in q by the same definition", where $M \mid \eta=:\left\langle J_{\eta}^{A}, B \cap J_{\eta}^{A}\right\rangle$ for $M=\left\langle J_{\alpha}^{A}, B\right\rangle$.
(Note that $M \mid \eta$ is not necessarily amenable.) We set:
Definition 3.6.9. $\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle$ iff:

$$
\langle X, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \quad \bmod \left(\left\langle\rho_{M}^{n} \mid n<w\right\rangle\right)
$$

Note. This always holds if $\rho_{0}=\mathrm{On}_{M}$.
Note. Let $\sigma:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \bmod \rho$. Let $\bar{X} \in \bar{M} \cap\left({ }^{\kappa} \mathbb{P}(\bar{\kappa})\right)$. If $X=\sigma(\bar{X})$, then $X \in M$ and hence $\bigwedge \xi<\kappa\left(X_{\xi}\right.$ or $\left.\left(\kappa \backslash X_{\xi}\right) \in G\right)$.
Note. Let $\sigma:\langle\bar{M}, \bar{F}\rangle \rightarrow^{*}\langle M, F\rangle$. It follows easily that:

$$
\sigma:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle
$$

Note. Suppose that $\sigma: \bar{M} \rightarrow_{\Sigma^{*}} M \min \rho$. Set $M \mid \rho_{0}=\left\langle J_{\rho_{0}}^{A}, B \cap J_{\rho_{0}}^{A}\right\rangle$, where $M=\left\langle J_{\gamma}^{A}, B\right\rangle$. Then $M \mid \rho_{0}$ is amenable by Corollary 3.6.18. Clearly $\tau=\kappa^{+M} \in M \mid \rho_{0}$ since $\bar{\tau}=\kappa^{+\bar{M}} \in \bar{M}$. Hence $\mathbb{P}(\kappa) \cap M \subset M \mid \rho_{0}$. But then F is an extender at κ on $M \mid \rho_{0}$ and it makes sense to write:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\left\langle M \mid \rho_{0}, F\right\rangle
$$

But this means exactly the same thing as:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \quad \bmod \rho
$$

We are now ready to prove:
Lemma 3.6.20. Let $\pi, \sigma, \bar{M}, M, \bar{M}^{\prime}, M^{\prime}, \rho, \rho^{*}, \bar{\tau}, \tau, \bar{\pi}, \sigma^{\prime}, g$ be as in lemma 3.6.19. Assume:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \quad \bmod \rho
$$

Then \bar{M} is $*$-extendible by \bar{F} and:

$$
\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma^{*}} M^{\prime} \bmod \rho^{*}
$$

Proof: \bar{F} is then close to \bar{M}. Hence \bar{M} is $*-$ extendible by \bar{F}. By induction on i we now show:

Claim $\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma_{1}^{(i)}} M^{\prime} \bmod \rho^{*}$.
For $i<n$ this is given. Now let $i=n$. We prove a somewhat stronger claim:
Subclaim 1 Let $\bar{A} \subset \bar{\kappa}$ be $\Sigma_{1}^{(n)}\left(\bar{M}^{\prime}\right)$ in $\bar{a} \in \bar{M}^{\prime}$ and $A \subset \kappa$ be $\Sigma_{1}^{(n)}\left(M^{\prime}, \rho^{*}\right)$ in $a=\sigma^{\prime}(\bar{a})$ by the same definition. There is $\bar{r} \in \bar{M}$ such that \bar{A} is $\Sigma_{1}^{(n)}(\bar{M})$ in \bar{r} and A is $\Sigma_{1}^{n}(M, \rho)$ in $r=\sigma(\bar{r})$ by the same definition.
(As we shall see, this proves the claim for the case $i=n$.)
We now prove the subclaim. Let:

$$
\begin{aligned}
& \bar{A}(i) \leftrightarrow \bigvee y \bar{P}^{\prime}(y, i, \bar{a}), \\
& A(i) \leftrightarrow \bigvee y P^{\prime}(y, i, a)
\end{aligned}
$$

where \bar{P}^{\prime} is $\Sigma_{0}\left(\bar{M}^{\prime}\right)$ and P^{\prime} is $\Sigma_{0}\left(M^{\prime}, \rho^{*}\right)$ by the same definition.
Let \bar{P} be $\Sigma_{0}^{(n)}(\bar{M})$ and P be $\Sigma_{0}^{(n)}(M)$ by the same definition. Let $\bar{a}=\bar{\pi}(f)(\bar{\alpha})$ and $a=\bar{\pi} \sigma(f)(\alpha)$, where $\alpha=g(\bar{\alpha})$. Let \bar{p} be a "defining parameter" for f (i.e. either $\bar{p}=f$ or else $f(\xi)=B(\xi, \bar{p})$ where B is a good $\Sigma_{1}^{(i)}(\bar{M})$ function for an $i<n$.) Then $p=\sigma(\bar{p})$ is in the same sense a defining parameter for $\sigma(f)$ and $p^{\prime}=\pi \sigma(\bar{p})$ is a defining parameter for $\pi \sigma(f)$. (The good definition of B remaining unchanged.)
Finally, let \bar{G}, G, \bar{H}, H be as given for $\bar{\alpha}, \alpha=g(\bar{\alpha})$ by the principle:

$$
\langle\sigma, q\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \bmod \rho^{*} .
$$

Since $\left\langle\bar{M}^{\prime}, \bar{\pi}\right\rangle$ is the extension of $\langle\bar{M}, \bar{F}\rangle$, we know that: $\bar{\pi}$ " $H \frac{n}{M}$ is cofinal in H_{M}^{n}.
Thus:

$$
\begin{align*}
\bar{A}(i) & \leftrightarrow \bigvee u \in H_{\bar{M}}^{n} \bigvee y \in \bar{\pi}(u) \bar{P}^{\prime}(g, i, \bar{\pi}(f)(\bar{\alpha})) \tag{1}\\
& \leftrightarrow \bigvee u \in H \frac{n}{M} \bar{\alpha} \in \bar{\pi}(\bar{X}(i, u)) \\
& \leftrightarrow \bigvee u \in H \frac{n}{M} \bar{X}(i, u) \in \bar{G},
\end{align*}
$$

where $\bar{X}(i, u)=\{\xi<\bar{u} \mid \bar{P}(y, i, f(\xi))\}$.
Thus \bar{A} is $\Sigma_{1}^{(n)}(\bar{M})$ in $\bar{p}, \bar{q}, \bar{\kappa}$. We now show that A is $\Sigma_{1}^{(n)}(M)$ in p, q, κ by the same definition. Set:

$$
H_{n}=H_{n}(M, \rho), H_{n}^{\prime}=H_{n}\left(M^{\prime}, \rho^{*}\right) .
$$

It is easily seen that the relation:

$$
Q(u, i, \xi) \longleftrightarrow:\left(u \in H_{n} \wedge \bigvee y \in u P\left(y, i, \sigma_{\rho}(f)(\xi)\right)\right.
$$

is $\Sigma_{0}^{(n)}(M, \rho)$ in p and the relation:

$$
Q^{\prime}(u, i, \xi) \longleftrightarrow:\left(u \in H_{n}^{\prime} \wedge \bigvee y \in u P^{\prime}\left(y, i,(\pi \sigma)_{\rho^{*}}(\xi)\right)\right.
$$

is $\Sigma_{0}^{(n)}\left(M^{\prime}, \rho^{*}\right)$ in p^{\prime} by the same definition. Set: $X(u, i)=\{\xi<$ $u \mid Q(u, i, \xi)\}$. Then $X(u, i) \in H_{n}$, since $\left\langle H_{n}, Q\right\rangle$ is amenable by lemma 3.6.14 and hence is rud closed. Since $\rho_{n}^{*}=\sup \sigma " \rho_{n}$, we know that $\pi " H_{n}$ is cofinal in H_{n}^{\prime}. Thus:

$$
\begin{align*}
A(i) & \leftrightarrow \bigvee u \in H_{n} \bigvee y \in \pi(u) P^{\prime}\left(y, i,\left((\pi \sigma)_{\rho^{*}}(f)(\alpha)\right)\right. \tag{2}\\
& \leftrightarrow \bigvee u \in H_{n} Q(\pi(u), i, \alpha) \\
& \leftrightarrow \bigvee u \in H_{n} \alpha \in \pi(X(u, i)) \cap X \\
& \leftrightarrow \bigvee u \in H_{n} \alpha \in F(X(u, i)) \\
& \leftrightarrow \bigvee u \in H_{n} X(u, i) \in F_{\alpha} .
\end{align*}
$$

If $F_{\alpha}=G$, we would be finished, but G might be a proper subset of F_{α}. (Moreover, we don't even know that F_{α} is M-definable in parameters.) However, we can prove:
(3) $A(i) \leftrightarrow \bigvee u \in H_{n} X(u, i) \in G$,
which establishes subclaim 1. The direction (\leftarrow) is trivial by (2), since $G \subset F_{\alpha}$. We prove (\rightarrow). Assume $A\left(i_{0}\right)$, where $i_{0}<\kappa$. We must show that $u \in H_{n}$ can be chosen large enough that $X\left(u, i_{0}\right) \in G$. We know that it can be chosen large enough that $X\left(u, i_{0}\right) \in F_{\alpha}$. Since $\rho=\min (M, \sigma, \rho)$, we also know that the set of $S(\xi)$ such that S is a partial $\Sigma_{1}^{(n)}(M, \rho)$ map to H_{n} in a parameter $s=\sigma(\bar{s})$ and $\xi<\rho_{n+1}$ is cofinal in H_{n}. (This uses Lemma 3.6.12.) Hence we can assume w.l.o.g. that $u=S\left(\xi_{0}\right)$ for a $\xi_{0}<\rho_{n+1}$. Now set:

$$
Y(v)=:\{x(v, i) \mid i<u\} \text { for } v \in H_{n}
$$

Then $Y(v) \in H_{n}$ by the rud closure of $\left\langle H_{n}, Q\right\rangle$. Moreover, the function Y is $\Sigma_{1}\left(\left\langle H_{n}, Q\right\rangle\right)$ and hence is a $\Sigma_{1}^{(n)}(M, \rho)$ function. Hence $Y \circ S$ in $\Sigma_{1}^{(n)}(M, \rho)$ in s. Let \bar{S} be $\Sigma_{1}^{(n)}(M)$ is \bar{s} and \bar{Y} be $\Sigma_{1}^{(n)}(\bar{M})$ by the same definition. The $\Pi^{(n+1)}(M, \rho)$ statement:

$$
\bigwedge \zeta<\rho_{n+1}(\zeta \in \operatorname{dom}(Y \cdot S) \rightarrow Y \cdot S(\zeta) \in H)
$$

is true, since the corresponding statement:

$$
\bigwedge \zeta<\rho_{M}^{n+1}(\zeta \in \operatorname{dom}(\bar{Y} \cdot \bar{S}) \rightarrow \bar{Y} \cdot \bar{S}(\zeta) \in \bar{H})
$$

is true in \bar{M}. Since $u=S\left(\zeta_{0}\right)$, it follows that: $Y(u) \in H$ and:

$$
X\left(\kappa, i_{0}\right) \in G \vee\left(\kappa \backslash X\left(u, i_{0}\right)\right) \in G
$$

But $G \subset F_{\alpha}\left(\kappa \backslash X\left(u, i_{0}\right)\right) \in G$ is therefore impossible, since we would then have:

$$
X\left(\kappa, i_{0}\right) \cap\left(\kappa \backslash X\left(u, i_{0}\right)\right)=\emptyset \in F_{\alpha}
$$

Hence, $X\left(U, i_{0}\right) \in G$.
QED (Subclaim 1)
Subclaim $2 \sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma_{1}^{(n)}}\left(\bar{M}^{\prime}\right) \bmod \rho^{*}$.
Proof. Let Q be $\Sigma_{1}^{(n)}\left(M^{\prime}, \rho^{*}\right)$ and \bar{Q} be $\Sigma_{1}^{(n)}\left(\bar{M}^{\prime}\right)$ by the same definition. Set:

$$
\begin{aligned}
& P(i, x) \leftrightarrow(i=0 \wedge Q(x)), \\
& \bar{P}(i, x) \leftrightarrow(i=0 \wedge \bar{Q}(x)) .
\end{aligned}
$$

Set:

$$
A(x)=\{i \mid P(i, x)\}, \bar{A}(x)=\{i \mid \bar{P}(i, x)\}
$$

Then A is the characteristic function of Q and \bar{A} is the characteristic function of \bar{Q}. But $A\left(\sigma^{\prime}(x)\right)=\bar{A}(x)$ for $x \in \bar{M}$ by Subclaim 1 .

QED (Subclaim 2)
A slight reformulation of Subclaim 1 yields:
Subclaim 3 Let A be $\Sigma_{1}^{(n)}\left(M^{\prime}, \rho^{*}\right)$ i $p=\sigma^{\prime}(\bar{p})$. Let \bar{A} be $\Sigma_{1}^{(n)}\left(\bar{M}^{\prime}\right)$ in \bar{p} by the same definition. Set: $\bar{H}=H_{\bar{\kappa}}^{\bar{M}}, H=H_{\kappa}^{M}$. Then $A \cap H$ is $\Sigma_{1}^{(n)}(M, \rho)$ in a $q=\sigma(\bar{q})$ and $\bar{A} \cap \bar{H}$ is $\Sigma_{1}^{(n)}(\bar{M})$ in \bar{q} by the same definition.

Proof: $H=J_{\kappa}^{E}$, where $E=E^{M}$ and $\bar{H}=J_{\bar{\kappa}}^{\bar{E}}$ where $\bar{E}=E^{\bar{M}}$. But $\kappa, \bar{\kappa}$ are preclosed. Let $f: \kappa \xrightarrow{\text { onto }} H$ be primitive recursive in E and let $\bar{f}: \bar{\kappa} \xrightarrow{\text { onto }} \bar{H}$ be primitive recursive in \bar{E} by the same definition. Apply subclaim 1 to

$$
B=f^{-1 \prime \prime} A, \bar{B}=\bar{f}^{-1 / \prime} \bar{A}
$$

Then $B \subset \bar{\kappa}$ is $\Sigma_{1}^{(n)}(M, \rho)$ in a $q=\sigma(\bar{q})$ and $\bar{B} \subset \bar{\kappa}$ is $\Sigma_{1}^{(n)}(\bar{M})$ in \bar{q}. But then the same holds for $A=f^{\prime \prime} B, \bar{A}=\overline{f^{\prime \prime}} \bar{B}$.

QED (Subclaim 3)
For $i>n$, we know: $\rho_{\bar{M}}^{i}=\rho_{M}^{i}$, so we can write $\rho^{i}=: \rho_{\bar{M}}^{i}$. By the definition of ρ^{*}, we know: $\rho_{i}=\rho_{i}^{*}$ for $i>n$. We can also set:

$$
\bar{H}^{i}=H_{\bar{M}}^{i}=H \frac{i}{M}, H_{i}=H_{i}(M, \rho)=H_{i}\left(M^{\prime}, \rho^{*}\right)
$$

We now prove:
Subclaim 4 Let $i>n$. Let \bar{A} be $\Sigma_{1}^{(i)}\left(\bar{M}^{\prime}\right)$ in $\bar{a} \in \bar{M}^{\prime}$ and let A be $\Sigma_{1}^{(i)}\left(M^{\prime}, \rho^{*}\right)$ in $a=\sigma^{\prime}(\bar{a})$ by the same definition. Then there are \bar{B}, B, \bar{q}, q such that
(a) \bar{B} is $\Sigma_{0}^{(i)}(\bar{M})$ in $\bar{q} \in M$.
(b) B is $\Sigma_{0}^{(i)}(M, \rho)$ in $q=\sigma(\bar{q})$ by the same definition.
(c) $\bar{A} \cap \bar{H}^{i}=\bar{B} \cap \bar{H}^{i}$.
(d) $A \cap H_{i}=B \cap H_{i}$.

Proof: By induction on i. Let it hold below i. Then w.l.o.g. we can assume:
(1) $\bar{A}(x) \longleftrightarrow\left\langle\bar{H}^{i}, \bar{P} \cap \bar{H}^{i}\right\rangle \models \varphi[x]$ for $x \in \bar{H}^{i}$ where φ is Σ_{1} and \bar{p} is $\Sigma_{0}^{i-1}\left(\bar{M}^{\prime}\right)$ in \bar{a}.
(2) $A(x) \longleftrightarrow\left\langle H^{\prime}, P \cap H_{i}\right\rangle \models \varphi[x]$ for $x \in H_{i}$ where φ is the same Σ_{1} formula and P is $\Sigma_{0}^{i-1}\left(M^{\prime}, \rho^{*}\right)$ in a by the same definition.
But then there are \bar{Q}, Q, \bar{q}, q such that
(3) $\bar{P} \cap H^{i}=\bar{Q} \cap H^{i}$, where \bar{Q} is $\Sigma_{1}^{i-1}(\bar{M})$ in $\bar{q} \in \bar{M}$.
(4) $P \cap H_{i}=Q \cap H_{i}$, where \bar{Q} is $\Sigma_{1}^{i-1}(M, \rho)$ in $q=\sigma(q)$ by the same definition.

This is by subclaim 3 if $i=n+1$, and otherwise by the induction hypothesis.

QED (Sublemma 4)
The claim then follows easily, since σ is Σ^{*}-preserving $\bmod \rho^{*}$.
QED (Lemma 3.6.20)

We can then go on further and set:

$$
\rho^{\prime}=\min \left(M^{\prime}, \sigma^{\prime}, \rho^{*}\right) .
$$

It then follows that:

$$
\pi^{" \prime} \rho_{i} \subset \rho_{i}^{\prime} \leq \rho_{i}^{*} \text { for } i<\omega .
$$

To see that $\pi^{\prime \prime} \rho_{i} \subset \rho_{i}^{\prime}$, we recall that $\rho_{i}^{\prime}=\sup \left\{\rho_{i}^{\prime}(n): n<\omega\right\}$ where the sequence $\left\langle\rho_{i}^{\prime}(n) \mid i<w\right\rangle$ is defined from $\rho^{*}, M^{\prime}, \sigma^{\prime}$ by a canonical recursion on n (cf. Definition 3.6.5).

But since $\rho=\min (M, \sigma, \rho)$, we have: $\rho_{i}=\sup _{n<w} \rho_{i}(n)$, where $\left\langle\rho_{i}(n) \mid i<w\right\rangle$ is defined from ρ, M, σ by the same induction on n. Since $\pi^{\prime} \sigma=\pi \sigma$, it follows easily by induction on n that:

$$
\pi " \rho_{i}(n) \subset \rho_{i}^{\prime}(n) \text { for } i<w .
$$

The details are left to the reader.
Putting all of this together:

Theorem 3.6.21. Let $\pi: M \rightarrow \Sigma^{*} M^{\prime}$ with critical point κ. Let $\lambda \leq \pi(\kappa)$ and let the extender F at κ, λ on M be defined by:

$$
F(X)=\pi(X) \cap \lambda
$$

Let $\sigma: \bar{M} \rightarrow_{\Sigma^{*}} M \min \rho$ with $\sigma(\bar{\kappa})=\kappa$. Assume:

$$
\langle\sigma, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{* *}\langle M, F\rangle \quad \bmod \rho
$$

where \bar{F} is a weakly amenable extender at $\bar{\kappa}, \bar{\lambda}$ on \bar{M}. Then
(a) \bar{M} is $*$-extendable by \bar{F}, giving $\bar{\pi}: \bar{M} \rightarrow{ }_{\bar{F}}^{*} \bar{M}^{\prime}$.
(b) There are $\sigma^{\prime}, \rho^{\prime}$ such that
(i) $\sigma^{\prime}: \bar{M}^{\prime} \rightarrow_{\Sigma^{*}} M^{\prime} \min \rho^{\prime}$
(ii) σ^{\prime} is defined by:

$$
\sigma^{\prime}(\bar{\pi}(f)(\alpha))=(\pi \sigma)_{\rho}(f)(g(\alpha))
$$

for $\alpha<\lambda^{-}, f \in \Gamma^{*}(\bar{\kappa}, \bar{M}) .\left(\right.$ Hence $\sigma^{\prime} \bar{\pi}=\pi \sigma$ and $\left.\sigma^{\prime} \upharpoonright \bar{\lambda}=g.\right)$
(iii) $\pi^{\prime \prime} \rho_{i} \subset \rho_{i}^{\prime} \leq \pi\left(\rho_{i}\right)$ for $i<w\left(\right.$ taking $\pi\left(\rho_{i}\right)=\mathrm{On}_{M}$, if $\left.\rho_{i}=\mathrm{On}_{M}\right)$.
(c) The above, in fact, holds for:

$$
\rho^{\prime}=: \min \left(\rho^{*}\right)=\min \left(M^{\prime}, \sigma^{\prime} \rho^{*}\right)
$$

where ρ^{*} is defined by:

$$
\rho_{0}^{*}=\left\{\begin{array}{l}
\sup ^{\prime \prime} \rho_{i} \text { if } \rho_{i+1} \leq \kappa_{i} \\
\pi\left(\rho_{i}\right) \text { if } \kappa_{i}<\rho_{i+1} \text { and } \rho_{i}<\rho_{M}^{i} \\
\rho_{M}^{i}, \text { if } \kappa_{i}<\rho_{i+1} \text { and } \rho_{i}=\rho_{M}^{i} .
\end{array}\right.
$$

This is the most important result on pseudo projecta.
The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and Lemma 3.6.37 actually establishes a more abstract result which is useful in other contexts:

Lemma 3.6.22. Assume that M_{i}, M_{i}^{\prime} are amenable for $i<\mu$, where μ is a limit ordinal. Assume further than:
(a) $\pi_{i, j}: M_{i} \longrightarrow{ }_{\Sigma^{*}} M_{j}(i \leq j<\mu)$, where the $\pi_{i, j}$ commute.
(b) $\pi_{i, j}^{\prime}: M_{i}^{\prime} \longrightarrow \Sigma^{*} M_{j}^{\prime}(i \leq j<\mu)$, where the $\pi_{i, j}^{\prime}$ commute.

Moreover:

$$
\left\langle M_{i}^{\prime}: i<\mu\right\rangle,\left\langle\pi_{i, j}^{\prime}: i \leq j<\mu\right\rangle
$$

has a transitivized direct limit $M^{\prime},\left\langle\pi_{i, j}^{\prime}: i \leq j<\mu\right\rangle$.
(c) $\sigma_{i}: M_{i}^{\prime} \longrightarrow \Sigma^{*} M_{j}^{\prime} \min \rho^{i}(i \leq j<\mu)$.
(d) $\sigma_{j} \pi_{i, j}=\pi_{i, j}^{\prime} \sigma_{i}$.
(e) $\pi_{i, j}^{\prime} " \rho_{n}^{i} \subset \rho_{n}^{i} \leq \pi_{i, j}^{\prime}\left(\rho_{n}^{i}\right)$ for $i \leq j<\mu, n<\omega$.

Then:

$$
\left\langle M_{i}: i<\mu\right\rangle,\left\langle\pi_{i, j}: i \leq j<\mu\right\rangle
$$

has a transitivized direct limit $M,\left\langle\pi_{i, j}: i<\mu\right\rangle$.

There is then $\sigma: M \longrightarrow M^{\prime}$ defined by: $\sigma \pi_{i}=\pi_{i}^{\prime} \sigma_{i}(i<\mu)$. Moreover:
(1) There is a unique ρ such that $\sigma: M \longrightarrow \Sigma^{*} M^{\prime} \min \rho$ and:

$$
\pi^{\prime ‘} \rho_{n}^{i} \subset \rho_{n} \leq \pi_{i}^{\prime}\left(\rho_{n}^{i}\right) \text { for } i<\mu, n<\omega .
$$

(2) There is $i<\mu$ such that $\rho_{n}=\pi_{j}^{\prime}\left(\rho_{n}^{i}\right)$ for $i \leq j<\mu, n<\omega$.

3.6.3 Mirrors

Let $I=\left\langle\left\langle M_{i}\right\rangle,\left\langle\nu_{i}\right\rangle,\left\langle\pi_{i j}\right\rangle, T\right\rangle$ be a normal iteration of length η. By a mirror of I we shall mean a sequence:

$$
I^{\prime}=\left\langle\left\langle M_{i}^{\prime}\right\rangle,\left\langle\pi_{i j}^{\prime}\right\rangle,\left\langle\sigma_{i}\right\rangle,\left\langle\rho^{i}\right\rangle\right\rangle
$$

such that $\sigma_{i}: M_{i} \rightarrow_{\Sigma^{*}} M_{i}^{\prime} \min \rho^{i}$ for $i<\eta$ and the sequence:

$$
I^{\prime \prime}=\left\langle\left\langle M_{i}^{\prime}\right\rangle,\left\langle\nu_{i}^{\prime}\right\rangle,\left\langle\pi_{i j}^{\prime}\right\rangle, T\right\rangle
$$

"mirrors" the action of I, where $\nu_{i}^{\prime}=: \sigma_{i}\left(\nu_{i}\right)$. However, $I^{\prime \prime}$ will not necessarily be an iteration. If $i+1$ is not a drop point in I and $h=T(i+1)$, we will, indeed, have:

$$
\pi_{h, i+1}^{\prime}: M_{h}^{\prime} \rightarrow_{\Sigma^{*}} M_{i+1}^{\prime},
$$

but M_{i+1}^{\prime} is not necessarily an ultrapower of M_{h}^{\prime}. None the less $\kappa_{i}^{\prime}=: \sigma_{i}\left(\kappa_{i}\right)$ will still be the critical point and we shall have:

$$
\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap M_{h}^{\prime}=\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\nu_{i}}^{E_{i}^{M_{i}^{\prime}}}
$$

and:

$$
\begin{aligned}
& \alpha \in E_{\nu_{i}}^{M_{i}^{\prime}}(X) \leftrightarrow \alpha \in \pi_{h, i+1}^{\prime}(X) \text { for } \\
& X \in \mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap M_{h}^{\prime} \text { and } \alpha<\lambda_{i}^{\prime}
\end{aligned}
$$

where $\lambda_{i}^{\prime}=: \sigma_{i}\left(\lambda_{i}\right)$.
We shall also require a measure of agreement among the maps σ_{i}. In particular, if $h=T(i+1)$ is as above, then:

$$
\sigma_{i+1} \pi_{h, i+1}=\pi_{h, i+1}^{\prime} \sigma_{h} ; \sigma_{i} \upharpoonright \lambda_{i}=\sigma_{i+1} \upharpoonright \lambda_{i}
$$

Note. that this gives:

$$
\left.\left\langle\sigma_{h}, \sigma_{i} \upharpoonright \lambda_{i}\right\rangle:\left\langle M_{h}, E_{\nu_{i}}^{M_{i}}\right\rangle \rightarrow\left\langle M_{h}^{\prime}, E_{\nu_{i}}^{M_{i}^{\prime}}\right\rangle .\right)
$$

The formal definition is:
Definition 3.6.10. Let $I=\left\langle\left\langle M_{i}\right\rangle,\left\langle\nu_{i}\right\rangle,\left\langle\pi_{i j}\right\rangle, T\right\rangle$ be a normal iteration of length η. By a mirror of I we mean a sequence:

$$
I^{\prime}=\left\langle\left\langle M_{i}^{\prime} \mid i<\eta\right\rangle,\left\langle\pi_{i j}^{\prime} \mid i \leq_{T} i\right\rangle,\left\langle\sigma_{i}<\mid i<\eta\right\rangle,\left\langle\rho^{i} \mid i<\eta\right\rangle\right\rangle
$$

satisfying the following conditions:
(a) M_{i}^{\prime} is a premouse and $\sigma_{i}: M_{i} \rightarrow \Sigma^{*} M_{i}^{\prime} \min \rho^{i}$.
(b) $\pi_{i j}^{\prime}$ is a partial structure preserving map from M_{i}^{\prime} to M_{j}^{\prime}. Moreover the $\pi_{i j}^{\prime}$ commute and $\pi_{i i}=\mathrm{id} \upharpoonright M_{i}$. If $\lambda<\eta$ is a limit, then $M_{\lambda}^{\prime}=$ $\bigcup_{i \top \lambda} \operatorname{rng}\left(\pi_{i \lambda}^{\prime}\right)$.
(c) $\sigma_{i} \pi_{i j}=\pi_{i j}^{\prime} \sigma_{i}$ for $i \leq \begin{aligned} & \\ & j\end{aligned}$.
(d) $\sigma_{i} \upharpoonright \lambda_{i}=\sigma_{j} \upharpoonright \lambda_{i}$ for $i<j<\eta$.

In order to state the further clauses we need some notation. Set:

$$
\begin{aligned}
& \nu_{i}^{\prime}=\sigma_{i}\left(\nu_{i}\right)=:\left\{\begin{array}{c}
\sigma_{i}\left(\nu_{i}\right) \text { if } \nu_{i} \in M_{i} \\
\text { On } \cap M_{i}^{\prime} \text { if not }
\end{array}\right. \\
& \kappa_{i}^{\prime}=\sigma_{i}\left(\kappa_{i}\right), \tau_{i}^{\prime}=\sigma_{i}\left(\tau_{i}\right), \lambda_{i}^{\prime}=\sigma_{i}\left(\lambda_{i}\right)
\end{aligned}
$$

For $h=T(i+1)$ set:

$$
M_{i}^{\prime *}=\left\{\begin{array}{l}
\sigma_{h}\left(M_{i}^{*}\right) \text { if } M_{i}^{*} \in M_{h} \\
M_{h}^{\prime} \text { if not. }
\end{array}\right.
$$

Noting that $\tau_{i}^{\prime}=\sigma_{h}\left(\tau_{i}\right)$ by (d) we can easily see that:

$$
M_{i}^{\prime *}=M_{h}^{\prime} \| \mu, \text { where } \mu \leq \mathrm{On}_{M_{h}^{\prime}} \text { is maximal such that }
$$

$$
\tau_{o}^{\prime}<\mu \text { and } \tau_{i}^{\prime} \text { is a cardinal in } M_{h}^{\prime} \| \mu
$$

(To see that this holds for $M_{i}^{\prime *}=M_{h}^{\prime}$, we note that $\tau_{i}^{\prime}=\sigma_{h}\left(\tau_{i}\right)$ is a cardinal in $M_{h}^{\prime} \| \rho_{0}^{h}$ and ρ_{0}^{h} is cardinally absolute in M_{h}^{\prime}.)
We now complete the definition of mirror:
(e) Let $h=T(i+1), i+1 \leq_{T} i$, and assume that there is no drop point in $(i+1, j)_{T}$. Then:
(i) $\pi_{h, i}^{\prime}: M_{i}^{\prime *} \rightarrow_{\Sigma^{*}} M_{j}^{\prime}$.
(ii) $\kappa_{i}^{\prime}=\operatorname{crit}\left(\pi_{h j}^{\prime}\right)$.
(iii) If $X \in \mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\tau_{i}^{\prime}}^{E^{M_{i}}}$, then $X \in M_{i}^{\prime *}$ and $E_{\nu_{i}^{\prime}}^{M_{i}^{\prime}}(X)=\lambda_{i}^{\prime} \cap \pi_{h, j}^{\prime}(X)$.
(iv) Set:

$$
\hat{\rho}^{i}=\left\{\begin{array}{l}
\rho^{h} \text { if } M_{i}^{\prime *}=M_{h}^{\prime} \\
\min \left(M_{i}^{\prime *}, \rho_{h} \upharpoonright M_{i}^{*},\left\langle\rho_{M_{i}^{\prime *}}^{n} \mid n<w\right\rangle\right) \text { if not. }
\end{array}\right.
$$

Then:

$$
\pi_{h, j}^{\prime} \text { " } \hat{\rho}_{M}^{i} \subset \rho_{n}^{j} \leq \pi_{h, j}^{\prime}\left(\hat{\rho}_{n}^{i}\right) \text { for } n<w
$$

(where $\pi_{h j}^{\prime}\left(\hat{\rho}_{n}^{i}\right)=$: On M_{j}^{\prime} if $\hat{\rho}_{n}^{i}=\mathrm{On}_{M_{i}^{* *}}$.
(Hence, if $h \leq_{T} j$ and $[h, j]_{T}$ has no drop point, then $\pi_{h, j}^{\prime}$ " $\rho_{n}^{h} \subset$ $\rho_{n}^{j} \leq \pi_{h, j}^{\prime}\left(\rho_{n}^{h}\right)$.)

This completes the definition.
Lemma 3.6.23. $J_{\lambda_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}=J_{\lambda_{i}^{\prime}}^{E^{M_{i+1}^{\prime}}}$ for $i+1<\eta_{i}$.

Proof: λ_{i}^{\prime} is an inaccessible cardinal in $J_{\nu_{i}}^{E^{M_{i}}}$. Hence there are arbitrarily large primitive recursive closed ordinals $\alpha<\lambda_{i}^{\prime}$ and it suffices to show:

Claim $J_{\alpha}^{E^{M_{i}^{\prime}}}=J_{\alpha}^{M_{i+1}^{\prime}}$ for primitive recursive closed $\alpha<\lambda_{i}^{\prime}$.
Proof: Let $h=T(i+1)$. Since $x \in J_{\alpha}^{E}$ is J_{α}^{E}-definable from parameters $\beta_{1}, \ldots, \beta_{n}<\alpha$, it suffices to show:

Subclaim Let $\beta_{1}, \ldots, \beta_{n}<\alpha$. Let φ be a first order formula. Then:

$$
J_{\alpha}^{E^{M_{i}^{\prime}}} \models \varphi[\vec{\beta}] \longleftrightarrow J_{\alpha}^{E^{M_{i+1}^{\prime}}} \models \varphi[\vec{\beta}] .
$$

Proof: Set: $X=\left\{\prec \vec{\xi}, \zeta \succ<\kappa_{i}^{\prime} \mid J_{\zeta}^{E^{M_{i}^{\prime}}} \bmod \varphi[\vec{\xi}]\right\}$. Then $X \in \mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap$ $J_{\nu_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}} \subset M_{i}^{\prime *}$ by (e) (iii). But $J_{\kappa_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}=J_{\kappa_{i}^{\prime}}^{E_{i}^{M_{i}^{*}}}=J_{\kappa_{i}^{\prime}}^{E_{h}^{M_{h}^{\prime}}}$, by (e) (i), (ii). Then:

$$
\bigwedge \vec{\xi}, \zeta<\kappa_{i}^{\prime}\left(\prec \vec{\xi} \succ \in X \leftrightarrow J_{\zeta}^{E} \models \varphi[\vec{\xi}]\right)
$$

which is a first order statement in $\left\langle J_{\kappa_{i}^{\prime}}^{E}, X\right\rangle$, where $E=E^{M_{i}^{\prime *}}$. But then the same first order statement holds in $\left\langle\pi^{\prime}\left(J_{\kappa_{i}^{\prime}}^{E}\right), \pi^{\prime}(X)\right\rangle$, where $\pi^{\prime}=\pi_{h, i+1}^{\prime}$. Clearly $\pi^{\prime}\left(J_{\kappa_{0}^{\prime}}^{E}\right)=J_{\pi^{\prime}\left(\kappa_{i}^{\prime}\right)}^{E_{i+1}^{\prime}}$. Thus:

$$
\pi^{\prime}(X)=\left\{\prec \vec{\xi}, \zeta \succ<\pi\left(\kappa_{i}^{\prime}\right) \mid J_{\zeta}^{E^{M_{i+1}^{\prime}}} \models \varphi[\vec{\xi}]\right\},
$$

and we have:

$$
\begin{aligned}
J_{\alpha}^{E^{M_{i+1}^{\prime}}} \models \varphi[\vec{\beta}] & \longleftrightarrow \prec \vec{\beta}, \alpha \succ \in \pi^{\prime}(X) \\
& \longleftrightarrow \prec \vec{\beta}, \alpha \succ \in E_{\nu_{i}^{\prime}}^{M_{i}^{\prime}}(X) \text { by (e) (iii) } \\
& \longleftrightarrow J_{\alpha}^{E^{M_{i}^{\prime}}} \models \varphi[\vec{\beta}] .
\end{aligned}
$$

QED (Lemma 3.6.23)

We know that $\lambda_{i}^{\prime}=E_{\nu_{i}^{\prime}}^{M_{i}^{\prime}}\left(\kappa_{i}^{\prime}\right) \leq \pi^{\prime}\left(\kappa_{i}^{\prime}\right)$, where $h=T(i+1), \pi^{\prime}=\pi_{h, i+1}$ (by (e) (iii)). Set:

$$
\lambda_{i}^{*}=: \pi_{h, i+1}^{\prime}\left(\kappa_{i}^{\prime}\right) \text { where } h=T(i+1), \text { for } i+1<\eta \text {. }
$$

Lemma 3.6.24. Let $i+1<\eta$. Then $\lambda_{i}^{\prime} \leq \lambda_{i}^{*}=\sigma_{j}\left(\lambda_{i}\right)$ for $i<j<\eta$.

Proof: $\lambda_{i}^{\prime} \leq \lambda_{i}^{*}$ is trivial. But then:

$$
\begin{aligned}
& \sigma_{i+1}\left(\lambda_{i}\right)=\sigma_{i+1} \pi_{h, i+1}\left(\kappa_{i}\right)=\pi_{h, i+1}^{\prime} \sigma_{h}\left(\kappa_{i}\right) \\
& =\pi_{h, i+1}^{\prime}\left(\kappa_{i}^{\prime}\right)=\lambda_{i}^{*} .
\end{aligned}
$$

Hence $\sigma_{j}\left(\lambda_{i}\right)=\sigma_{i+1}\left(\lambda_{i}\right)$ for $j>i$, since $\lambda_{i}<\lambda_{i+1}$. \quad QED (Lemma 3.6.24)
Note. The main difference between a mirror of I and a simple copy of I in our earlier sense is that we can have: $\lambda_{i}^{\prime}<\lambda_{i}^{*}$.

Corollary 3.6.25. $\lambda_{i}^{\prime}<\lambda_{j}^{\prime}$ for $i<j, j+1<\eta$.

Proof: $\lambda_{i}^{\prime} \leq \lambda_{i}^{*}=\sigma_{j}\left(\lambda_{i}\right)<\sigma_{j}\left(\lambda_{j}\right)=\lambda_{j}^{\prime}$.
QED (Corollary 3.6.25)
Corollary 3.6.26. If $h=T(i+1), h+1 \leq_{T} j$, then $\kappa_{i}^{\prime}<\lambda_{h}^{\prime} \leq \lambda_{h}^{*} \leq \kappa_{j}^{\prime}$ (since $\kappa_{j} \geq \lambda_{h}$).

Lemma 3.6.27. $J_{\lambda_{i}^{\prime}}^{E_{i}^{\prime}}=J_{\lambda_{i}^{\prime}}^{E_{j}^{M}}$ for $i \leq j<\eta$.

Proof: By induction on j

Case $1 j=i$ trivial.
Case $2 j=l+1$. Then it holds at l. But $J_{\lambda_{l}^{\prime}}^{E_{l}^{M_{l}}}=J_{\lambda_{l}^{\prime}}^{E^{M_{j}}}$ where $\lambda_{i}^{\prime} \leq \lambda_{l}^{\prime}$. The conclusion is immediate.

Case $3 j=\mu$ is a limit ordinal.
By 3.6.26 we have: $\kappa_{i}^{\prime}<\kappa_{j}^{\prime}$ for $i+1 \leq_{T} j+1 \leq_{T} \mu$. Moreover $\sup \kappa_{i}^{\prime}=\sup \lambda_{i}^{\prime}$ by 3.6.26, 3.6.25. Pick an $l+1 \leq_{T} \mu$ such that $\kappa_{l}^{\prime}>\lambda_{i}^{\prime}$. Then $J_{\kappa_{l}^{\prime}}^{E_{l}^{M_{l}^{\prime}}}=J_{\kappa_{l}^{\prime}}^{E_{\mu}^{M_{\mu}^{\prime}}}$ by axiom e (i), (ii) and $J_{\lambda_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}=J_{\lambda_{i}^{\prime}}^{E_{l}^{M_{l}^{\prime}}}$, where $\lambda_{i}^{\prime}<\kappa_{l}^{\prime}$.

The conclusion is immediate.
QED (Lemma 3.6.27)
Lemma 3.6.28. $J_{\lambda_{i}^{*}}^{E_{i+1}^{M_{i}^{\prime}}}=J_{\lambda_{i}^{*}}^{E_{j}^{M_{j}^{\prime}}}$ for $i<j<\eta$.
Proof: For $j=i+1$ it is trivial. For $j>i+1$, we have $\lambda_{i+1}^{\prime}=\sigma_{i+1}\left(\lambda_{i+1}\right)>$ $\sigma_{i+1}\left(\lambda_{i}\right)=\lambda_{i}^{*}$ and $J_{\lambda_{i+1}^{\prime}}^{E^{M_{i+1}^{\prime}}}=J_{\lambda_{i+1}^{\prime}}^{E^{M_{j}^{\prime}}}$. The conclusion is immediate. QED (Lemma 3.6.28)
Lemma 3.6.29. λ_{i}^{*} is a limit cardinal in M_{j}^{\prime} for all $j>i$.

Proof: $\lambda_{i}^{*}=\sigma_{j}\left(\lambda_{i}\right)$ is a cardinal in M_{j}^{\prime}, since λ_{i} is a cardinal in M_{j}. (This uses that ρ_{0}^{j} is cardinally absolute if $\rho_{0}^{i}<\mathrm{On}_{M_{i}^{\prime}}$.) But then λ_{i}^{*} is cardinally absolute in M_{j}^{\prime} and:

$$
J_{\lambda_{i}^{*}}^{E_{i}^{M_{i}^{\prime}}} \models \text { there are arbitrarily large cardinals, }
$$

since the same is true in $J_{\lambda_{i}}^{E^{M_{i}}}$.
QED (Lemma 3.6.29)
Lemma 3.6.30. λ_{i}^{\prime} is cardinally absolute in M_{j}^{\prime} for $j \geq i$.

Proof: Let α be a cardinal in $J_{\lambda_{i}^{\prime}}^{E}=J_{\lambda_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}=J_{\lambda_{i}^{\prime}}^{E^{M_{j}^{\prime}}}$. Let $h=T(i+1)$ and let:

$$
\left.X=\left\{\xi<\kappa_{i}^{\prime}\right) J_{\kappa_{i}^{\prime}}^{E} \models \xi \text { is a cardinal }\right\}
$$

Then: $\alpha \in E_{\nu_{i}^{\prime}}^{M_{i+1}^{\prime}}(X) \subset \pi_{h, i+1}^{\prime}(X)$. Hence:

$$
J_{\lambda_{i}^{*}}^{E_{i+1}^{M_{i}^{\prime}}} \models \alpha \text { is a cardinal. }
$$

But $J_{\lambda_{i}^{*}}^{E^{M_{i+1}^{\prime}}}=J_{\lambda_{i}^{*}}^{E^{M_{j}^{\prime}}}$ and λ_{i}^{*} is cardinally absolute in M_{j}^{\prime}.
QED (Lemma 3.6.30)
But there are arbitrarily large cardinals in the sense of $J_{\lambda_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}$. Hence:

Corollary 3.6.31. λ_{i}^{\prime} is a limit cardinal in M_{j}^{\prime} for $i<j$.
Lemma 3.6.32. Let $h=T(i+1)$. Then $J_{\tau_{i}^{\prime}}^{E_{h}^{M_{h}^{\prime}}}=J_{\tau_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}$.

Proof: For $h=i$ it is trivial. Let $h<i$. Then $J_{\lambda_{h}^{\prime}}^{E_{h}^{M_{h}^{\prime}}}=J_{\lambda_{h}^{\prime}}^{E_{i}^{M_{i}^{\prime}}}$, so we need only show that $\tau_{i}^{\prime}<\lambda_{h}^{\prime}$. But λ_{h}^{\prime} is a limit cardinal in M_{i}^{\prime} and $\kappa_{i}^{\prime}<\tau_{i}^{\prime}$. Hence in M_{i}^{\prime} we have: $\tau_{i}^{\prime} \leq \kappa_{i}^{\prime+}<\lambda_{h}^{\prime}$.

QED (Lemma 3.6.32)
Corollary 3.6.33. $\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap M_{i}^{\prime *}=\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\nu_{i}^{\prime}}^{E_{i}^{\prime \prime}}$.

Proof: Since $\tau_{i}^{\prime}>\kappa_{i}^{\prime}$ is a cardinal in $M_{i}^{\prime *}$, we have by acceptability:

$$
\begin{aligned}
\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap M_{i}^{\prime *} & =\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\tau_{i}^{\prime}}^{E_{h}^{M_{h}^{\prime}}}=\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\tau_{i}^{\prime}}^{E_{i}^{M_{i}^{\prime}}} \\
& =\mathbb{P}\left(\kappa_{i}^{\prime}\right) \cap J_{\nu_{i}^{\prime}}^{E_{h}^{M_{h}^{\prime}}}
\end{aligned}
$$

QED (Corollary 3.6.33)
Lemma 3.6.34. Let $h=T(i+1), F=E_{\nu_{i}}^{M_{i}}, F^{\prime}=E_{\nu_{i}^{\prime}}^{M_{i}^{\prime}}$. Then

$$
\left\langle\sigma_{h} \upharpoonright M_{i}^{*}, \sigma_{i} \upharpoonright \lambda_{i}\right\rangle:\left\langle M_{i}^{*}, F\right\rangle \longrightarrow\left\langle M_{i}^{\prime *}, F^{\prime}\right\rangle .
$$

Proof. Clearly $\left(\sigma_{h} \upharpoonright M_{i}^{*}\right): M_{i}^{*} \longrightarrow \Sigma_{0} M_{i}^{\prime *}$. Moreover, $\operatorname{rng}\left(\sigma_{i} \upharpoonright \lambda_{i}\right) \subset \lambda_{i}^{\prime}$. Now let $X \subset \kappa_{i}, X \in M_{i}^{*}, \alpha_{i}, \ldots, \alpha_{n}<\lambda_{i}$. Then:

$$
\begin{aligned}
& \prec \vec{\alpha} \succ \in F(X)=\pi_{h, i+1}(X) \\
& \longleftrightarrow \prec \sigma_{i+1}(\vec{\alpha}) \succ \in \sigma_{i+1} \pi_{h, i+1}(X)=\pi_{h, j+1}^{\prime} \sigma_{h}(X) \\
& \longleftrightarrow \prec \sigma_{i}(\vec{\alpha}) \succ \in F^{\prime}\left(\sigma_{h}(X)\right),
\end{aligned}
$$

since $\sigma_{i} \upharpoonright \lambda_{i}=\sigma_{i+1} \upharpoonright \lambda_{i}$ and $F^{\prime}\left(\sigma_{h}(X)\right)=\lambda_{i}^{\prime} \cap \pi_{h, i+1}^{\prime}\left(\sigma_{h}(X)\right)$.
QED(Lemma 3.6.34)
We also note:
Lemma 3.6.35. Let $\lambda<\eta$ be a limit ordinal. Then for sufficiently large $i<_{T} \lambda$ we have:

$$
\rho^{\lambda}=\pi_{i, \lambda}^{\prime}\left(p_{n}^{i}\right) \text { for } n<\omega
$$

Proof. Pick $\xi<\lambda$ such that $[\xi, \lambda)_{T}$ has no drop points. For each $n<\omega$ and each i, j such that $\xi \leq_{T} i \leq_{T} j \leq_{T} \lambda$ we have:

$$
\pi_{i, j}^{\prime} " \rho_{n}^{i} \subset \rho_{n}^{j} \leq \pi_{i j}^{\prime}\left(\rho_{n}^{i}\right)
$$

(1) For each $n<\omega$ there is $i_{n} \in[\xi, \lambda)_{T}$ such that:

$$
\pi_{i, j}^{\prime}\left(\rho_{n}^{i}\right)=\rho_{n}^{i} \text { for } i_{n} \leq_{T} i \leq_{T} j<_{T} \lambda .
$$

Proof. Suppose not. Then there exist $i_{r}(r<\omega)$ such that $\xi<_{T} i_{r}<_{T}$ i_{r+1} and $\rho_{n}^{i_{r+1}}<\pi_{i_{r+1}, \lambda}^{\prime}\left(\rho_{n}^{i_{r+1}}\right)<\pi_{i_{r}, \lambda}^{\prime}\left(\rho_{n}^{i_{r}}\right)$. Hence: $\pi_{i_{r+1}, \lambda}^{\prime}\left(\rho_{n}^{i_{r+1}}\right)<$ $\pi_{i_{r}, \lambda}^{\prime}\left(\rho_{n}^{i}\right)$ for $r<\omega$. Contradiction!

QED(1)
(2) $\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)=\rho_{n}^{\lambda}$ for $i_{n} \leq_{T}<_{T} \lambda$.

Proof. Since $M,\left\langle\pi_{i, \lambda}^{\prime}: i_{n} \leq_{T} i<_{T} \lambda\right\rangle$ is a direct limit, we have:

$$
\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)=\bigcup_{i_{n} \leq T_{i}<_{T} \lambda} \pi_{i, \lambda}^{\prime} " \rho_{n}^{i} \subset \rho_{n}^{\lambda} \leq \pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right) .
$$

QED(2)
(3) If $\rho_{n}^{\lambda}=\rho_{M_{\lambda}}^{n}$ then $i_{n}=\xi$.

Proof. If not, there is $i \in[\xi, \lambda)_{T}$ such that $\rho_{n}^{i}<\rho_{M_{i}}^{n}$. Hence $\rho_{n}^{\lambda} \leq$ $\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)<\rho_{M_{\lambda}}^{n}$. Contradiction!

QED(3)
But then the set $\left\{n: i_{n}>\xi\right\}$ is finite. Set: $i=\max \left\{i_{n}: i_{n}>\xi\right\}$. This has the desired property.

QED(Lemma 3.6.35)
Corollary 3.6.36. Let λ be a limit ordinal. Then

$$
\pi_{i, \lambda}^{\prime}: M_{i}^{\prime} \longrightarrow \Sigma_{\Sigma^{*}} M_{\lambda}^{\prime} \quad \bmod \left(\rho^{i}, \rho^{\lambda}\right)
$$

for sufficiently large $i \leq_{T} \lambda$.
Proof. Let $i_{0} \leq_{T} i<_{T} \lambda$ such that $\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)=\rho_{n}^{\lambda}$ for $i_{0} \leq_{T} i<\lambda, n<\omega$. By Lemma 3.6.3 we need only show:
(1) $\rho_{n}^{i}<\rho_{M_{i}}^{n} \longrightarrow \rho_{n}^{\lambda}=\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)$
(2) $\rho_{n}^{i}=\rho_{M_{i}}^{n} \longrightarrow \rho_{n}^{\lambda}=\rho_{M_{\lambda}}^{n}$
(1) is immediate. To prove (2) we note:

$$
\rho_{n}^{\lambda}=\pi_{i, \lambda}^{\prime}\left(\rho_{n}^{i}\right)=\pi_{i, \lambda}\left(\rho_{M_{i}}^{n}\right) \geq \rho_{M_{\lambda}}^{n} \geq \rho_{n}^{\lambda}
$$

QED Corollary 3.6.36

Definition 3.6.11. By a mirror pair of length η we mean a pair $\left\langle I, I^{\prime}\right\rangle$ such that I is a normal iteration of length η and I^{\prime} is a mirror of I.

It is natural to ask whether, and in what circumstances, a mirror pair of length η can be extended to one of length $\eta+1$. For limit η the answer is fairly straightforward:

Lemma 3.6.37. Let $\left\langle I, I^{\prime}\right\rangle$ be a mirror pair of limit length. Let b be a cofinal branch in $T=T_{I}$. Let the sequence:

$$
\left\langle M_{i}^{\prime}: i \in b\right\rangle,\left\langle\pi_{i j}^{\prime}: i \leq j \text { in } b\right\rangle
$$

have a well founded direct limit. Then $\left\langle I, I^{\prime}\right\rangle$ extends uniquely to a mirror pair $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ of length $\eta+1$ with $b=\hat{T} "\{\eta\}$ (where $\hat{T}=T_{\hat{I}}$).

Proof. Let $M_{\eta}^{\prime},\left\langle\pi_{i, \eta}^{\prime}: i \in b\right\rangle$ be the transitivized direct limit.
Note. By our convention this means that for some $j_{0} \in b, b \backslash j_{0}$ is drop free and:

$$
\left\langle M_{i}^{\prime}: i \in b \backslash j_{0}\right\rangle,\left\langle\pi_{i, j}^{\prime}: j_{0} \leq i \leq j \text { in } b\right\rangle
$$

in the usual sense, and we define:

$$
\pi_{i \eta}^{\prime}=\pi_{j_{0}, \eta}^{\prime} \circ \pi_{i, j_{0}}^{\prime} \text { for } i<j_{0} \text { in } b
$$

In the same sense the sequence:

$$
\left\langle M_{i}: i \in b\right\rangle,\left\langle\pi_{i, j}: i \leq j \text { in } b\right\rangle
$$

has a transitivized limit:

$$
M,\left\langle M_{i \eta}: i \in b\right\rangle
$$

The maps $\pi_{i, \eta}, \pi_{i, \eta}^{\prime}$ are easily seen to be Σ^{*}-preserving for $j_{0} \leq i \in b$. We extend T to \hat{T} by setting $\hat{T} "\{\eta\}=b$. We define the map $\sigma_{\eta}: M_{\eta} \longrightarrow M_{\eta}^{\prime}$ by: $\sigma_{\eta} \pi_{i \eta}=\pi_{i \eta}^{\prime} \sigma_{i}$ for $i<\eta$. We must then define a good sequence $\hat{\rho}=\rho^{\eta}$ for M_{η}^{\prime}. We first imitate the proof of Lemma 3.6 .35 by showing that there is $i_{0} \in b$ such that $b \backslash i_{0}$ has no drop points and for all $j \in b \backslash i_{0}$:

$$
\pi_{i, j}^{\prime}\left(\rho_{n}^{i}\right)=\rho_{n}^{j} \text { for } n<\omega
$$

Thus, setting: $\hat{\rho}_{n}=: \pi_{i_{0}, \eta}^{\prime}\left(\rho_{n}^{i_{0}}\right)$, we have:

$$
\hat{\rho}_{n}=\pi_{j, \eta}^{\prime}\left(\rho_{n}^{j}\right) \text { for } n<\omega, i_{0} \leq_{T} j \in b
$$

It is easily shown that $\hat{\rho}=\left\langle\hat{\rho}_{n}: n<\omega\right\rangle$ is a good sequence for M_{η}^{\prime}. Repeating the proof of Lemma 3.6.36 we then have:
(1) $\pi_{j \eta}^{\prime}: M_{j}^{\prime} \longrightarrow \Sigma^{*} M_{\eta}^{\prime} \bmod \left(\rho^{i}, \hat{\rho}\right)$ for $i_{0} \leq_{T} j \leq_{T} \eta$.

Using this we show:
Claim 1. $\sigma_{\eta}: M_{\eta} \longrightarrow \Sigma^{*} M_{\eta}^{\prime} \bmod \hat{\rho}$.
Proof. Let $x_{1}, \ldots, x_{n} \in M_{\eta}$. Then $\vec{x}=\pi_{i \eta}(\vec{z})$ for an $i \in\left[i_{0}, \eta\right)$. Hence for any $\Sigma_{0}^{(n)}$ formula:

$$
\begin{aligned}
M_{\eta} \models \varphi[\vec{x}] & \longleftrightarrow M_{i} \models \varphi[\vec{z}] \\
& \longleftrightarrow M_{i}^{\prime} \models \varphi\left[\sigma_{i}(\vec{z})\right] \quad \bmod \rho^{i} \\
& \longleftrightarrow M_{i}^{\prime} \models \varphi\left[\pi_{i, \eta}^{\prime} \sigma_{i}(\vec{z})\right] \quad \bmod \hat{\rho}
\end{aligned}
$$

where $\pi_{i, \eta}^{\prime} \sigma_{i}(\vec{z})=\sigma_{\eta} \pi_{i, \eta}(\vec{z})=\sigma_{\eta}(\vec{x})$.
QED(Claim 1)
We must also show:
Claim 2. $\sigma_{\eta}: M_{\eta} \longrightarrow \Sigma^{*} M_{\eta}^{\prime} \min \hat{\rho}$.
Proof. We must show:

$$
\hat{\rho}=\min \left(M_{\eta}, \sigma_{\eta}, \tilde{\rho}\right)
$$

Let $\left\langle\hat{\rho}_{l}(n): l<\omega\right\rangle$ be defined by induction on $n<\omega$ as in Definition 3.6.5. We must show: $\hat{\rho}_{l}=\bigcup_{n<\omega} \hat{\rho}_{l}(n)$. Let $\xi<\hat{\rho}_{l}$. Then $\xi=\pi_{i, \eta}^{\prime}(\bar{\xi})$ where $i_{0} \leq_{T}<_{T} \eta$ and $\bar{\eta}<\rho_{l}^{i}$. But $\rho_{l}^{i}=\bigcup_{n<\omega} \rho_{l}^{i}(n)$. Thus $\bar{\xi}<\rho_{l}^{i}(n)$ for some n. Using (1) and Definition 3.6.5, we easily get:

$$
\pi_{i, n}^{\prime} " \rho_{l}^{i}(n) \subset \hat{\rho}_{l}(n) \text { by induction on } n
$$

But then $\xi=\pi_{i, \eta}^{\prime}(\bar{\xi}) \in \hat{\rho}_{l}(n)$.
QED(Claim 2)
Using these facts it is easy to see that the extension $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ we have defined satisfies the axiom (a)-(e) and is, therefore a mirror pair of length $\eta+1$. (We leave the detail to the reader). The uniqueness of the maps $\pi_{i, \eta}, \pi_{i, \eta}^{\prime}, \sigma_{\eta}$ is immediate from our construction. Finally, we must show that $\hat{\rho}=\rho^{\eta}$ is unique. This is because $\hat{\rho}_{n}=\pi_{i_{0}, \lambda}^{\prime}\left(\rho_{n}^{i_{0}}\right)$ where $\pi_{i_{0}, \lambda}^{\prime}$ is unique.

QED(Lemma 3.6.37)
We now ask how we can extend a mirror pair of length $\eta+1$ to one of length $\eta+2$. This will turn out to be more complex.

If $I=\left\langle\left\langle M_{i}\right\rangle,\left\langle\nu_{i}\right\rangle,\left\langle\pi_{i j}\right\rangle, T\right\rangle$ is a normal iteration of length $\eta+1$, we can turn it into a potential iteration of length $\eta+2$ simply by appointing a ν_{η} such that $E_{\nu_{\eta}}^{M_{\eta}} \neq \varnothing$ and $\nu_{\eta}>\nu_{i}$ for $i<\eta$. This then determines $h=T(\eta+1)$ and M_{η}^{*}. (The notion of potential iteration was introduced in $\S 3.4$, where we gave a more formal definition). If $\left\langle I, I^{\prime}\right\rangle$ is a mirror pair of length $\eta+1$, we can then form a potential mirror pair of length $\eta+2$ by appointing $\nu_{\eta}^{\prime}=: \sigma_{\eta}\left(\nu_{\eta}\right)$. This determines $M_{\eta}^{\prime *}$. Our main lemma on "1-step extension" of mirror pair reads:

Lemma 3.6.38. Let $\left\langle I, I^{\prime}\right\rangle$ be a mirror pair of length $\eta+1$. Form a potential pair of length $\eta+2$ by appointing ν_{η} and $\nu_{\eta}^{\prime}=\sigma_{\eta}\left(\nu_{\eta}\right)$. Let:

$$
\pi^{\prime}: M_{\eta}^{\prime *} \longrightarrow \Sigma^{*} M^{\prime} \text { such that } \kappa_{\eta}^{\prime}=\operatorname{crit}\left(\pi^{\prime}\right)
$$

and

$$
E_{\nu_{\eta}}^{M_{\eta}^{\prime}}(X)=\lambda_{\eta}^{\prime} \cap \pi^{\prime}(X) \text { for } X \in \mathbb{P}\left(\kappa_{\eta}^{\prime}\right) \cap J_{\nu_{\eta}^{\prime}}^{E_{\eta}^{M_{\eta}^{\prime}}}
$$

Our potential pair then extends to a full mirror pair with:

$$
M^{\prime}=M_{\eta+1}^{\prime}, \pi^{\prime}=\pi_{h, \eta+1}^{\prime} \text { where } h=T(\eta+1)
$$

In order to prove this, we must first form a $*$-ultrapower:

$$
\pi: M_{\eta}^{*} \longrightarrow{ }_{F}^{*} M \text { where } F=E_{\nu_{\eta}}^{M_{\eta}}
$$

We must then define σ, ρ such that:

$$
\pi^{\prime} \text { " } \hat{\rho}_{n} \subset \rho_{n} \leq \pi^{\prime}\left(\hat{\rho}_{n}\right) \text { for } n<\omega
$$

where $\hat{\rho}$ is defined as in axiom (e)(iv). If we then set:

$$
M_{\eta+1}=: M, M_{\eta+1}^{\prime}=: M^{\prime}, \pi_{h, \eta+1}=: \pi, \pi_{h, \eta+1}^{\prime}=: \pi^{\prime}, \sigma_{\eta+1}=\sigma, \rho^{\eta+1}=\rho
$$

we will have defined the desired extension. (We leave it to the reader to verify the axioms (a)-(e)). By the proof of Lemma 3.6.34 we have:

$$
\left\langle\sigma_{h} \upharpoonright M_{\eta}^{*}, \sigma_{\eta} \upharpoonright \lambda_{\eta}\right\rangle:\left\langle M_{i}^{*}, F\right\rangle \longrightarrow\left\langle M_{i}^{*}, F^{\prime}\right\rangle
$$

where $F=E_{\nu_{\eta}}^{M_{\eta}}, F^{\prime}=E_{\nu_{\eta}^{\prime}}^{M_{\eta}^{\prime}}$.
Lemma 3.6.19 then points us in the right direction. In order to get the full result, however, we must use Theorem 3.6.21 together with:
Lemma 3.6.39. Let $\left\langle I, I^{\prime}\right\rangle, \nu_{\eta}, \nu_{\eta}^{\prime}, \pi^{\prime}$ be as in Lemma 3.6.38. Set: $\xi=$ $T(\eta+1), F=E_{\nu_{\eta}}^{M_{\eta}}, F^{\prime}=E_{\nu_{\eta}^{\prime}}^{M_{\eta}^{\prime}}$. Set:

$$
\hat{\rho}= \begin{cases}\rho^{\xi} & \text { if } M_{\eta}^{\prime *}=M_{\xi}^{\prime} \\ \min \left(M_{\eta}^{\prime *}, \sigma_{h} \upharpoonright M_{\eta}^{\prime *},\left\langle\rho_{M_{\eta}^{\prime *}}^{n}: n<\omega\right\rangle\right) & \text { if } n o t\end{cases}
$$

Then:

$$
\sigma_{h} \upharpoonright M_{h}^{*}, \sigma_{\eta} \upharpoonright \lambda_{\eta}:\left\langle M_{\eta}^{*}, F\right\rangle \longrightarrow{ }^{* *}\left\langle M_{\eta}^{* *}, F^{\prime}\right\rangle \bmod \hat{\rho}
$$

We leave it to the reader to see that Theorem 3.6.21 and Lemma 3.6.39 give the desired result.
Note. It is clear that $\pi_{h, \eta+1}, \pi_{h, \eta+1}^{\prime}, \sigma_{\eta+1}$ are uniquely determined by the choice of $\nu_{\eta}, \nu_{\eta}^{\prime}, \pi^{\prime}$. If we wished, we could use clause (c) of Theorem 3.6.21 to make $\rho^{\eta+1}$ unique.

We are actually in familiar territory here. The notion of mirror is clearly analogous to that of copy developed in $\S 3.4 .2$. The analogue of mirror pair was there called a duplication. The role of Lemma 3.4.16 is now played by Lemma 3.6.38 and that of Theorem 3.4.16 by Lemma 3.6.39, which verifies the weaker principle $\longrightarrow^{* *}$ in place of \longrightarrow^{*} (which was, in turn, patterned on the proof of Theorem 3.4.3), which said that, if I is a potential normal iteration of length $\eta+2$, then $E_{\eta}^{M_{\eta}}$ is close to M_{η}^{*}).

We now turn to the proof of lemma 3.6.39. Just as in $\S 3.4 .2$ we derive it from a stronger lemma. In order to formulate this properly we define:

Definition 3.6.12. Let M be acceptable. Let $\kappa \in M$ be inaccessible in M such that $\mathbb{P}(\kappa) \cap M \in M . A \subset \mathbb{P}(\kappa) \cap M$ is strongly $\Sigma_{1}(M)$ in the parameter p iff there is $B \subset M$ such that B is $\Sigma_{0}(M)$ and:

- $x \in A \longleftrightarrow \bigvee z B(z, x, p)$
- If $u \in M$ such that $u \subset \mathbb{P}(\kappa)$ and $\overline{\bar{u}}^{M} \leq \kappa$, then:

$$
\bigvee v \in M \bigwedge X \in u \bigvee z \in v(B(z, X, p) \vee B(z, \kappa \backslash X, p))
$$

We shall derive:
Lemma 3.6.40. Let $\left\langle I, I^{\prime}\right\rangle, \eta, \xi, \nu_{\eta}, \nu_{\eta}^{\prime}, \pi^{\prime}$ be as in Lemma 3.6.39. Let $A \subset$ $\mathbb{P}\left(\kappa_{\eta}\right)$ be strongly $\Sigma_{1}\left(M_{\eta} \| \nu_{\eta}\right)$ in p. Let $A^{\prime} \subset \mathbb{P}\left(\kappa_{\eta}^{\prime}\right)$ be $\Sigma_{1}\left(M_{\eta}^{\prime} \| \nu_{\eta}^{\prime}\right)$ in $p^{\prime}=$ $\sigma_{\eta}(p)$ by the same definition. Then there is $q \in M_{\eta}^{*}$ such that

- A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in q.
- Let $A^{\prime \prime}$ be $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ in $q^{\prime}=\sigma_{\xi}(q)$ by the same definition. Then $A^{\prime \prime} \subset A^{\prime}$.

Before proving this, we show that it implies Lemma 3.6.39:
Lemma 3.6.41. Assume Lemma 3.6.40. Let ρ^{*} be good for $M^{* *}$ and let:

$$
\sigma_{\xi} \upharpoonright M_{\eta}^{*}: M_{\eta}^{*} \longrightarrow \Sigma^{*} M_{\eta}^{\prime *} \quad \bmod \rho^{*}
$$

Then:

$$
\left\langle\sigma_{\xi} \upharpoonright M_{\eta}^{*}, \sigma_{\eta} \upharpoonright \lambda_{\eta}\right\rangle:\left\langle M_{\eta}^{*}, F\right\rangle \longrightarrow^{* *}\left\langle M_{\eta}^{\prime *}, F^{\prime}\right\rangle \bmod \rho^{*} .
$$

Proof. Let $\alpha<\lambda_{\eta}, \alpha^{\prime}=\sigma_{\eta}(\alpha)$. Then F_{α} is $\Sigma_{1}\left(J_{\nu_{\eta}}^{E^{M_{\eta}}}\right)$ in α, since:

$$
X \in F_{\alpha} \longleftrightarrow \bigvee Y(Y=F(X) \wedge \alpha \in Y)
$$

We know, however, that if $u \in J_{\nu_{\eta}}^{E^{M_{\eta}}}, u \subset \mathbb{P}(\kappa)$, and $\overline{\bar{u}} \leq \kappa$ in $J_{\nu_{\eta}}^{E^{M_{\eta}}}$, then:

$$
\bigvee v \in J_{\nu_{\eta}}^{E^{M_{\eta}}} \wedge X \in u \bigvee Y \in v(Y=F(X) \wedge(\alpha \in Y \vee \alpha \in(\kappa \backslash Y)))
$$

Hence F_{α} is strongly $\Sigma_{1}\left(J_{\nu_{\eta}}^{E^{M_{\eta}}}\right)$ in α. Obviously $F_{\alpha^{\prime}}^{\alpha^{\prime}}$ is $\Sigma_{1}\left(J_{\nu_{\eta}^{\prime}}^{E^{M_{\eta}^{\prime}}}\right)$ in $\alpha^{\prime}=$ $\sigma_{\eta}(\alpha)$ by the same definition. Hence $\bar{G}=F_{\alpha}$ is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in a parameter q. Moreover, if G^{\prime} in $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ in $\sigma_{\xi}(q)$ by the same definition, then $G^{\prime} \subset F_{\alpha^{\prime}}^{\prime}$. Now let G be $\Sigma_{1}\left(M_{\eta}^{\prime *}, \rho^{*}\right)$ in $\sigma_{\xi}(q)$ by the same definition. Then $G \subset G^{\prime} \subset F_{\alpha^{\prime}}^{\prime}$. Now let:

$$
X \in \bar{G} \longleftrightarrow \bigvee z \bar{B}(z, X, q)
$$

be the strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$-definition of G in q. Then:

$$
X \in G \longleftrightarrow \bigvee z B\left(z, X, q^{\prime}\right)
$$

where $q^{\prime}=\sigma_{\eta}(q)$ and B is $\Sigma_{0}\left(M_{\eta}^{*}, \rho^{*}\right)$ by the same definition. (In other words, B is $\Sigma_{0}\left(M_{\eta}^{\prime *} \mid \rho_{0}^{*}\right)$ by the same definition). Now let \bar{H} be the set of $f \in M_{\eta}^{*} \cap{ }^{\kappa} \mathbb{P}(\kappa)$ such that

$$
\bigvee z \bigwedge i<\kappa(\bar{B}(z, f(i), q) \vee \bar{B}(z, \kappa \backslash f(i), q))
$$

Then $\bar{H}=M_{\eta}^{*} \cap{ }^{\kappa} \mathbb{P}(\kappa)$ by the strongness of our definition. But if H has the same $\Sigma_{1}\left(M_{\eta}^{*}, \rho^{*}\right)$ definition in q^{\prime}, then we obviously have:

$$
f \in H \longrightarrow \bigwedge i<\kappa^{\prime}(f(i) \in G \vee \kappa \backslash f(i) \in G)
$$

QED(Lemma 3.6.41)
(In the application we, of course, take $\rho^{*}=\hat{p}$, where \hat{p} is defined as in Lemma 3.6.39).

We now turn to the proof of Lemma 3.6.40. Suppose not. Let η be the least counterexample. We again have fixed ν_{η} and $\nu_{\eta}^{\prime}=\sigma_{\eta}\left(\nu_{\eta}\right)$, which gives us $\kappa_{\eta}, \kappa_{\eta}^{\prime} \tau_{\eta}, \tau_{\eta}^{\prime}, \lambda_{\eta}, \lambda_{\eta}^{\prime}, \xi=T(\eta+1), M_{\eta}^{*}, M_{\eta}^{\prime *}$ and ρ^{*}.
(1) $\xi<\eta$.

Proof. Suppose not. Let $A \subset \mathbb{P}(\kappa)$ be strongly $\Sigma_{1}\left(M_{\eta} \| \nu_{\eta}\right)$ in p and let $A^{\prime} \subset \mathbb{P}\left(\kappa_{\eta}^{\prime}\right)$ be $\Sigma_{1}\left(M_{\eta}^{\prime} \| \nu_{\eta}^{\prime}\right)$ in $p^{\prime}=\sigma_{\eta}(p)$ by the same definition.

Clearly τ_{η} is a cardinal in $M_{\eta} \| \nu_{1}$, so $M_{\eta}^{*}=M_{\eta} \| \mu$ for a $\mu \geq \nu_{\eta}$. Similarly $M_{\eta}^{\prime *}=M_{\eta}^{\prime} \| \mu^{\prime}$ where:

$$
\mu^{\prime}= \begin{cases}\sigma_{\eta}(\mu) & \text { if } \mu \in M_{\eta} \\ \mathrm{ON} \cap M_{\eta} & \text { if not }\end{cases}
$$

Now suppose $\nu_{\eta} \in M_{\eta}^{*}$ (i.e. $\mu>\nu_{\eta}$). Then $A \in M_{\eta}^{*}$ and $A^{\prime} \in M_{\eta}^{\prime *}$ where $\sigma_{\eta}(A)=A^{\prime}$. Then A is trivially strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in the parameter A and A^{\prime} is $\Sigma_{1}\left(M_{\eta}^{*^{\prime}}\right)$ in $A^{\prime}=\sigma_{\eta}(A)$ by the same definition, where $A^{\prime} \subset A^{\prime}$. Contradiction!
Now let $M_{\eta}^{*}=M_{\eta} \| \nu_{\eta}$. Then $M_{\eta}^{\prime *}=M_{\eta}^{\prime} \| \nu_{\eta}^{\prime}$ and A^{\prime} is $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ definable in $p^{\prime}=\sigma_{\eta}(p)$ by the same definition. But A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in p, since $M_{\eta}^{*}=M_{\eta} \mid \nu_{\eta}$. Contradiction!

QED(1)
(2) $\nu_{\eta}=\mathrm{ON} \cap M_{\eta}$.

Proof. Suppose not. Then $\lambda_{\xi}>\tau_{\eta}$ is inaccessible in M_{η}. Hence $A \in J_{\lambda_{\xi}}^{E^{M}}=J_{\lambda_{\xi}}^{E^{M_{\xi}}} \subset M_{\eta}^{*}$. Similarly $A^{\prime} \in J_{\lambda_{\xi}^{\prime}}^{E_{\eta}^{M_{\eta}^{\prime}}}=\left.J_{\lambda_{\xi}^{\prime}}^{E_{\xi}^{\prime}} \subset M_{\eta}^{\prime *}\right|_{0} ^{*}$. Then A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in $A^{\prime}=\sigma_{\xi}(A)$ by the same definition. Contradiction!

QED(2)
(3) $\tau_{\eta} \geq \rho_{M_{\eta}}^{1}$.

Proof. Suppose not. Then $\tau_{\eta}<\rho_{M_{\eta}}^{1}$. Hence $A \in J_{\rho_{M_{\eta}}}^{E^{M_{\eta}}}$ since $A \subset$ $J_{\tau_{\eta}}^{E_{\eta}^{M_{\eta}}}$. Hence $A \in J_{\lambda_{\xi}}^{E^{M_{\eta}}}=J_{\lambda_{\xi}}^{E_{\xi}} \subset M_{\eta}^{*}$. Hence A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in the parameter A_{r}. Now let $A^{\prime \prime}$ be $\Sigma_{1}\left(M_{\eta}^{\prime} \mid \rho_{0}^{\eta}\right)$ in $p^{\prime}=\sigma_{\eta}(p)$ by the same definition. Then $A^{\prime \prime} \subset A^{\prime}$. But since

$$
\sigma_{\eta}: M_{\eta} \longrightarrow \Sigma^{*} M_{\eta}^{\prime} \min \left(\rho^{\eta}\right),
$$

we have: $A^{\prime \prime}=\sigma_{\eta}(A)$. But $\lambda_{\xi}^{\prime \prime}$ is inaccessible in M_{η}^{\prime}; hence $A^{\prime \prime} \in$ $J_{\lambda_{\xi}}^{E^{M_{\eta}}}=J_{\lambda_{\xi}^{\prime}}^{E_{\xi}^{M_{\xi}}} \subset M_{\eta}^{\prime *}$. Hence $A^{\prime \prime}=\sigma_{\xi}(A)$ is $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ in $A^{\prime \prime}=\sigma_{\xi}(A)$ by the same definition. Contradiction!

QED(3)
(4) η is not a limit ordinal.

Proof. Suppose not. Pick $\bar{\eta}<_{T} \eta$ such that $\bar{\eta}=\mu+1$. $\pi_{\bar{\eta} \eta}$ is total on $M_{\bar{\eta}}, \kappa=\operatorname{crit}\left(\pi_{\bar{\eta}, \eta}\right)>\lambda_{\eta}$ and $p \in \operatorname{rng}\left(\pi_{\bar{\eta}, \eta}\right)$. Then $\pi_{\bar{\eta}, \eta}^{\prime}$ is total in $M_{\bar{\eta}}^{\prime}, \kappa^{\prime}=\operatorname{crit}\left(\pi_{\bar{\eta}, \eta}^{\prime}\right)>\lambda_{\eta}^{\prime}$ and $p^{\prime} \in \operatorname{rng}\left(\pi_{\bar{\eta}, \eta}^{\prime}\right)$, where $p^{\prime}=$ $\sigma_{\eta}(p)$. Set $\bar{p}=\pi_{\bar{\eta}, \eta}^{-1}(p), \bar{p}^{\prime}=\pi_{\bar{\eta}, \eta}^{-1}\left(p^{\prime}\right)$. Then $\sigma_{\bar{\eta}}(\bar{p})=p$. Then $M_{\bar{\eta}}=$
$\left\langle J_{\bar{\nu}}^{E^{M}}, \bar{F}\right\rangle, M_{\bar{\eta}}^{\prime}=\left\langle J_{\bar{\nu}^{\prime}}^{M^{\prime} \bar{\eta}}, \bar{F}\right\rangle$. Extend the mirror $\langle I| \bar{\eta}+1, I^{\prime}|\bar{\eta}+1\rangle$ to a potential mirror $\left\langle\bar{I}, \bar{I}^{\prime}\right\rangle$ of length $\bar{\eta}+2$, by setting: $\bar{\nu}_{\bar{\eta}}=\bar{\nu}, \bar{\nu}_{\bar{\eta}}^{\prime}=\bar{\eta}^{\prime}$. Then $\bar{M}_{\bar{\eta}}^{*}=M_{\eta}^{*}, \bar{M}_{\bar{\eta}}^{*}=M_{\bar{\eta}}^{\prime *}=M_{\eta}^{\prime *}, \xi=\bar{T}(\bar{\eta}+1)=T(\eta+1)$ and $\sigma_{\xi} \upharpoonright M_{\bar{\eta}}^{*}: \bar{M}_{\bar{\eta}}^{*} \longrightarrow \Sigma^{*} \bar{M}_{\bar{\eta}}^{*} \min \rho^{*}$. It is easily seen that A is $\Sigma_{1}\left(M_{\bar{\eta}}\right)$ in \bar{p}^{\prime} by the same definition. By the minimality of η we conclude that there is $q \in M_{\eta}^{*}=\bar{M}_{\bar{\eta}}^{*}$ such that A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in q and A is $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ in $q^{\prime}=\sigma_{\xi}(q)$ by the same definition. Contradiction!

QED (4)
Now let $\eta=\mu+1$. Let $\zeta=T(\mu+1)$. Then $\pi_{\zeta, \eta}: M_{\mu}^{*} \longrightarrow_{\Sigma^{*}} M_{\eta}$ and $\kappa_{\mu}=\operatorname{crit}\left(\pi_{\zeta, \eta}\right)$. Hence M_{μ}^{*} has the form $\bar{M}=\left\langle J_{\bar{V}}^{\bar{E}}, \bar{F}\right\rangle$ where $\bar{F} \neq \varnothing$. Set: $\bar{\kappa}=\operatorname{crit}(\bar{F}), \bar{\tau}=\tau(\bar{F})=: \bar{\kappa}^{+\bar{M}}, \bar{\lambda}=\lambda(\bar{F})=: \bar{F}(\bar{\kappa})$. Similarly $M_{\mu}^{\prime *}$ has the form $\bar{M}^{\prime}=\left\langle J{\overline{\bar{\nu}^{\prime}}}^{\prime}, \bar{F}^{\prime}\right\rangle$ and we define $\bar{\kappa}^{\prime}, \bar{\tau}^{\prime}, \bar{\lambda}^{\prime}$ accordingly.
Set: $\pi=\pi_{\zeta, \eta}, \pi^{\prime}=\pi_{\zeta, \eta}^{\prime}$.
(5) $\kappa_{\mu}>\bar{\kappa}$,
since otherwise $\kappa_{\eta}=\pi(\bar{\kappa}) \geq \pi\left(\kappa_{\mu}\right)=\lambda_{\mu} \geq \lambda_{\xi}>\kappa_{\eta}$. Contradiction!
QED(5)
But then $\kappa_{\mu}>\bar{\tau}$ and hence $\bar{\tau}=\tau_{\eta}, \bar{\kappa}=\kappa_{\eta}$. Similarly $\kappa_{\mu}^{\prime}>\bar{\tau}^{\prime}$ and $\bar{\tau}^{\prime}=\tau_{\eta}^{\prime}, \bar{\kappa}^{\prime}=\kappa_{\eta}^{\prime}$. But then:
(6) $\kappa_{\mu}>\rho \frac{1}{M}$,
since otherwise $\rho_{M_{\eta}}^{1} \geq \pi\left(\kappa_{\mu}\right)=\lambda_{\mu}>\tau_{\eta}$. Contradiction! by (3).
QED(6)
Hence, since $\pi: \bar{M} \longrightarrow{ }_{E_{\nu \mu}}^{*} M_{\eta}$, we have:
(7) $\pi: \bar{M} \longrightarrow E_{\nu_{\mu}}: M_{\eta}$ is a Σ_{0} ultraproduct and $\rho_{\bar{M}}=\rho_{M_{\eta}}^{1}$.

Recall that A is strongly $\Sigma_{1}\left(M_{\eta}\right)$ in p and A^{\prime} is $\Sigma_{1}\left(M_{\eta}^{\prime}\right)$ in $p^{\prime}=\sigma_{\eta}(p)$ by the same definition. By (7) we know:
(8) $p=\pi(f)(\alpha)$ where $\alpha<\lambda_{\mu}, f \in \bar{M}$ and $f: \kappa_{\mu} \longrightarrow \bar{M}$. Hence
(9) $p^{\prime}=\pi^{\prime}\left(f^{\prime}\right)\left(\alpha^{\prime}\right)$ where $f^{\prime}=\sigma_{f}(f), \alpha^{\prime}=\sigma_{\mu}(\alpha)$.

Proof. $p^{\prime}=\sigma_{\eta}(\pi(f)(\alpha))=\left(\sigma_{\eta} \pi(f)\right)\left(\sigma_{\eta}(\alpha)\right)=\left(\pi^{\prime} \sigma_{\zeta}(f)\right)\left(\sigma_{\mu}(\alpha)\right)$. QED(9)
Note. $\sigma_{\mu} \upharpoonright \lambda_{\mu}=\sigma_{\eta} \upharpoonright \lambda_{\mu}$ since $\mu<\eta$.
Let A be strongly $\Sigma_{1}\left(M_{\eta}\right)$ in p as witnessed by $\bigvee z B(z, X, p)$, where B is $\Sigma_{0}\left(M_{\eta}\right)$. Set:

$$
B_{0}(u, X, p) \longleftrightarrow: \bigvee z \in u B(z, X, p)
$$

Then A is strongly $\Sigma_{1}\left(M_{\eta}\right)$ in p as witnessed by $\bigvee u B_{0}(u, X, p)$. Note that for all u, u^{\prime} :
(10) $\left(B_{0}(u, X, p) \wedge u \subset u^{\prime}\right) \longrightarrow B_{0}\left(u^{\prime}, X, p\right)$.

Let B_{1} be $\Sigma_{0}(\bar{M})$ by the same definition as B_{0} over M_{η}. Set $\tilde{F}=$: $E_{\nu_{\mu}}^{M_{\mu}}, \tilde{F}^{\prime}=E_{\nu_{\mu}^{\prime}}^{M_{\mu}^{\prime}}$. By the cofinality of the map $\bar{p}: \bar{M} \longrightarrow M_{\eta}$ and (10) we have:

$$
\begin{align*}
A X & \longleftrightarrow \bigvee u \tag{11}\\
& \in \bar{M} B_{0}(\pi(u), X, p) \\
& \longleftrightarrow \bigvee u \in \bar{M}\left\{\gamma<\kappa_{\mu}: B_{\gamma}(u, X, f(\gamma))\right\} \in \tilde{F}_{\alpha}
\end{align*}
$$

But \tilde{F}_{α} is strongly $\Sigma_{1}\left(M_{\mu} \| \nu_{\mu}\right)$ in α and $\tilde{F}_{\alpha^{\prime}}^{\prime}$ is $\Sigma_{1}\left(M_{\mu}^{\prime} \| \nu_{\mu}^{\prime}\right)$ in α^{\prime} by the same definition.

Hence by the minimality of η we conclude:
(12) There is $q \in \bar{M}$ such that the following hold:
(a) $G=\tilde{F}_{\alpha}$ is strongly $\Sigma_{1}(\bar{M})$ in q.
(b) Let G^{\prime} be $\Sigma_{1}\left(\bar{M}^{\prime}\right)$ in $q^{\prime}=\sigma_{\gamma}(q)$ by the same definition. Then $G^{\prime} \subset \tilde{F}_{\alpha^{\prime}}^{\prime}$, where $\alpha^{\prime}=\sigma_{\mu}(\alpha)$.

Let: $\bigvee z G_{0}(z, X, q)$ witness the fact that G is strongly $\Sigma_{1}(\bar{M})$ in q. Then:

$$
\begin{aligned}
A X & \longleftrightarrow \bigvee u \in \bar{M} B_{0}(\pi(u), X, \pi(f)(\alpha)) \\
& \longleftrightarrow \bigvee u \in \bar{M}\left\{\gamma<\kappa_{\mu}: B_{1}(u, X, f(\gamma))\right\} \in G \\
& \longleftrightarrow \bigvee v \in \bar{M} \bigvee u \in v \bigvee \in v \bigvee z \in v \\
(Y & \left.=\left\{\gamma<\kappa_{\mu}: B_{1}(u, X, f(\gamma))\right\} \wedge G_{0}(z, Y, q)\right)
\end{aligned}
$$

This has the form:
(13) $A X \longleftrightarrow \bigvee v B_{2}(v, X, r)$, where $r=\langle q, f\rangle$ and B_{2} is $\Sigma_{0}(\bar{M})$.

For this B_{2} we claim:
(14) A is strongly $\Sigma_{1}(\bar{M})$ in r are witnessed by $\bigvee B_{2}(v, X, r)$.

Proof. Let $w \subset \mathbb{P}(\bar{\kappa}) \cap \bar{M}, \overline{\bar{w}}<\bar{\kappa}$ in \bar{M}.
Claim. There is $v \in \bar{M}$ such that

$$
\bigwedge X \in w\left(B_{2}(v, X, r) \wedge B_{2}(v, \bar{\kappa} \backslash X, r)\right)
$$

For the sake of simplicity we can assume without lose of generality that $X \in w \longleftrightarrow(\bar{\kappa} \backslash M) \in \omega$. Fix $u \in \bar{M}$ such that

$$
\bigwedge X \in w\left(B_{0}(\pi(u), X, p) \wedge B_{0}(\pi(u),(\bar{\kappa} \backslash X), p)\right)
$$

For $X \in w$ set:

$$
\theta(X)=:\left\{\gamma<\kappa_{\mu}: B_{1}(u, X, f(\gamma))\right\}
$$

Then:

$$
\bigwedge x \in w(\theta(X) \in G \vee \theta(\bar{\kappa} \backslash X) \in G)
$$

By rudimentary closure, $\langle\theta(X): X \in w\rangle \in \bar{M}$. Hence θ " $w \in \bar{M}$ and $\operatorname{card}(\theta " w) \leq \bar{\kappa}<\kappa_{\mu}$ in \bar{M}. Thus there is $z \in \bar{M}$ such that:

$$
\bigwedge X \in w\left(G_{0}(z, \theta(X), q) \vee G_{0}\left(z, \kappa_{\mu} \backslash \theta(X), q\right)\right)
$$

Claim. $\bigwedge X \in w\left(G_{0}(z, \theta(X), q) \vee G_{0}(z, \theta(\bar{\kappa} \backslash X), q)\right)$.
Proof. Suppose not. Then there is $X \in w$ such that:

$$
\kappa_{\mu} \backslash \theta(X), \kappa_{\mu} \backslash \theta(\bar{\kappa} \backslash X) \in G=\tilde{F}_{\alpha}
$$

Hence $\neg B_{0}(\pi(u), X, p)$ and $\neg B_{0}(\pi(u), \bar{\kappa} \backslash X, p)$. Contradiction!
QED(Claim)
Pick $V \in \bar{M}$ such that $u \in v, z \in v$ and $\theta " w \subset v$. Then:

$$
\bigwedge X \in w\left(B_{2}(v, X, r) \vee B_{2}(v, \bar{\kappa} \backslash X), r\right)
$$

QED (14)
(15) Let $A^{\prime \prime}$ be $\Sigma(\bar{M})$ in $r^{\prime}=\sigma_{\zeta}(r)$ by the same definition. Then $A^{\prime \prime} \subset A^{\prime}$. Proof. Let B_{0}^{\prime} be $\Sigma_{0}\left(M^{\prime}\right)$ by the same definition as B_{0} over M. Let B_{1}^{\prime} be $\Sigma_{0}(\bar{M})$ by the same definition. $A^{\prime \prime} X$ says that there is $u \in \bar{M}$ with:

$$
\left\{\gamma<\kappa_{\mu}^{\prime}: B_{1}^{\prime}\left(u, X, f^{\prime}(\gamma)\right)\right\} \in G^{\prime}
$$

where $f^{\prime}=\sigma_{\zeta}(f)$. But $G^{\prime} \subset \tilde{F}_{\alpha^{\prime}}$. Hence $B_{0}^{\prime}\left(\pi(u), X, \pi^{\prime}\left(f^{\prime}\right)\left(\alpha^{\prime}\right)\right)$, where $p^{\prime}=\pi^{\prime}\left(f^{\prime}\right)\left(\alpha^{\prime}\right)$. Hence $A^{\prime} X$.
$\operatorname{QED}(15)$
Now extend $\left\langle I \mid \zeta+1, I^{\prime}(\zeta+1)\right\rangle$ to a potential mirror pair $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ of length $\zeta+2$ by setting: $\nu_{\zeta}=\bar{\nu}, \nu_{\zeta}^{\prime}=\bar{\nu}^{\prime}$. Since $\bar{\kappa}=\kappa_{\eta}, \bar{\tau}=\tau_{\eta}$, we have:

$$
\xi=\hat{T}(\zeta+1), \hat{M}_{\zeta}^{*}=M_{\eta}^{*}, \hat{M}_{\zeta}^{\prime *}=M_{\eta}^{\prime *}
$$

But $\zeta \leq \mu<\eta$. By the minimality of η and by (14), (15), we conclude that there is a parameter $s \in M_{\eta}^{*}$ such that:

- A is strongly $\Sigma_{1}\left(M_{\eta}^{*}\right)$ in s.
- If $A^{\prime \prime \prime}$ has the same $\Sigma_{1}\left(M_{\eta}^{\prime *}\right)$ definition in $s^{\prime}\left(\sigma_{\xi}(s)\right)$, then $A^{\prime \prime \prime} \subset A^{\prime \prime}$ (hence $A^{\prime \prime \prime} \subset A^{\prime}$).

This contradicts the fact that η was a counterexample.
QED(Lemma 3.6.40)

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and Lemma 3.6.37 actually establishes a more abstract result which is useful in other contexts:

Lemma 3.6.42. Assume that M_{i}, M_{i}^{\prime} are amenable for $i<\mu$, where μ is a limit ordinal. Assume further that:
(a) $\pi_{i, j}: M_{i} \longrightarrow \Sigma^{*} M_{j}(i \leq j<\mu)$, where the $\pi_{i, j}$ commute.
(b) $\pi_{i, j}^{\prime}: M_{i}^{\prime} \longrightarrow \Sigma^{*} M_{j}^{\prime}(i \leq j<\mu)$, where the $\pi_{i, j}^{\prime}$ commute. Moreover:

$$
\left\langle M_{i}^{\prime}: i<\mu\right\rangle,\left\langle\pi_{i, j}^{\prime}: i \leq j<\mu\right\rangle
$$

has a transitivized direct limit $M^{\prime},\left\langle\pi_{i}^{\prime}: i<\mu\right\rangle$.
(c) $\sigma_{i}: M_{i}^{\prime} \longrightarrow \Sigma^{*} M_{j}^{\prime} \min \rho^{i}(i \leq j<\mu)$.
(d) $\pi_{i, j}^{\prime} " \rho_{n}^{i} \subset \rho_{n}^{j} \leq \pi_{i, j}^{\prime}\left(\rho_{n}^{i}\right)$ for $i \leq j<\mu, n<\omega$. Then

$$
\left\langle M_{i}: i<\mu\right\rangle,\left\langle\pi_{i, j}: i \leq j<\mu\right\rangle
$$

has a transitivized direct limit $M,\left\langle\pi_{i}: i<\mu\right\rangle$. There is then $\sigma: M \longrightarrow$ M^{\prime} defined by: $\sigma \pi_{i}=\pi_{i}^{\prime} \sigma_{i}(i<\mu)$. Moreover:
(1) There is a unique ρ such that $\sigma: M \longrightarrow \Sigma^{*} M^{\prime} \min \rho$ and:

$$
\pi_{i}^{\prime "} \rho_{n}^{i} \subset \rho_{n} \leq \pi_{i}^{\prime}\left(\rho_{n}^{i}\right) \text { for } i<\mu, n<\omega .
$$

(2) There is $i<\mu$ such that $\rho_{n}=\pi_{j}^{\prime}\left(\rho_{n}^{j}\right)$ for $i \leq j<\mu, n<\omega$.

3.6.4 The conclusion

In this section we show that every smoothly iterable premouse is fully iterable. We first define some auxiliary concepts:

Definition 3.6.13. Let $\left\langle I, I^{\prime}\right\rangle$ be a mirror pair of length η with:

$$
I=\left\langle\left\langle M_{i}\right\rangle,\left\langle\nu_{i}\right\rangle,\left\langle\pi_{i j}\right\rangle, T\right\rangle \text { and } I^{\prime}=\left\langle\left\langle M_{i}^{\prime}\right\rangle,\left\langle\pi_{i j}^{\prime}\right\rangle,\left\langle\sigma_{i}\right\rangle,\left\langle\rho^{i}\right\rangle\right\rangle
$$

Let N be a premouse such that $M_{0}^{\prime}=N \| \mu$ for some $\mu \leq \mathrm{ON}_{N}$. As usual set: $\nu_{i}^{\prime}=\sigma_{i}\left(\nu_{i}\right)$. Let:

$$
I^{\prime \prime}=\left\langle\left\langle N_{i}\right\rangle,\left\langle\nu_{i}^{\prime \prime}\right\rangle,\left\langle\pi_{i j}^{\prime \prime}\right\rangle, T\right\rangle
$$

be an iteration on N of length η. (T being the same as in $I)$. Set:

$$
\mu_{i}= \begin{cases}\pi_{0 j}^{\prime \prime}(\mu) & \text { if } \mu \in \operatorname{dom}\left(\pi_{0 j}^{\prime \prime}\right) \\ \operatorname{ON}_{N_{i}} & \text { if not }\end{cases}
$$

We say that the mirror pair $\left\langle I, I^{\prime}\right\rangle$ is backed by $I^{\prime \prime}$ (or M-backed by $I^{\prime \prime}$) iff:

$$
M_{i}^{\prime}=N_{i} \| \mu_{i}, \nu_{i}^{\prime}=\nu_{i}^{\prime \prime}, \pi_{i j}^{\prime}=\pi_{i j}^{\prime \prime} \upharpoonright M_{i}^{\prime} \text { for } i \leq_{T} j<\eta
$$

Now suppose that $\left\langle I, I^{\prime}\right\rangle$ is a mirror pair of length $\eta+1$ backed by $I^{\prime \prime}$. Extend I to a potential iteration I^{+}of length $\eta+2$ by appointing ν_{η} such that $E_{\nu_{\eta}}^{M_{\eta}} \neq \varnothing$ and $\nu_{\eta}>\nu_{i}$ for $i<\eta$. This determines $\zeta=T(\eta+1)$ and M_{η}^{*}. If we then set: $\nu_{\eta}^{\prime}=\sigma_{\eta}\left(\nu_{\eta}\right)$, we have determined $M_{\eta}^{\prime *}$ and turned $\left\langle I, I^{\prime}\right\rangle$ into a potential mirror pair $\left\langle I^{+}, I^{\prime}\right\rangle$. But ν_{η}^{\prime} also extends $I^{\prime \prime}$ to a potential iteration $I^{\prime \prime}+$ of length $\eta+2$, determining N_{η}^{*}. We then say that $I^{\prime \prime}+$ potentially backs $\left\langle I^{+}, I^{\prime}+\right\rangle$.

Note that if $M_{\eta}^{*} \in M_{\xi}$, then:

$$
M_{\eta}^{\prime *}=\sigma_{\xi}\left(M_{\eta}^{*}\right)=N_{\eta}^{*}
$$

If, however, $M_{\eta}^{*}=M_{\xi}$, then we have $M_{\eta}^{*}=M_{\xi}^{\prime}$, but if is still possible that $M_{\eta}^{\prime *} \in N_{\eta}^{*}$ and even that $N_{\eta}^{*} \in N_{\xi}$. This can happen if $M_{\xi}^{\prime}=N_{\xi} \| \mu_{\xi}$ and $\mu_{\xi} \in N_{\xi}$. There might then be $\gamma>\mu_{\xi}$ such that τ_{η}^{\prime} is a cardinal in $N_{\xi} \| \gamma$. Hence $M_{\eta}^{*}=M_{\xi}^{\prime} \in N_{\xi}^{\prime} \| \gamma \subset N_{\eta}^{*}$. But if the largest such γ is an element of N_{ξ}, we then have $N_{\eta}^{*} \in N_{\xi}$.
Note. If $I^{+}, I^{\prime+}, I^{\prime \prime}+$ are as above, we certainly have: $E_{\nu_{\eta}^{\prime}}^{M_{\eta}^{\prime}}=E_{\nu_{\eta}^{\prime}}^{N_{\eta}}$.

Using Lemma 3.6.38 we can then prove:
Lemma 3.6.43. Let $I^{+}, I^{\prime}+, I^{\prime \prime}+$ be as above. Suppose that N_{η}^{*} is $*$-extendible by $F^{\prime}=E_{\nu_{\eta}^{\prime}}^{N_{\eta}}$. Then $\left\langle I^{+}, I^{\prime}+\right\rangle$ extends to an actual mirror pair $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ with $\hat{\nu}_{\eta}=\nu_{\eta}$ and $I^{\prime \prime}+$ extends to an iteration $\hat{I}^{\prime \prime}$ which backs $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$.

Proof. Set $\pi^{\prime \prime}: N_{\eta}^{*} \longrightarrow F^{*} N^{\prime}$. Then $I^{\prime \prime}+$ extends uniquely to $\hat{I}^{\prime \prime}$ with: $N_{\eta+1}=N^{\prime}, \pi_{\xi, \eta+1}^{\prime \prime}=\pi^{\prime \prime}$.

Set: $\pi^{\prime}=: \pi^{\prime \prime} \upharpoonright M_{\eta}^{\prime+}$. Then:

$$
\pi^{\prime}: M_{\eta}^{\prime *} \longrightarrow \Sigma^{*} M^{\prime}
$$

where:

$$
M^{\prime}= \begin{cases}\pi^{\prime \prime}\left(M_{\eta}^{\prime *}\right) & \text { if } M_{\eta}^{\prime *} \in N_{\eta}^{*} \\ M^{\prime} & \text { if not }\end{cases}
$$

Then $\operatorname{crit}\left(\pi^{\prime}\right)=\kappa_{\nu}^{\prime}$ and $F^{\prime}=E_{\nu_{\eta}^{\prime}}^{M_{\eta}^{\prime}}$. Hence by Lemma 3.6.38, $\left\langle I, I^{\prime}\right\rangle$ extends to a mirror $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ of length $\eta+2$ with: $M^{\prime}=M_{\eta+2}^{\prime}$. Obviously, $\hat{I}^{\prime \prime}$ backs $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$.

QED(Lemma 3.6.43)
Note. If $M_{\eta}^{\prime *} \in N_{\eta}^{*}$, then $\left\langle\pi^{\prime}, M^{\prime}\right\rangle$ is not necessarily an ultraproduct of $\left\langle M_{\eta}^{\prime *}, F^{\prime}\right\rangle$.

Using Lemma 3.6.37 we also get:
Lemma 3.6.44. Let $\left\langle I, I^{\prime}\right\rangle$ be a mirror pair of limit length η which is backed by $I^{\prime \prime}$. Let b be a well founded cofinal branch in $I^{\prime \prime}$. Then $\left\langle I, I^{\prime}\right\rangle$ extend uniquely to $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$ of length $\eta+1$ such that $b=\hat{T} "\{\eta\}$. Moreover $I^{\prime \prime}$ extends uniquely to $\hat{I}^{\prime \prime}$ which backs $\left\langle\hat{I}, \hat{I}^{\prime}\right\rangle$.

The proof is straightforward and is left to the reader.
But by the same lemmata we get:
Lemma 3.6.45. Suppose that N is normally iterable. Let $M=N \| \mu$. Then M is normally α-iterable.

Proof. Fix a successful iteration strategy S for N. We must define a strategy S^{*} for M. Let:

$$
I=\left\langle\left\langle M_{i}\right\rangle,\left\langle\nu_{i}\right\rangle,\left\langle\pi_{i j}\right\rangle, T\right\rangle
$$

be an iteration of M of length η. We first note:
Claim. There is at most one pair $\left\langle I^{\prime}, I^{\prime \prime}\right\rangle$ such that $\left\langle I, I^{\prime}\right\rangle$ is a mirror pair backed by $I^{\prime \prime}$ and $I^{\prime \prime}$ is S-conforming.

Proof. By induction on $\operatorname{lh}(I)$. We leave this to the reader.

We now define an iteration strategy S^{*} for M. Let I be a normal iteration of M of limit length η. If there is no pair $\left\langle I^{\prime}, I^{\prime \prime}\right\rangle$ satisfying the above claim, then $S^{*}(I)$ is undefined. If not, we set:

$$
S^{*}(I)=: S\left(I^{\prime \prime}\right)
$$

$b=S^{*}(I)$ is then a cofinal well founded branch is I. (Clearly, if we extend each of $I, I^{\prime}, I^{\prime \prime}$ by the branch b, we obtain $\left\langle\tilde{I}, \tilde{I}^{\prime}, \tilde{I}^{\prime \prime}\right\rangle$ satisfying the Claim). It is then obvious that if I is of length $\eta+1$ and we pick $\nu>\nu_{i}(i<\eta)$ such that $E_{\nu}^{M_{\eta}} \neq \varnothing$, then I extends to an S^{*}-conforming iteration of length $\eta+1$. Hence S^{*} is successful.

This is fairly weak result which could have been obtained more cheaply. We now show, however, that our methods establish Theorem 3.6.1. We begin by defining the notion of a full mirror I^{\prime} of a full iteration I.

Definition 3.6.14. Let $I=\left\langle I^{i}: i<\mu\right\rangle$ be a full iteration of M, inducing $M_{i}, \pi_{i j}(i \leq j<\mu)$. Let:

$$
I^{i}=\left\langle\left\langle M_{h}^{i}\right\rangle,\left\langle\nu_{h}^{i}\right\rangle,\left\langle\pi_{h j}\right\rangle, T^{i}\right\rangle
$$

By a full mirror of I we mean $I^{\prime}=\left\langle I^{\prime i}: i<\mu\right\rangle$ such that

$$
I^{\prime i}=\left\langle\left\langle M_{h}^{\prime i}\right\rangle,\left\langle\pi_{h j}^{\prime i}\right\rangle,\left\langle\sigma_{h}^{i}\right\rangle,\left\langle\rho^{i, h}\right\rangle\right\rangle
$$

is a mirror of I^{i} for $i<\mu$, and I^{\prime} induces $\left\langle M_{i}^{\prime}: i<\mu\right\rangle,\left\langle\pi_{i j}^{\prime}: i \leq j<\mu\right\rangle,\left\langle\sigma_{i}\right.$: $i<\mu\rangle,\left\langle\rho^{i}: i<\mu\right\rangle$ such that:
(a) $\sigma_{i}: M_{i} \longrightarrow{ }_{\Sigma^{*}} M_{i}^{\prime} \min \rho^{i}$
(b) $\pi_{i j}^{\prime}$ is a partial structure preserving map from M_{i}^{\prime} to M_{j}^{\prime}. Moreover, they commute and $\pi_{i, i}^{\prime}=\mathrm{id} \upharpoonright M_{i}^{\prime}$. If $\alpha<\mu$ is a limit ordinal, then $M_{\alpha}^{\prime}=\bigcup_{i<\alpha} \operatorname{rng}\left(\pi_{i, \alpha}^{\prime}\right)$.
(c) $\sigma_{j} \pi_{i j}=\pi_{i j}^{\prime} \sigma_{i}$ for $i \leq j<\mu$.
(d) If $i \leq j<\mu$ and $[i, j)$ has no drop point in I, then:

$$
\pi_{i j}^{\prime}: M_{i}^{\prime} \longrightarrow_{\Sigma^{*}} M_{j}^{\prime} \text { and } \pi_{i j}^{\prime} " \rho^{i} \subset \rho^{i} \leq \pi_{i j}^{\prime}\left(\rho^{i}\right)
$$

(e) $M_{0}^{\prime}=M_{0}=M ; \sigma_{0}=\operatorname{id} \upharpoonright M$, and

$$
\rho^{0}=\left\langle\rho_{M}^{n}: n<\omega\right\rangle
$$

(f) $M_{i+1}^{\prime}=M_{l_{i}}^{\prime i}$ where I^{i} has length $l_{i}+1$. Moreover, $\sigma_{i+1}=\sigma_{l_{i}}^{i}$ and $\rho^{i+1}=\rho^{i, l_{i}}$ and $\pi_{i, i+1}=\pi_{i, l_{i}}^{i}$.

We leave it to a reader to see that $\left\langle M_{i}: i<\mu\right\rangle,\left\langle\pi_{i j}^{\prime}: i \leq j<\mu\right\rangle,\left\langle\sigma_{i}: i<\mu\right\rangle$ are uniquely characterized by (a)-(f), given the triple $\left\langle M, I, I^{\prime}\right\rangle$. In particular if $\alpha<\mu$ is a limit ordinal, then:

$$
M_{\alpha}^{\prime},\left\langle\pi_{i \alpha}^{\prime}: i<\alpha\right\rangle
$$

is the transitivized direct limit of

$$
\left\langle M_{i}^{\prime}: i<\alpha\right\rangle,\left\langle\pi_{i j}^{\prime}: i \leq j<\alpha\right\rangle .
$$

(This makes sense by (d), since I has only finitely drop points $i<\alpha$). σ_{α} is then defined by: $\sigma_{\alpha} \pi_{i \alpha}=\pi_{i \alpha}^{\prime} \sigma_{i}$. By the method of $\S 3.6 .2$ it follows that there is only one ρ^{α} satisfying our conditions and that, in fact, for sufficiently large $i<\alpha$ we have:

$$
\rho_{n}^{\alpha}=\pi_{i \alpha}^{\prime}\left(\rho_{n}^{i}\right) \text { for } i<\omega .
$$

$\left\langle I, I^{\prime}\right\rangle$ is then called a full mirror pair.
We leave to the reader to verify:
Lemma 3.6.46. Let $\left\langle I, I^{\prime}\right\rangle$ be a full mirror pair of limit length μ. Suppose further, that, if $\left[i_{o}, \mu\right)$ has no drop point, then:

$$
\left\langle M_{i}^{\prime}: i_{0} \leq i<\mu\right\rangle,\left\langle\pi_{i j}^{\prime}: i_{0} \leq i \leq j<\mu\right\rangle
$$

has a well founded limit. Then $\left\langle I, I^{\prime}\right\rangle$ extends uniquely to a mirror pair of length $\mu+1$.

We recall that a full iteration $I=\left\langle I^{i}: i<\mu\right\rangle$ is called smooth iff $M_{i}=M_{0}^{i}$ for all $i<\mu$. We define:

Definition 3.6.15. Let $I=\left\langle I^{i}: i<\mu\right\rangle$ be a full iteration of M. Let $\left\langle I, I^{\prime}\right\rangle$ be a full mirror pair. Let:

$$
I^{\prime \prime}=\left\langle I^{\prime \prime i}: i<\mu\right\rangle
$$

be a smooth iteration of M inducing

$$
\left\langle M_{i}^{\prime \prime}: i<\mu\right\rangle,\left\langle\pi^{\prime \prime} 0_{i j}: i \leq j<\mu\right\rangle
$$

such that $M_{0}^{\prime i} \triangleleft M_{i}^{\prime} \triangleleft M_{i}^{\prime \prime}$ and $I^{\prime \prime} i$ backs $\left\langle I^{i}, I^{\prime}\right\rangle$ for $i<\mu$.
We then say that $I^{\prime \prime}$ backs $\left\langle M, I, I^{\prime}\right\rangle$.

It is obvious that, if $I^{\prime \prime}$ backs $\left\langle M, I, I^{\prime}\right\rangle$ then $I^{\prime \prime}$ is uniquely determined by $\left\langle M, I, I^{\prime}\right\rangle$. Building on the last lemma we get:

Lemma 3.6.47. Let $\left\langle I, I^{\prime}\right\rangle$ be a full mirror pair of limit length μ. Let $I^{\prime \prime}$ be a smooth iteration of M of length $\mu+1$, such that $I^{\prime \prime} \mid \mu$ backs $\left\langle M, I, I^{\prime}\right\rangle$. Then $\left\langle I, I^{\prime}\right\rangle$ extends uniquely to a pair of length $\mu+1$ which is backed by $I^{\prime \prime}$.

Proof. (Sketch). The extension is easily defined using Lemma 3.6.46 if we can show:
Claim. I has finitely many drop points.
We first note that if I^{i} has a truncation on the main branch, then so do I^{\prime} and $I^{\prime \prime} i$. Hence there are only finitely many such I^{i}. Now suppose that $M_{0}^{i} \neq M_{i}$ for infinitely many i. Let $\left\langle i_{n}: n<\omega\right\rangle$ be a monotone sequence of such i such that $\left[i_{n}, i_{n+1}\right)$ has no drop. Then, letting $M_{i}^{\prime}=M_{i_{n}}^{\prime \prime} \| \mu_{n}$ for $n<\omega$, we have: $\mu_{n+1}<\pi_{i_{n}, i_{n+1}}^{\prime \prime}\left(\mu_{n}\right)$.

Hence $\pi_{i_{n+1}, \mu}^{\prime \prime}\left(\mu_{n+1}\right)<\pi_{i_{n}, \mu}^{\prime \prime}\left(\mu_{n}\right)$. Contradiction!
QED(Lemma 3.6.47)
Now let S be a successful smooth iteration strategy for M. (Thus S is defined only on smooth iterations $I=\left\langle I^{i}: i \leq \eta\right\rangle$ such that I^{η} is a normal iteration of limit length. $S(I)$, if defined, is then a well founded cofinal branch b in I^{η}. We call S successful for M iff every S-conforming smooth iteration I of M can be extended in an M-conforming manner. (This is defined precisely in §3.5.2).).

Claim. Let I be a full iteration of M. There is at most one pair $\left\langle I^{\prime}, I^{\prime \prime}\right\rangle$ such that $\left\langle I, I^{\prime}\right\rangle$ is a full mirror pair, $I^{\prime \prime}$ backs $\left\langle I, I^{\prime}\right\rangle$ and is S-conforming.

Proof. By induction on $\operatorname{lh}(I)$ and for $\operatorname{lh}(I)=i+1$ by induction on $\operatorname{lh}\left(I^{i}\right)$. The details are left to the reader.

We now define a full iteration of length $i+1$ where I^{i} is of limit length. If there exist $\left\langle I^{\prime}, I^{\prime \prime}\right\rangle$ as in the above claim, we set $S^{*}(I)=S\left(I^{\prime \prime}\right)$. If not, then $S^{*}(I)$ is undefined. It follows as before that an S^{*}-conforming full iteration of M can be properly extended in any permissible way to an S^{*}-conforming iteration. More precisely:

- If I is of length $i+1$ and I^{i} is of limit length, then $S^{*}(I)$ exists.
- If I is of length $i+1$ and I^{i} is of successor length $j+1$ and $\nu>\nu_{h}^{i}$ for $h<j$, where $E_{\nu}^{M_{\nu}^{i}} \neq \varnothing$, then I extends to and S^{*}-conforming \hat{I}, \hat{I}_{i} extends I^{i} and $\nu_{j}=\nu$ in \hat{I}^{i}.
- If I, i, j are as before and $\tilde{M} \triangleleft M_{j}^{i}$, then I extends to an S^{*}-conforming \hat{I} of length $i+1$ such that $\tilde{M}=M_{0}^{i+1}$.
- If I is of limit length μ, then it extends uniquely to an S^{*}-conforming iteration of length $\mu+1$.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excursion into the combinatorics of normal iteration, using methods which were manly developed by John Steel and Farmer Schluzenberg. We first answer a somewhat easier question: Let M be uniquely normally iterable and let M^{\prime} be a normal iterate of M. Is M^{\prime} normally iterable? Our basis tool in dealing with this is the reiteration: Given a normal iteration I^{\prime} from M^{\prime} to $M^{\prime \prime}$, we "reiterate" I, gradually turning it into a normal iteration I^{*} to an M^{*}. The process of reiteration mimics the iteration I^{\prime}. This results in an embedding σ from $M^{\prime \prime}$ to M^{*}, thus showing that $M^{\prime \prime}$ is well-founded. However, σ is not necessarily Σ^{*}-preserving but rather Σ^{*}-preserving modulo pseudoprojecta. This means that, in order to finish the argument, we must draw on the theory of pesudoprojecta developed in $\S 3.6$. The above result is proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous, however. It is mainly due to Schluzenberg and employs his original and surprising notion of "inflation". In order to complete the argument (in §3.7.6) we again need recourse to pseudo projecta. The remaining subsections (§3.7.1, $\S 3.7 .2, \S 3.7 .4, \S 3.7 .5)$ can be read with no knowledge of pseudoprojecta, and are of some interest in their own right.

We begin by describing a class of operations on normal iteration called insertions. An insertion embeds or "inserts" a normal iteration into another one.

3.7.1 Insertions

Let I be a normal iteration of M of length η. Let I^{\prime} be a normal iteration of the same M having length η^{\prime}. An insertion of I into I^{\prime} is a monotone function $e: \eta \longrightarrow \eta^{\prime}$ such that $E_{\nu_{i}}^{M_{i}}$ plays the same role in M_{i} as $E_{\nu_{e(i)}^{\prime}}^{M_{e(i)}^{\prime}}$ in $M_{\tilde{e}(i)}^{\prime}$. (This is far from exact, of course, but we will shortly give a proper definition).

In one form or other, insertions have long played a role in set theory. They are implicit in the observation that iterating a single normal measure produces

