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• If I is of limit length µ, then it extends uniquely to an S⇤-conforming
iteration of length µ+ 1.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excur-
sion into the combinatorics of normal iteration, using methods which were
manly developed by John Steel and Farmer Schluzenberg. We first answer
a somewhat easier question: Let M be uniquely normally iterable and let
M 0 be a normal iterate of M . Is M 0 normally iterable? Our basis tool in
dealing with this is the reiteration: Given a normal iteration I 0 from M 0

to M 00, we “reiterate” I, gradually turning it into a normal iteration I⇤ to
an M⇤. The process of reiteration mimics the iteration I 0. This results in
an embedding � from M 00 to M⇤, thus showing that M 00 is well-founded.
However, � is not necessarily ⌃

⇤-preserving but rather ⌃⇤-preserving modulo
pseudoprojecta. This means that, in order to finish the argument, we must
draw on the theory of pesudoprojecta developed in §3.6. The above result is
proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous,
however. It is mainly due to Schluzenberg and employs his original and sur-
prising notion of “inflation”. In order to complete the argument (in §3.7.6) we
again need recourse to pseudo projecta. The remaining subsections (§3.7.1,
§3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudoprojecta, and
are of some interest in their own right.

We begin by describing a class of operations on normal iteration called in-
sertions. An insertion embeds or “inserts” a normal iteration into another
one.

3.7.1 Insertions

Let I be a normal iteration of M of length ⌘. Let I 0 be a normal iteration
of the same M having length ⌘0. An insertion of I into I 0 is a monotone
function e : ⌘ �! ⌘0 such that EMi

⌫i
plays the same role in Mi as E

M
0
e(i)

⌫
0
ẽ(i)

in

M 0
ẽ(i)

. (This is far from exact, of course, but we will shortly give a proper
definition).

In one form or other, insertions have long played a role in set theory. They are
implicit in the observation that iterating a single normal measure produces
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a sequence of indiscernibles. This situation typically arises when we have a
transitive ZFC

� model M and a  2 M which is measurable in M with a
normal ultrafilter U 2M . Assume that we can iterate M by U , getting:

Mi,i, Ui,⇡i,j : Mi �Mj (i  j <1),

where the maps ⇡i,j are commutative and continuous at limits, i = ⇡0i(), Ui =

⇡0i(U) and:
⇡i,i+1 : Mi �!Ui Mi+1

Now let e : ⌘ �! 1 be any monotone function on an ordinal ⌘. e is then
an insertion, inducing a sequence h�i : i < ⌘i of insertion maps such that
�i : Mi �Me(i). To define there maps we first introduce an auxiliary function
ê defined by:

ê(i) =: inf{e(h) : h < i}

Thus ê is a normal function and ê(0) = 0.

By induction on i < ⌘ we then define maps �̂i,�i as follows: We verify
inductively that:

�̂i : Mi �Mê(i) and �̂i⇡̄hi = ⇡ê(h),ê(i)�̂h

Since ê(0) = 0, we set: �̂0 = id �M . If �i is given, we know that ê(i)  e(i)
and hence define: �̃i = ⇡ê(i),e(i)�̂i. Now let i+1 < ⌘. Then ê(i+1) = e(i)+1.
We know that each element of Mi+1 has the form ⇡i,i+1(f)(i). Hence we
can define �̂i+1 by:

�̂i+1(⇡i,i+1(f)(i)) = ⇡e(i),ê(i+1)(�i(f))(�i(i)).

Finally, if � < ⌘ is a limit, then ê(�) = lub{e(i) : i < �}, and we can define
�̂� by:

�̂�⇡h� = ⇡ê(h),ê(�)�̂h for h < �

This completes the construction. The fact that huh : h < ii is a sequence of
indiscernibles for Mi is proven by using insertions defined on finite ⌘.

This was a simple example, but insertions continue to play a role in the far
more complex theory of mouse iterations. We define the appropriate notion
of insertion as follows:

Let:
I = hhMii, h⌫ii, h⇡iji, T i

be a normal iteration of M of length ⌘. Let

I 0 = hhM 0
ii, h⌫ 0ii, h⇡0

iji, T 0i
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be a normal iteration of the same M of length ⌘0. Suppose that

e : ⌘ �! ⌘0

is monotone. Define an auxiliary function ê by:

ê(i) =: lub{e(h) : h < i} for i < ⌘

Then ê is a normal function and ê(0) = 0. We call e an insertion of I into
I 0 iff there is a sequence h�̂i : i < ⌘i of insertion maps with the following
properties:

(a) �̂i : Mi �!⌃⇤ Mê(i), �̂0 = id.

(b) i T j  ! ê(i) T 0 ê(j). Moreover:

�̂j⇡ij = ⇡0
ê(i),ê(j)

� �̂i, for i T j.

(c) ê(i) T 0 e(i) for i < ⌘0.
Before continuing the definition, we introduce some notation. Set:

⇡i = ⇡0
ê(i),e(i)

, �i = ⇡i�̂i for i < ⌘

We further require

(d) �i(⌫i) = ⌫ 0
e(i)

. More precisely, one of the following holds:

• ⌫i 2Mi ^ �̂i(⌫i) 2 dom(⇡̂i) ^ ⌫ 0
e(i)

= �i(⌫i)

• ⌫i 2Mi ^ dom(⇡̂i) = M 0
ê(i)

||�̂i(⌫i) ^ ⌫ 0
e(i)

= ON \M 0
e(i)

• ⌫i = ON \Mi ^ dom(⇡̂i) = M 0
e(i)
^ ⌫ 0

e(i)
= ON \M 0

e(i)

(e) �̂i ��l = �l ��l for l < i < ⌘.

This completes the definition.
Note. The insertion maps �̂i,�i are uniquely determined by e, but we have
yet to prove this fact.
Note. The map �̂i is total on Mi, but �i could be partial.
Note. e, ê are order preserving, and ê takes <T to <T 0 . On the other hand,
i <T j does not imply ei <T ej , although we have:

i <T j �! êi <T 0 ej and ei <T 0 ej �! i <T j.

Definition 3.7.1. The identical insertion is id � ⌘, with �̂i = �i = id �Mi

for i < ⌘.
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We shall sometimes write ei, êi for e(i), ê(i).

Note. We use here the familiar abbreviation:

i = crit(EMi
⌫i

),�i = EMi
⌫i

(i), ⌧i = 
+J

EMi
⌫i

i

for i < ⌘. Similarly 0
i
,�0

i
, ⌧ 0

i
for i < ⌘0

i
.

Note. By (e) we have:

h < i$ �̂i �JE
Mi

�n
= �h �JEMn

�n
.

To see this, let:
JE

�
= J

EMn
�n

= J
EMi
�n

(since h < i).

Similarly let:

JE
0

�0 = J
EM0

en
�0
en

= J
EM0

êi
�0
en

(since eh < êi).

Let x 2 JE

�
. Then there is a limit ordinal ↵ < � and a � < ↵ such that:

x = the �-th element of JE

�
in <E

↵ ,

where <E

�
is the canonical well ordering of JE

↵ . Let �̂i(↵) = �h(↵) = ↵0,
�̂i(�) = �(�) = �0. Then:

�̂i(x) = �h(x) = the �0-th element of JE
0

↵0 is <E
0

↵0 .

Lemma 3.7.1. The following hold:

(1) �i ��h = �h ��h for h  i  ⌘.

(Hence �i �JE
Mi

�h
= �h �JE

Mh

�h
).

Proof.
crit(⇡i) � �0

eh
= �h(�h) ⇢ �h“�h

Hence �h ��h = ⇡i�̂i ��h = ⇡i�h ��h = �h ��h. QED(1)

(2) Let ⇠ = T (i+ 1). Then 0ei < �0
e⇠

.

Proof. 0ei = �i(i) = �⇠(i) < �⇠(�⇠) = �0
e⇠

. QED(2)

(3) Let ⇠ = T (i+ 1), ⇠0 = T 0
(ei + 1). Then ê⇠ T 0 ⇠0  e⇠.

Proof. ⇠0  e⇠ by (2). But ê⇠ <T 0 êi+1 = ei + 1. Hence ê⇠ T 0 ⇠0.

QED(3)

The full determination of T 0
(ei + 1) is as follows:
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(4) Let ⇠ = T (i+ 1). Let j be the least such that

ê⇠ T 0 j T 0 e⇠ and ⇡0
j,e⇠

�0ei = id .

Then j = T 0
(ei + 1).

Proof.
Claim. 0ei < �0

j
.

Suppose not. Then j < e⇠, since 0ei < �0
e⇠

. Set:  = crit(⇡0
j,e⇠

). Then
0ei < , since otherwise:

⇡0
j,e⇠

(0ei) � ⇡0
j,e⇠

() >  � 0ei � �0
j

But  < �0
j
. Contradiction!

Claim. 0ei � �h for h < j.

If j = ê⇠, then j = T (ei + 1) by (3) and Claim 1. The conclusion is
then obvious. Now let j > ê⇠. Then j = lubA, where:

A = {h : ê⇠ <T 0 h+ 1 T 0 j}

Hence it suffices to show:
Claim. 0ei � �0

h
for h 2 A.

Suppose not, Let h 2 A be the least counterexample. Let ⌧ = T 0
(h+1).

Then ê⇠ T 0 ⌧ . Hence

rng(⇡0
ê⇠,h+1) ⇢ rng(⇡0

⌧,h+1)

But:
0ei 2 rng(�i) ⇢ rng(⇡0

h+1,ei
)

where 0ei < �0
h
 crit(⇡0

h+1,ei
). Hence 0ei < crit(⇡0

h+1,ei
). Thus

0ei 2 rng(⇡0
êi,h+1) ⇢ rng(⇡0

⌧,h+1).

But then 0ei /2 [0
h
,�0

h
), since:

rng(⇡0
⌧,h+1) \ [0

h
,�0

h
) = ?

Since 0ei  �0
h
, we conclude that 0ei < 0

h
. Hence ⇡0

⌧,e⇠
�(0ei +1) = id.

This is a contradiction, since ⌧ < j < e⇠ < e⇠.
QED(4)

Definition 3.7.2. Let ⇠ = T (i+ 1). We set:

e⇤i = T 0
(ei + 1), ⇡⇤

i = ⇡0
ê⇠,e

⇤
i
, �⇤

i = ⇡⇤
i �̂⇠
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The following are then obvious:

(5) M 0⇤
ei

= M 0
e
⇤
i
||µ, where µ is maximal such that ⌧ 0ei is a cardinal in M 0

e
⇤
i
||µ.

(6) �⇤
i
�M⇤

i
: M⇤

i
�!⌃⇤ M 0⇤

ei
.

Note. If M⇤
i
= M⇠, then ⌧i is a cardinal in M⇠. Hence �̂⇠(⌧i) is a

cardinal in M 0
ê⇠

and ⌧ 0ei = ⇡⇤
i
�̂⇠(⌧i) is a cardinal in M 0

e
⇤
i
= M 0⇤

ei
. If

M⇤
i
2 M⇠, then �̂⇠(M⇤

i
) 2 M 0

ê⇠
and ⇡⇤

i
� �̂⇠(M⇤

i
) : �̂⇠(M⇤

i
) �!⌃⇤ M 0⇤

ei
.

(However, we cannot conclude that M 0⇤
ei
2M 0

ei
). Hence:

(7) Let ⇠ = T (i+1). ⇡⇠,i+1 is a total function on M⇠ iff ⇡0
ê⇠,ei+1

is total on
M 0

ê⇠
.

Hence, there is a drop point in (↵,�]T iff there is a drop point in
(ê↵, e� ]T 0 .

(8) �̂i+1⇡⇠,i+1 = ⇡0
e
⇤
i ,ei+1

�⇤
i
, where ⇠ = T (i+ 1).

Proof. �̂i+1⇡⇠,i+1 = ⇡0
ê⇠,êi+1

�̂⇠ = ⇡0
e
⇤
i ,ei+1

⇡⇤
i
�̂⇠ = ⇡e⇤i,ei+1�

⇤
i. QED(8)

(9) �i(X) = �⇤
i
(X) for X 2 P(i) \M⇤

i
.

Proof.�i(X) = �⇠(X) where ⇠ = T (i + 1), since X 2 JE
M⌘

�⇠
and

�i ��⇠ = �⇠ ��⇠ by (1). But �⇠(X) = ⇡0
ê⇠,e⇠

�̂⇠(X) = ⇡0
e
⇤
i ,e⇠

�⇤
i
(X), since

⇡0
e
⇤
i e⇠

�ei + 1 = id.

QED(9)

Using notation from §3.2, then we have:

(10) h�⇤
i
�M⇤

i
,�i ��ii : hM⇤

i
, F i �! hM 0⇤

ei
, F 0i where F = EMi

⌫i
, F 0

= E
M

0
ei

⌫ei
.

Proof. ↵ 2 F (X) ! �i(↵) 2 �i(F (X)) = F 0
(�⇤

i
(X)) by (6) and (9).

QED(10)

But we are now, at last, in a position to prove:

(11) The sequence h�̂i : i < ⌘i of insertion maps is uniquely determined by
e. (Hence so is h�i : i < ⌘i, since �i = ⇡0

êi,ei
� �̂i).

Proof. Suppose not. Let h�̂0
i
: i < ⌘i be a second such sequence. By

induction on i we prove that �̂i = �0
i
. For i = 0 this is immediate. Now

let �̂i = �0
i
. We must show that �̂i+1 is unique. Let n  ! be maximal

such that i < ⇢n
Mi

. By Lemma 3.2.19 of §3.2, we know that there is
at most one � such that

� : Mi �!
⌃

(n)
0

M 0
ei
, �⇡⇠,i+1 = ⇡0

e
⇤
i êi+1

�⇤
i , � ��i = �i ��i

Hence �̂i+1 = �0
i+1

= � by (8).
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Now let µ < ⌘ be a limit ordinal. Then �̂µ = �0
µ is the unique � :

Mµ �!M 0
êµ

defined by: �⇡i,µ = ⇡0
êi,êµ

�̂i for i <T 0 µ.

QED(11)

We also note:

(12) Let ⇠ = T (i+ 1). Then ⇡0
e
⇤
i ,e⇠

�(⌧ 0
i
+ 1) = id.

(Hence �⇤
i
�(⌧i + 1) = �⇠ �(⌧i + 1) = �i �(⌧i + 1).

Proof. If e⇤
i
= e⇠, this is immediate. Now let e⇤

i
< e⇠. Set ⇡0

= ⇡0
e
⇤
i ,e⇠

.
Then 0ei < ̃ = crit(⇡0

) where ̃ is inaccessible in M 0
e⇠

. Hence ⌧ 0
ei+1

<

̃, since ⌧ 0ei = (0ei)
+ in M 0

e⇠
. QED(12)

(13) �̂i+1(⌫i) = ⌫ 0ei .

Proof. Let ⇠ = T (i+ 1). Then:

�̂i+1(⌫i) = �̂i+1⇡⇠,i+1(⌧i) = ⇡0
e
⇤
i ,ei+1�

⇤
i (⌧i)

= ⇡0
e
⇤
i ,ei+1(⌧

0
ei
) = ⌫ 0ei

since ⌧ 0
e
⇤
i
= �i(⌧i) = �⇤

i
(⌧i). QED(13)

Hence:

(14) j � i+ 1 �! �j(⌫i) � ⌫ 0ei .

Proof. By (13) it holds for j = i + 1. Now let j > i + 1. Then
i < �i+1 and

�̂j(⌫j) = �i+1(⌫i) � �i(⌫i) = ⌫ 0ei .

QED(14)

We also note:

(15) ei <T 0 ej �! i T j.

Proof. Since ei < êj and êj T ej , we conclude:

êi T 0 ei <T 0 êj ; hence i <T j.

QED(15)

Extending insertion

Given an insertion e of I into I 0, when can we turn it into an e0 which
inserts an extension Ĩ of I into an extension Ĩ 0 of I 0? Some things are
obvious:

(16) If e inserts I into I 0 and I 00 extends I 0, then e inserts I into I 00.
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(17) If e inserts I of length ⌫ + 1 into I 0 and e(⌫) T 0 j in I 0, there is a
unique e0 inserting I into I 0 such that e0 �⌫ = e�⌫ and e0(⌫) = j.

(18) Let I be of limit length ⌫ and let e insert I into I 0 of length ⌫ 0 = lub e“⌫.
Suppose that b0 is a cofinal well founded branch in I 0 and b = e�1

“b0

is cofinal in I. Extend I 0 into Ĩ of length ⌘ + 1 by setting T“{⌘} = b.
Extend I 0 to Î 0 of length ⌘0+1 by: T 0

“{⌘} = b0. Then e extends uniquely
to an insertion ẽ of Ĩ into Ĩ 0 with ẽ(⌘) = ⌘0.
The proof is left to the reader.

These facts are obvious. The following lemma seems equally obvious, but its
proof is rather arduous:

Lemma 3.7.2. Let e insert I into I 0 where I is of length ⌘ and I 0 is of
length ⌘0 + 1, where ⌘0 = e(⌘). Extend I to a potential iteration of length
⌘ + 2 by appointing ⌫⌘ such that ⌫⌘ > ⌫i for i < ⌘. Suppose �⌘(⌫⌘) > ⌫ 0

j
for

all j < ⌘0. Then we can extend I 0 to a potential iteration of length ⌘0 + 2 by
appointing: ⌫ 0

⌘0 = �⌘(⌫⌘). This determines ⇠ = T (⌘+1), e⇤⌘ = T 0
(⌘0+1) and

M⇤
i
,M 0⇤

ei
. If M 0

ei
is ⇤-extendible by F = EMi

⌫i
, then e extends uniquely to an

ẽ inserting Ĩ into Ĩ 0, where Ĩ 0 is an actual extension of I by ⌫⌘ and Ĩ 0 is an
actual extension of I 0 by ⌫ 0

⌘0 .

Using Lemma 3.2.23 of §3.2 we can derive Lemma 3.7.2 from:

Lemma 3.7.3. Let e, I, I 0, ⌫⌘, ⌫ẽ⌘ ,M⇤
⌘ ,M

0⇤
ẽi
, F, F 0 be as above. Then

h�⇤
⌘,�⌘ ��⌘i : hM⇤

⌘ , F i �!⇤ hM 0⇤
ẽ⌘
, F 0i

We first show that Lemma 3.7.3 implies Lemma 3.7.2. Since M 0⇤
e⌘

is ⇤-
extendible by F 0 we can extend I 0 by setting:

⇡̂0
e⇤⌘ ,e⌘+1 : M

0⇤
�e⌘
�!⇤

F 0 M 0
e⌘+1

It follows that F is close to M⇤
i
; hence we can set:

⇡̂⇠,⌘+1 : M
⇤
⌘ �!⇤ M⌘+1

But by Lemma 3.2.23 there us a unique

� : M⌘+1 �!⌃⇤ Mẽ⌘+1

such that �⇡⇠,⌘+1 = ⇡0
e⇤⌘ ,ẽ⌘+1

�⇤
⌘ and � � �⌘ = �⌘ � �⌘. Extend e to ẽ by:

ẽ(⌘ + 1) = e⌘ + 1. The ẽ satisfies the insertion axioms with �⌘+1 = �.

QED(Lemma 3.7.2)

We derive Lemma 3.7.3 from an even stronger lemma:
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Lemma 3.7.4. Let I, I 0 be as above. Let A ⇢ I⌘ be ⌃1(M⌘||⌫⌘) in a param-
eter p and let A0 ⇢ ⌧ 0e⌘ be ⌃1(Me⌘ ||⌫ 0e⌘) in p0 = �⌘(p) by the same definition.
Then A is ⌃1(M⇤

⌘ ) in a parameter q and A0 is ⌃1(M 0⇤
e⌘
) in q0 = �⇤

⌘(q) by the
same definition.

We first show that this implies Lemma 3.7.3. Repeating the proof of Lemma
3.7.1(7), we have:

h�⇤
⌘ �M⇤

⌘ , �̃⌘ ��⌘i : hM⇤
⌘ , F i �! hM 0⇤

e⌘
, F 0i

where F = E
M⌘
⌫⌘ , F 0

= E
M

0
e⌘

⌫0e⌘
.

We can code F↵ by an F̃ ⇢ ⌧⌘ such that F↵ is rudimentary in F̃ and F̃
is ⌃i(M⌘||⌫⌘) in ↵, ⌧⌘. Coding F 0

↵0 the same way by F̃ 0, we find that F̃ 0 is
⌃1(Me⌘ |⌫e⌘) in ↵0, ⌧ 0e⌘ by the same definition, where �⌘(↵) = ↵0,�⌘(⌧⌘) = ⌧ 0e⌘ .
Hence by Lemma 3.7.4, F̃ 0 is ⌃1(M 0⇤

⌘ ) in a q and F̃ 0 is ⌃1(M 0⇤
e⌘
) in q0 = �⇤

⌘(q)
by the same definition. Hence F↵ is ⌃1(M 0⇤

⌘ ) in q and F 0
↵0 is ⌃1(M 0⇤

e⌘
) in

q0 = �⇤
⌘(q) by the same definition.

QED(Lemma 3.7.3)
Note. We are in virtually the same situation as in §3.2, where we needed
to prove the extendability of the triples we called duplications. Lemma 3.7.2
corresponds to the earlier Lemma 3.4.17 and Lemma 3.7.4 corresponds to
Lemma 3.4.20.

We now turn to the proof of Lemma 3.7.4. Its proof will be patterned on
that of Lemma 3.4.20, which, in turns, we patterned on the proof of Lemma
3.4.4.

Our proof will be rather fuller than that of Lemma 3.4.20, however, since we
will face some new challengers.

Suppose Lemma 3.7.4 to be false. Let I, I 0 be a counterexample with ⌘ =

lh(I) chosen minimally. We derive a contradiction. Let ⇠ = T (⌘ + 1).

(1) ⇢1
M⌘ ||⌫⌘  ⌧⌘

Proof. Suppose not. Set ⇢ = ⇢1
M⌘ ||⌫⌘ , ⇢

0
= ⇢1

M 0
e⌘ ||⌫0e⌘

. Then A 2

JE
M⌘

⇢ , A0 2 JE
M0

e⌘

⇢0 .

Moreover, “x = A0” is ⌃(1)

0
(M 0

⌘||⌫ 0) in p, ⌧⌘ and “x = A0” is ⌃(1)

0
(M⌘||⌫⌘)

in p0, ⌧ 0e⌘ by the same definition. Hence �⌘(A) = A0. Since A 2 JE
M⌘

�⇠
,



3.7. SMOOTH ITERABILITY 291

�⌘ � �⇠ = �⇠ � �⇠ and M⇠||�⇠ = M⇠||�⇠, we have: �⇠(A) = �⌘(A) =

A0. But �⌘(A) = ⇡0
e⇤⌘ ,e⇠

�⇤
⌘(A) where ⇡0

e⇤⌘ ,e⌘
� ⌧ 0e⌘ + 1 = id by (10).

Hence �⇤
⌘(A) = A0. Hence A is ⌃1(M 0⇤

⌘ ) in the parameter A, and
A0 is ⌃1(M 0⇤

e⌘
) in the parameter A0

= �⇤
⌘(A) by the same definition.

Contradiction! since ⌘ was a counterexample.

(2) ⇠ < ⌘.
Proof. Suppose not. Then A is ⌃1(M⌘||⌫⌘) in p and A0 is ⌃1(M 0

e⌘
||⌫ 0e⌘)

in p0 = �⌘(p) by the same definition. But �⌘ = ⇡0
e⇤⌘ ,e⌘

�⇤
⌘, since ⇠ = ⌘

and:
⇡0
e⇤⌘ ,e⌘

�⌧ 0e⌘ + 1 = id

Hence A0 is ⌃1(Me⇤⌘ ||⌫
⇤
) in �⇤

⌘(p) by the same definition, where ⌫⇤ =

�⇤
⌘(⌫⌘). But M⌘||⌫⌘ = M⇤

⌘ since ⇢1
M⌘ ||⌫⌘  ⌧⌘. But ⇢1

M
0
e⇤⌘

||⌫⇤  ⌧ 0e⌘ , since

�⇤
⌘ �M⇤

⌘ takes M⇤
⌘ in a ⌃

⇤ way to M 0
e⇤⌘
||⌫⇤

V
x1(x1 6= ⌧⌘) hold in M⇤

⌘ .
But then M 0⇤

e⌘
= M 0

e⇤⌘
||⌫⇤. Hence A is ⌃1(M⇤

⌘ ) in p and A0 is ⌃1(M 0
e⌘
)

in �⇤
⌘(p) by the same definition. Contradiction! QED(2)

Since ⇠ < ⌘ and ⌧ 0e⌘ = �⇠(⌧⌘), we have:

⌧ 0e⌘ = �⌘(⌧⌘) = ⇡⌘�̂⌘(⌧⌘) = ⇡⌘�⇠(⌧⌘) = ⇡⌘(⌧
0
e⌘
)

Hence crit(⇡⌘) > ⌧ 0e⌘ if ê⌘ 6= e⌘0 . Hence A0 is ⌃1(M⌘||⌫⌘) in p and A0

is ⌃1(M 0
ê⌘
||⌫ 0e⌘) in �̂⌘(p) by the same definition. But then we can set

I 00 = I 0|e⌘ + 1 and define e0 inserting I into I 00 by:

eh =

(
eh if h < ⌘

ê⌘ if h = ⌘

he0, ⌘, I, I 00i is obviously still a counterexample to Lemma 3.7.2. Thus
we may henceforth assume:

(3) e⌘ = ê⌘

(4) ⌫⌘ = ONM⌘ .
Proof. ⌧⌘ < �⇠, where �⇠ is inaccessible in M⌘. Hence, if ⌫⌘ 2M⌘, we
would have: ⇢1

M⌘ ||⌫⌘ � �⇠ > ⌧⌘, contradicting (1). QED(4)

(5) ⌘ is not a limit ordinal.
Proof. Suppose not. Let A,A0, p, p0 be as above. By (2), ⇠ < ⌘
where ⇠ = T (⌘ + 1). By (4) M⌘ = M⌘||⌫⌘ is an active premouse. But
�⌘ : M⌘ �!⌃⇤ M 0

e⌘
and �⌘(⌫⌘) = ⌫ 0e⌘ . Pick l <T ⌘ such that:

• crit(⇡l,⌘) > �⇠,
• ⇡l,⌘ is a total map on Ml,
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• p 2 rng(⇡l,⌘).

Set p̄ = ⇡�1

l,⌘
(p). Then A is ⌃1(Ml) in p̄ and A is ⌃1(M⌘) in p by

the same definition. Define a potential iteration Ī of length l + 2

extending I|l + 1 by appointing: ⌫̄l =: ⇡�1

l,⌘
(⌫⌘). Then M̄l = Ml||⌫̄l.

Since ⇡l,⌘(⌘) = ⌘ it follows that ̄l = ⌘ and M̄⇤
l
= M⇤

⌘ . Define
ē : l + 1 �! ⌘0 by: ē � l + 1 = e � l + 1, ēl+1 = e⌘ + 1 (hence ˜̄el = e⌘).
Then ē inserts Ī into I 0, giving the insertion maps:

�̄i = �i for i < l, �̄l = �⌘⇡l,⌘

Then ̄l = ⌘. It follows easily that M̄⇤
l
= M⇤

⌘ and �̄⇤
l
= �⇤

⌘. But
l < ⌘, so by the minimality of ⌘ there is a q such that A is ⌃1(M⇤

⌘ ) in
q and A0 is ⌃1(M 0⇤

e⌘
) in �⇤

⌘(q) by the same definition. Contradiction!
QED(5)
Now let ⌘ = j + 1, h = T (⌘). Then e⌘ = ê⌘ = ej + 1. We know

⇡h,⌘ �M⇤
j : M⇤

j �!⌃⇤ M⌘ = hJE

⌫⌘
, E⌫⌘i

Hence M⇤
j

has the form:

(6) M⇤
j
= hJE

⌫ , E⌫i where E⌫ 6= ?.

(7) ⌧⌘ < j .
Proof. ⌧⇠  j since ⇠ < ⌘ = j + 1. Hence ⌧⌘ < �⌘  �j . But
⌧⌘ 2 rng(⇡h,⌘), where:

[j ,�j) \ rng(⇡h,⌘) = ?

QED(7)

(8) ⇢1
M

⇤
j
 ⌧⌘.

Proof. Suppose not. Then ⌧⌘ = ⇡h,⌘(⌧⌘) < ⇡“h,⌘⇢1M⇤
j
⇢ ⇢1

M 0
⌘
, contra-

dicting (1). QED(8)
Thus:

(9) ⇡h,⌘ : M⇤
j
�!E⌫i

M⌘ is a ⌃0 ultrapower.

(10) �⇤
j
(⌧⌘) = ⌧ 0e⌘ .

Proof. ⌧⌘ < j < �h by (7). Hence:

⌧ 0e⌘ = �̂⌘(⌧⌘) = �h(⌧⌘) = ⇡0
e
⇤
j ,eh

�⇤
j (⌧⌘) = �⇤

j (⌧
0
⌘),

since �⇤
j
(⌧⌘) < �⇤

j
(j) = 0ej and ⇡0

e
⇤
j ,eh

�0ej = id.

QED(10)
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(11) ⇢1
M⇤

ej
= ⌧ 0e⌘ .

Proof.
V
x1(x1 6= ⌧⌘) holds in M⇤

j
by (8). But:

�⇤
j �M⇤

j : Mj �!⌃⇤ M 0⇤
ej

Hence
V
x1(x1 6= �⇤

j
(⌧⌘)) holds in M 0⇤

ej
, where �⇤

j
(⌧⌘) = ⌧ 0ej . QED(11)

But then:

(12) ⇡0
e
⇤
j ,e⌘

: M 0⇤
ej
�!E⌫ej

Me⌘ is a ⌃0�ultrapower.

We can now prove:

(13) A is ⌃1(M⇤
j
) in an r and A0 is ⌃1(M 0⇤

ej
) in r0 = �⇤

j
(r) by the same

definition.
Proof. Let p = ⇡h,⌘(f)(↵), where f 2 M⇤

j
, ↵ < �i. Then p0 =

⇡0
e
⇤
j ,e⌘

(f 0
)(↵0

), where: f 0
= �⇤

j
(f),↵0

= �̃j(↵). Let F =: E
Mj
⌫j , F 0

=

E
M

0
ej

⌫ej
. F↵ can of course be coded by an F̃ ⇢ ⌧j which is ⌃1 < (Mj ||⌫j)

in ↵, ⌧j and F 0
↵ is coded by an F̃ 0 ⇢ ⌧ 0ej which is ⌃1(M 0

ej
) in ↵0, ⌧ 0ej by the

same definition. By the minimality of ⌘ we can conclude: F↵ is ⌃1(M⇤
j
)

in a parameter a and F 0
↵0 is ⌃1(M 0⇤

ej
) in the parameter a0 = �⇤

j
(a) by

the same definition. Now suppose:

A(µ) !
_

yB(µ, y, p) and

A0
(µ) !

_
yB0

(µ, y, p0)

where B is ⌃0(M⌘) and B0 is ⌃0(M 0
ej
) by the same definition. Let B⇤

be ⌃0(M⇤
j
) and B0⇤ be ⌃0(M 0⇤

ej
) by the same definition. Since the map

⇡ = ⇡h,⌘ takes M⇤
j

cofinally to M⌘, we have:

A(µ) !
_

u 2M⇤
j

_
y 2 ⇡(u)B(µ, y,⇡(f)(↵))

 !
_

u 2M⇤
j {� < j :

_
y 2 uB⇤

(µ, y, f(�))} 2 F↵

Hence A is ⌃1(M⇤
j
) in r = ha, fi. By the same argument, however, A0

is ⌃1(M 0⇤
ej
) in r0 = ha0, f 0i by the same definition. QED(13)

Now extend I|h+1 to a potential iteration I+ of length h+2 by appointing:
⌫+
h
= ⇡�1

h,⌘
(⌫⌘). (Hence M⇤

j
= Mh||⌫+h ). Set: h0 = e⇤

j
. Extend I 0|h0 +1 to I 0+

of length h0 + 2 by appointing: ⌫ 0+
h0 = ⇡0

h0,e⌘
(⌫ 0⌘). (Hence M 0⇤

ej
= M 0

h0 ||⌫ 0+h0 ).
Obviously, �⇤

(⌫+
h
) = ⌫ 0+

h0 . Now extend e�h to e+ : h+ 1 �! h0 + 1 by:

e+
i
=

(
ei if i < h

e⇤
j

if i = h



294 CHAPTER 3. MICE

Then e+ is easily seen to insert I+ into I 0+, giving the insertion maps:

�+

i
=

(
�i for i < h

�⇤
j
= ⇡0

êh,h
0 � �̂j for i = h

Then �+

h
(⌫+

h
) = ⌫ 0+

h0 . We note that ⌧+
h

= ⌧⌘, ⌧
0+
h0 = ⌧ 0e⌘ . It follows easily

that (M+

h
)
⇤
= M⇤

⌘ , (M
0+
h0 ) = M 0⇤

e⌘
and (�+

h
) = �⇤

⌘. By the minimality of ⌘
we conclude that A is ⌃1(M⇤

⌘ ) and (�+

h
)
⇤
= �⇤

⌘. By the minimality of ⌘ we
conclude that A is ⌃1(M⇤

⌘ ) in a q and A0 is ⌃1(M 0⇤
e⌘
) in �⇤

⌘(q) by the same
definition. Contradiction! QED(Lemma 3.7.4)

Composing insertions

Lemma 3.7.5. Let e insert I into I 0, with insertion maps �̂e

i
,�e

i
. Let f

insert I 0 into I 00 with insertion maps �̂f

i
,�f

i
. Then

(i) fe inserts I into I 00

(ii) df � e = f̂ � ê.

(iii) �fe

i
= �f

ei � eei

(iv) �̂fe

i
= �̂f

êi
� �̂e

i
.

Proof. We show that f � e satisfies the insertion axioms (a)-(e) with �̂fe

i
=

�̂f
ei � �̂e

i
. In the process we shall also verify (ii), (iii). We first note:

cfe(i) = lub(fe)”i = lub f”(lub e”i) = f̂ ê(i)

Axioms (a), (b), (c) then follow trivially. By definition we then have:

�fe

i
= ⇡00

f̂ ê(i),fe(i)
�̂ef

i

= ⇡00
f̂e(i),fe(i)

� ⇡00
f̂ ê(i),f̂e(i)

� �̂f

ê(i)
� �̂e

i

= (⇡00
f̂e(i),fe(i)

� �̂f

e(i)
) � (⇡0

ê(i),e(i)
� �̂e

i )

= �f

e(i)
� �e

i

Axioms (d), (e) then follow easily. QED(Lemma 3.7.5)
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We now consider “towers” of insertions. Let I⇠ be an iterate of M for ⇠ < �,
where e⇠,µ inserts I⇠ into Iµ for ⇠  µ < �. (We take e⇠,⇠ as the identical
insertion).

Definition 3.7.3. We call:

hhI⇠ : ⇠ < �i, he⇠,µ : ⇠ < µ < �ii

a commutative insertion system iff e⇣,µ � e⇠,⇣ = e⇠,µ for ⇠  ⇣  µ < �.

Now suppose that � is a limit ordinal. Is there a reasonable sense in which
we could form the limit of the above system? We define:

Definition 3.7.4. I, he⇠ : ⇠ < �i is a good limit of the above system iff:

• I is an iterate of M and e⇠ inserts I⇠ into I.

• eµ � e⇠,µ = e⇠ for ⇠  µ < �.

• If i < lh(I), then i = e⇠(h) for some ⇠ < �, h < lh(I⇠).

Note. Let ⌘i = ht(Ii) for i < �. It is a necessary but not sufficient condition
for the existence of a good limit that:

h⌘i : i < �i, heij : i  j < �i

have a well founded limit.

If ⌘, hẽi : i < �i is the transitivised direct limit of the above system, then
any good limit must have the form hI, hei : i < �ii.
Fact. Let ⌘, hei : i < �i be as above. Let ⇠ < ⌘ and let êi(⇠i) = ⇠ for an
i < �. For i  j < � set:

⇠j =: êi,j(⇠i) = (êj)�1
(⇠)

Then ej(⇠j) = êj(⇠j) = ⇠ for sufficiently large j < �.

Proof. Suppose not. Then there is a monotone sequence hjn : n < !i in
[i,�) such that ejn,jn+1(⇠jn) > ⇠jn+1 .

Hence ejn+1(⇠jn+1) < ejn(⇠jn) for n < !. Contradiction! QED

We then get:

Lemma 3.7.6. Let hI⇠i, he⇠, µi be a commutative system of insertions of
limit length ✓. Then there is at most one good limit I, he⇠i. Moreover, if
i < lh(I), then |Mi| =

S
{rng(�̃⇠

h
) : e⇠(h) = i}.
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Proof. Let hIhe⇠ii, hI 0he0⇠ii be two distinct good limits. We derive a con-
tradiction. Set ⌘⇠ = lh(I⇠) for ⇠ < �. Then h⌘⇠i, hẽ⇠, µi has a transitive
direct limit ⌘, hf ⇠i. Moreover ⌘ = lh(I) and e⇠ = e0⇠ = f ⇠ for ⇠ < �. Hence
ê⇠ = ê0⇠ = lub{fh

: h < ⇠} for ⇠ < �. By induction on i < ⇠ we prove:

(a) Mi = M 0
i

(b) �⇠

h
= �0⇠

h
for e⇠(h) = i.

(c) |Mi| =
S
{rng �⇠

h
: e⇠(h) = i}.

For i = 0 this is trivial. Now let i = j + 1. Then:

⌫j = ⌫ 0j = �⇠

h
(⌫⇠

h
) whenever e⇠(h) = j

This fixes µ =: T (j + 1) = T 0
(j + 1). But then we have: M⇤

j
= M 0⇤

j
. Thus

Mi = M 0
i

and ⇡µ+i = ⇡0
µi

are determined by:

⇡µ+i : M
⇤
i �!F Mi, where F = E

Mj
⌫j = E

M
0
j

⌫
0
j

We must still show:

Claim. If x 2Mi, then x = �⇠

l
(x̄) for a ⇠ < ✓ such that e⇠(l) = i.

Proof. Let n  ! be maximal such that i < ⇢n
Mi

. Then x = ⇡1i(f)(↵)
for an f 2 �

n
(j ,M⇤

i
). Let either f = p 2 M⇤

i
or else f(⇠) ⇠= G(⇠, p) where

p 2 M⇤
i

and G is a good ⌃
(m)

1
(M⇤

i
) function for a m < n. Pick ⇠ < ✓ such

that there are µ⇠, j⇠, i⇠ with:

e⇠(µ⇠) = µ, e⇠(i⇠) = i, e⇠(j⇠) = j

Assume furthermore that �µ̄(p̄) = p and �⇠

j⇠
(↵̄) = ↵. Since �j⇠(⌫

⇠

j⇠
) = ⌫j , it

follows easily that µ⇠ = T ⇠
(i⇠) and:

�⇠

µ̄ �M ⇠⇤
i⇠

: M ⇠⇤
i⇠
�!⌃⇤ M⇤

i

Let f̄ be defined from p̄ over M ⇠

i⇠
as f was defined from p over Mi. Let

x̄ = ⇡⇠

¯µ,i⇠
(f̄)(↵̄). Then �i⇠(x̄) = x by Lemma 3.7.1(5). QED(Claim)

Now let � < ✓ be a limit ordinal. We first prove:

Claim. i <T � iff whenever e(i⇠) = i and e⇠(�⇠) = �, then i⇠ <T ⇠ �⇠.
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Proof. (�!) is immediate by Lemma 3.7.1(10). We prove ( �). Suppose
not. Let A be the set of ⇠ < ✓ such that there are i⇠,�⇠ with e⇠(i⇠) = i,
e⇠(�⇠) = �. Then i 6<T � but i⇠ <T ⇠ �⇠ for ⇠ 2 A. Then:

ê⇠(i⇠) <T ê⇠(�⇠) T e⇠(�⇠) = �.

Set: j = sup{ê⇠(i⇠) : ⇠ 2 A}. Then j <T � by the fact that T“{�} is club
in �. Hence j < i. Let ⇠ 2 A such that e⇠(j⇠) = j. Then j⇠ < i⇠, since e⇠ is
order preserving. Hence:

j = e⇠(j⇠) < ê⇠(i⇠)  j.

Contradiction! QED(Claim)

But then T“{�} = T 0
“{�}. Hence M� = M 0

�
,⇡i,� = ⇡0

i,�
are given as the

transitivized limit of:

hMi : i <T �i, h⇡i,j : i T j < �i.

Finally, we show that each x 2 M� has the form �⇠

�⇠
(x̄) for an ⇠ 2 A. We

know that x = ⇡i,�(x0) for an i <T �. Pick ⇠ < ✓ such that e⇠(i⇠) =

i, e⇠(�⇠) = � and x0 = �⇠

i⇠
(x̄0). Set: x̄ = ⇡⇠

i⇠,�⇠
(x̄0). Then �⇠

�
(x̄) = x by

Lemma 3.7.1(10).

QED(Lemma 3.7.6)

In the following we take a more local approach for forming a good limit and
ask if and when the proven can be break down. It is of course a necessary
condition that the limit be indexed in a well founded way, so we assume that.

In the following let C = hhI⇠i, he⇠,µii be a commutative insertion system of
limit length ✓. Let ⌘⇠ = length(I⇠) for ⇠ < ✓. Suppose that

h⌘⇠ : ⇠ < ✓i, he⇠,µ : ⇣  µ < ✓i

has the transitivized direct limit:

⌘, he⇠ : ⇠ < ✓i

(Thus if C had a good limit, it would have the form hI, he⇠ : ⇠ < ✓ii).

Definition 3.7.5. Let C, ⌘, etc. be as above. Let i < ⌘. Let I be a normal
iteration of M of length i+ 1. I is a good limit of C at i iff whenever � < ✓
and e�(h) = i, then e� �h+ 1 inserts I� |h+ 1 into I.

Note. By Lemma 3.7.6 it follows that there is at most one good limit of C
at i. To see this, let � < e such that e�(h) = i and apply Lemma 3.7.6 to
the structure:

C0
= hhĨ⇠ : �  ⇠ < ✓i, . . . i where Ĩ⇠ = I|e�,⇠(h) + 1.
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Moreover, if I is a good limit of C at i and h < i, thus I|h + 1 is the good
limit of C at h. Thus we can unambiguously denote the good limit of C at
i, if it exists, by: I|i+ 1. By uniqueness we then have:

(I|i+ 1)|h+ 1 = I|h+ 1 for h < i

It is clear that I is the unique good limit of C iff I|i+ 1 exists for all i < ⌘,
and I =

S
i<⌘

I|i+ 1. We also note that I|1 = hhMi,?, h id i,?i is trivially
the good limit at 0.

Recall that we call a premouse M uniquely iterable iff it is normally iterable
and has the unique branch property -i.e. whenever I is a normal iteration
of M of limit length, then it has at most one cofinal well founded branch.
(Similarly for uniquely ↵-iterable). In the later subsection of §3.7 we shall
always assume unique iterability of M and make use of the following two
lemmas:

Lemma 3.7.7. Let C, ⌘ be as above and let M be uniquely ⌘-iterable. Let
i+ 1 < ⌘. If I|i+ 1 exists, then so does I|i+ 2.

Proof. Let I = I|i+1. Pick µ < ✓ such that eµ(iµ) = i and eµ(iµ+1) = i+1.
Set: ⌫i = �µ

iµ
(⌫µ

iµ
). For µ  � < ✓, we have ⌫� = ��

i�
(⌫�

i�
) and ⌫�

i�
� ⌫�

j
for

j < i�.

It follows easily that ⌫i > ⌫j in I whenever j < i. Thus ⌫i determines a
potential extension of I|i+ 1, giving: ⇠ = T 0

(i+ 1),M⇤
i
. Let F = EMi

⌫i
in I.

Set:
⇡0
⌘,i+1 : M

⇤
i �!⇤

F M 0
i+1

This gives us an iteration I 0 of length i+2 extending I, it follows by Lemma
3.7.2 that eµ|iµ + 2 inserts Iµ|iµ + 2 into I 0. But this holds for sufficiently
large µ < ✓. Now let µ < ✓ with e = i + 1. Let µ � µ be as above. Then
eµ,µ(h) = iµ + 1, and eµ,µ � h + 1 inserts Iµ|h + 1 into Iµ|iµ + 2. Hence
eµ = eµ � eµ,µ inserts Iµ|h+ 1 into I 0.

QED(Lemma 3.7.7)

Now let � < ⌘ be a limit ordinal and let I|i + 1 be defined for all i < �. If
I|� + 1 defined? Not necessarily. Set: I =

S
i<�

I|i+ 1. Then I is a normal
iteration of length �. Hence it has a unique cofinal well founded branch b.
We can then extend I to I 0 of length � + 1, taking T 0

“{�} = b. However I 0

will only be a good limit of C at � if a certain condition on b is fulfilled:

Lemma 3.7.8. Let C, I, b, I 0, etc. be as above. Assume that there are arbi-
trarily large � < ✓ such that:
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(*) e�(�) = � for some �. Moreover, either ê�(�) 2 b or ê�(�) = �
and ê�(i) 2 b whenever i <T � �.

Then I 0 is a good limit of C at �.

Proof. Let �, � as in (*). We show that e� � � + 1 inserts I� |� + 1 into
I 0|� + 1. We consider two cases:

Case 1: ê�(�) 2 b.

Let ⇠ = ê�(�). Then ⇠ T 0 �. It is easily verified that e� � � + 1 inserts
I� |� + 1 into I 0 with �̂ = �̂�

�
, � = ��

�
defined as follows:

By the above Fact there is �0 > � such that e�
0
(�0) = ⇠, where �0 = ê�,�

0
(�).

Thus e�
0 ��0 + 1 inserts I�0 |� + 1 into I|⇠ + 1. Set:

�̂ =: �̂�

�0 � �̂
�,�

0

�
,� =: ⇡0

⇠,�
� �̂

QED(Case 1)

Case 2: e�(�) = �.

Then e� takes � cofinally to �. Thus e� � � + 1 inserts I� |� + 1 into I|� + 1,
where � = ��

�
= �̂�

�
is defined by:

�⇡�

i,�
= ⇡

e
�

�
(i),� � �̂

�

i

The verification is again straightforward.

QED(Case 2)

Now let µ < ✓ be arbitrary such that eµ(�0) = �. Let � > µ satisfy (*) with
e�(�) = �. Then eµ,� inserts Iµ|�0 + 1 into I� |� + 1 and e� inserts I� |� + 1

into I 0|� + 1. Hence eµ = e� · eµ,� inserts Iµ|�0 + 1 into I 0|� + 1.

QED(Lemma 3.7.8)

Remark. It follows that every � < ✓ such that � 2 rng(e�) satisfies (*).

Building on what we have just proven, we show that we can disperse with the
iterability assumption if the length of the commutative system has cofinality
greater than !.

Lemma 3.7.9. Let C be a commutative insertion system of length ✓. If
cf(✓) > !, then C has a good limit.
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Proof.
Claim. h⌘i : i < ✓i, he⇠,µ : ⇠  µ < ✓i has a transitivized direct limit:

⌘, he⇠ : ⇠ < ✓i

Proof. Suppose not. Let hu,<⇤ i, he⇠ : ⇠ < ✓i be a direct limit, where <⇤

is a linear ordering of u. Then there are xn (n < !) such that xn+1 <⇤ xn
for n < !. Since cf(✓) > !, there must be � < ✓ such that xn 2 rng(e�)
for n < !. Let e�(↵n) = xn (n < !). Then ↵n+1 < ↵n in ⌘� for n < !.
Contradiction!

QED(Claim)

We now prove by induction on i < ⌘ that C has a good limit I|i at i.

Case 1. i = 0. The 1-step iteration of M : hhMi,?, h id i,?i is the good
limit at 0 (with e0

0
= ê0

0
= id�{0}).

Case 2. i = h+ 1.

Let ⌫i, ⇠ = T 0
(i+ 1),M⇤

i
, F = EMi

⌫i
be as in the proof of Lemma 3.7.7. The

proof of Lemma 3.7.7 goes through exactly as before if we can show:
Claim. M⇤

i
is extendible by F .

Proof. Suppose not. Then there are fn 2 �
⇤
(i,M⇤

i
),↵n 2 �i (n < !) such

that

{hµ, ⌧i : fn+1(µ) 2 fn(⌧)} 2 Fh↵n+1,↵ni for n < !

Let pn 2M⇤
i

such that either pn = fn or fn is defined by: fn(�) ⇠= G(pn,�),
where G is good over M⇤

⇠
. Since cf(✓) > !, we can pick � < ✓ such that

• e�(i�) = i, e�(⇠�) = ⇠

• ��

⇠�
(pn) = pn (n < !)

• ��

i�
(↵n) = ↵n (n < !)

• [e�(⇠�), e�(⇠�)]T has no drop point in I. (Hence ��⇤
⇠�
,M�

⇠�
�!⌃⇤ M⇠,

since ��

⇠�
= ⇡⇠� �̂

�

⇠�
).

We note that ⇠� = T �
(i� + 1). (Suppose not. Let t = T �

(i� + 1). Then
⇠ 2 [ê�(t), e�(t)] by Lemma 3.7.1 (3). But thus t < ⇠ and ⇠ < t are both
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impossible. Contradiction!) It follows that:

��

⇠
�M�⇤

i�
�!⌃⇤ M⇤

i

If fn is defined from pn as fn was defined from pn, we then have:

{hµ, ⌧i : fn+1(µ) 2 fn(⌧)} 2 F h↵n+1,↵ni

where F = E
M

�
i�

⌫i�
. But:

⇡�

⇠� ,i�
: M�⇤

i�
�!⇤

F
M�

i�+1

Hence M�

i�+1
would be ill founded. Contradiction!

QED(Case 2)

Case 3: i = µ is a limit ordinal.

Let b0 be the set of j < µ such that for some � < ✓ and µ < ⌘� we have
e�(µ) = µ and j = ê�(i) for an i T � µ. Let b be the closure of b0 under
limit points below µ. Then b is a cofinal branch in I. Moreover, b satisfies
(⇤).

⌧in is not a cardinal in Lemma 3.7.8. Hence we can simply repeat the proof
of Lemma 3.7.8 if we can show:
Claim. b is a well founded branch in I.

Proof. We must first show:

Subclaim. b has at most finitely many drop points.

Proof. Suppose not. Let hin : n < !i be monotone such that in + 1 is a
drop point in b. Since in + 1 is not a limit point in b, we have in + 1 2 b0.
Hence for each n there is a � < ✓ and a µ such that e�(µ) = µ, ê�(hn +1) =

in+1, hn+1 <T � µ. If � has this property, so will every larger �0 < ✓. Since
cf(✓) > !, we know that sufficiently large � < ✓ will have the property for
all n. We can also suppose without lose of generality that e�(tn) = tn, where
tn = T (in + 1) in I. Just as in Case 2 we then have In = T �

(hn + 1). As
in Case 2 we can assume � chosen big enough that [ê�(tn), e�(tn))T has no
drop point in I. (Hence the map ��

tn
is ⌃

⇤-preserving). Then ⌧in is not a
cardinal in Mtn and ⌧in = ��

hn
(⌧hn) = ��

tn
(⌧hn). Hence ⌧hn is not a cardinal

in M�

hn
. Hence hn + 1 is a drop point in I� . Hence T �

“{µ} has infinitely
many drop points. Contradiction!

QED(Subclaim)
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We now prove the claim. Suppose not, Let b00 =: b0r�, where � < µ̄ is big
enough that no i 2 b00 is a drop point. Then there is a monotone sequence
hin : n < !i such that in 2 b00, xn 2Min and

xn+1 2 ⇡in,in+1(xn) for n < !

Pick � < ✓ big enough that e�(µ̄) = µ and ê�(hn) = in, where hn <T � µ̄.
We can also pick it big enough that xn = �̂in(x̄n) for n < !. Hence

x̄n+1 2 ⇡�

hn,hn+1
(x̄n) for n < !

Hence M�

µ̄ is ill founded. Contradiction!

QED(Lemma 3.7.9)

3.7.2 Reiterations

From now on assume that M is a uniquely normally iterable mouse (i.e.
every normal iteration of limit length has exactly one cofinal well founded
branch). (Our results will go through mutatis mutandis if we assume unique
normal ↵-iterability for a regular cardinal ↵ > !).

Interpolating extenders

Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration of M of length ⌘ + 1.
A “reiteration" of I occurs when we “interpolate" new extender which were
not on the sequence h⌫i : i < ⌘i. This rounds very vague, or course, but
we can make it more explicit by considering the case of a single extender
F = E

M⌘
⌫ which we had neglected to place on the sequence. Set: ⌧ =

⌧+M⌘ ||⌫ , = crit(F ),� = �(F ) =: F (u). For the moment let us assumer
that ⌧ is a cardinal in M⌘. The interpolation gives rise to a new iteration
I 0. I 0 coincides with I up to the point at which F should have been applied.
At that point we apply F and thereafter simply copy what we did in I. The
point s at which F should have been applied is defined as follows:

s = the least point such that s = ⌘ or s < ⌘ and ⌫ < ⌫s

We want I|s+1 = I 0|s+1, but at stage s we apply F instead of EMs
⌫s

. Thus
we set: ⌫s = ⌫. This determines t = T 0

(s+ 1) and M 0⇤
s . We then form:

⇡0
t,s+1 : M

0⇤
r �!⇤

F M 0
s+1

There is then an obvious insertion f of I|t+ 1 into I 0|s+ 2 defined by:

f � t = id, f(t) = s+ 1
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f induces the new insertion embeddings:

�̂t = id�Mt, ⇡t = ⇡0
t,s+1, �t = ⇡t�̂t

If t = ⌘ (hence s = ⌘), then I 0 = I 0|s+ 2 is fully defined. Now let t < ⌘.

Then M
0⇤
s = Mt||µ, where µ  ONMt is maximal with: ⌧ is a cardinal in

Mt||µ. But then ⌧ 2 JE
M⌘

⌫t
⇢ JE

M⌘

⌫ , so ⌧ is a cardinal in JE
M⌘

⌫t
. Hence

µ � ⌫t and �t(⌫t) is defined. Set: ⌫ 0
s+1

= �t(⌫t). This defines a potential
extension of I 0|s+ 2, since

⌫ 0s = ⇡t(⌧) < ⇡t(⌫t) = ⌫ 0s+1

where ⇡t = ⇡0
t,s+1

.

Now define e on ⌘ by:

e� t = id, e(t+ i) = s+ 1 + i for t+ i  ⌘

Then e � t + 1 = f . It is easily seen that ê(t) = t and e(t) = s + 1. But for
i 6= t we have ê(i) = e(i). We prove:
Claim. e inserts I into a unique I 0 of length e(⌘) + 1.

To show this we prove the following subclaim by induction on i:

Subclaim. If t + 1 + i  ⌘, then e � (t + 1 + i + 1) inserts I|(t + 1 + i + 1)

into a unique I 00 = I 0|(s+ 2 + i+ 1) of length s+ 2 + i+ 1.

Proof. Case 1: i = 0.

We have seen that �t(⌫t) exists and that �t(⌫t) > ⌫ 0t. Hence we can appoint
⌫ 0
t+1

= �(⌫t), which determines ⇠ = T 0
(s+2) and M 0⇤

s+1
. M 0⇤

s+1
is ⇤-extendible

by F = E
M

0
s+1

⌫
0
s+1

by the fact that M is uniquely iterable. By Lemma 3.7.2 we
conclude that e|t+2 inserts I|t+2 into a unique I 0|s+3 extending I 0|s+2.

QED(Case 1)

Case 2: i = j + 1.

Then I 0|s+ 2+ i is given. Set: h = t+ 1+ j. Then e(h) = ê(h) = s+ 2+ j.
We are given: �h(⌫h) = �̂h(⌫h). Set ⌫ 0

e(h)
=: �h(⌫h). This determines a

potential extension of I 0|e(h) + 1, since:

⌫ 0
e(h)

> �h(⌫l) � ⌫ 0
e(l)

for t  l < h

But M 0⇤
h

is ⇤-extendible by E
M

0
e(h)

⌫e(h) by unique iterability. Hence by Lemma
3.7.2, e|h+ 2 inserts I|h+ 2 into a unique I 0|e(h) + 2 extends I 0|e(h) + 1 by
Lemma 3.7.2.
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QED(Case 2)

Case 3: i = � is a limit ordinal.

We first observe that the componentwise union I 0 =
S

i<�
I 0|e(i) is the unique

iteration of length e(�) into which e|� inserts I|�. Now let b0 be the unique
cofinal well founded branch in I 0|e(�). Then b = {i : e(i) 2 b0}is the unique
cofinal well founded branch in I|�. Hence b = T“{�}. By Lemma 3.7.1 (18),
e|�+ 1 inserts I|�+ 1 into a unique I 0|e(�) + 1 extending I 0|e(�).

QED(Case 3)

QED(Claim)

We must still consider the case that ⌧ is not a cardinal in M⌘. If t < ⌘, then ⌧

is not a cardinal in JE
Mt

�t
since JE

Mt

�t
= JE

M⌘

�t
and �t is a cardinal in M⌘. M 0⇤

s

thus has the form: Mt||µ = M⌘||µ. (Hence we truncate to the same place
that we would if we applied F directly to M⌘). Clearly µ < �t < ⌫t if t < ⌘.
Hence the “copying" process we performed in the previous case is impossible.
(Note, too, that t = s, since if t < s, then �t would be inaccessible in JE

Ms
⌫

⌫

and ⌧ < �t would be a cardinal in JE
Ms

�t
= JE

Mt

�t
. Contradiction!). We set:

I⌫ = I|t+ 1

We can extend I⇤ to I 0 by setting ⌫ 0t = ⌫. Set e� t = id, e(t) = s+ 1 = t+ 1.
Then e inserts I⇤ into I 0.

The I 0 which we have described above is called a simple reiteration of I.
If I 0 is obtained by a chain of simple reiterations, we also call it a simple
reiteration. However, we must still show that an infinite chain of simple
reiterations has a well founded limit. This will require considerable effort.
Before doing that we develop the notion of normal reiteration, which is easier
to deal with.

Now let hIi : i < !i be a chain of simple reiterations with

I0 = hhM i

h
i, h⌫i

h
i, h⇡i

h
i, T ii of length ⌘i.

Let Ii+1 be obtained from Ii by interpolating Fi = E
M

i
⇠i

⌫i into Ii, giving
rise to the insertion ei of Ii⇤ into Ii+1. In an effort to tame the complexity
of these structures, we could impose the normality condition: ⌫i < ⌫j for
i < j < !. It turns out that we can impose a far more powerful normality
condition by requiring that Fi be interpolated in the earliest possible Ih with
h  i, rather than necessarily into Ii itself. This gives the concept of normal
reiteration, which is clearly analogous to that of normal iteration. First,
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however, we must redo our definitions in order to make this notion precise.
To say that Ih is a possible candidate for interpolation of Fi means simply
that h  i and Ih|t + 1 = Ii|t + 1, where t is defined from as before from
⌫i, Ii. In a normal reiteration it will then turn out that either t = ⌘h or
⌫it  ⌫ht (⌫it will exits if h < i). In a normal reiteration we will then have:
Ij |t+ 1 = Ii|j + 1 for h  j  i.

We now give a precise definition of the operation we perform when we apply
Fi to Ih.

Definition 3.7.6. Let I = hhM i

h
i, h⌫i

h
i, h⇡i

h
i, T i be a normal iteration of M

of length ⌘. Let
I 0 = hhM 0i

h
i, h⌫ 0i

h
i, h⇡0i

h
i, T 0i

be a normal iteration of M of length ⌘0. Let F = E
M

0
⌘

⌫ 6= ?. Set:

 =: crit(F ),� = �(F ) =: F (), ⌧ = +M ||⌫ .

Let s be least such that

s = ⌘0 _ (s < ⌘0 ^ ⌫ 0 < ⌫s)

Let t be least such that:

t = ⌘i _ (t = ⌘i ^ 0 < �0
t)

(Hence t  s).

Assume that I|t+ 1 = I 0|t+ 1 and ⌫ 0t  ⌫t. We define an operation:

W (I, I 0, ⌫) = hI⇤, I 00, ei

by cases as follows:

Case 1: t = ⌘ and ⌧ is a cardinal in M⌘.

Extend I to I 00 by appointing ⌫ 00⌘ = ⌫. Then ⇡00
⌘,⌘+1

: M �!⇤
F

M⌘+1. e is
then the insertion of I into I 00 defined by e � ⌘ = id, e(⌘) = ⌘ + 1. (Hence
⇡⌘ = ⇡0

⌘,⌘+1
and �⌘ = id�M⌘, �̃⌘ = ⇡̃⌘�⌘). We set: I⇤ = I.

Case 2: t < ⌘ and ⌧ is a cardinal in M⌘. We set I 00|s + 1 = I 0|s + 1.
We then appoint ⌫ 00s = ⌫. Thus t = T 00

(s + 1) and M 00⇤
s = Mt||µ, where

µ  ONMt is maximal such that ⌧ is a cardinal in Mt||µ. But ⌧ is a cardinal
in JE

Mt
⌫t

= JE
M⌘

⌫t
. Hence µ � ⌫t. Let f be the insertion of I|t+1 into I 00|s+2

defined by
f � t = id, f(t) = s+ 1.

Then:
�̂t = id�Mt,⇡t = ⇡t,s+1,�t = ⇡t � �t
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(Hence �t(⌫t) > ⌫ 00t as before).

Now define e on ⌘ + 1 by

e� t = id, e(t+ i) = s+ 1 + i.

Set ⌘00 =: e(⌘). I 00 is then the unique iteration of length ⌘00 + 1 extending
I 0|s+ 2 such that e inserts I into I 00. We set: I⇤ =: I.

The existence and uniqueness proofs are exactly as before.

Case 3: ⌧ is not a cardinal in M⌘. If t < ⌘, then ⌧ is not a cardinal in JE
Mt

⌫t
.

Hence M 00⇤
s = Mt||µ, where µ < ⌫t. Set: I⇤ =: I|t + 1. Set: ⌫ 00s =: ⌫. This

gives:
⇡00
t,s+1 : M

00⇤
s �!⇤

F M 00
s+1

which defines I 00 = I 00|s+ 2. e is thus the insertion of I⇤ into I 00 defined by:
e� t = id, e(t) = s+ 1.

Note that e� t = id (hence ê� t+ 1 = id in all three cases.)

This completes the definition. We are now in a position to define the notion
of normal reiteration. First, however, we prove a particularly useful lemma:

Lemma 3.7.10. If j 2 (t, s] and s < µ, then j 6<T 00 µ.

Proof. We proceed by induction on µ.

Case 1: µ = s + 1. Then t = T 00
(µ) and j 6<T 00 t, since t < j. Hence

j 6<T 00 µ.

Case 2: µ > s + 1 is a successor. Let µ = � + 1. Then � � s + 1 and
� = e(�) where �̄ � t. Let ⇠ = T 00

(� + 1). Let j 2 (t, s] such that j <T 00 µ,
then j T 00 ⇠. We derive a contradiction. Let ⇠ = T (� + 1). Then:

ê(⇠) T 00 ⇠ T 00 e(⇠).

If ⇠ = t, then t T 0 ⇠ T 00 s + 1. Hence ⇠ /2 (t, s] by Case 1. Hence
either ⇠ = t < j or ⇠ = s+ 1 >T 0 j, contradicting the induction hypothesis.
If ⇠ < t then ⇠ = ê(⇠) = e(⇠) = ⇠ < j. Contradiction! If ⇠ > t, then
⇠ = ê(⇠) = e(⇠) � s + 1. Hence j <T 0 ⇠ < µ, contradicting the induction
hypothesis.

QED(Case 2)

Case 3: µ is a limit ordinal.
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Pick i <T 00 µ such that i > s. Then j 6<T 00 i by the induction hypothesis.
Hence j 6<T 00 µ.

QED(Lemma 3.7.10)

As we have seen, if e is an insertion of I to I 0 and h = T (i + 1), then the
determination of e⇤(i) = T 0

(e(i) + 1) is important. In the case of the e
defined above, this determination is as follows:

Lemma 3.7.11. Let h = T (i+ 1). If i < , then ê(h) = h = T 00
(e(i) + 1).

If i � , then e(h) = T 00
(e(i) + 1), where e(h) > s+ 1.

Proof. Let h0 = T 00
(e(i) + 1). We know:

ê(h) T 0 h0 T 0 e(h).

The cases: h < t and h > t are straightforward. Now let h = t. As in Case
2 of the above proof we conclude: h0 = t or h0 = s + 1. But 00

e(i)
= ⇡(i),

where ⇡ = ⇡00
t,s+1

. Hence, if i <  = crit(⇡) we have: ⇡(i) = i < �t.
Hence h0 = t. If   i, then: ⇡(i) � ⇡() = � � �i. Hence h0 = s+ 1.

QED(Lemma 3.7.11)

We now turn to the definition of a normal reiteration.

R = hhIi : i < ⌘i, h⌫i : i + 1 < ⌘i, hei,j : i T ji, T i is a normal reiteration
on M iff the following hold:

(a) ⌘ � 1 and each Ii = hhM i

h
i, h⌫i

h
i, h⇡i

h
i, ⌧ ii is a normal iteration of M

of length ⌘i + 1.

(b) T is a tree on ⌘ such that iT j �! i < j.

(c) Fi =: E
M

i
⌘i

⌫i 6= ?. Moreover, ⌫i < ⌫j for i < j.

Set: i =: crit(Fi),�i = �(Fi) =: Fi(i), ⌧i = ⌧(Fi) =: +J
E
⌫i , where

E = EM
i
⌘i .

(d) ei,j inserts a segment Ii|µ into Ij . Moreover, eh,i = eij � ehi for h T

i T j. eii is the identical insertion on Ii.

(e) Set: s = si =: the least s such that s = ⌘i or s < ⌘i and ⌫i < ⌫is. Then:
Ii|s+ 1 = Ij |s+ 1 and ⌫js = ⌫i for i < j  ⌘.

(f) Let i+1 < ⌘. Let h be least such that h = i or h < i and i < �h. Then
h is the immediate predecessor of i+1 in T . (In symbols: h = T (i+1)).
Before continuing with the definition, we note some consequences:
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Set:

t = ti =: the least t such that t = ⌘i or t < ⌘i ^  < �i

t

(Hence ti  si). In the following assume: h = T (i+ 1), t = ti. Then:

(1) Ii|t+ 1 = Ih|t+ 1. Moreover ⌫ht � ⌫it if t < ⌘h.
Proof. If h = i this is trivial. Now let h < i. Then

 < �h = �i

sh
by (e).

Hence t  sh. Clearly by (e) we have:

Ih|sh + 1 = Ii|sh + 1 and ⌫ish = ⌫h (*)

Hence Ih|t+ 1 = Ii|t+ 1. If t = sh, we then have: ⌫ht > ⌫h = ⌫it
if t < ⌘h. If t < sh, then: ⌫ht = ⌫it by (*).

QED(1)
(2) h is least such that Ii|t = Ih|t.

Proof. Let l < t. Then �i
sl

= �l   < �i
t. Hence sl < t. But

⌫hsl = ⌫l < ⌫lsl if sl < ⌘l. Hence I l|t 6= Ih|t.
QED (2)

By (1), the conditions for forming W (Ih, Ii, ⌫i) are given. Our next
axiom reads:

(g) Let h = T (i+ 1). Then eh,i+1 inserts Ii⇤ into Ii+1 where:

hIi⇤, Ii+1, eh,i+1i = W (Ih, Ii, ⌫i)

We define:

Definition 3.7.7. i + 1 is a drop point (or truncation point) in R iff
⌧i is not a cardinal in Mh

⌘h
where h = T (i+ 1). (This is the only case

in which Ii⇤ 6= Ih is possible).

Our final axioms read:

(h) If � < ⌘ is a limit ordinal, then T“{�} is club in �. Moreover, T“{�}
contain at most finitely many drop points.

(i) If � is as above and (h,�)T has no drop points, then ei,� inserts Ih into
I� and:

I�, hei,� : h T i T �i

is the good limit of:

hIi : h T i <T �i, hei,j : h T i T j < �i
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Note. As usual, we will then refer to I�, hei,� : i <T �i as the direct limit
of:

hIi : i T �i, hei,j : i T j < �i,
since the missing points are supplied by: el,� = eh,� � el,h for l  h.

Definition 3.7.8. If R = hhIii, h⌫ii, hei,ji, T i is a reiteration of length ⌘ and
o < µ  ⌘, we let R|µ denote:

hhIi : i < µi, h⌫i : i+ 1 < µi, hei,j : i T j < µi, T \ µ2i

Lemma 3.7.12. If R is a reiteration and 0 < i  lh(R). Then R|i is a
reiteration.

Lemma 3.7.13. Let R = hhIii, h⌫ii, heiji, T i be reiteration of length � + 1,
where Ii have length ⌘i+1 for i  �. Let EM

�
⌘�

⌫ 6= ?, where ⌫ > ⌫i for i < �.
Then there is a unique extension of B to a reiteration R0 of length �+2 such
that R0|� + 1 = R and ⌫ 0� = ⌫.

Proof. Let i = T 0
(� + 1). Then W (Ii, I� , ⌫) is defined.

A much deeper result is:

Lemma 3.7.14. Let R be a reiteration of limit length ⌘. There is a unique
extension R0 such that R0|⌘ = R and lh(R0

) = ⌘ + 1.

The proof of this theorem will be the main task of this subsection. It will
require a long train of lemmas.

For now on let:
R = hhI⇠i, h⌫⇠i, he⇠,µi, T i

be a reiteration of limit length ⌘. Let:

I⇠ = hhM ⇠

i
i, h⌫⇠

i
i, h⇡⇠

ij
i, T ⇠i

be of length ⌘⇠ + 1 for ⇠ < ⌘.

Lemma 3.7.15. Let ⇠ < µ < ⌘. Then:

(a) s⇠ < sµ

(b) ⌫⇠ = ⌫µs⇠

Proof. (b) holds by (e) in Definition ??. We prove (a). Suppose not.
⌘µ > s⇠ since ⌫µs⇠ exists. Hence sµ < ⌘µ. Hence ⌫µ < ⌫µsµ  ⌫µs⇠ = ⌫⇠.
Contradiction!

QED(Lemma 3.7.15)
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Lemma 3.7.16. Let ⇠ + 1 T µ. Then e⇠+1,µ �s⇠ + 1 = id.

We proved by induction on µ. For µ = ⇠+1 it is trivial. Now let ⇠+1 <T µ+1

and let it hold at � = T (µ + 1). Then ⇠ < � and hence: µ � �⇠ = �µ
s⇠ .

Hence tµ � s⇠ + 1 and:
e�,µ+1 � tµ = id

by (g). Hence:

e⇠+1,µ+1
(↵) = e�,µ+1e⇠+1,�

(↵) = ↵ for ↵  s⌘.

Now let µ be a limit ordinal and let the induction hypothesis hold at � for
all � with: ⇠ + 1 T � <T µ. For i T j <T µ we then have: eiµ(↵) =

ejµeij(↵) = ejµ(↵).

Let ↵  s⇠ be least such that ↵ < e⇠+1,µ
(↵). Let ⇠ + 1 T � <T µ such

that e�,µ(↵) = ↵. Then ↵ < ↵ = e⇠+1,�
(↵). Hence e�,µ(↵) = ↵ < ↵.

Contradiction!

QED(Lemma 3.7.16)

Definition 3.7.9. ŝ� =: lub{s⇠ : ⇠ < �}.

Lemma 3.7.17. Let � = T (⇠ + 1). Then ŝ�  t⇠  s�.

Proof.

(1) ŝ�  t⌘, since if i < �, then �i = ��
si  ⇠.

(2) t⇠  s� .

This is trivial for � = ⇠. Now let � < ⇠. Then ⌘ < �� = �⇠
s� . Hence t⇠  s� .

QED(Lemma 3.7.17)

Definition 3.7.10. X is in limbo at µ iff X ⇢ ŝµ and there is no pair hi, ji,
such that i 2 X, j � ŝµ and i <Tµ j.

Lemma 3.7.18. If ⇠ + 1 T µ, then (t⇠, s⇠] is in limbo at µ.

Proof. By induction on µ.

Case 1: µ = ⇠ + 1 by Lemma 3.7.10.

Case 2: µ = � + 1 >T ⇠ + 1.
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Let � = T (�+1). Then it holds at �. Moreover, ŝ�  t�  s� . Let i 2 (t⇠, s⇠]
and i <Tµ j, where j � ŝµ = s� + 1. We derive a contradiction.

j � ŝµ = s� + 1. Hence j = s� + 1 + l. Hence e�,µ(k) = j, where k = t� + l.
Since e�,µ(i) = i, we conclude: i <T � k, where ŝ�  t�  k. Contradiction!

QED(Case 2)

Case 3: µ is a limit ordinal.

Suppose i 2 (t⇠, s⇠] with i Tµ h, h � ŝµ. Then h = e�+1,µ
(h) for a � such

that
⇠ + 1 <Tµ � + 1 <Tµ µ

But e�+1,µ � s� + 1 = id by Lemma 3.7.16. Hence h > s� . Hence h � ŝ� =

s� + 1. Hence i 6<T �+1 h by the induction hypothesis. Hence i 6<Tµ h.

QED(Lemma 3.7.18)

By Lemma 3.7.16, I⇠|s⇠ + 1 = I� |s⇠ + 1 for ⇠  � < ⌘. The componentwise
union:

Ĩ =

[

⇠<⌘

I⇠|s⇠

is then a normal iteration of length

⌘̃ = lub{s⇠ : ⇠ < ⌘}

For ⇠ < ⌘̃ set:

Definition 3.7.11. �(i) =: the least � such that i  s� .

(Hence ŝ�  i  s�). The following lemma establishes an important connec-
tion between the normal iteration Ĩ and the reiteration R.

Lemma 3.7.19. Let i 
T̃
j. Then �(i) T �(i).

Proof. Suppose not. Let i, j be a counterexample. Then �(i) 6T �(j).
Hence i < j and �(i) < �(j). Set: � = �(j). There is µ + 1 T � such
that T (µ + 1) < �(i) < µ + 1. Set ⌧ = T (µ + 1). Then s⌧ < i, since
⌧ < �(i). Hence tµ  s⌧ < i by Lemma 3.7.17. But i  s�(i)  sµ, since
�(i)  µ. Hence i 6<T � j by Lemma 3.7.18, since j � ŝ� . Hence i 6<

T̃
j, since

I� |s� + 1 = Ĩ|s� + 1. Contradiction!

QED(Lemma 3.7.19)

Lemma 3.7.20. Let ⌧ = T (⇠ + 1) T µ. Then:

crit(e⌧,µ) = t⇠ and e⌧,µ(t⇠)  ŝµ
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Proof. By induction on µ.

Case 1. µ = ⇠ + 1. e⌧,⇠+1
(t⇠) = s⇠ + 1 = ŝ⇠+1 > t⌘, but

et,⇠+1
(i) = ê⌧,⇠+1

(i) = i for i < t⇠

Case 2. µ = � + 1 is a successor.

Let � = T (� + 1). Then:

e⌧,µ(t⇠) = e�,µ � e⌧,µ(ŝ�)
 e�,µ(t�) = s� + 1 = ŝµ

By the induction hypothesis we have:

e⌧,µ(t⇠) = e�,µ � e⌧,�(e⇠) � e⌧,�(t⇠) > t⌘

For i < t⇠ we have:

e⌧,µ(i) = e�,µe⌧,�(i) = e�,µ(i) = i

(since i < t�).

QED(Case 2)

Case 3. µ is a limit cardinal. Then e⌧,µ � t⇠ = id, since e⌧,� � t⇠ = id for t T

� <T µ (cf. the proof of Lemma 3.7.16). Moreover e⌧µ(t⇠) � e⌧�(t⇠) > t⇠.

Claim. e⌧,µ(t⇠)  ŝµ.

Proof. Let h < e⌧,µ(t⇠). Then h = e�,⌧ (h) where ⇠ T � <T µ. Assume
w.l.o.g. that � = T (� + 1), where � + 1 <T µ. Then:

h < e⌧,�(t⇠)  ŝ�  t�.

But e�,µ � t� = id by the induction hypothesis.

Hence:
h = e�,µ(h) = h < ŝ�  ŝµ

QED(Lemma 3.7.20)

In order to prove Theorem 3.7.14 we must find a cofinal branch b in T such
that

hIi : i 2 bi, hei,j : i < j in bi
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has a good limit. An obvious necessary condition is that

h⌘i : i 2 bi, hei,j : i < j in bi

have a transitivized direct limit:

⌘, hei : i 2 bi.

Note. This does not say that ei inserts Ii into a good limit I. It simply
gives us a system of indices which, with luck, might be used to construct a
good limit.

We obtain a rather surprising result:

Lemma 3.7.21. Let b be any cofinal branch in T . Then the commutative
system:

h⌘i : i 2 bi, hei,j : i  j in bi

has a well founded limit.

Note. This is surprising since, as we shall see, there is only one branch which
yields a good limit, whereas these could be many cofinal branches.

We now turn to the proof of Lemma 3.7.21. Let i0 2 b such that there is
no drop point in bri0. Hence ei,j(⌘i) = ⌘i for i  j, i, j 2 b. Let ⌘̂ + 1,
hei : i 2 bri0i be the direct limit of

h⌘i + 1 : i 2 bri0i, hei,j : i  j in bri0i

We claim that ⌘̂ is well founded.

Set: ̃⌧ =: t⇠ for ⌧, ⇠ + 1 2 bri0, ⌧ = T (⇠ + 1). Using Lemma 3.7.20 it is
straightforward to see that:

(a) ê⌧,µ � ̃⌧ = id for ⌧  µ in bri0.

(b) ̃⌧ < e⌧,⇠+1
(̃⌧ )  ̃⇠+1.

(c) e⌧,⇠+1
(̃⌧ + j) = e⌧,⇠+1

(̃⌧ ) + j.

(d) If ⌧ is a limit ordinal, then:

⌘⌧ =

[
{rng ei,⌧ : i0 < i < ⌧ in b}.

Given this, the conclusion follows from a sublemma, which -in an effort to
simplify notation- we formulate abstractly:
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Sublemma. Let ⌘ be a limit ordinal. Let h�i : i < ⌘i be a sequence of
ordinals and eij : �i �! �j (i  j < ⌘) be a commutative system of order
preserving maps. Let

�, hei : i < ⌘i
be the direct limit of

h�i : i < ⌘i, hei,j : i  j < ⌘i

Let <� be the induced order on �. Assume that i < �i for i < ⌘ such that
the following hold:

(a) ei,j �i = id

(b) i < ei,i+1(i)  i+1

(c) ei,i+1(i + j) = ei,i+1(i) + j

(d) �� =
S

i<�
rng(ei,�) for limit � < ⌘.

Then <� is well founded.

Proof. Set �̃ = wfc(h�, <� i). Assume w.l.o.g. that �̃ is transitive and
<� \�̃2

=2 \�̃2. Thus, our assertion amounts to: �̃ = �.

(1) j � i for j > i.
Proof. Otherwise ei,j+1(i) > j where j < i, contradicting (a).

(2) j > i for j > i.
Proof. j � j�1 > i by (b).

(3) Let ei(h) 2 �̃. Let µ  �i and:

ei,j(h+ l) = ei,j(h) + l for i � j and h+ l < µ.

Then ei(h+ l) = ei(h) + l for h+ l  µ.
Proof. Suppose not. Let l be the least counterexample. Then l > 0.
Let ej(↵) = ei(h) + l for a j � i. Then eij(h) < ↵ < eij(h) + l, since

ejeij(h) < ej(k) < ej(eij(h) + l)

Hence ↵ = eij(h) + k for a k < l. Hence:

ej(↵) = ej(eij(h) + k) = ei(h) + k < ej(h) + l = ej(↵).

Contradiction!
QED(3)

Taking h = 0, we have eij(l) = i for l < i. Hence:
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(4) i ⇢ �̃ and ei �i = id.

(5) Let eij(h) � j . Then eij(h+ l) = eij(h) + l for all h+ l < �i.

Proof. By induction on j � i. The case i = j is trivial. Now let
j = k + 1, where it holds at k. Then ei,k(h) � k, since otherwise:

eij(h) = ek,k+1eik(h) = ei,k(h) < h < j .

Hence:

ei,k(h+ l) = ekjeik(h+ l) = ekj(eik(h) + l)

= ekj(h) + l

since if eik(h) = k + a, then:

ek,k+1(h+ l) = ek,k+1(k + a+ l) = ek,k+1(k) + a+ l

= eh,k+1(k + a) + l = ek,k+1(h) + l

Now let j be a limit ordinal. Then:

�j , heij : i < ji

is the limit of
h�i : i < ji, heh,i : h  i < ji

and we apply (3).

QED(5)

We now prove � ⇢ �̃ by cases as follows:

Case 1: For all i < ⌘, h < �i there is j > i such that eij(h) < j .

Then ei(h) = ejei,j(h) ⇢ j , since ej � j = id. Thus � =
S

i
rng(ei) ⇢S

i
i ⇢ �̃.

Case 2: Case 1 fails.

Then there is i such that for some h < �i0 , we have: eij(h) � i for all j � i.
Since ejkeik(h) � eik(h) � k for i0  j  k, there is for each j � i0 a least
hj such that ejl(hj) � l for all l � j.

Claim. eij(hj) = hj for i0  i  j.

Proof. Suppose not. Let j be the least counterexample. Using (3) it follows
that j = l + 1 is a successor. Then hj < el,j(hl). But hj � j � elj(l).
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Hence hj = elj(l) + a = el(l + a), where l + a < hl. But for j0 � j we
have:

hl,j(l + a) = hj,j0(el,j(l) + a) � j0 .

Hence hl  l + a < hl. Contradiction!

QED(Claim)

But then ei(hi) = ej(hj) for i0  i  j < ⌘. Now let h̃ = ei(hi) for
i0  i < ⌘. Then:

Claim. h̃ =
S
{hi : i0  i < ⌘}.

Proof. h̃ =
S

i
ei“hi. But if a < hi, then eij(a) < j for some j � i by the

minimality of hi. Hence ei(a) = ej(ei,j(a)) = ei,j(a) < hj , since ej �j = id.

QED(Claim)

Hence h̃ 2 �̃ and:

ej(hj + l) = h̃+ l for hj + l < �j ,

by (3), (5). Hence rng(ej) ⇢ �̃ and � = �̃. This proves the sublemma and
with it Lemma 3.7.21.

QED(Lemma 3.7.21)

Note that ⌘0 � ̃i for i 2 bri0 where ei(⌘i) = ⌘̂. Hence as a corollare of the
proof we have:

Corollary 3.7.22. Set ⌘̃i = the least h such that ei,j(h) � ̃j for all j � i.
Then ⌘̃i is defined for sufficiently large i and ei(⌘̃i) = ⌘̃. Moreover ⌘̃ =

lub{⌘̃i : i < ⌘}.

However, in order to prove Theorem 3.7.14 we must find the “right" cofinal
branch in T . Lemma 3.7.19 suggests an obvious strategy: Let b̃ be the unique
well founded cofinal branch in Ĩ. Set:

b̂ = {�(i) : i 2 b̃}, b = {⌧ :

_
� 2 b̂, ⌧ T �}

Then b is a cofinal branch in T . We show that this branch works, thus
establishing the existence assertion of Theorem 3.7.14.

By Lemma 3.7.21, the commutative system

h⌘i + 1 : i 2 bi, hei,j : i  j in bi



3.7. SMOOTH ITERABILITY 317

has a transitivized direct limit:

⌘̂ + 1, hei : i 2 bi

This gives us a system of indices with which to work.

We must show that the commutative insertion system:

hIh : h 2 bi, heh,j : h  j in bi

has a good limit I. By induction on i < ⌘̂ we, in fact, show:

Lemma 3.7.23. Let i < ⌘̂. Then the above commutative system has a good
limit I|i + 1 with respect to i in the sense of Definition 3.7.5 at the end of
§3.7.1. In other words, I|i+1 has length i+1 and e⇠ �h+1 inserts I⇠|h+1i

into I|i+ 1 whenever e⇠(h) = i.

Remark on notation. In §3.7.1 we showed that there can be at most
one good limit below i. We denote this, if it exists, by I|i + 1. But then
(I|i+ 1)|h+ 1 = I|h+ 1 by uniqueness.

We recall that we defined: ̃⌧ = t⇠ where ⌧ = T (⇠ + 1), ⇠ + 1 2 b, and that
̃⌧ = crit(e⌧,j) = crit(e⌧ ) for ⌧ < j in b.

But then Ĩ =
S

⌧2b I
⌧ |̃⌧ , since if ⌧ = T (⇠ + 1), ⇠ + 1 2 b, then:

I⌧ |̃⌧ = (I⇠|s⌘+1)|̃⌧ = Ĩ|̃⌧ .

But
S

⌧2b ̃⌧ =
S

i<⌘
si + 1, since if ⌧ = � + 1, then:

ŝ⌧ = s� + 1  t⇠ = ̃⌧ .

We prove Lemma 3.7.23 by induction on i  ⌘̂.

Case 1. i < ⌘̃ = lh(Ĩ).

Let e⇠(h) = i. Let ⇠ <T ⌧ 2 b, where i + 1 < ̃⌧ . Then e⇠|h + 1 =

(e⌧ |i+ 1)(e⇠,⌧ |h+ 1) where e⌧ |i+ 1 = id. Hence:

e⇠|h+ 1 = e⇠,⌧ |h+ 1 inserts I⇠|h+ 1 into I⌧ |h+ 1 = I|h+ 1

QED(Case 1)

Case 2. i = ⌘̃.
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Let b̃ be the unique cofinal well founded branch in Ĩ. Let M⌘̃, h⇡̂i,⌘̃ : i 2 b̃i
be the transitivized direct limit of: hMi : i 2 bi, h⇡̃ij : i T j 2 b̃i. This gives
us I|⌘̃ + 1. We must prove that whenever e⇠(⌘) = ⌘̃, ⇠ 2 b, then e⇠ inserts
I⇠|⌘+1 into I|⌘̃+1. By Lemma 3.7.8 it suffices to show that for arbitrarily
large ⇠ 2 b:

(⇤) e⇠(⌘) = ⌘̃, where either ê⇠(⌘) 2 b̃ or else ê⇠(⌘) = ⌘̃ and
ê⇠(i) 2 b̃ for all i <T ⇠ ⌘.

We know: ̃⌧ = crit(e⌧,⇠+1
) = t⇠ for ⌧ = T (⇠ + 1), ⇠ + 1 2 b. Set:

�̃⌧ =: e⌧,⇠+1
(̃⌧ ) = s⇠ + 1 for ⌧ = t(⇠ + 1), ⇠ + 1 2 b.

Then:

(1) b̃ \
S

⌧2b(̃⌧ , �̃⌧ ) = ?.

Proof. Suppose not. Let i 2 b̃ \ (̃⌧ , �̃⌧ ) where ⌧ 2 b. Let µ > ⌧ such
that:

µ 2 b̂ = {�(i) : i 2 b̃}.

Let µ = �(j), j 2 b̃. Then ŝµ  j  sµ. Then i < j in b̃, since:

i  s⇠ < ŝµ  j, where ⌧ = T (⇠ + 1), ⇠ + 1 2 b.

But T̃ |s = Tµ|sµ + 1. Hence i <Tµ j in Iµ. But:

(̃⌧ , �̃⌧ ) = (t⇠, s⇠].

Hence (̃⌧ , �̃⌧ ) is in limbo at µ, since ⇠ + 1 T µ. Hence i 6<Tµ j.
Contradiction!

QED(1)

Set:
A = {⌧ 2 b : ŝ⌧ < ̃⌧}.

The set A strongly determines what happens at ⌘̃. We first consider
the case:

Case 2.1. A is cofinal in b.

There is then a ⌧0 2 b such that ŝ⌧ = ̃⌧ for all ⌧ 2 br⌧0. (Recall that,
if T = T (⇠ + 1) and ⇠ + 1 2 b, then ̃⌧ = t⇠ and ŝ⌧  t⇠  s⌧ < �̃⌧ by
Lemma 3.7.17.) By (1) we have:

b̃r⌧0 ⇢ B =: {ŝi : ⌧0  i in b} = {̃i : ⌧0  i in b}.
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(2) b̃r⌧0 = B.
Proof. Suppose not. Let i 2 Brb̃0 be the least counterexample. Then
i > ⌧0. Moreover, i is not a limit ordinal, since otherwise i = lub{ŝj :
j 2 B \ i}, where B \ i ⇢ b̃ and b̃ is closed in ⌘̃. Hence:

i = ŝ⇠+1 = s⇠ + 1, where ⇠ + 1 2 br(⌧0 + 1).

Let ⌧ = T (⇠ + 1). Then ⌧ � ⌧0 in b and

ŝ⌧ = ̃⌧ = t⇠, s⇠ + 1 = �̃⇠.

Hence ŝ⌧ = T̃ (s⇠+1), where ŝ⌧ 2 B. Clearly ŝ⌧ 2 b̃, by the minimality
of i. Now let j+1 2 b̃ such that ŝ⌧ = T̃ (j+1). Then j+1 � �̃⌧ = s⇠+1,
since j + 1 > ̃⌧ and (̃⌧ , �̃⌧ ) \ b̃ = ?. Let � = �(j + 1). Then
j + 1 = ŝ� = ̃� is a successor ordinal. Hence ŝ� = s� + 1, where
� = � + 1. Let µ = T (� + 1). Then ŝµ = ̂µ = T̂ (s� + 1). Hence
ŝµ = ŝt. Hence µ = ⌧, � = ⇠ and i = ŝ⇠ +1 = j+1 2 b̃. Contradiction!

QED(2)
But then every ⌧ 2 br⌧0 satisfies (*), since:

(3) Let ⌧0  ⌧ 2 b. Then e⌧ (̃⌧ ) = ⌘̃ and e⌧ � ̃⌧ = id. (Hence ê⇠(̃⌧ ) =
̃⌧ 2 b̃).
Proof. We know that if ⌧ = T (⇠ + 1), ⇠ + 1 2 b, then:

e⌧,⇠+1 � ̃⌧ = id, e⌧,⇠+1
(̃⌧ ) = �̃⌧ = s⇠ + 1 = ̃⇠+1

Using this we prove by induction on ⇠ 2 br⌧0 that if ⌧0  ⌧ < ⇠, ⌧ 2 b,
then:

e⌧,⇠ � ̃⌧ = id, e⌧,⇠(̃⌧ ) = ̃⇠.

At limit ⇠ we use the fact that:

e⌧,⇠(i) =
[

⌧⌧ 02b
e⌧

0
,⇠
”e⌧,⌧

0
(i).

But then the same proof shows:

e⌧ � ̃⌧ = id, e⌧ (̃⌧ ) = ⌘̃,

since:
⌘̃ = sup

⌧2br⌧0

̃⌧ = sup
⌧2br⌧0

ŝ⌧ = sup
⇠+12br⌧0

s⇠ + 1.

QED(Case 2.1)
Case 2.2. A is cofinal in b.
We shall make use of the following general lemma on normal reiteration:
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Lemma 3.7.24. Let ⇠ T µ, i  ⌘⇠ such that ŝµ  j < e⇠,µ(i). Then
j 2 rng(e�,µ).

Proof. Suppose not. Let µ be the least counterexample. Then µ > ⇠.

Case 1. µ is a limit ordinal.

Let ⇣ such that ⇠  ⇣ < µ and j = e⇣,µ(j0). Then j0 � ̃⇣ , since
otherwise:

j = j0 < ⇣ < �̃⇣ < ŝµ.

Contradiction! Thus ŝ⇣  j0  e⇣,µ(i). By the minimality of µ we
conclude:

j0 2 rng(e⇣,µ);

hence j = e⇣,µ(j0) 2 rng(e⇣,µ). Contradiction!

Case 2. µ = ⇣ + 1 is a successor.

Let ⌧ = T (⇣ + 1). Then j � ŝµ = s⇣ + 1 = �̃⌧ . Moreover:

e⌧,µ(̃⌧ + h) = �̃⌧ + h for h  ⌘⌧ .

Let j = �̃⌧ + h, e⇠,µ(i) = �̃⌧ + k. Hence h < k. Set j0 = ̃⌧ + h.
Then e⌧,µ(j0) = j, where ŝ⌧  ̃⌧  j0 < e⇠,µ(i). By the minimality
of µ we conclude: j0 2 rng(e⇠,⌧ ). Hence j = e⌧,µ(j0) 2 rng(e⇠,µ).
Contradiction!

QED(Lemma 3.7.24)

Let ⌧0 2 b such that ⌘̃ 2 rng(ẽ⌧0). Then ⌘̃ 2 rng(e⌧ ) for all ⌧ 2 br⌧0.
Set:

⌘̃⌧ = (e⌧ )�1
(⌘̃) for ⌧ 2 br⌧0.

Then:

(4) e⌧ (̃⌧ ) < ⌘̃ for ⌧ 2 br⌧0.

Proof. Let ⌧ < � 2 A. Then e⌧,�(̃i)  ŝ� < ̃� by Lemma 3.7.20.
Hence:

e⌧ (̃⌧ ) = e� · e⌧,�(̃⌧ ) = e⌧,�(̃⌧ ) < ̃� < ⌘̃.

QED(4)

Now set:
B =:

[

⌧2br⌧0

[s̃⌧ , ̃⌧ ).

Note. [ŝ⌧ , ̃⌧ ) = ? if ⌧ /2 A.
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(5) Let ⌧0  ⌧ 2 b. Then B ⇢ rng(e⌧ ).

Proof. Let ⌧  � 2 A. Let j 2 [ŝ� , ̃�). Then

ŝ�  j  ⌘̃� = e⌧,�(⌘̃�).

But then by Lemma 3.7.24 we have:

[ŝ� , ̃�) ⇢ rng(e⌧,�).

But e� � [ŝ� , ̃�) = id. Hence:

[ŝ� , ̃�) ⇢ rng(e⌧ ) = rng(ẽ� ẽ⌧ ).

QED(5)

Since B is cofinal in ⌘̃, we conclude:

(6) e⌧“⌘̃⌧ is cofinal in ⌘̃ for ⌧ 2 br⌧0. Using this we then get:

(7) Let ⌧ 2 br⌧0. Then:

b̃ \ (rng(e⌧ ) [ rng(ê⌧ ))

is cofinal in ⌘̃.

Proof. Suppose not. Then there is a i0 < ⌘̃, such that

b̃ \ (rng(e⌧ ) [ rng(ê⌧ )) ⇢ i0.

Note that if � 2 A, then [ŝ� , ̃�) ⇢ rng(e⌧ ). Hence (ŝ� , ̃� ] ⇢ rng(ê⌧ ).
We shall derive a contradiction by showing that A is not cofinal in b.
In particular, we show:

Claim. Let i0 < j 2 b̃. Let �0 = �(j). Assume that �  � 2 b. Then
ŝ� = ̃� 2 b̃.

Proof. We proceed by induction on �. There are three cases:

Case 2.2.1. � = �0.

It suffices to show: �0 /2 A, since then ŝ�0  j < �̃� , j /2 (̃�0 , �̃�0),
where ŝ�0 = �̃�0 . Hence j = ŝ� = ̂� 2 b̃. Suppose not. j 2 [ŝ� , ̃� ]
since (̃� , �̃�)\b̃ = ?. But [ŝ� , ̃� ] ⇢ rng(e⌧ )[rng(ê⌧ ). Contradiction!,
since j < i0.

QED(Case 2.2.1)

Case 2.2.2. � = ⇠ + 1 > �0 is a successor.

Let µ = T (⇠ + 1). Hence, �0  µ 2 b. Then sµ = ̃µ 2 b̃. Let
j + 1 be the immediate successor of sµ in b̃. Then ̃µ < j + 1. Hence
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j + 1 � �̃µ = s⇠ + 1, since (̃µ, �̃µ) \ b̃ = ?. Let � = �(j + 1). Then
j + 1 2 [ŝ� , ̃� ]. Hence, as in Case 2.2.1, ̃� = ŝ� , since otherwise:

[ŝ� , ̃� ] ⇢ rng(e⌧ ) [ rng(ê⌧ ).

Then j+1 = ŝ� = ̃� and ŝ� = s⇠+1, where � = ⇣+1. Let ⇠ = T (⇣+1).
Then ̃⌘ = T̃ (j + 1), where j = s⇣ . Hence ̃⌘ = ŝµ = T̃ (j + 1). Hence
⌘ = µ, since otherwise ⌘ > µ and ŝµ < ŝ⌘ = ̃⌘. Hence ⇠ = ⇣, since
⇠ + 1 = ⇣ + 1 = the immediate successor of µ in b. Hence ŝ� = ̃� 2 b̃.

QED(Case 2.2.2)
Case 2.2.3. � > �0 is a limit ordinal.
Then ŝ� = supi<� ŝi 2 b̃, since b̃ is closed in ⌘̃. But then ŝ� = ̃�, since
otherwise:

[ŝ�, ̃�) ⇢ rng(e⌧ ), where ŝ� > i0.

QED(Case 2.2.3)
This proves (7).
We now show that (*) holds for all ⌧ 2 br⌧0.

(8) Let ⌧ 2 br⌧0. If i <T ⌧ ⌘̃⌧ , then ê⌧ (i) 2 b̃.
Proof. Set: b = (ê⌧ )�1

”b̃.
Claim 1. b is cofinal in ⌘̃⌧ .
Proof. Let i < ⌘̃⌧ . Set i0 = e⌧ (i). By (7) there is j0 2 b̃ such that

j0 > i0 and j0 2 rng(e⌧ ) [ rng(ê⌧ ).

If e⌧ (j) = j0, then j > i and ê⌧ (j) 
T̃

j0 2 b̃. Hence ê⌧ (j) 2 b̃ and
j 2 b. If ê⌧ (j) = j0, then ê⌧ (i) < j0 2 b̃. Hence j > i and j 2 b.

QED(Claim 1)
Claim 2. b is a branch in T ⌧ .
Proof. Let i <T ⌧ j 2 b. Then ê⌧ (i) 

T̃
ê⌧ (j) 2 b̃. Hence ê⌧ (i) 2 b̃

and i 2 b.
QED(Claim 2)

Claim 3. b is well founded.
This follows by standard methods, given that b̃ is well founded. But
then b = T ⌧

”{⌘̃⌧} by uniqueness.
QED(Case 2)

Case 3. i > ⌘̃.
Then e⌧ (⌘̃⌧ + i) = ⌘̃ + i by Lemma 3.7.24. Using this, it follows easily
by Lemma 3.7.8 and Lemma 3.7.7 that I|i + 1 exists. We leave the
details to the reader.
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QED(Lemma 3.7.23)

This proves the existence part of Theorem 3.7.24. We must still prove unique-
ness.

Definition 3.7.12. Let b be a cofinal branch in:

R = hhIii, h⌫ii, hei,ji, T i,

where R is a reiteration of limit length ⌘. b is good for R iff R extends to R0

of length ⌘ + 1 with b = T“{⌘}.

We have proven the existence of a good branch b. Now we must show that it
is the only one. Suppose not. Let b⇤ be a second good branch, inducing R⇤

of length ⌘ + 1 with: b⇤ = T ⇤
“{⌘}. Since b, b⇤ are distinct cofinal branches

in T , there is ⌧0 < ⌘ such that:

(br⌧0) \ (b⇤r⌧0) = ?.

I 0 = (I⌘)R
0 has length ⌘̂ and I⇤ = (I⌘)R

⇤ has length ⌘⇤. However:

⌘̃ =

[

i<⌘

si + 1, Ĩ =

[

i<⌘

I|si + 1

remain unchanged. Moreover I = I 0|⌘̃ = I⇤|⌘̃. Since b̂ is the unique cofinal
well founded branch in Ĩ, we must have:

b̃ = T 0
“{⌘̃} = T ⇤

“{⌘̃}.

Now let � > ⌧i such that:

� = �(i) 2 b̂ = {�(i) : i 2 b̃}

Then � 2 br⌧0. Let � = �(i) where i 2 b̃. Then ŝ�  i  s� .

Let � be least such that � 2 b⇤ and � > �0. Then � = ⇠ + 1 and ⌧ =:

T ⇤
(⇠ + 1) < �. Then t⇠  s⌧ . But

s⌧ < ŝ�  i  s� , where s� + 1 = ŝ�+1  ŝ⇠ = s⇠ + 1.

Hence i 2 (t⇠, s⇠]. But then:

i < s⇠ + 1 = �̃⇤
⌧  ̃⇤

�
= crit(e⇤�)

Hence e⇤�(i) = i 2 b⇤. But i <T ⇤ ⌘̃, since i 2 b̃. Hence, letting e⇤�(⌘̃⇤
�
) = ⌘̃,

we have:
i <T ⌘⇤

�
, where ⌘̃⇤

�
� ŝ0 = s⇠ + 1.
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But this is impossible, since (t⇠, s⇠] is in limbo at �. Contradiction!

QED(Theorem 3.7.14)

We have shown that, if M is uniquely normally iterable, then it is uniquely
normally iterable in the sense that every normal reiteration of limit length
has exactly one good branch. As we stated at the outset, the result can
be relativized to a regular ✓ > !. In this case we restrict ourselves to ✓-
reiterations.

Definition 3.7.13. Let ✓ > ! be regular. A normal reiteration R =

hhIii, h⌫ii, hei,ji, T i is called a ✓-reiteration iff lh(R) < ✓ and lh(Ii) < ✓
for all i. M is uniquely normally ✓-reiterable iff every ✓-reiteration of limit
length < ✓ has one good branch.

We have shown that, if M is uniquely normally ✓-iterable, then it is uniquely
normally ✓-reiterable. But what if M is, in fact, ✓ + 1 iterable? Can we
strengthen the the conclusion correspondingly? We define:

Definition 3.7.14. Let ✓, R be as above. R is a ✓+1-reiteration iff lh(R)  ✓
and lh(Ii) < ✓ for all i. M is uniquelly normally ✓ + 1 reiterable iff every
✓-reiteration of length  ✓ has a unique good branch.

Now suppose M be normally ✓ + 1-iterable. Let R be a ✓ + 1 reiteration of
length ✓. Define Ĩ , b̃, b̂, b exactly as before. Then b is a cofinal branch in T .
(It is also the unique such branch, since if b0 were another such, then b \ b0

s club in ✓. Hence b = b0). b has at most finitely many drop points, since
otherwise some proper segment of b would have infinitely many drop points.
Suppose that � 2 b and br� has no drop points. Then:

hhIi : i 2 br�i, hei,j : i < j 2 br�ii

has a unique good limit:
hI, hei : i 2 br�ii

by Lemma 3.7.9. Hence b is a good branch. Thus we have:

Lemma 3.7.25. If M is uniquely normally iterable, then it is uniquelly
normally reiterable. Moreover if ✓ > ! is regular, then:

(a) If M is uniquely normally ✓-iterable, then it is uniquely normally ✓-
reiterable.

(b) If M is uniquely normally ✓ + 1-iterable, then it is uniquely normally
✓ + 1-reiterable.
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Remark. The assumption that M is uniquely normally iterable can be weak-
ened somewhat. We define:

Definition 3.7.15. Let S be a normal iteration strategy for M . S is inser-
tion stable iff whenever I is an S-conforming iteration of M and e inserts I
into I, then I is an S-conforming iteration.

Now suppose that M is iterable by an insertion stable strategy S. We can
define the notion of a normal reiteration on hM,Si exactly as before, ex-
cept that we require each of the component normal iterations Ii to be S-
conforming. (We could also call this an S-conforming normal reiteration
on M). All of the assertions we have proven in this subsection go through
for reiterations on hM,Si, with nominal changes in formulation and proofs.
For instance, if we alter the definition of good branch mutatis mutandis, our
proofs give:

hM,Si is uniquely reiterable in the sense that every reiteration
of limit length has exactly one good branch.

We close this section with two technical lemmas which will be of use later.
Both assume the unique iterability (or ✓-iterability) of M .

Lemma 3.7.26. Let I, I 0 be normal iterations of M . There is at most one
pair hR, ⇠i such that

R = hhIii, h⌫ii, hei,ji, T i,

is a reiteration of M, lh(R) = ⇠ + 1, I = I0, I 0 = I⇠.

Proof. Assume such R, ⇠ to exist. Ww show that R, ⇠ are defined by a
recursion:

R|i+ 1 ⇠= F (R|i)

where ⇠ is least such that F (R|⇠ + 1) is undefined. F will be defined solely
by reference to I, I 0. We have:

R|1 = hhIi,?, h id� lh(I)i,?i.

At limit �, R � � + 1 = F (R|�) is given by the unique good branch in R|�.
Now let R|i+1 be given. If Ii = I 0, then F (R|i+1) is undefined. If not, let
s = si. Then Ii|s+ 1 = I 0|s+ 1, since ⌫i = ⌫i+1

s = ⌫ 0s. If s+ 1 < lh(Ii), then
⌫i = ⌫ 0s < ⌫is. Hence Ii|s+ 2 6= I 0|s+ 2. We have shown:

s = the maximal s such that s+ 1  lh(Ii)

and Ii|s+ 1 = I 0|s+ 1.
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But then R|i+ 2 is uniquely defined from R|i+ 1 and ⌫i = ⌫ 0s.

QED(Lemma 3.7.26)

For later reference we state a further lemma about reiterations:

Lemma 3.7.27. Let R = hhIii, h⌫ii, hei,ji, T i be a reiteration of length µ+1.
Let Ii be of length ⌘i for i  µ. Set:

Aj = AR

j =: {i : i <T j and (i, j]T has no drop point in R}

for j  µ. Set:
�i,j = �i,j

⌘i
for i 2 Aj or i = j

. Then:

(a) ei,µ(⌘i) = ⌘µ for i 2 Aµ.

(b) �i,µ : M⌘i �!⌃⇤ M⌘µ for i 2 Aµ.

(c) If µ is a limit ordinal, then

M⌘ =

[

i2Aµ

rng(�i,µ).

Proof. We prove it by induction on µ.

Case 1. µ = 0. Then Aµ = ? and there is nothing to prove.

Case 2. µ = j+1 is a successor. If µ is a drop point, then Aµ = ? and there
is nothing to prove. Assume that it is not a drop point. Then h = T (µ) is
the maximal element of Aµ. (c) holds vacuously. We now prove (a), (b) for
i = h. By our construction, eh,µ(⌘h) = ⌘h could only fail if µ is a drop point,
so (a) holds. We now prove (b) for i = h. If tj < ⌘h, then êh,µ = eh,µ and:

�h,µ = �̂h,µ

⌘h
= �h,µ

⌘h
.

Hence (b) holds. Now let tj = ⌘h. Then ⌘µ = sj + 1 and:

�h,µ

⌘h
: Mh

⌘h
�!⇤

F Mµ

⌘µ
,

where F = E
Mj
⌫j . Hence (b) holds.

Now let i < h. Then i 2 AR|h+1

h
. This gives us �ih = �i,h

⌘i . Then (a)-(c)
holds for R|h+ 1 by the induction hypothesis.

By Lemma 3.7.5 we then easily get:

�h,µ�i,h = �i,µ.
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It follows easily that (a), (b) hold at i.

QED(Case 2)

Case 3. µ is a limit ordinal. Then Aµ = [i0, µ)T for a i0 <T µ. We know
that:

⌘µ, hei,µ : i 2 Aµi

is the transitivized direct limit of:

h⌫i : i 2 Aµi, hei,j : i  j in Aµi

Hence (a) holds at µ. But:

Iµ, hei,µ : i 2 Aµi

is the good limit of:

hIi : i 2 Aµi, hei,j : i  j in Aµi

(where ejµeij = ei,µ). But then (c) holds by Lemma 3.7.7. Hence (b) holds,
since (b) holds for R|i+ 1 whenever i 2 Aµ (hence Ai = Aµ \ i).

QED(Lemma 3.7.27)

3.7.3 A first conclusion

In this section we prove:

Theorem 3.7.28. Let M 0 be a normal iterate of M . Then M 0 is normally
iterable.

We prove it in the slightly stronger form:

Lemma 3.7.29. Let Ĩ = hhM̃ii, h⌫̃ii, h⇡̃i,ji, T̃ i be a normal iteration of M of
length ⌘̃ + 1. Let �̃ : N �!⌃⇤ M̃⌘̃ min ⇢̃. Then N is normally iterable.

First, however, we prove a technical lemma. Recalling the Definition 3.7.6
of the function W (I, I 0, ⌫), we prove:

Lemma 3.7.30. Let W (I, I 0, ⌫) = hI⇤, I 00, ei, where F, ⌫,, ⌧,�, s, t are as
in 3.7.6. Let I, I⇤, I 0, I 00 be of length ⌘ + 1, ⌘⇤ + 1, ⌘0 + 1, ⌘00 + 1 respectively.
Let � = �̃⌘⇤ be induced by e. Set:

M⇤ = M⌘||µ whose µ is maximal such that ⌧ is a cardinal M⌘||µ.

(Hence P() \M⇤ = P() \ JE
M0

⌘0

⌫0 ). Then:
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(a) � : M⇤ �!⌃⇤ M 00
⌘00

(b) �(X) = F (X) for X 2 P() \M⇤ (hence  = crit(�)).

Proof. Case 1. t = ⌘ and ⌧ is a cardinal in M⌘.

Then ⌘⇤ = ⌘,M⇤ = M, ⌘00 = ⌘ + 1 and:

�⌘ = ⇡⌘ = ⇡00
⌘,⌘+1 : M⌘ �!⇤

F M 00
⌘+1

QED(Case 1)

Case 2. t < ⌘ and ⌧ is a cardinal in M⌘. Then ⌘⇤ = ⌘,M⇤ = M⌘. Moreover,
�̂⌘ = �⌘; hence (a) holds. Set:

M 00
⇤ = Mt||µ where µ is maximal such that ⌧ is a cardinal in Mt||µ.

Then M 00
⇤ = M 00⇤

s and:

�t = ⇡t = ⇡00
t,s+1 : M

00
⇤ �!⇤

F M 00
⌘+1.

Note that µ � �t, since �t in inaccessible in M⌘ and ⌧ < �t is a cardinal in
M⌘. Then �⌘ ��t = �t ��t and JE

Mt

�t
= JE

M⌘

�t
. Hence �⌘ �JE

M⌘

�t
= �t �JE

Mt

�t
.

Hence:
�⌘(X) = �t(X) = F (X) for X 2 P() \M.

QED(Case 2)

Case 3. ⌧ is not a cardinal in M⌘. Then ⌘⇤ = t, ⌘00 = s+ 1, and:

�t = ⇡t : M⇤ �!⇤
F M 00

s+1

QED(Lemma 3.7.30)

Corollary 3.7.31. Let:

R = hhIii, h⌫ii, hei,ji, T i,

be a reiteration where:

Ii = hhM i

k
i, h⌫i

k
i, h⇡i

k,l
i, T ii is of length ⌘i + 1.

Let ⇠ = T (i + 1). Let Ii⇤ have length ⌘⇤ + 1. Set: M i
⇤ = M ⇠

⌘⇤ ||µ, where µ is
maximal such that ⌧i is a cardinal in M ⇠

⌘⇤ . Then:

�⇠,i+1

⌘⇤ : M i

⇤ �!⌃⇤ M i+1

⌘i+1
and:

�⇠,i+1

⌘⇤ (X) = Ei

⌫i
(X) for X 2 P(i) \M i

⇤.
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Note. P(i) \M i
⇤ = P(i) \ J

E
Mi
⌘i

⌫i .

Note. This does not say that M i+1
⌘i+1

is a ⇤-ultrapower of M i
⇤ by E

M
0
⌘i

⌫i .

We now make use of the notion of mirror defined in §3.6.

This suggests the following definition:

Definition 3.7.16. Let I⇤ = hhNii, h⌫ii, h⇡i,ji, T i be a normal iteration of
length ⌘.

By a reiteration mirror (RM) of I⇤ we mean a pair hR, I 0i such that

(a) R = hhIii, h⌫ii, hei,ji, T i is a reiteration of M of length ⌘, where

Ii = hhM i

h
i, h⌫i

h
i, h⇡i

hj
i, T ii is of length ⌘i.

(b) I 0 = hhM 0
i
i, h⇡0

ih
i, h�ii, h⇢iii is a mirror of I⇤. (Hence �i(⌫⇤i ) = ⌫i).

(c) M 0
i
= M i

⌘i
.

(d) If h = T (i+ 1), then

M 0⇤
i

= Mh
⌘h
||µ, where µ is maximal such that ⌧i is a cardinal

in Mh
⌘h

and ⇡0
h,i+1

= �h,i+1

⌘
⇤
h

, where ⌘⇤
h
+ 1 = lh(Ii⇤).

Definition 3.7.17. hI⇤, R, I 0i is called an RM-triple if hR, I 0i is an RM of
I⇤.

We obviously have:

Lemma 3.7.32. i+ 1 is a drop point in I⇤ iff it is a drop point in R.

Moreover:

Lemma 3.7.33. If (i, j]T has no drop point, then ⇡0
ij
= �ij

⌘i .

Proof. By induction on j, using Lemma 3.7.27. We leave this to the reader.

Lemma 3.7.34. Let hI, R, I 0i be an RM-triple of length ⌘+1. Let EN⌘
⌫ 6= ?,

where ⌫ > ⌫i for i < ⌘. Then hI, R, I 0i extends to a triple of length ⌘ + 2,
with ⌫ = ⌫⌘ (hence ⌫ 0⌘ = �⌘(⌫)).
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Proof. By Lemma 3.7.25, R is uniquely reiterable. Hence R extends to Ṙ
of length ⌘ + 2 with ⌫̇⌘ = �⌘(⌫). Set: M 0

⌘+1
=: the final model of İ⇠+1, ⇠ =:

Ṫ (⌘ + 1),⇡0
=: �⇠,⌘+1

⌘⇤ , where ⌘⇤ = ln(I⌘⇤ ). The choice of ⌫⌘ determines
Ṁ⇤

⌘ = M ⇠
⌘ ||µ. Then:

⇡�1
: Ṁ⇤

⌘ �!⌃⇤ M⌘+1,⇡(X) = E
M

0
⌘

⌫ (X) for X 2 P() \ Ṁ⇤
⌘ .

The conclusion then follows by Lemma 3.6.38.

QED(Lemma 3.7.34)

By Lemma 3.7.25 and Lemma 3.6.37 we then have:

Lemma 3.7.35. Let hI, R, I 0i be an RM-triple of limit length ⌘. Let b be the
unique good branch in R. Then there is a unique extension to an RM-triple
of length ⌘ + 1. Moreover, b = T“{⌘} in the extension.

Proof. R extends uniquely to Ṙ of length ⌘+1. We now extend I 0 to İ 0 by
taking Ṁ 0 as the final model of İ 0

⌘. Pick i < ⌘ such that bri has no drop
point in R. For j 2 bri set:

⇡̇0
j,⌘ = �̇i,⌘

⌘j
(where ⌘j + 1 = lh(Ij) in R).

By Lemma 3.7.33, we know:

⇡̇0
j,⌘⇡

0
h,j

= ⇡̇0
h,⌘

for h  j in bri.

By Lemma 3.7.27 it follows that:

Ṁ, h⇡̇0
j,⌘ : j 2 brii

is the direct limit of:

hM 0
h
: h 2 brii, h⇡0

h,j
: h  j in brii.

(For h 2 b \ i, we then set: ⇡̇0
h,⌘

= ⇡0
i,⌘
⇡0
h,i
.)

The conclusion is immediate by Lemma 3.6.37.

(Lemma 3.7.35)

Now let N, Ĩ be as in the premise of Lemma 3.7.2. In particular, Ĩ is a
normal iteration of M of length ⌘̃ + 1 and:

�̃ : N �!⌃⇤ M̃⌘̃ min ⇢̃.
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Using the last two lemmas, we define a successful strategy for N . We first
fix a function G such that whenever � = hI, R, I 0i is an RM triple of length
µ + 1 and E

Mµ
⌫ 6= ? with µ > ⌫j for j < µ, then G(�, ⌫) is an extension of

� to an RM triple of length µ+ 1 with ⌫µ = ⌫. In all other cases G(�, ⌫) is
undefined. Now let I be any normal iteration of N . There can obviously be
only one RM triple � = hI, T, I 0i with the properties:

(a) I0 = Ĩ ,�0 = �̃, ⇢0 = ⇢̃.

(b) If i+ 1 < lh(I), then:

�|i+ 2 = G(�|i+ 1, ⌫i),

since �|�+1 is uniquely determined at limit stages � by Lemma 3.7.35.

Denote this � by �(I) if it exists. We define the strategy S as follows:

Let I of limit length. If �(I) is undefined, then so is S(I). Now let �(I) =
hI, R, I 0i be defined. Set:

S(I) = the unique cofinal, well founded branch in R.

(This exists by Lemma 3.7.35). We then get:

Lemma 3.7.36. Let I be a normal iteration of N . If I is S-conforming,
then �(I) is defined.

Proof. By induction on lh(I), using Lemma 3.7.34 and Lemma 3.7.35.

QED(Lemma 3.7.36)

In particular, if I is of limit length, it follows by Lemma 3.7.35 that S(I)
is defined and is a cofinal, well founded branch in I. This proves Theorem
3.7.28.

Theorem 3.7.28 is stated under the assumption that M is uniquely normally
iterable in V . As usual, we can relativize this to a regular cardinal ✓ > !.
We call M 0 a ✓-iterate of M is it is obtained by a normal iteration of length
< ✓. Modifying our proof slightly we get:

Lemma 3.7.37. Let ✓ > ! be regular.

(a) If M is uniquely normally ✓-iterable and M 0 is a ✓-iterate of M then
M 0 is normally ✓-iterable.
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(b) If M is uniquely normally ✓ + 1-iterable and M 0 is a ✓-iterate of M ,
then M 0 is normally ✓ + 1-iterable.

Note. In proving (b) we must restate Lemma 3.7.29 as:

Let I = hhMii, h⌫ii, h⇡i,ji, T i be a normal iteration of length ⌘ + 1 < ✓. Let
� : N �!⌃⇤ M⌘ min ⇢. Then M is normally ✓ + 1-iterable.

Note. In proving Lemma 3.7.37, we restrict ourselves to ✓-reiterations R =

hhIii, . . . i meaning that lh(Ii) < ✓ for i < ✓. Thus we restrict to ✓-reiteration
mirror hR, I 0i, meaning that R is a ✓-reiteration. Lemma 3.7.34 is then
stated for RM-triples of length ⌘ + 1 < ✓. Lemma 3.7.35 is stated for RM-
triples of length ⌘  ✓. All steps fo through as before.

Note. An easy modification of the proof shows that, if M is normally
iterable by a insertion stable strategy, then every S-conforming iterate of M
is normally iterable.

This is a relatively weak result, and could, in fact, have been obtained with-
out use of the pseudo projecta. (However, we would not know how to do it
without the use of reiteration). What we really want to prove is that M is
smoothly iterable. The above proof indicates a possible strategy for doing
so, however: If M is “smoothly reiterable”, and:

� : N �!⌃⇤ M min ⇢

we could use the same procedure to define a successful smooth iteration
strategy for N . In §3.7.4 we shall define “smooth reiterability” and show
that if holds for M .

3.7.4 Reiteration and Inflation

By a smooth reiteration of M we mean the result of doing (finitely or in-
finitely many) successive normal reiterations. We define:

Definition 3.7.18. A smooth reiteration of M is a sequence S = hhIi : i <
µi, hei,j : i  j < µii such that µ � 1 and the following hold:

(a) Ii is a normal iteration of M of successor length ⌘i + 1.

(b) ei,j inserts an Ii|↵ into Ij , where ↵  ⌘i + 1.

(c) eh,j = ei,j � eh,i.
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(d) If i+ 1 < µ, there is a normal reiteration:

Ri = hhI lii, h⌫lii, he
k,l

i
i, Tii

of length ⌘i + 1 such that Ii = I0
i
, Ii+1 = I⌘i

i
and ei,i+1 = e0,⌘i

i
.

Note. Ri is unique by Lemma 3.7.21. Hence so is hei,j : i  j < µi,
which we call the induced sequence.

Call i a drop point in S iff Ri has a truncation on the main branch.

(e) If � < µ is a limit ordinal, then there are at most finitely many drop
points i < �. Moreover, if h < � and (h,�) is free of drop points, then:

I�, hei,� : h  i < �i

is the good limit of:

hIi : h  i < �i, hei,j : h  i  j < �i

This completes the definition. We call µ the length of S.

Note. Since el,� = eh,�el,h for l < h < �, we follow our usual convention,
calling:

I�, hei,� : i < �i

the good limit of:
hIi : i < �i, hei,j : i  j < �i

We call M smoothly reiterable if every smooth reiteration of M can be prop-
erly extended in any legitimate way. We note:

Fact 1. If I is a normal iteration of M , then hhIi,?, h id�Ii,?i is a smooth
reiteration of M of length 1.

Fact 2. If S = hhIii, hei,jii is a smooth reiteration of M of length i + 1,
and R = hIii, h⌫iii is a normal reiteration of length ⌘ + 1 with I0 = Ii,
then S extends to S0 of length i+ 2 with I 0

i+1
= I⌘ and e0

i,i+1
= e0,⌘ (hence

R = RS
0

i
).

Fact 3. Let S = hhIii, hei,jii be a smooth reiteration of M of limit length
�. Assume:

(a) S has finitely many drop points.

(b) S has a good limit: I, hei : i < �i.
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Then S extends uniquely to S0 of length �+ 1 with I 0
�
= I, e0

i,�
= ei.

Clearly, then, saying that M is smoothly reiterable is the same as saying that,
whenever S is as in Fact 3, then (a), (b) are true. In the next subsection
(§3.7.5) we shall prove the smooth iterability of M . The proof is, in all
essentials, due to Farmer Schlutzenberg, and is based on his remarkable
theory of inflations. This subsection is devoted an exposition of that theory.

Before proceeding to the precise definition of inflation, however, we give an
introduction to Schlutzenberg’s methods. Let R = hhIii, h⌫ii, hei,ji, T̃ i be
a reiteration of M . Schultzenberg calls I 0 an “inflation" of I0, since it was
obtained by introducing new extenders into the original sequence. He makes
the key observation that the pair hI0, Iii determines a unique record of the
changes made in passing from I0 to Ii. We shall call that record the history
of Ii and denote it by hist(I0, Ii).

Definition 3.7.19. Let ⌘i + 1 = lh(Ii) for i < lh(R). For ↵  ⌘i, set:

l(↵) = li(↵) =: the least i such that Ii|↵+ 1 = I l|↵+ 1.

Let si, ti, ŝi = lubh<i sh be defined as in §3.7.2. Then:

Lemma 3.7.38. (a) l(↵) = that l  i such that ŝl  ↵ and either l = i or
l < i and ↵  sl.

(b) Ij |↵+ 1 = I l|↵+ 1 for l  j  i.

Proof.

(a) ŝl  ↵, since otherwise sj+1 > ↵ for a j < l. Hence Ij |sj+1 = Ii|sj+1

where ↵+ 1  sj + 1. Hence j � l. Contradiction!

Suppose l 6= i. Then ↵  sl, since otherwise sl +1  ↵ and Ii|↵+1 6=
I l|↵+ 1, since ⌫isl < ⌫lsl .

QED(a)

(b) Suppose not. Then i 6= l,↵  sl and I l|sl + 1 = Ij |sl + 1 for l  j <
lh(R). Contradiction! QED(Lemma 3.7.38)

Hence ŝi  ↵ �! li(↵) = i.

Lemma 3.7.39. If h  i and Ih|↵+ 1 = Ii|↵+ 1 then ⌫i↵  ⌫h↵ if ↵ < ⌘h.

Proof. By induction on i.
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Case 1. i = 0 (trivial).

Case 2. i = h+ 1.

Then Ii|sh + 1 = Ih|sh + 1 and ⌫ish  ⌫hsh . Thus it holds for ↵  sh by the
induction hypotheses. But l(↵) = i for ↵ > sh.

Case 3. i is a limit.

Then Ii|sj + 1 = Ij |sj + 1 for j < i. Hence it holds for ↵ < ŝi = lubj<i sj
by the induction hypothesis. But l(↵) = i for ↵ � ŝi.

QED(Lemma 3.7.39)

The next lemma is crucial to developing the theory of inflations:

Lemma 3.7.40. Let ↵  ⌘i, l = l(↵). Set:

a = {�  ⌘0 : e
0,l
(�) < ↵}.

There is a unique e inserting I0|a + 1 into Ii|↵ + 1 such that e � a = e0l � a
and e(a) = ↵.

Proof. By induction on i.

Case 1. i = 0. Set a = ↵, e = id�↵+ 1.

Case 2. i = h+ 1.

If ↵  sh, then Ii|↵+1 = Ih|↵+1. Hence l = lh(↵) and the result holds by
the induction hypothesis.

If ↵ > sh, then l(↵) = i, since Ii|sh + 1 6= Ih|sh + 1. Then ↵ = sh + 1 + j.
Let µ = T̃ (h+1). Then eµ,i(↵) = ↵, where ↵ = th + j. But ŝµ  th  sµ by
Lemma 3.7.17. Hence lµ(th) = lµ(↵) = µ. Clearly:

a = {�  ⌘0 : e
0,µ

(�) < ↵}

Since µ  h, the induction hypothesis gives a unique f inserting I0|a + 1

into Iµ|↵+ 1 such that f �a = e0,µ �a and f(a) = ↵. Thus e = eµ,lf has the
desired properties.

QED(Case 2)

Case 3. i is a limit ordinal.

Then Ii|sj + 1 = Ij |sj + 1 for j < i. Hence the assertion holds for ↵ <
ŝi = lubj<i sj by the induction hypothesis. But l(↵) = i for ŝi  ↵. Then
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there is j <T i such that ↵ = ej,i(↵). Let j = T (⇠ + 1) where ⇠ + 1 <T i.
Then ↵ � crit(ej,i) = t⇠. But ŝj  t⇠  sj . Hence lj(↵) = lj(t⇠) = j. Since
e0,i = ej,i � e0,j , we conclude as in Case 2 that:

a = {� < ⌘ : e0,j(�) < ↵}

By the induction hypothesis there is f inserting I0|a+ 1 into Ij |↵+ 1 such
that f̂ � a = e0,j � a and f(a) = ↵. Hence e = ef,i � f has the desired
properties.

QED(Lemma 3.7.40)

Definition 3.7.20. For i < lh(R),↵  ⌘0 set:

ai↵ =: lub{⇠ < ⌘0 : e
0l
(⇠) < ↵} where l = li(↵)

ei↵ =: the unique e inserting I0|aj↵ + 1 into Ii|↵+ 1 such

that e�aij = e0,l �aij and e(ai↵) = ↵

It follows easily that:

Lemma 3.7.41. (a) If l = li(↵), then ↵  ⌘l and l = ll(↵), ai↵ = al↵ and
ei↵ = ej↵.
(Hence ei↵ = eh↵ and ai↵ = ah↵ whenever Ii|↵+ 1 = Ih|↵+ 1).

(b) If eµ,i(↵) = ↵, ŝµ  ↵, ŝi  ↵, then:

lµ(↵) = µ, li(↵) = i, aµ
↵
= ai↵, and eµ,ieµ

↵
= ei↵.

(c) ei⌘i �ai⌘i = ei,⌘i �ai⌘i ; ei⌘i(ai⌘i) = ⌘i (l⌘i = ⌘i, since ⌘i � ŝi).

(d) If there is no truncation on the main branch of R|i+1, then e0,i = ei⌘i
and a⌘i = ⌘0 (since e0,i(⌘0) = ⌘i).

The proof is left to the reader.

We now fix an i < lh(R) and set:

I = hhM↵i, h⌫↵i, h⇡↵,�i, T i =: I0

I 0 = hhM 0
↵i, h⌫ 0↵i, h⇡0

↵,�
i, T 0i =: Ii

a = hai↵ : ↵  ⌘ii, e↵ = ei↵ for ↵  ⌘i.

ha, he↵ : ↵  ⌘0ii is then called the history of I 0 from I. We shall show that
it is completely determined by the pair hI, I 0i. a↵ is called the ancestor of
↵ in this history.

We prove:
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Theorem 3.7.42. Let I, I 0, a, he↵ : ↵  ⌘ii be as above. Then:

(1) a : lh(I 0) �! lh(I) and e↵ inserts I|a↵+1 into I 0|↵+1 for ↵ < lh(I 0).
Moreover, e↵(a↵) = ↵.

(2) Let a↵ < ⌘. If ⌫̃↵ = �e↵
a↵
(⌫a↵) exists and ↵+ 1 < lh(I 0), then ⌫ 0↵  ⌫̃↵.

(3) Let a↵ < ⌘,↵+ 1 < lh(I 0), ⌫ 0↵ = ⌫̃↵. Then:

a↵+1 = a↵ + 1, e↵+1 �a↵ + 1 = e↵.

For ↵+ 1 < lh(Ii), define the index of ↵ (in(↵) = in
i
(↵)) as:

in(↵) =

(
0 if ↵ is as in (3)

1 if not

(4) If in(↵) = 1, � = T 0
(↵+ 1), then a↵+1 = a�.

(5) If � T 0 ↵, then e�1
↵ �� = e�1

�
��.

Note. Ignoring our formal definition of ha, ei and using only (1), (5),
we get:

• e↵ �a� = e� �a�.
• a� T a↵ since:

ê↵(a�) = ê�(a�) T 0 e�(�) = � T 0 ↵ = e↵(a↵).

• If ↵ is a limit ordinal, then:

a↵ =

[

�<T 0↵

a� and e↵ �a↵ =

[

�<T 0↵

e� �a� ,

since e�1
↵ �↵ =

S
�<T 0↵ e

�1

�
��.

Note. By (1), (4) and (5) we get:

• If in(↵) = 1, � = T 0
(↵+ 1), then e↵+1 �a↵+1 = e� �a�.

Note. Since e↵, e� are monotone and abe = e�1

�
“�, the statement:

e�1

↵ �� = e�1

�
��

is equivalent to:

e� �a� = e↵ �a� and e↵(a�) � �.
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(6) If R|i + 1 has a truncation on the main branch, then there is ↵ 2
(ê⌘i(a⌘i), ⌘i]T 0 which is a drop point in I 0.

Note. By Lemma 3.7.41 (a) we have:

ê⌘i(a⌘i) = lub e⌘i“a⌘i = lub e0,i0a⌘0 = ê0,i(a⌘i).

We prove Theorem 3.7.42 by induction on i:

Case 1. i = 0.

Trivial, since a↵ = ↵, e↵ = id�↵+ 1.

Case 2. i = h+ 1.

(1) is given.

(2) If ↵  sh, then Ii|↵+1 = Ih|↵+1, hence li(↵) = lh(↵), ei↵ = eh↵, ⌫̃
i
↵ =

⌫̃h↵. By the induction hypothesis ⌫h↵ = ⌫̃h↵. But ⌫i↵ < ⌫h↵. Now let
↵ > sh. Then l(↵) = i and ↵ = sh+1+j for some j. Let µ = T̃ (h+1).
Then eµ,i(↵) = ↵ where ↵ = th + 1. Just as in the proof of Lemma
3.7.40 (Case 2), we have: µ = lµ(th) = lµ(↵) and eµ,i �eµ

↵
= e↵. Hence:

⌫̃i↵ = �e
i
↵

a (⌫0a) = �µ,↵

↵
�e

µ
↵(⌫0a) = �µ,↵

↵
(⌫̃µ

↵
)

(Since if e = e1�e0, then �e

�
= ee1

e0(�)
�ee0

�
). By the induction hypothesis:

⌫µ
↵
 ⌫̃µ

↵
. Hence:

⌫i↵ = �µ,↵

↵
(⌫µ

↵
)  �µ,↵

↵
(⌫̃µ

↵
) = ⌫̃ 0↵.

QED(2)

(3) If ↵ < sh, then ⌫i↵ = ⌫h↵, ⌫̃
h
↵ = ⌫̃i↵, since Ii|sh + 1 = Ih|sh + 1. Hence

⌫h↵ = ⌫̃h↵.
Hence ah

↵+1
= ah↵ + 1, eh

↵+1
� ah

↵+1
= eh↵ by the induction hypothesis.

But li(↵ + 1) = lh(↵ + 1). Hence: an
↵+1

= ai
↵+1

, ah↵ = ai↵, e
h

↵+1
=

ei
↵+1

, eh↵ = ei↵. The conclusion is immediate. Now let ↵ = sh. We
still have eh↵ = ei↵; hence ⌫̃h↵ = ⌫̃i↵. But ⌫i↵ < ⌫h↵  ⌫̃h↵. Contradiction!
Now let ↵ > sh. We again have: ↵ = sh + 1 + j,↵ = eµ,i(↵), where
µ = T (h+ 1) and ↵ = th + j. As before, we have li(↵) = i, lµ(↵) = µ.
Moreover ⌫̃i↵ = �µ,i

↵
(⌫̃µ

↵
) and ⌫i↵ = �µ,i

↵
(⌫µ

↵
). Hence ⌫µ

↵
= ⌫̃µ

↵
. Hence:

aµ
↵+1

= aµ
↵
+ 1, eµ

↵+1
�↵+ 1 = eµ

↵
.

But i = l0(↵) = li(↵+1), µ = lµ(↵) = lµ(↵+1), and eµ,i(↵+ 1) = ↵+1.
Hence:

a = ai↵ = aµ
↵

and a↵+1 = ai↵+1 = aµ
↵+1

= a+ 1.
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Moreover, we have:

ei↵+1 �a+ 1 = eµ,ieµ
↵+1

�a+ 1 = eµ,ieµ
↵
= e↵.

QED(3)

(4) If ↵ < sn the result follows by the induction hypothesis, since Ii|↵+2 =

Ih|h + 2. Now let ↵ = sh. Then in(↵) = 1 as shown above. Let
µ = T̃ (h + 1), � = th. Then eµ,i(�) = ↵ + 1. Hence aµ� = ai

↵+1
. But

Ii|� + 1 = Iµ|� + 1. Hence lµ(�) = li(�) and ai� = aµ� = ai
↵+1

. Now
let ↵ > sh. Then i = h + 1 is not a drop point in R, since otherwise
⌘i = sh + 1 = ↵. Hence ↵+ 1 6< lh(Ii) = ⌘i + 1. Contradiction! Then
↵ = sh+1+j and ↵ = eµ,i(↵) where ↵ = th+j and µ = T̃ (h+1). Note
that eµ,i(⇠) = êµ,i(⇠) = lub eµ,i“⇠ for ⇠ > th. Clearly ↵+1 = eµ,i(↵+1).
As in the foregoing proofs we have:

�µ,i
(⌫µ

↵
) = ⌫i↵; �

µ,i
(⌫̃µ

↵
) = ⌫̃i↵.

Hence ⌫µ
↵
< ⌫̃µ↵ and in(↵) = 1. By the induction hypothesis we con-

clude: aµ
�+1

= aµ
�
, where � = Tµ

(↵+ 1). But, as before, aµ
↵+1

= ai
↵+1

,
since eµ,i(↵+ 1) = ↵+ 1, lµ(↵+ 1) = µ, li(↵+ 1) = i. Thus it suffices
to show:
Claim. aµ

�
= ai� , where � = T i

(↵+ 1).

We consider two cases:
Case A. µ

↵
> i. Then eµ,i(�) = � by Lemma 3.7.10 (1). As before

lµ(�) = µ, li(�) = i and aµ
�
= ai� .

Case B. µ
↵
< i. Then � = � by Lemma 3.7.10(1). Then �  th,

where Ii|th + 1 = Iµ|th + 1. Hence ai
�
= aµ

�
.

QED (4)

(5) If ↵  sh, then Ih|↵ + 1 = Ii|↵ + 1 and ah� = ai� , e
h
� = ei� for �  ↵.

Hence the conclusion follows by the induction hypothesis. Now let
↵ > sh. Then ↵ = sh + 1 + j for some j. Let µ = T̃ (h + 1). Then
eµ,i(↵) = ↵ where ↵ = th + 1. But ↵ � crit(eµ,i) = th � ŝµ. Hence:

lµ(↵) = µ, aµ
↵
= ai↵, e

i

↵ = eµ,i · e↵.

Let � <T i ↵. We consider two cases:
Case A. � > sh.
Then � = sh + 1 + r for an r < j. Hence, letting � = th + r, we have
eµ,i(�) = � and:

lµ(�) = µ, aµ
�
= ai

�
, ei

�
= eµ,i · e

�
.
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It follows easily that � <Tµ ↵. Hence by the induction hypothesis:

(eµ
�
)
�1 �� = (eµ

↵
)
�1 �↵.

Hence:

(ei
�
)
�1 �� = (eµ

�
)
�1 · (eµ,i)�1 ��

= (eµ
↵
)
�1 · (eµ,i)�1 ��

= (ei↵)
�1 ��.

QED(Case A)
Case B. �  sh.
Then �  th, since (th, sh] is in limbo at ŝi = sh+1. Hence eµ,i �� = id,
since th = crit(eµ,i). But then:

� = êµ,i(�) Tµ ↵ = eµ,i(↵).

Hence � Tµ ↵. Moreover Ii|� + 1 = Iµ|� + 1, since êµ,i �� + 1 = id.
Hence aµ

�
= ai

�
and eµ

�
= ei

�
. But:

(eµ
↵
)
�1 �� = (eµ

�
)
�1 ��

since � Tµ ↵. Hence:

(ei↵)
�1 �� = (eµ

↵
)
�1

(eµi)�1 �� = (eµ
�
)
�1

(eµi)�1 �� = (ei
�
)
�1 ��

QED(Case B)
This proves (5).

(6) If i = h + 1 is a drop point on R|i + 1, then M
0⇤
sh
6= Mti , where

⌘i = sh + 1, ti = T i
(sh + 1). Hence ⌘i is a drop point in Ii. Now

suppose that h+ 1 does not drop in R|i+ 1. Let µ = T̃ (h+ 1). Then
there must be a drop point on the main branch of R|µ+ 1. Hence Iµ

has a drop point in (", ⌘µ]Tµ where " = êµ⌘µ(a
µ
⌘µ). Since eµ,i(⌘µ) = ⌘i,

it follows easily from Lemma 3.7.10(7) that there is a drop point on Ii

in (êµ,i("), ti]T i . Since ŝµ  ⌘µ, ŝi  ⌘i, we have:

µ = lµ =: lµ(⌘µ), i = li = li(⌘i).

Hence aµ⌘µ = ai⌘i . Clearly:

êµ,i(") = lub eµ,i“".

Since eµ⌘µ �aµ⌘µ = e0,µ �aµ⌘µ , we have: " = lub e0,µ“aµ⌘µ . Hence:

êµ,i(") = lub e0,i“ai⌘i = êi⌘i(a
i

⌘i
).

Hence Ii has a drop in (êi⌘i(a
i
⌘i
), ⌘i]T i .

QED(6)
This completes Case 2.
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Case 3. i = � is a limit ordinal.

(1) is given.

(2) Set ŝ = ŝ� = lubi<� si. Then I�|si + 1 = Ii|si + 1 for i < �. Thus
(2) holds by the induction hypothesis for ↵ < ŝ. Now let ↵ � ŝ then
l�(↵) = �. Pick µ < � such that ↵ 2 rng(eµ,�) and there is no drop in
(µ,�)T� . Let i = h+1, where µ = T (h+1), h+1 <T� �. If eµ,�(↵̂) = ↵,
then ↵̂ � th, since eµ,� � th = id. Hence ↵ � sh + 1 = ŝi, where
ei,�(↵) = ↵. Hence li =: li(↵) = i. Hence ai

↵
= a�↵ and e�↵ = ei,�ei

↵
.

We are assuming that:

⌫̃�↵ = �e
�
↵

a�↵
(⌫0

a�↵
) exists.

But then:
⌫̃i↵ = �

e
i
↵

a
i
↵
(⌫0

a
i
↵
) exists and �i,�

↵
(⌫̃i↵) = ⌫̃�↵.

Clearly: ⌫�↵ = �i,�
↵ (⌫i

↵
). But ⌫i

↵
 ⌫̃i

↵
by the induction hypothesis.

Hence ⌫�↵  ⌫̃�↵.
QED(2)

(3) For ↵ < ŝ� it holds by the induction hypothesis, so let ↵ � ŝ�. Let
µ, h, i,↵ be as in (2). Then l�(↵) = �, li(↵) = i. We assume in�

(↵) = 0,
i.e.:

↵ < ⌘� and ⌫�↵ = ⌫̃�↵.

But then:
↵ < ⌘i and ⌫i↵ = ⌫̃i↵ hence ini

(↵) = 0

Hence ai
↵+1

= ai
↵
+ 1 and ei

↵+1
� ai

↵
+ 1 = ei

↵
. But li(↵ + 1) =

i, l�(↵+ 1) = �. Hence

a�↵+1 = ai↵+1 = ai↵ + 1

and

e�↵+1 �a�↵+1 = ei�ei↵+1 �ai↵ + 1

= ei�ei↵ = e�↵

QED(3)

(4) For ↵ < ŝ� it holds by the induction hypothesis, so let ↵ � ŝ�. Let
µ, h, i,↵ be as in (2) with the additional stipulation that � 2 rng(eµ,�)
where � = T �

(↵ + 1). Let ei,�(�) = �. Then either � � ŝ� and
� � ŝi = sh + 1, or � < ŝ� and �̄ = �. It follows easily that � =

T i
(↵ + 1). Moreover ini

(↵) = 1, since in�
(↵) = 1. But then ai

↵
= ai

�
.
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But ai
↵
= a�↵. Moreover ai

�
= a�� . (If � � ŝ�, this is because li(�) = i.

If � < ŝ�, it is because Ii|� + 1 = Ii|� + 1).
QED(4)

(5) If ↵ < ŝ, it follows by the induction hypothesis, since I�|↵+1 = Ii|↵+1

for ß < �,↵  si. Now let ↵ � ŝ. Fix � <T� ↵. Let µ, i, h,↵ be as
before with µ chosen big enough that � 2 rng(eµ,�) and � < th =

crit(eµ,�) if � < ŝ. Let ↵ = ei,�(↵),� = ei,�(�). Since:

ei,�(�) = � <T� ↵ = ei�(↵),

we conclude: � <T i ↵. Hence:

(ei↵)
�1 �� = (ei

�
)
�1�

by the induction hypothesis. Since ŝi  ↵, we again have:

ai↵ = a�↵, e
�

↵ = ei,�ei↵.

If � � ŝ, then ŝi  � and we have :

ai
�
= a�

�
, e�

�
= ei,�ei

�
.

Hence:

(e�↵)
�1 �� = (ei↵)

�1
(ei�)�1 ��

= (ei
�
)
�1

(ei�)�1 ��
= (e�)

�1 ��.

Now suppose that � < i. Then � = � < crit(ei�). Hence Ii|� + 1 =

I�|� + 1 and:

ai
�
= a�

�
, ei

�
= e�

�
where ei� �� + 1 = id .

Hence we again have:

ai
�
= a�

�
, e�

�
= ei�ei

�
,

and we argue exactly as before.
QED(5)

(6) Suppose R|� + 1 has a truncation on the main branch. Clearly ⌘� �
ŝ�, so l�(⌘�) = �. Let µ, i, h,↵ be as in (2) with ↵ = ⌘�. Then
[i,�]T� is free of drops. Hence ei,�(⌘i) = ⌘�. But R|i + 1 then has a
drop on the main branch. Hence there is a drop in (êi⌘i(a

i
⌘i
), ⌘i]T i+1 .

By Lemma 3.7.1 (7) it follows that there is a drop in (êi,�("), ⌘�]T� ,
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where " = e⌘0(a
i
⌘0
). But li(⌘i) = i, since ⌘i � ŝi. Hence ai⌘i = a�⌘�

and " = ê⌘i(a
i
⌘i
) = lub e0,i“ai⌘i . Moreover ei,�(") = lub ei,�“". Hence

êi,�(") = lub eo,�“a�⌘� = ê�⌘�(a
�
⌘�
).

QED(6)

This completes the proof of Lemma 3.7.42.

Inflations

Following Farmer Schlutzenberg we now define:

Definition 3.7.21. Let I be a normal iteration of M of successor length
⌘+1. Let I 0 be a normal iteration of M . I 0 is an inflation of I iff there exist
a pair ha, ei satisfying (1)-(5) in Theorem 3.7.42 (with e = he↵ : ↵ < lh(I 0)i).
We call any such pair a history of I 0 from I.

By the remark accompanying the statement of Theorem 3.7.42 we have:

Lemma 3.7.43. Let I 0 be an inflation of I with history ha, ei. Then:

(a) If � T 0 ↵, then a� T a↵ and e↵ �a� = e� �a�.

(b) If ↵  lh(I 0) is a limit ordinal, then:

a↵ =

[

�<T 0↵

a� and e↵ �a↵ =

[

�T 0↵

e� �a� .

(c) If ↵+ 1 < lh(I 0), in(↵) = 1, � = T 0
(↵+ 1), then:

a↵+1 = a� and e↵+1 �a↵+1 = e� �aga.

Lemma 3.7.44. Let I, I 0 be as above. Then there is at most one history of
I 0 from I.

Proof. Let ha, ei be a history. By the conditions (1)-(5), this history satisfies
a recursion of the form:

ha↵, e↵i = F (hha, ei : ⇠ < ↵i),

where F is defined by reference to the pair hI, I 0i alone. To see this we note:

(a) a0 = ?, e0(?) = ? by (1).
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(b) Let a↵, e↵ be given. Then:

• a↵+1 =

(
a↵ + 1 if in(↵) = 0

a� where � = T 0
(↵+ 1) if in(↵) = 1

• e↵+1(a↵ + 1) = ↵+ 1

• e↵+1 �a↵+1 =

(
e↵ if in(↵) = 0

e� �a↵+1 if � = T 0
(↵+ 1) and in(↵) = 1

In order to determine in(↵), however, we need only to know a↵, e↵, I, I 0.

(c) If � is a limit ordinal, then:

a� =

[

↵<
T
0�

a↵; e� �a� =

[

↵<
T
0�

e↵ �a↵; e�(a�) = �.

QED(Lemma 3.7.44)

Definition 3.7.22. Let I 0 be an inflation of I. We denote the unique history
of I 0 from I by: hist(I, I 0).

Note. Schlutzenberg’s original definition replaced (5) in Definition 3.7.21
by the following statement, which we now prove as a lemma:

Lemma 3.7.45. Let µ  a↵ such that ê↵(µ) T 0 � T 0 e↵(µ). Then a� = µ.
Moreover e� �µ = e↵ �µ. (Hence eµ(µ) = �, ê�(µ) = ê↵(µ) = sup e↵“µ).

Proof. Suppose not. Let ↵ be the least counterexample. Let µ  a↵, ê↵(µ) T 0

� T 0 e↵(µ). We derive a contradiction by showing:

a� = µ, e� �a� = e↵ �a� .

Case 1. µ = a↵.

Then a� T a↵ and e� � a� = e↵ � a↵. But a� = a↵ = µ, since otherwise
e↵(a�) < ê↵(a↵)  �. Hence a� 2 e�1

↵ “� but a� = e�1

�
“�. Hence e�1

↵ 6=
e�1

�
��. Contradiction!

Case 2. µ < a↵.

Then there is � < ↵ such that:

µ  a� , e↵ �a� = e� �a� .

(Clearly ↵ > 0. This holds by (3) or (4) if ↵ is a successor and by Lemma
3.7.43 if ↵ is a limit.) Hence:

ê�(µ) T 0 � T 0 e�(µ).
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Hence:
a� = µ, e� �a� = a� �a� = a↵ �a�

by the minimality of ↵.

QED(Lemma 3.7.45)

Remark. (5) can be equivalently replaced by Lemma 3.7.45 in the definition
of “inflation”. It can also be equivalently replaced by the conjunction of (a)
and (b) in Lemma 3.7.43.

Extending inflations

By Definition 3.7.21 it follows easily that:

Lemma 3.7.46. Let I 0 be an inflation of I with history ha, ei. Let 1  µ 
lh(I 0). Then I 0|µ is an inflation of I with history ha�µ, e�µi.

Proof. (1)-(5) continue to hold.

Taking µ = 1 it becomes evident that an inflation might say very little about
the original iteration I. Hence it is useful to have lemmas which enable us to
extend a given inflation I 0 to an I 00 of greater length, thus “capturing” more
of I. We prove two such lemmas:

Lemma 3.7.47. Let I be a normal iteration of M of length ⌘0 + 1. Let I 0

be an inflation of I of length ⌘0 + 1 with history ha, ei, where a⌘0 < ⌘. Let
⌫̃ = �

e⌘0
a⌘0 (⌫

0
a⌘0

) be defined with: ⌫̃ > ⌫ 0
i

for i < ⌘. Extend I 0 to I 00 of length
⌘0+2 by appointing ⌫ 0

⌘0 = ⌫̃. Then I 00 is an inflation of I with history ha0, e0i
where:

• a0 �⌘0 + 1 = a, e0⌘ = e⌘ for ⌘  ⌘0,

• a0
⌘0+1

= a⌘0 + 1, e0
⌘0+1

�a⌘0 + 1 = e⌘0 ,

• e0
⌘0+1

(a⌘0 + 1) = ⌘0 + 1.

Proof. We must show that (1)-(5) are satisfied. The only problematical
case is (5). We must show that if � <T 00 ⌘0 + 1, then

e�1

� �� = e0�1

⌘0+1
��.

It suffices to prove it for � = T 00
(⌘0 + 1). Let � = T (a⌘0 + 1). Then

ê⌘0(�) T 0 � T 0 e⌘0(�)
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by Lemma 3.7.1 (3). Hence

a� = � and e� �a� = e⌘0 �a�

by Lemma 3.7.46. But then

e�1

� �� = e�1

⌘0 �� = (e0
⌘0+1

)
�1 ��

since e⌘0(�) = e0
⌘0+1

(�) � �.

QED(Lemma 3.7.47)

Lemma 3.7.48. Let I 0 be an inflation of I of limit length ⌘0. Let b be the
unique cofinal well founded branch in I 0. Extend I 0 to I 00 of length ⌘0 + 1 by
appointing: {⇠ : ⇠ <T 00 ⌘0} = b. Then I 00 is an inflation of I with history
ha0, e0i, where:

a0 �⌘0 = a, a0
⌘0 = sup

�2b
a0
�
, e0 �⌘0 = e�⌘0,

e0⌘ �a0⌘0 =
[

�2b
e� �a� , e0⌘0(a0⌘) = ⌘0.

Proof. (1)-(5) are satisfied.

Composing Inflations

We now show that if I 0 in an inflation of I and I 00 is an inflation of I 0, then
I 00 is an inflation of I.

Theorem 3.7.49. Let I, I 0, I 00 be normal iteration of M with: lh(I) = ⌘ +

1, lh(I 0) = ⌘0 + 1. Let I 0 be an inflation of I with:

hist(I, I 0) = ha, ei.

Let I 00 be an inflation of I 0 with:

hist(I 0, I 00) = ha0, e0i.

Then I 00 is an inflation of I with:

hist(I, I 00) = ha00, e00i,

where: a00↵ = aa0↵ , e
00
↵ = e0↵ea0↵ .
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Proof. We verify (1)-(5).

(1) a00 = a ·a0 clearly maps lh(I 00) into lh(I). Since e0↵ inserts I 0|a0↵+1 into
I 00|↵ + 1 and ea0↵ inserts I|a00↵ + 1 into I 0|a0↵ + 1, then e0↵ · ea0↵ inserts
I|a00↵ + 1 into I 00|↵+ 1.

QED(1)

Now let:

I = hhM↵i, h⌫↵i, h⇡↵,�i, T i
I 0 = hhM 0

↵i, h⌫ 0↵i, h⇡0
↵,�
i, T 0i

I 00 = hhM 00
↵i, h⌫ 00↵i, h⇡00

↵,�
i, T 00i

We recall by Lemma 3.7.5 that if e inserts I into I 0 and e0 inserts I 0

into I 00 then e0e inserts I into I 00. Moreover:

�e
0·e

⇠
= �e

0

e0(⇠) · �
e

⇠
.

Thus, in particular:

�e
00
↵

⇠
= �

e
0
↵·ea0↵

⇠
= �e

0
↵

e0↵(⇠)
· �

ea0↵
⇠

for ⇠ < a00↵.

(2) If ⌫̃ 00↵ = �
ea00↵
a00↵

(⌫a00↵) exists and ↵ < lh(I 00), then:

⌫̃ 00↵ = �
ea0↵
↵ · �

ea0↵
a0↵

(⌫aa0↵
) = �

ea0↵
↵ (⌫̃ 0

a0↵
).

But then ⌫ 0
a0↵
 ⌫̃ 0

a0↵
and:

⌫ 00↵  �e
0
↵

↵ (⌫ 0
a0↵
)  ⌫̃ 00↵.

QED(2)

Now let:

in(↵) = the index of ↵ with respect to I, I 0,

in
0
(↵) = the index of ↵ with respect to I 0, I 00,

in
00
(↵) = the index of ↵ with respect to I, I 00.

(3) It is easily seen that if in00(↵) = 0, then in(a0↵) = in
0
(↵) = 0. Hence:

a0↵+1 = a0↵ + 1, a00↵+1 = aa0↵+1
= a(a0↵+1) = a00↵ + 1.
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Moreover:

e00↵+1 �a00↵ + 1 = e0↵+1ea0↵+1 �aa0↵ + 1

= e0↵+1 · ea0↵
= e0↵+1 �(a0↵ + 1) · ea0↵
= e0↵ · ea0↵ = e00↵.

QED(3)

(4) Assume in
00
(↵) = 1. Then either in

0
(↵) = 1 or in(a0↵) = 1.

Case 1. in
0
(↵) = 1.

Let � = T 00
(↵+ 1). Thus a0� = a0

↵+1
. Hence

a00� = aa0� = aa0↵+1
= a00↵+1.

Case 2. in(a0↵) = 1 but in
0
(↵) = 0.

Let � = T 0
(a0↵ + 1). Then:

a� = a(a0↵+1) = aa0↵+1
= a00↵+1.

Let � = T 00
(↵+ 1). Then:

ê↵(�) T 00 � T 00 e↵(�).

Hence by Lemma 3.7.45:

� = a0
�
, a00↵+1 = a� = aa0� = a00

�
.

QED(4)

(5) Let � <T 00 ↵. Then a0
�
T 00 a0↵ and hence:

a00
�
= aa0� T aa0↵ = a00↵.

But then (e0↵)
�1 �� = (e0↵)

�1 �� and

(ea0� )
�1 �a0

�
= (ea0↵)

�1 �a0
�
.

Hence:

[(e00
be
)
�1 �� = (e0

a
0
�
)
�1

(e0
�
)
�1 ��

= (ea0� )
�1

(e0↵)
�1 ��

= (ea0↵)
�1

(e0↵)
�1 ��

= (e00↵)
�1 ��.

QED(5)

This proves Theorem 3.7.49.
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3.7.5 Smooth Reiterability

In §3.7.2 we proved that if M is uniquely normally iterable, then it is nor-
mally reiterable. In this section we prove the fact announced in §3.7.4. that
if M is uniquely normally iterable, then it is smoothly reiterable. Just as be-
fore, it will also be of interest to know whether this theorem can be relativized
to a regular cardinal  > !. We called a normal reiteration R = hhIii, . . . i
a -iteration iff each of its component normal iteration Ii has length less
than . If we are given a smooth -reiteration S = hhIii, hei,jii, we call it
a smooth -reiteration iff each of its induced reiteration Ri (i + 1 < lh(S))
is a -reiteration of length less than . We proved previously that, if M is
uniquely normally -iterable, then it is normally -reiterable. In the present
case the proofs are more subtle, and the best we can get is:

Theorem 3.7.50. Let  > ! be regular. Let M be uniquely normally  +

1-iterable. Then it is smoothly  + 1-reiterable. (Hence if M is uniquely
normally iterable, it is uniquely smoothly reiterable).

We don’t see any way to weaken the hypothesis of this theorem. Thus, for
instance, if we only know that M is uniquely normally !1-iterable, we have
no proof that it is smoothly !1-iterable.

We prove Theorem 3.7.50. From now on we take “reiteration” as meaning
“-reiteration” and “smooth reiteration” as meaning “smooth -reiteration”.
We assume M to be uniquely normally +1-iterable. The desired conclusion
then is given by:

Lemma 3.7.51. Let S = hhIii, hei,jii be a smooth reiteration of M of limit
length µ  . Then:

(a) S has at most finitely many drop points.

(b) S has a good limit I, hei : i < µi.

Proof. Case 1. µ = .

(a) is immediate by cf() > !, since if S had infinitely many drop points,
then so would S|� + 1 for some � < .

To prove (b), let (i,) be free of drop points, where i < . We must show
that hhIj : i  j < i, hehj : i  h  j < ii has a good limit:

I, hej : i  j < i.
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(We then set: eh = ei · eh,i for h < i). But this is immediate by Lemma
3.7.9.

QED(Case 1)

The hard case is:

Case 2. µ < .

By induction on µ we prove (a), (b) and:

(c) If i < µ, then I is an inflation of Ii with history hai, hei↵ : ↵  ⌘iii, where
⌘i + 1 = lh(Ii).

(d) If i < µ and (i, µ) has no drop point in S, then aiµ = ⌘i and eiµ = ei.

Assume that this holds at every limit ordinal � < µ. Then:

Claim 1. Let i  j < µ. Then

(i) Ij is an inflation of Ii with history haij , hei,j↵ : ↵  ⌘jii.

(ii) If the interval (i, j) has no drop point in S, then ai,j⌘j = ⌘i and ei,j = ei,j⌘j .

Proof. Suppose not. Let j be the least counterexample. Then i < j since
(i), (ii) hold trivially for i = j. But j is not a limit ordinal since otherwise
(i), (ii) hold by the induction hypothesis. Hence j = h + 1. We first show
that it holds for i = h.

(i) is immediate by Theorem 3.7.42. We now prove (ii) for i = h. Let R, ⇠
be the unique objects such that:

R = hhI li, h⌫li, hek,li, T i

is a normal reiteration of length ⇠+1 and Ih = I0, Ij = I⇠. Then eh,j = e0,⇠.
Since R has no truncation on its main branch, eh,j inserts Ih into Ij and
eh,j(⌘h) = ⌘j . But ah,j↵ = {a < ⌘h : eh,j(↵) < ⌘j}. Hence ah,j⌘j = ⌘h. But:

eh,j �⌘h = e
hj
⌘j �⌘h and eh,j(⌘h) = eh,j⌘j

(⌘h) = ⌘j

Hence ei,h = eh,j⌘j .

But then i < h. We know that (i), (ii) hold at h and that

ai,j↵ = ai,h
a
h,j
↵

; ei,j↵ = eh,j↵ · ei,h
a
h,j
↵

,
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where ah,j⌘i = ⌘h, a
i,h
⌘h = ⌘i, ei,h = ei,h⌘h , ehj = eh,j⌘j . Thus:

ai,j⌘i = ai,h⌘h = ⌘i and

ei,j = eh,j · ei,h = eh,j⌘j
· ei,h⌘h = ei,j⌘j

Contradiction!

QED(Claim 1)

We now attempt to prove (a)-(d), taking an indirect approach. Call I a
simultaneous inflation if it is an inflation of Ii for each i < µ. Our job is
to find a simultaneous inflation which also satisfies the conditions (a), (b)
and (d). There is no shortage of simultaneous inflations. For instance the
normal iteration of length 1:

hhMi,?, h id�Mi,?i

is a simultaneous inflation. Starting with this, we attempt to form a tower
of simultaneous inflations I(i), where I(⇠) is an iteration of length ⇠ + 1

extending I(i) for i < ⇠. The attempt will have only limited success. If we
have constructed I(⇠) for ⇠ below a limit ordinal �, we shall, indeed, be able
to construct I(�). In attempting to go for I(⇠) to I(⇠+1), however, we may
encounter a “bad case”, which blocks us from going further. Using the +1-
normal iterability of M we can, however, show that, if the bad case does
not occur, we reach I(). But this turns out to be a contradiction. Hence
the bad case must have occurred below . A close examination of this “bad
case” then reveals it to be a very good case, since it gives I = I(⇠) satisfying
(a)-(d).

In the following let:

Ii = hhM i

↵i, h⌫i↵i, h⇡i

↵,�
i, T ii be of length ⌘i + 1.

We attempt to construct:

I = hhM↵i, h⌫↵i, h⇡↵,�i, T i of length ⌘ + 1

satisfying (a)-(d).

We successively construct:

I(⇠) = hhM (⇠)

↵ i, h⌫(⇠)↵ i, h⇡
(⇠)

↵,�
i, T (⇠)i of length ⌘ + 1.

The intention is that I(⇠) = I|⇠ + 1 will be defined up to an ⌘ < ✓ and that
I = I(⌘) will have the desired properties (a)-(d). The proof that there is
such an ⌘ is highly indirect and non constructive. We shall require:
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(A) I(⇠) is an inflation of Ii with history

ha(⇠),i, e(⇠),ii for i < µ.

(B) i < ⇠ �! I(i) = I(⇠)|i+ 1.

Note. By (B) we can write M↵, ⌫↵,⇡↵,� , T, I instead of M (⇠)

↵ , etc.
without reference to ⇠. Similarly we can write ai, ei instead of a(⇠),i, e(⇠),i.
Thus, for ↵  ⇠ we have:

ai↵  ⌘i and ei↵ inserts Ii|ai↵ + 1 into I|↵+ 1.

(C) Let ↵  ⇠. Then ↵ =
S

i<µ
ei↵“a

i
↵.

By (C) we have:

(1) ↵ = sup{êi↵(ai↵) : i < µ}, since êi↵(a
i
↵) = lub ei↵“a

i
↵.

Set: ei,j
(↵)

= ei,j
ai↵

. Hence by (C) we have:

(2) I|↵+ 1, hei↵ : i < µi is the good limit of

hIi|ai↵ + 1 : i < µi, hei,j
(↵)

: i  j < µi

Now set: �i

(↵)
= �e

i
↵

ai↵
,�i,j

(↵)
= �e

e
i,j
(↵)

ai↵
. Then: �h

(↵)
eh,i
(↵)

= eh
(↵)

. We can

define �̂i

(↵)
, �̂(i)

(↵)
, similarly. Note, however, that �i

(↵)
might be a partial

function on M i

ai↵
, whereas �̂i

(↵)
is a total function. Nonetheless we do

have:

(3) �i

(↵)
: M i

ai↵
�!⌃⇤ M↵ for sufficiently large i < .

Proof. �i

(↵)
= ⇡

ê
i
(↵)(a

i
↵),↵

· �̂i

(↵)
, where:

�̂i

(↵)
: M i

ai↵
�!⌃⇤ M

e
i
(↵)(a

i
↵)
.

By (1) we can pick i big enough that there is no truncation in (ei↵(a
i
↵),↵]T .

Hence ⇡
e
i
(↵)(a

i
↵),↵

is ⌃
⇤-preserving.

QED(3)

We construct I(⇠) = I|⇠ + 1 by recursion on ⇠ as follows:

Case 1. ⇠ = 0.

I(0) = hhMi,?, h id �Mi,?i is the 1-step iteration of M . (A)-(C)hold
trivially.
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Case 2. ⇠ = ✓ + 1 and ai
✓
< ⌘i for arbitrarily large i < µ. Let D be

the set of i such that:

ai
✓
< ⌘i and �i

(✓)
: M i

a
i
✓
�!⌃⇤ M✓

Then D is unbounded in µ by (3). Clearly:

�i,j

(✓)
: M i

a
i
✓
�!⌃⇤ M i

a
i
✓

for i 2 D, j 2 Dri.

Hence:
�i,j

(✓)
(⌫i

a
i
✓
) � ⌫i

a
i
✓

for i 2 D, j 2 Dri.

But then for sufficiently large i 2 D we have:

�i,j

(✓)
(⌫i

a
i
✓
) = ⌫i

a
i
✓

for j 2 Dri.

(To see this, suppose not. Then there is a monotone sequence hin :

n < !i such that in 2 D and

�in,in+1

(✓)
(⌫in

a
in
✓

) > ⌫in+1

a
in+1
✓

.

Set �n = �in
(✓)

(⌫in
a
in
✓

). Then: �n > �n+1. Hence M✓ is ill founded.
Contradiction!)
Let D0 be the set of such i 2 D. Then there is ⌫ 2 M✓ such that
⌫ = �i

(✓)
(⌫i

a
i
✓
) for i 2 D.

Claim. ⌫ > ⌫� for � < ✓.
Proof. Pick an i 2 D large enough that � 2 ei

✓
“ai

✓
. Let ei

✓
(�) = �.

Then ⌫i < ⌫i
a
i
✓
. Hence

⌫� = ⌫ = �i

(✓)
(⌫i

�
) < �i

(✓)
(⌫i

a
i
✓
) = ⌫

QED(Claim)
We are now in a position to apply the extension lemma Lemma 3.7.47.
Extend I(✓) to I(✓+1) by setting ⌫✓ = ⌫. For each i 2 D0, I 0 = I(✓+1) is
an inflation of Ii with history hai0 , ei0i, where:

ai
0 �✓ + 1 = ai, ai

0
e+1 = aie + 1, ei

0 �ai
✓
= ei �ai

✓
and ei

0
✓+1(a

i
0
✓+1) = ✓ + 1.

But D0 is cofinal in µ. It follows easily that I 0 is an inflation of each
Ii (i < µ). Thus (A) holds for ⇠ = ✓ + 1. (B) follows trivially. (C)
holds trivially for ↵  ✓. But then (c) holds for ↵ = ⇠ = ✓ + 1, since
�i

✓
(ai

✓
) = ✓ for i < µ and ✓ =

S
�<µ

ei
✓
“ai

✓
.

QED(Case 2)
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Case 3. ⇠ = ✓ + 1 and Case 2 fails.
Then ai

✓
= ⌘i for sufficiently large i. This is the “bad case” in which

I(✓+1) is undefined.
Case 4. ⇠ = � is a limit ordinal.
Let Ĩ = I|� be the componentwise union: Ĩ =

S
�<�

I(�). Ĩ is then an
inflation of Ii (i < µ) with history:

ai �� =:

[

�<�

ai ��, e0 �� =

[

�<�

ei|�.

Let b be the unique well founded cofinal branch in Ĩ . Extend Ĩ to
I 0 = I(�) of length �+ 1 by setting: T“{�} = b. By Lemma 3.7.48, I 0
is then an inflation of each Ii with history ha0

i, e
0
ii such that:

a
0
i �� = ai ��, e0i �� = ei ��, a0

i

�
=

[

�2b
ai
�
, ẽi

�
(ai

�
) = �.

(A), (B) are then trivially satisfied. But then so is (C) since

[

i2µ
eii“a

i

�
=

[

i2µ

[

�2b
ei
�
“ai

�
=

[

�2b

[

i<µ

ei
�
“ai

�
=

[
b = �.

QED(Case 4)
We note that the construction in Case 4 goes through for � = , since
M is  + 1-normally iterable. Hence I() would exist if the bad case
did not occur. This is impossible, however, since:

(4) If � is a limit ordinal and I(�) exists, then cf(�)  µ or cf(�)  ⌘i for
some i < µ.
Proof. Suppose first that � > êi

�
(ai

�
) for all i < µ. Since � =

lubi<µ êi�(a
i

�
) by (1), we conclude that cf(�)  µ. Otherwise � =

êi
�
(ai

�
) = lub ei

�
“ai

�
. Hence ai

�
is a limit ordinal. Hence cf �  ai

�
 ⌘i.

QED(4)
Hence the “bad case” occurs at ⇠ = � + 1, where � < . I = I(�) is
the final element of our tower. For sufficiently large i < µ we have:
ai
�
= ⌘i. Thus if i  j < µ we have:

ai,j⌘j = ai,j
a
j
�

= ai
�
= ⌘i, e

i,j

⌘i
= ei,j

(�)
.

We now show:

(5) There are only finitely many drop points h+ 1 < µ in S.
Proof. Suppose not. Since the assertion is true for all µ0 < µ, we
conclude that here are cofinally many truncation points h + 1 < µ in
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S. By (1), we can then pick such an h+ 1 > i, where i is chosen such
that (êi

�
(ai

�
), �)T has no truncation point in I. But we can also choose i

large enough that ai = ⌘i. By Theorem 3.7.42(6) there is a drop point:

↵ 2 (êi,i+1

⌘i
(ai⌘i), ⌘i+1]T i+1 .

By Lemma 3.7.1(7) we then conclude that there is a drop point in
(êi⌘i(a

i
⌘i
), �)T . Contradiction!

QED(5)

Now suppose i0 is chosen large enough that there is no drop point in (i, �)
in S, and that ai

✓
= ⌘j for i0  j < ✓. By Claim (1)(ii), we have

ai,j⌘i = ⌘i and ei,j = ei,j⌘i = eij
(✓)

for i0  i  j < ✓. By (2) we have:

I, hei
✓
: i0  i < µi

is the good limit of

hIi|⌘i + 1 : i0  i < µi, hei,j : i0  j < µi

We have thus proven (a), (b) in Lemma 3.7.51. (c) and (d) are immediate
by the construction.

This proves Lemma 3.7.51 and, with it, Theorem 3.7.50.

Note. By the same method we get:

Let S be an insertion stable strategy for M and assume that
hM,Si is  + 1-normally-iterable. Then hM,Si is -smoothly-
iterable.

The proofs require only cosmetic changes.

We note the following consequence of Lemma 3.7.51:

Lemma 3.7.52. Let S = hhIii, hei,jii be a smooth reiteration of M of length
µ, where each Ii is of length ⌘i + 1. For j < µ set:

Aj = {i < j : (i, j] has no drop points in S}, A⇤
j = Aj [ {j}.

(Hence i 2 Aj �! Ai = i \Aj). For i 2 A⇤
j

set: ⇡i,j = �
ei,j
⌘i . Then:
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(a) ⇡i,j · ⇡h,i = ⇡h,j for h  i  j in A⇤
j
.

(b) ⇡i,j : M⌘i �!⌃⇤ M⌘i .

(c) If j = � is a limit ordinal, then:

M⌘� , h⇡i,� : i 2 A�i

is the direct limit of:

hM⌘� : i 2 A�i, h⇡i,j : i < j in A�i

Proof.

(a) Since eh,i(⌘h) = ⌘i and ei,j(⌘i) = ⌘j , we have: �
eh,j

(⌘h)
= �

ei,j

(⌘i)
· �eh,i

(⌘h)
.

We prove (b), (c) by induction on j as follows:

Case 1. j = 0. Then Aj = ? and there is nothing to prove.

Case 2. j = i + 1. We must prove (b). If i + 1 is a drop point, then
Aj = ? and there is nothing to prove. If not, it suffices to prove it for h = i,
by (a) and the induction hypothesis. Then the main branch of Ri has no
drop point in Ri, where Ri is the unique reiteration from Ii to Ii+1. Then
⇡i,i+1 = (�0,�

⌘i )
Ri , where � + 1 = lh(Ri). But:

�0,�

⌘i
: M⌘i �!⌃⇤ M⌘h+1 in Ri.

QED(Case 2)

Case 3. j = � is a limit ordinal.

It suffices to prove (c), since (b) then follows by the induction hypothesis.
In S we have:

I�, hei,� : l 2 A�i

is the good limit of

hIi : i 2 A�i, h⇡i,j : i  j in A�i

But then M⌘ =
S

i2A�
rng(�i,�

⌘i ). This implies (c).

QED(Lemma 3.7.52)
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3.7.6 The final conclusion

We now apply the method of §3.7.3 to show that M is smoothly iterable. In
§3.5.2 we defined a smooth iteration of N to be a sequence I = hIi : i < µi
of normal iterations, inducing sequences hNi : i < µi, h⇡i,j : i  j < µi with
the following properties:

• Ni is the initial model of Ii. Moreover N0 = N .

• Let i + 1 < µ. Then Ii is of successor length. Ni+1 is the final model
of Ii and ⇡i,i+1 is the partial embedding of Ni into Ni+1 determined
by Ii.

• ⇡i,j⇡h,i = ⇡h,i.

• Call i + 1 < µ a drop point in I iff Ii has a truncation on its main
branch. If the interval (i, j] has no drop point, then:

⇡i,j : Ni �!⌃⇤ Nj .

• If � < µ is a limit ordinal, i0 < � and (i,�) has no drop point, then:

N�, h⇡i,� : i0  i < µi

is the direct limit of

hNi : i0  i < µi, h⇡i,j : i  j < µi.

hhNii, h⇡i,jii is called the induced sequence.

Call a smooth iteration I critical if it has successor length ⌘+1 and I⌘ is of
limit length. By a strategy for N we mean a partial function S defined on
critical smooth iterations such that S(I), if defined, is a well founded cofinal
branch in I⌘, where lh(I) = ⌘ + 1.

A smooth iteration I = hIi : i < µi is S-conforming iff whenever i < µ and
� < lh(Ii) is a limit ordinal, and I⇤ = I � i [ {hIi ��, ii}, then:

T i00{�} = S(I⇤) if S(I⇤) is defined.

S is a successful strategy for N iff every S-conforming smooth iteration I of
N can be properly extended in any legitimate S-conforming way. In other
words:
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(A) Let I have length ⌘ + 1 and let I⌘ have length i + 1. Let Q = N⌘

i
be

the final model of I⌘. Let EQ
⌫ 6= ?, where ⌫ is greater than all the

indices ⌫⌘
j
(j < i) employed in I⌘. Then Q is ⇤-extendible by EQ

⌫ .

(B) If I is critical, then S(I) is defined.

(C) Let I have limit length µ. Then there are only finitely many drop
points in I. Moreover, if l0 < µ and (i0, µ) is free of drops, then:

hNi : i0  i < µi, h⇡i,j : i  j < µi

has a well founded direct limit:

Nµ, h⇡i,µ : i0  i < µi

We say that N is smoothly iterable iff it has a successful smooth iteration
strategy.

These concepts can, of course, be relativized to an ordinal ↵. To this end we
define the total length of I = hIi : i < µi to be:

tl(I) =
X

i<µ

lh(Ii).

The notion of ↵-successful smooth iteration strategy is then defined as before,
except that we restrict ourselves to iteration of total length less than ↵.

Note that if  > ! is regular, then there are only two ways that a smooth
iteration I = hIi : i < µi can have total length . Either µ =  and lh(Ii) < 
for i < , or else µ = ⌘ + 1 < , lh(I⌘) =  and lh(Ii) <  for i < ⌘.

In this section we shall prove:

Theorem 3.7.53. Let M be uniquely normally iterable. Then it is smoothly
iterable.

Note. There is of course, considerable interest in relativizing this theorem
to ↵ < 1. We shall later show that, if  > ! is regular, then the theorem
can be relativized to  + 1. That will require fairly modest changes in the
proof we give now.

Until further notice, assume M to be uniquely normally iterable. We prove
our Theorem 3.7.53 in the slightly stronger form:

Lemma 3.7.54. Let I be a normal iteration of M of length ⌘ + 1. Let:

� : N �!⌃⇤ M⌘ min ⇢

Then N is smoothly iterable.
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In §3.7.3 we used the premiss of Lemma 3.7.54 to derive the normal iterability
of N . We first briefly review that proof, since our new proof will build upon
it. Our main tool was the reiteration mirror (RM). Given a normal iteration
of N :

I = hhNii, h⌫ii, h⇡i,ji, T i of length ⌘,

we define a reiteration mirror of I to be a pair hR, I 0i such that:

(a) R = hhIii, h⌫ 0
i
i, hei,ji, T i is a reiteration of M of length ⌘, where:

Ii = hhM i

h
i, h⌫i

h
i, h⇡i

h,j
i, T ii is of length ⌘i + 1

(b) I 0 = hhM 0
i
i, h⇡0

i,h
i, h�ii, h⇢iii is a mirror of I with �i(⌫i) = ⌫ 0

i
.

(c) M 0
i
= M i

⌘i
.

(d) If h = T (i+ 1), then:

M
0⇤
i = M 0

h
||µ where µ is maximal such that ⌧ 0i is a cardinal in M 0

h
.

Moreover:
⇡0
h,i+1 = �h,i+1

⌘
⇤
h

, where ⌘⇤
h
= lh(Ii⇤).

hI, R, I 0i is called an RM triple of length ⌘ if and only if hR, I 0i is an RM of
I.

We observed that:

Lemma 3.7.34 Let � = hI, R, I 0i be an RM triple of length ⌘ + 1. Let
E

M⌘
⌫ 6= ?, where ⌫ > ⌫i for all i < ⌘. Then � extends to an RM triple

�̇ = hİ , Ṙ, İ 0i of length ⌘ + 2 with ⌫̇ = ⌫.

We fixed a function G such that whenever (�, ⌫) is such a pair, then G(�, ⌫) =
hİ , Ṙ, İ 0i is such an extension.

We also observed that:

Lemma 3.7.35. Let � = hI, R, I 0i be an RM-triple of limit length ⌘. Let
b be the unique good branch in R. Then there is a unique extension to an
RM-triple �̇ of length ⌘ + 1. Moreover, b = Ṫ“{⌘} in this extension.

We also noted that:

Lemma 3.7.32. i+ 1 is a drop point in I iff it is a drop point in R.

Lemma 3.7.33. If (i, j]T has no drop point in I, then ⇡0
i,j

= �i,j
⌘i .
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Clearly, if � = hI, R, I 0i is an RM-triple of length ⌘ and 1  i < ⌘, then
�|i = hI|i, R|i, I 0|ii is a RM triple of length i. Now let:

� : N �!⌃⇤ M̃⌘̃ min ⇢̃,

where Ĩ = hhM̃ii, h⌫̃ii, h⇡̃i,ji, T̃ i is a normal iteration of M of length ⌘̃ + 1.
We define:

Definition 3.7.23. Let I be a normal iteration of N of length µ. By a good
triple for I we mean an RM triple �(I) = hI, R, I 0i such that:

(a) R = hhIii, h⌫ 0
i
i, heiji, T i, I 0 = hhM 0

i
i, h⇡0

i,j
i, h�ii, h⇢iii with I0 = Ĩ ,�i =

�̃, ⇢0 = ⇢̃.

(b) If i+ 1 < µ, then �|i+ 2 = G(�|i+ 1, ⌫ 0
i
).

By the fact that M is uniquely normally iterable and � is an RM-triple, it
follows that, if ⌘ < µ is a limit ordinal then �|⌘ + 1 is obtained from �|⌘ as
in Lemma 3.7.35. It follows easily that I can have at most one good triple,
which we denote by �(I), if it exists, we then define a strategy S for N as
follows:

Let I be a normal iteration N of limit length. If �(I) is undefined, then so
is S(I). If not, then we let:

b = the unique good branch in R,

where �(I) = hI, R, I 0i. We set: S(I) = b, We then noted:

Lemma 3.7.36. If I is an S-conforming iteration, then �(I) is defined.

But this means that I can be extended one step further, using Lemma 3.7.34
and 3.7.35. Hence S is a successful normal iteration strategy.

Building upon this, we now try to define a successful smooth iteration strat-
egy for N . Note that, given the function G, the operation �(I) is uniquely
characterized by �̃, Ĩ, ⇢̃. Thus we can write: �

�̃,Ĩ0,⇢̃(I). We now try to define
�(I) for smooth iterations I of N .

Definition 3.7.24. Let I = hIi : i < µi be a smooth iteration of N inducing
hNi : i < µi, h⇡i,j : i  j < µi. Let

Ii = hhN i

h
i, h⌫i

h
i, h⇡i

h,j
i, T ii be of length ⌘i.

By a �-sequence for I, we mean any sequence � = h�i : i < µi such that:
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(a) �i = �
İi,�i,⇢i

(Ii) = hIi, Ri, I 0ii is an RM triple where:

�i : Ni �!⌃⇤ Ṁimin ⇢i

and İi is the first iteration in Ri and Ṁi is the final model in İi.

We set:
Ri = hhIhi i, h⌫hi i, he

h,j

i
i, T ii

I 0i = hhM
0
(i)

h
i, h⇡0

i

h,j
i, h�i

h
i, h⇢i,hii

(Hence İi = I0
i
, Ṁi = M

0
i

0
.)

(b) İ = hİi : i < µi is a smooth reiteration of M such that Ri = the unique
reiteration from İi to İi+1 for i+ 1 < µ.

İ then induces partial insertions ėi,j with:

İi+1 = I⌘i
i
, ėi,i+1 = e0,⌘i

i
for i+ 1 < µ

and

İ�, hėi,� : i < �i is the good limit of

hİi : i < �i, hėi,j : i  j < �i for limit � < µ.

(c) There is a commutative system h⇡̇i,j : i  j < µi such that ⇡̇i,j is a
partial map from Ṁi to Ṁj and:

⇡̇i,i+1 = ⇡
0
i

0,⌘i
for i+ 1 < µ.

Moreover:

Ṁ�, h⇡̇i,� : i < �i is the limit of

hṀi : i < �i, h⇡̇i,j : i  j < �i for limit � < µ.

(d) �̇i+1 = �i
⌘i
, ⇢i+1

= ⇢i,⌘i for i+ 1 < µ.

(e) Ĩ = İ0, �̃ = �̇0, ⇢̃ = ⇢̇0.

(f) Suppose that I has no drop point in [i, j]. Then:

(i) ⇡̇i,j : Ṁi �!⌃⇤ Ṁj

(ii) ⇡̇i,j · �i = �̇j⇡i,j

(iii) ⇡̇i,j“⇢̇in ⇢ ⇢jn  ⇡̇i,j(⇢̇in) for n < !.

This completes the definition.
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Recall that h + 1 is a drop point in Ri iff it is a drop point in Ii. We call
i+ 1 a drop point in İ iff ri has a drop point on its main branch. Similarly,
i + 1 is a drop point in I iff Ii has a drop point on its main branch. Hence
i+ 1 is a drop in İ iff it is a drop point in I.

Lemma 3.7.55. There is at most one �-sequence for I.

Proof. By induction on i < µ we show that the sets:

�i, İi, hėh,i : h < ii, Ṁi, h⇡̇h,i : h < ii,�i, ⇢i

are uniquely determined by �|i = h�h : h < ii.

Case 1. i = 0.

İ0,�0, ⇢0 are explicitly given by (e). Hence so are:

Ṁ0 = the final model of İ0,�İ0,�̇0,⇢
0(I0)

Case 2. i = h+ 1. Then

• İi = I⌘h
h
, ėj,i · ėj,h for h < i.

• Ṁi is defined from İi,j and ⇡̇j,i = ⇡
0
h

0,⌘h
⇡̇j,h for h < i.

• �i = �h
⌘h
, ⇢i = ⇢h,⌘h .

• �i = �
İi,�i,⇢

i(Ii)

Case 3. i = � is a limit ordinal.

• İ�, hėh,� : h < �i are given by (b).

• Ṁ�, h⇡̇h,� : h < �i are given by (c).

• �� is defined by: ��⇡h,� = ⇡̇h,��h for [h,�) drop free in I (by (f)).

• By Lemma 3.6.42, ⇢� is the unique ⇢ such that

�� : N� �!⌃⇤ Ṁ�min ⇢ and

⇡̇i,�“⇢
i ⇢ ⇢  ⇡̇i,�(⇢

i
) if (i,�) is drop free.

• �� = �
İ�,��,⇢

�(I�).
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QED(Lemma 3.7.55)

We denote the unique �-sequence for I by �(I), if it exits. Writing �̇i,j

l
for

�
ėi,j

l
and ⌘̇i for lh(İi) we have:

Lemma 3.7.56. Let � = �(I). If (i, j] has no drop point in I, then ⇡̇i,j =

�̇i,j

⌘̇i
.

Proof. We recall that if i+ 1 is not a drop point, then

⇡̇i,i+1 = ⇡00
0,⌘i

= �
e
0,⌘i
i

⌘̇i
= �̇i,i+1.

(Here ⌘i + 1 = lh(Ri), ⌘̇i + 1 = lh(I0
i
)). Using this and Lemma 3.7.52, we

prove the assertion by induction on j.

QED(Lemma 3.7.56)

Lemma 3.7.57. Let I = hIi : i < µi be of limit length µ. Assume that
� = �(I) exits. Then there are unique: Nµ, h⇡i,µi, İµ, hėi,µi, Ṁµ, h⇡̇i,µi,�µ, ⇢µ
such that:

(a) Nµ, h⇡i,µ : i < µi is the direct limit of:

hNi : i < µi, h⇡i,j : i  j < µi.

(b) İµ, hėi,µ : i < µi is the good limit of

hİi : i < µi, hėi,j : i  j < µi

(c) Ṁµ is the final model of İµ.

(d) Ṁµ, h⇡̇i,µ : i < µi is the direct limit of:

hṀi : i < µi, h⇡̇i,j : i  j < µi.

(e) �µ : Nµ �!⌃⇤ Ṁµmin ⇢µ.

(f) For sufficient i < µ we have:

�µ⇡i,µ = ⇡̇i,µ�i; ⇡̇i,µ“⇢
i ⇢ ⇢µ  ⇡̇i,µ(⇢

i
)

Proof. (b) is immediate by Theorem 3.7.50. We let Ṁµ be defined as in (c).
Let i < µ such that (i, µ) has no drop points in I, Then (i, µ) has no drop
points in İ = hİi : i < µi. By Lemma 3.7.56 we know that ⇡̇h,j = �̇h,j

⌘̇h
for

i  h  j < µ. Set: ⇡̇h,µ = �̇h,µ

⌘̇h
for h 2 [i, µ). Then (d) follows by Lemma
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3.7.52. We know that �j⇡hj = ⇡̇hj�h for i  h  j < µ. Hence we can define
�µ as in (f). �µ is obviously unique. But then there is a unique ⇢µ satisfying
(e), (f) by Lemma 3.6.42. QED(Lemma 3.7.57)

We now define the strategy S. Let I be a critical smooth iteration. Then
I has length ⌘ + 1 and I⌘ is of limit length. If �(I) is undefined, the so is
S(I). If not, then:

�⌘ : N⌘ �!⌃⇤ Ṁ⌘ min ⇢⌘

where İ , Ṁ⌘,�⌘, ⇢⌘ are as in the definition of “�-sequence”. Moreover, �⌘ =

�
İ⌘ ,�⌘ ,⇢

⌘(I⌘). We then set:

S(I) =: S⌘(İ⌘) = the unique cofinal, well founded branch in İ⌘.

But then:

Lemma 3.7.58. Let I = hIi : i < µi be any S-conforming smooth iteration.
Then �(I) exists.

Proof. Let I = hIi : i < µi. Define a partical function on µ by:

�i =: the unique x such that �(I|i+ 1) = h�h : h < ii [ {hx, ii}.

By induction on i we show:

Claim. �i exists.

Case 1. i = 0.

Clearly �i = �
Ĩ,�̃,⇢̃

(I0). But this holds for any I0 which is a normal iteration
of N . Hence by induction on lh(I0), we have: I0 is S

Ĩ,�̃,⇢̃
-conforming, where

S
Ĩ,�̃,⇢̃

is the normal iteration strategy for N defined from the function �
Ĩ,�̃,⇢̃

.

QED(Case 1)

Case 2. i = h+ 1.

Set İi = I⌘h
h
,�i = �h

⌘h
, ⇢i = ⇢h,⌘h . Clearly, then:

�i = �
İi,�i,⇢

i(Ii)

where İi is a normal iterate of M and:

� : Ni �!⌃⇤ Ṁimin ⇢i,

Ṁi being the final model of İi. Since this holds for any normal iterate Ii of
Ni, we conclude by induction on lh(Ii) that Ii is S

İi,�i,⇢
i-conforming. Hence

�i = �
İi,�i,⇢

i exists.
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QED(2)

Case 3. i = � is a limit.

It is easily seen that h�h : h < �i = �(I � �). Let İ�, Ṁ�,��, ⇢� be as in
Lemma 3.7.57. Clearly we have: �� = �

İ�,Ṁ�,��,⇢
�(I�). Exactly as before,

we conclude that I� is S
İ�,Ṁ�,��,⇢

�-conforming, hence that �� exists.

QED(Claim)

But then it is easily seen that h�i : i < µi = �(I).

QED(Lemma 3.7.58)

But then S is successful, since, if I is S-conforming, then I can be extended
un any S-conforming way -i.e. (A)-(C)hold. (A) follows by Lemma 3.7.34.
(B) follows by Lemma 3.7.35. (C) follows by Lemma 3.6.47.

This proves Lemma 3.7.54 and with it Theorem 3.7.53. We now show how
to relativize this to a regular cardinal  > !. We assume that M is uniquely
 + 1-normally iterable. By a -reiteration of M we mean a reiteration of
length   in which each component normal iteration is of length < . If
we understand “reiteration” as meaning a -reiteration of length < , and
“smooth iteration” as meaning a smooth iteration of total length < , then
a literal repetition of the above proof shows:

Lemma 3.7.59. Let M be uniquely normally  + 1-iterable. Let Ĩ be a
normal iteration of M of length ⌘ + 1 < . Let

� : N �!⌃⇤ M̃⌘ min ⇢

Then N is smoothly -iterable.

The following strength of +1-iterability is needed for this, however, in order
to justify the use of Theorem 3.7.50. We now show that, under the premises
of Lemma 3.7.59, N is in fact, smoothly + 1-iterable. Let I = hIi : i < µi
be a smooth iteration of N of total length . As mentioned earlier, one of
two cases hold, which we consider separately:

Case 1. µ = ⌘ + 1 <  and I⌘ is of length .

We assume I to be S-conforming. Then I|⌘ is S-conforming. Then I|⌘ is
S-conforming and I⌘ is S

İ⌘ ,�⌘ ,⇢
⌘ -conforming. Hence:

�
İ⌘ ,�⌘ ,⇢

⌘(I⌘) = hI⌘, R, I 0i exists,

where R is a reiteration of M of length . But then R has a well founded
cofinal branch b. Hence b is cofinal in I⌘. b has only finitely many drop points
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in I⌘, since otherwise, by the fact that  > ! is regular, there would be � 2 b
such that h \ � = T ⌘

“{�} has infinitely many drop points. Contradiction!
Let i 2 b such that bri has no drop points. Using the fact that  > ! is
regular, it follows easily that

hMh : h 2 brii, h⇡h,j : h  j in brii

has a well founded limit. (If xn+1 2 xn is the limit, these would be a ⇠ 2 bri
such that xn = N ⇠(xn) for n < !. Hence xn+1 2 xn in N⇠. Contradiction!)

QED(Case 1)

Case 2. µ = .

I has only finitely many drop points, since otherwise these would be ⇠ < 
such that I|⇠ has infinitely many drop points. Contradiction! Let the interval
(i,) be drop free. Since  > ! is regular, it again follows that:

hMh : i  h < i, h⇡h,j : i  h  j < i

has a well founded limit.

QED(Case 2)

This proves Theorem 3.6.2.

3.8 Unique Iterability

3.8.1 One small mice

Although we have thus far developed the theory of mice in considerable
generality, most of this book will deal with a subclass of mice called one
small. These mice were discovered and named by John Steel. It turns out
that a great part of many one small mice are uniquely normally iterable.
Using the notion of Woodin cardinal defined in the preliminaries we define:

Definition 3.8.1 (1-small). A premouse M is one small iff whenever EM
⌫ 6=

?, then
no µ <  = crit(EM

⌫ ) is Woodin in JE
M



Note. Since JE
 is a ZFC model, we can employ the definition of “Woodin

cardinal” given in the preliminaries. An examination of the definition shows
that the statement “µ is Woodin” is, in fact, first order over H⌧ where ⌧ = µ+.
Thus the statement “µ is Woodin in M ” makes sense for any transitive ZFC

�

model M . It means that µ 2 M and “µ is Woodin” hold in HM
⌧ where

⌧ = µ+
M (taking ⌧ = cardM if no ⇠ > µ is a cardinal in M). We then have:


