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In the following section we develop the theory of Phalanxes.

4.2 Phalanx Iteration

In this section we develop the technical tools which we shall use in proving
that fully iterable mice are solid. Our main concern in this book is with one
small mice, which are known to be of type 1, if active. We shall therefore
restrict ourselves here to structures which are of type 1 or 2. When we use
the term “mouse” or “premouse”, we mean a premouse M such that neither
it nor any of its segments M ||⌘ are of type 3.

We have hitherto used the word “iteration” to refer to the iteration of a single
premouse M . Occasionally, however, we shall iterate not a single premouse,
but rather an array of premice called a phalanx. We define:

By a phalanx of length ⌘ + 1 we mean:

M = hhMi : i  ⌘i, h�i : i < ⌘ii

such that:

(a) Mi is a premouse (i  ⌘)

(b) �i 2Mi and JE
Mi

�i
= JE

Mj

�i
, (i < j  ⌘)

(c) �i < �j (i < j < ⌘)

(d) �i > ! is a cardinal in Mj (i < j  ⌘).

A normal iteration of the phalanx M has the form

I = hhMi : i < µi, h⌫i : i+ 1 2 (⌘, µ)i, h⇡i,j : i T ji, T i

where µ > ⌘ is the length of I. M = I|⌘ + 1 is the first segment of the
iteration. Each i  ⌘ is a minimal point in the tree T . As usual, ⌘i is
chosen such that ⌘i > ⌘h for h < i. If h is minimal such that i < �h then
h = T (i+1) and EMi

⌫i
is applied to an apropiately defined M⇤

i
= Mh||�. But

here a problem arises. The natural definition of M⇤
i

is:

M⇤
i
= Mh||�, where �  OnMh is maximal such that ⌧i < � is a

cardinal in Mh||�.
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But is there such a �? If �h is a limit cardinal in Mi, then ⌧i < �h and
hence �h is such a �. For i < � we have left the possibility open, however,
that �h is a successor cardinal in Mi. We could then have: ⌧i = �h. In this
case i is the largest cardinal in JE

Mh

�i
. If E�h

6= ? in Mh, it follows that
⇢1
Mh||�h

 i < ⌧i. Hence there is no � with the desired property and M⇤
i

is
undefined.

In practice, phalanxes are either defined with restrictions which prevent this
eventuality, or -in the worst case- a more imaginative definition of M⇤

i
is

applied. If h = T (i + 1) and M⇤
i

is given, then Mi+1, Th,i+1 are, as usual,
defined by:

⇡h,i+1 : M
⇤
i �!

(n)

E⌫i
Mi+1,

where n  ! is maximal such that i < ⇢n
M

⇤
i
. In iterations of a single

premouse, we were able to show that E⌫i is always close to M⇤
i
, but there is

no reason to expect this in arbitrary phalanx iterations.

We will not attempt to present a general theory of phalanxes, since in this
section we use only phalanxes of length 2. We write hN,M,�i as an abbre-
viation for the phalanx M of length 2 with M0 = N,M1 = M , and �0 = �.
We define:

Definition 4.2.1. The phalanx hN,M,�i is witnessed (or verified) by � iff
the following hold:

(a) � : M �!
⌃

(n)
0

N for all n < ! such that � < ⇢n
M

(b) � = crit(�)

(c) � is cardinal preserving, i.e. if ⌧ is a cardinal in M then �(⌧) is cardinal
in N .

Lemma 4.2.1. Let hN,M,�i be witnessed by �. Then the following hold:

(1) � is a regular cardinal in M .
Proof. Suppose not. Let � = dom(f) < �, f 2 M such that
sup f”� = �. Then �(f) = f since dom(�(f)) = �(�) = � and
�(f)(⌫) = �(f(⌫)) = f(⌫) for ⌫ < �. But then f : � �! �(�) cofi-
nally, where �(�) > �. Contradiction!

QED(1)
By acceptability it follows that:

(2) If ⌧ < � is a (regular) cardinal in JE
M

�
, then it is a (regular) cardinal

in M (hence in N).
Obviously:
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(3) If � is a limit cardinal in M , then it is a limit cardinal in N .
However, � could be a successor cardinal in M , in which case there is
�̃ with � = �̃+ in M and �̃ < � < �(�) = �̃+ in N . Theoretically
we could have EM

�
6= ?, but we have eliminated that possibility by

restricting to premice of type 1 or 2:

(4) EM

�
= ?.

Proof. Suppose not. Let ⌫̃ = �(�). Let ̃ = crit(EM

�
) = crit(EN

⌫̃
).

Set �̃ = EN

⌫̃
(). Then �̃+

= ⌫ and �̃ is regular in N by acceptability,
since ⌫̃ is a cardinal in N . Working in N , it follows easily that EN

⌫̃
|⌘

is a full extender for arbitrarily large ⌘ < �̃. Hence N ||⌫̃ is of type 3.
Contradiction!

QED(4)
Hence:

(5) Let  < � be a cardinal in M . Set ⌧ = +M . There is � 2 N such that
� > ⌧ and ⌧ is a cardinal in N ||�.
Proof. If ⌧ < �, take � = �. Otherwise ⌧ = �. Then ⌧ is a cardinal
in M ||�+!, since EM

�
= ?. But �+! < �(�) 2 N and JE

M

�+!
= JE

N

�+!
,

since EN

�
= EM

�
= ?.

QED(5)

Note. It will follow from (5) that if h = T (i + 1) is a normal iteration of
hN,M,�i, then M⇤

i
is defined.

Following our earlier sketch, we define:

Definition 4.2.2. Let hN,M,�i be a phalanx which is witnessed by �. By
a normal iteration of hN,M,�i of length ⌘ � 2 we mean:

I = hhMi : i < µi, h⌫i : i+ 1 2 (⌘, µ)i, h⇡i,j : i T ji, T i

such that:

(a) T is a tree on ⌘ with iT j �! i < j. Moreover T”{0} = T”{1} = ?.

(b) Mi is a premouse for i < ⌘. Moreover M0 = N,M1 = N .

(c) If 1  i, i + 1 < ⌘, then Mi||⌫i = hJE
⌫i
, E⌫ii with E⌫i 6= ?. We define

i, ⌧i,�i as usual. We also set: �0 = �. We require: ⌫i > ⌫h if 1  h < i
and �h > �. (Hence �i > �h for h < i).

(d) Let i > 0. Let h be least such that h = i or h < i and i < �h. Then
h = T (i+ 1) and JE

Mh
⌧i

= JE
Mi

⌧i
.
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(e) ⇡i,j is a partial map of Mi to Mj for i T j. Moreover ⇡i,i = id,
⇡i,j⇡h,i = ⇡h,j .

(f) Let h = T (i + 1). Set: M⇤
i
= Mh||�, where �  OnMh is maximal

such that ⌧i < � is a cardinal in Mh||�. (We call it a drop point in I if
M⇤

i
6= Mk). Then:

⇡h,i+1 : M
⇤
i �!

(n)

E⌫i
Mi0+1, where n  ! is maximal s.t.

�h  ⇢n
M

⇤
i
(where �0 = �)

(g) If i T j and (i, j]T has no drop point, then ⇡ij is a total function on
Mi.

(h) Let µ < ⌘ be a limit ordinal. Then T”µ is a club in µ and contains at
most finitely many drop points. Moreover, if i < µ and (i, µ)T is drop
free, then:

Mµ, h⇡j,µ : i T j <T µi

is the transitivized direct limit of

hMj : i T j T µi, h⇡j,k : i T j T k <T µi.

As usual we call Mµ, h⇡j,µ : j <T µi the limit of hMi : i <T µi, h⇡j,k :

i T j T k <T µi, since the missing points are given by:

⇡h,j = ⇡i,j⇡h,i for h <T i T j <T µi

This completes the definition. Note that the existence of M⇤
i

is guaranteed
by Lemma 4.2.1(5). We define:

Definition 4.2.3. i + 1 is an anomaly in I if i > 0 and ⌧i = � (hence
0 = T (i+ 1)).

Anomalies will cause us some problems. Just as in the case of ordinary
normal iterations, we can extend an iteration of length ⌘ + 1 to a potential
iteration of length ⌘ + 2 by appointing ⌫⌘ such that:

E
M⌘
⌫⌘ 6= ?, : ⌫⌘ > ⌫i for i  i < ⌘,�⌘ > �.

This determines M⇤
⌘ . In ordinary iterations we know that E⌫⌘ is close to

M⇤
⌘ . In the present situation this may fail, however, if ⌘ + 1 is an anomaly.

We, nonetheless, get the following analogue of Theorem 3.4.4:

Theorem 4.2.2. Let I be a potential normal iteration of hN,M,�i of length
i + 1. If i + 1 is not an anomaly, then EMi

⌫i
is close to M⇤

i
. If i + 1 is an

anomaly, then EMi
⌫i,↵
2 N for ↵ < �0.
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We essentially repeat our earlier proof (but with one additional step). We
show that if A ⇢ ⌧i is ⌃1(Mi||⌫i), then it is ⌃1(M

⇤
i
) if i+1 is not an anomaly,

and otherwise A 2 N. Let I be a counterexample of length i + 1 where i is
chosen minimally. Let h = T (i+1). Let A ⇢ ⌧i be a counterexample. Then:

(1) h < i.
We then prove:

(2) ⌫i = OnMi , ⇢
1

Mi
 ⌧i.

The first equation is proven exactly as before. The second follows as
before if i+1 is not an anomaly, since then ⌧i < �h. Now let i+1 be an
anomaly. Assume ⇢1

Mi
> ⌧i and let A ⇢ ⌧i be ⌃(Mi). Then A 2 M1,

since either i = 1 or A 2 JE
Mi

�1
= JE

M1

�1
where �1 is a cardinal in Mi.

Hence A = �(A) \ � 2 N . Contradiction!
QED(2)

In an extra step we then prove:
Claim. i > 1.
Proof. Suppose not. Then i = 1 and h = 0. Let:

⇡ : JE

⌧1
�! JE

⌫1
, ⇡0

: JE
0

⌧
0
1
�! JE

0

⌫
0
1

be the extensions of M,N respectively. Then ⇡,⇡0 are cofinal and
�⇡ = ⇡0�. If ⌧1 < � then � �⌧1 +1 = id and � takes M cofinally to N .
Hence � in ⌃1�preserving. If A is ⌃1(M) in p, then A is also ⌃1(N)

in �(p), where N = M⇤
1
. Contradiction!

Now let ⌧1 = �. Then i+1 is an anomaly. Then � takes ⌫1, non cofinally
to ⌫ 0

1
, since ⇡0

(�) > ⇡(⇠) = �⇡(⇠) for ⇠ < �. Let ⌫̃ =: sup�”⌫1. Then:

� : M �!⌃1 M̃ cofinally,

where M̃ = hJE
0

⌫̃
, E0

⌫
0
1
\ JE

0
⌫̃
i. Let A0 be ⌃1(M̃) in �(p) by the same

definition as A in p. Then A0 2 N and A = A0\� 2 N . Contradiction!
QED(Claim)

(3) i is not a limit ordinal.
Proof. Suppose not. Then as before, we can pick l <T i such that ⇡l,i
is a total function on Ml and l > h. Hence ⇡l,i is ⌃1-preserving. Let
Mi = hJE

⌫i
, F i. We can also pick l big enough that p 2 rng(⇡l,i), where

A is ⌃1(Mi) in p. Hence A 2 ⌃1(Ml), where Ml = hJ Ẽ

⌫̃
, F̃ i, where

⌫̃ = OnMl � ⌫l. Extend I|l + 1 to a potential iteration I 0 of length
l + 2 by setting: ⌫ 0

l
= ⌫̃. Since l > h, it follows easily that:

0
l
= i, ⌧

0
l
= ⌧i, h = T 0

(l + 1),M⇤
i = M 0⇤

l
.
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By the minimality of i it follows that A 2 ⌃1(M⇤
l
) if i + 1 is not an

anomaly and otherwise A 2 N . Contradiction!
QED(3)

We then let: i = j + 1, ⇠ = ⌧(i). By the claim we have: j  1.
But:

⇡⇠,i : M
⇤
j �!

(n)

E
Mi
⌫j

Mi = hJE

⌫i
, E⌫ii.

If n = 0, this map is cofinal. Hence in any case ⇡⇠,i is ⌃1-preserving.
Hence:

(4) M⇤
j
= hJE

⌫
, E⌫i where E⌫ 6= ?.

Hence:

(5) ⌧i < j .
Proof. i < �h  �j where �j is inaccessible in Mi (since j � 1).
Hence ⌧i < �j . Moreover, i, ⌧i 2 rng(⇡⇠,i) by (4). But:

rng(⇡⇠,i) \ [�j ,�j) = ?.

QED(5)
Exactly as before we get:

(6) ⇡⇠,i : M⇤
j
�!E⌫j

Mi is a ⌃0 ultrapower. But then:

(7) i is not an anomaly.
Proof. Let A ⇢ ⌧i be ⌃1(Mi) in the parameter p. By (6) we have:
p = ⇡⇠,i(f)(↵), where f 2M⇤

j
,↵ < �j .

Then:
A(⇣) !

_
u 2M⇤

j

_
y 2 ⇡⇣,i(u)A

0
(y, ⇣, p)

But then:

A(⇣) !
_

u 2M⇤
j {� < j : A

0
(y, ⇣, f(�))} 2 (E⌫j )↵.

But since j < i and j + 1 is an anomaly, we have by the minimality of
i that (E⌫j )↵ 2 N . Hence A 2 N . Contradiction!

QED(7)
Since j + 1 is not an anomaly, we have (E⌫j )↵ 2 ⌃1(M

⇤
j
). Hence

A 2 ⌃1(M
⇤
j
). Hence we have shown:

(8) P(⌧i) \ ⌃1(Mi) ⇢ ⌃1(M
⇤
j
).

We know that M⇤
j
= M⇠||⌫ = hJE

⌫
, E⌫i. Moreover, ⌫ > ⌫l for l < ⇠,

since �l  j < �
⇠
< ⌫; hence ⌫l < �⇠ < ⌫. Thus we can extend I|⇠+1
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to a potential iteration I 0 of length ⇠ + 2 by setting: ⌫ 0
⇠
= ⌫. Since

⌧i < j , we then have: i = 0
⇠
, ⌧i = ⌧ 0

⇠
. Hence:

h = T (i+ 1) = T 0
(⇠ + 1) and M⇤

i = (M⇤
⇠
)
0.

Suppose that i+1 is not an anomaly in I. Then neither is ⇠ +1 in I 0.
By the minimality of i we conclude:

P(⌧i) \ ⌃1(M⇠||⌫) ⇢ ⌃1(M
⇤
i )

where M⇠||⌫ = M⇤
j
. Hence by (8):

P(⌧i) \ ⌃1(Mi) ⇢ ⌃1(M
⇤
i ).

Contradiction!

Now let i+1 be an anomaly. Then so is ⇠+1 in I 0. But then just as before:

P(⌧i) \ ⌃1(Mi) ⇢ P(⌧i) \ ⌃1(M⇠||⌫) ⇢ N.

Contradiction! QED(Theorem 4.2.2)

We now prove:

Lemma 4.2.3. Let h = T (i + 1) in I, where I is a normal iteration of
hN,M,�i. Then:

⇡h,i+1 : M
⇤
i �!⌃⇤ Mi+1 strongly.

Proof. If i + 1 is not an anomaly, then EMi
⌫i

is close to M⇤
i

and the result
is immediate. Now let i + 1 be an anomaly. Then h = 0,M⇤

i
= N ||⌘ for

an ⌘ < ⌧ 0
i
= �(�), since ⌧i = �. ⇢!

M
⇤
i
 i, since ⌧i is not a cardinal in

N |⌘ + ! = JE
N

⌘+!. But then ⇢!
M

⇤
i
= i, since i is a cardinal in N . Let

⇢n
M

⇤
i
> i � ⇢n+1

M
⇤
i

, where n < !. Let ⇡ = ⇡h,i+1. Since Mi+1 is the ⌃
(n)

0

ultrapower of M⇤
i
, we know:

⇡”⇢n
M

⇤
i
⇢ ⇢n

M
⇤
i+1

and ⇡(⇢j
M

⇤
i
) = ⇢j

Mi+1
for j < n.

Since E⌫i is weakly amenable, Lemma 3.2.16 gives us:

(1) sup⇡”⇢n
M

⇤
i
= ⇢n

Mi+1
and ⇡ is ⌃

(n)

1
-preserving.

We now prove:
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(2) Let H =: |JE
Mi

⌫i
| = |JE

Mi+1

⌫i
|. Then P(H) \ ⌃

(n)

1
(Mi+1) ⇢ N .

Proof. Let B be ⌃
(n)

1
(Mi+1) in q such that B ⇢ H. Let q = ⇡(f)(↵)

where f 2 �
⇤
(i,M⇤

i
),↵ < �i. Let:

B(x) !
_

y 2 Hn

Mi+1
B0

(y, x, q)

where B0 in ⌃
(n)

0
(Mi+1). Let B

0 be ⌃
(n)

0
(M⇤

i
) by the same definition.

Then:

B(x) !
_

u 2 Hn

M
⇤
i

_
y 2 ⇡(u)B0

(y, x,⇡(f)(↵))

 !
_

u 2 Hn

M
⇤
i
{� < i :

_
y 2 u B

0
(y, x, f(�))} 2 (EMi

⌫i
)
↵

But (EMi
⌫i

)
↵
2 N . Hence B 2 N .

QED(2)
Clearly, if A ⇢ H is ⌃

⇤
(Mi+1), then it is ⌃!(hH,Bi) where B is

⌃
(n)

1
(Mi+1). Hence A 2 N and hH,Ai is amenable, since H = JE

M⇤
i

i
=

JE
N

i
, and i is regular in N . But then ⇢!

Mi+1
= ⇢!

M
⇤
i
= i. It follows

that:

(3) ⇡ is ⌃
⇤-preserving.

Proof. By induction on j we show that if R(~xj , ~z) is ⌃
(i)

1
(M⇤

i
) and

R0
(~xj , ~z) are ⌃

j

1
(Mi+1) by the same definition (where ~z = zh1

1
, . . . , zhm

m

with h1, . . . hm < j), then:

R(~x, ~z) ! R0
(⇡(~x),⇡(~z)).

For j  n this holds by (1). Now let it hold for j = m � n. We show
that it holds for j = m+ 1. Then:

R(~x, ~z) ! H~z |= '[~x]

where ' is ⌃1 and:
H~z = hH,Q

1

~z, . . . , Q
P

~z i

where Ql
(~w, ~z) is ⌃

(m)

1
(M⇤

i
) and:

Q
l
= {h~wi 2 H : Ql

(~w, ~z)} for l = 1, . . . , p.

Now let Q0 be ⌃
(m)

1
(Mi+1) by the same definition and let H 0

~x
be de-

fined like H~x with Ql
0 in place of Ql

(l = 1, . . . , p). By the induction
hypothesis we then have:

R(~x, ~z) ! H~z |= '(~x)

 ! H⇡(~z) |= '(~x)

 ! R0
(~x,⇡(~z)) ! R0

(⇡(~x),⇡(~z))
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since ⇡(~x) = ~x.
QED(3)

But this embedding ⇡ is also strong, since if ⇢m+1
=  and A confirms

a 2 Pm in M⇤
i
, then if A0 is ⌃

(m)

i+1
in ⇡(a) by the same definition, we

have: A \ H = A0 \ H, where M⇤
i
\ P(H) = Mi+1 \ P(H). Hence

A0 \H /2Mi+1.
QED(Lemma 4.2.3)

But then:

Lemma 4.2.4. Let h = T (i+1), where i+1 T j and (i+1, j] has no drop
point. Then:

⇡h,j : M
⇤
i �!⌃⇤ Mj strongly.

Proof. By Lemma 3.2.27 and Lemma 3.2.28.

QED(Lemma 4.2.4)

Exactly as in Corollary 4.1.12, we conclude that if M⇤
i

is solid and i = j+1,
then so is Mj and ⇡(pm

i
) = pm

j
for m < !.

We intend to do comparison iterations in which hN,M,�i is coiterated with
a premouse. For this we shall again need padded iteration. Our definition
of a normal iteration of hN,M,�i encompassed only strict iteration, but we
can easily change that:

Definition 4.2.4. Let hN,M,�i be a phalanx which is witnessed by �. By
a padded normal iteration of hN,M,�i of length µ � 1 we mean:

I = hhMi : i < µi, h⌫i : i 2 Ai, h⇡i,j : i T ji, T i.

Where:

(1) A = {i :< i+ 1 < µ} is the set of active points.

(2) (a)-(b) of the previous definition hold. However (f), (d) require that
i 2 A. Moreover:

(i) Let 1  h < j < µ such that [h, j) \A = ?. Then:
• h <T j,Mh = Mj ,⇡h,j = id.
• i  h �! (i T h ! i <T j) for i < µ.
• j  i �! (j T i ! h <T i) for i < µ.

(In particular, if 2  i+1 < µ, i /2 A. Then i = T (i+1),Mi =

Mi+1,⇡i,i+1 = id).
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Note. 0 plays a special role, behaving like an active point in that �0 exists,
but ⌫0 does not exist.

Our previous results go through mutatis mutandis. We shall say more about
that later.

Definition 4.2.5. Let M0 be a premouse and M1
= hM,N,�i a phalanx

iteration witnessed by �. By a coiteration of M0,M1 of length µ � 1 with
coindices h⌫i : 1  i < µi we mean a pair hI0, I1i such that:

(a) Ih = hhMh

i
i, h⌫h

i
: i 2 Ahi, h⇡h

i,j
i, T hi is a padded normal iteration of

Mh
(h = 0, 1).

(b) M0
0
= M0

1
.

(c) ⌫i = the least ⌫ such that E
M

0
i

⌫ 6= E
M

1
i

⌫ .

(d) If EM
n
i

⌫i 6= ?, then i 2 Ah and ⌫h
i
= ⌫j . Otherwise i /2 Ah

i
.

Note. We always have M0
0
= M0

1
whereas: M1

0
= N,M1

1
= M .

Definition 4.2.6. Let M0,M1 2 H, where  > ! is regular. Let Sh be a
successful iteration strategy for Mh

(h = 0, 1). The hS0, S1i-coiteration of
length µ   + 1 with coindices h⌫i : 1  i < µi is the coiteration hI0, I1i
such that:

• Ih is Sh-conforming.

• Either µ = +1 or µ = i+1 <  and ⌫i does not exist (i.e. M0
1
C M1

i

or M1
0
C M0

i
).

Note that C was defined by:

P C Q ! P = Q||OnP

We leave it to the reader to show that the coiteration exists. This is spelled
out in §3.5 for coiteration of premice. We obtain the following analogue of
Lemma 3.5.1:

Lemma 4.2.5. The coiteration of M : M1 terminates below 1.

The proof is virtually unchanged. We leave the details to the reader. Using
Lemma 4.2.4, we get the following analogue of Lemma 4.1.14:
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Lemma 4.2.6. Let N,M0 be presolid. (Hence M1 is presolid). Let hI0, I1i
be the coiteration of M0,M1 terminating at j < . Suppose there is a drop
on the main branch of Ih. Then there is no drop on the main branch of Ii�h.
Moreover, M i�h

i
C Mh

i
.

The proof is virtually the same.

At the end of §4.1 we sketched an approach to proving that fully iterable
mice are solid. The basic idea was to coiterate hN,M,�i with N , where
N is fully iterable and � witnesses hN,M,�i. In order to do this, we must
know that hN,M,�i is normally iterable. (The notions “iteration strategy”,
“successful iteration strategy” and “iterability” are defined in the obvious way
for phalanxes hN,M,�i. We leave this to the reader.) We prove:

Lemma 4.2.7. If hN,M,�i is witnessed by � and N is normally iterable,
then hN,M,�i is normally iterable.

For the sake of simplicity we shall first prove this under a special assumption,
which eliminates the possibility of anomalies:

(SA) � is a limit cardinal in M.

Later we shall prove it without SA.

In §3.4.5 we showed that if � : M �!⌃⇤ N and N is normally iterable,
then M is normally iterable. Given a successful iteration strategy for N , we
defined a successful strategy for M , based on the principle of copying the
iteration of M onto N . In this case, we “copy” an iteration of hN,M,�i onto
an iteration of N. It suffices to prove it for strict iterations. Let

I = hhMii, h⌫ii, h⇡iji, T i

be a strict normal iteration of hN,M,�i. Its copy will be an iteration of N :

I 0 = hhNii, h⌫ 0ii, h⇡0
iji, T 0i

of the same length. We will have N0 = N1 = N . (Thus I 0 is a padded
iteration, even if I is not). There will be copying maps �i(i < lh(I)) with:

�i : Mi �! Ni,�0 = id�N,�1 = �.

We shall have ⌫ 0
i
⇠= �i(⌫i) for 1  i. The tree T was “double rooted” with 0,

1 as its two initial points, T 0, on the other hand, has the sole initial point 0.
We can define T 0 from T by:

iT 0j  ! (iT j _ i < 2  j)
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In I each point i < µ has a unique origin h 2 {0, 1} such that h T i. Denote
this by: or(i). Using the function or we can define T from T 0 by:

iT j  ! (iT j ^ or(i) = or(j))

Thus, each infinite branch b0 in I 0 uniquely determines an infinite branch b
in I defined by:

b =
[

i2b0r2

{or(i), i}

However, we cannot expect the copying map to always be ⌃
⇤-preserving,

since �1 = � is assumed to be ⌃
(n)

0
-preserving only for ⇢n

M
> �. In this

connection it is useful to define:

depth(M,�) =: the maximal n  ! s.t. ⇢nM > �.

Modifying our definition of “copy” in §3.4.5 appropiately we now define:

Definition 4.2.7. Let hN,M,�i be witnessed by �. Let

I = hhMii, h⌫ii, h⇡iji, T i

be a normal iteration of hN,M,�i of length µ. Let:

I 0 = hhNii, h⌫ 0ii, h⇡0
iji, T 0i

be a normal iteration of N of the same length. I 0 is a copy of I onto N with
copying maps �i(i < µ) iff the following hold:

(a) �i : Mi �!⌃⇤ Ni,�0 = id�N,�1 = �, N0 = N1 = N .

(b) iT 0j  ! (iT j _ i < 2  j)

(c) �i ��h = �h ��h for h  i < µ

(d) �i⇡hi = ⇡0
hi
�h for i T h.

(e) ⌫ 0
i
⇠= �i(⌫i)

(f) Let 1 T i. If (1, i]T has no drop point in I, then �i is ⌃(n)

0
-preserving

for all n such that �  ⇢n
M

. If (1, i]T has a drop point in I. Then �i is
⌃
⇤-preserving.

(g) If 0 T i then �i is ⌃
⇤-preserving.

Note: N0 = N1, since 0 /2 A.

Our notion of copy is very close to that defined in §3.4.5. The main difference
is that �i need not always be ⌃

⇤-preserving. Nonetheless we can imitate



412 CHAPTER 4. PROPERTIES OF MICE

the theory developed in §3.4.5. Lemma 3.4.14 holds literally as before. In
interpreting the statement, however, we must keep in mind that if i 2 A and
T (i+1) = 0, then T 0

(i+1) = 1. In this case ⌧i < � is a cardinal in N . Hence
M⇤

i
= N . Moreover ⌧ 0

i
= �(⌧i) = ⌧i. Hence ⌧ 0

i
is a cardinal in N⇤

= N and
N⇤

i
= N . In all other cases T 0

(i + 1) = T (i + 1). Clearly ⇡0
0j

= ⇡0
ij

for all
j � 1. Lemma 3.4.14 then becomes:

Lemma 4.2.8. Let I, I 0, h�i : i < µi be as in the above definition. Let
h = T (i+ 1). Then:

(i) If i + 1 is a drop point in I, then it is a drop point in I 0 and N⇤
i
=

�h(M⇤
i
).

(ii) If i + 1 is not a drop point in I, then it is not a drop point in I 0 and
N⇤

i
= Nh.

(iii) If F = EMi
⌫i

, F 0
= ENi

⌫
0
i
. Then:

h�h �M⇤
i ,�i ��ii : hM⇤

i , F i �! hN⇤
i , F

0i

(iv) �i+1(⇡h,i+1(f)(↵)) = ⇡0
h,i+1

�h(f)(�i(↵)) for f 2 �
⇤
(i,M⇤

i
),↵ < �i.

(v) �j(⌫i) ⇠= ⌫ 0
i
for j > i.

(vi) �i is cardinal preserving.

Note. In the general case, where anomalies can occur, Lemma 3.4.14 will
not translate as easily.

Proof. In §3.4.5 we proved this under the assumption that each �i is
⌃
⇤-preserving. We must now show that the weaker degree of preserva-

tion which we have posited suffices. The proof of (i)-(ii) are virtually un-
changed. We now show that ⌃0-preservation is sufficient to prove (iii). Set:
M = Mi||⌫i, N = Ni||⌫ 0i. Then �i �M is a ⌃0 preserving map to N . Let
↵ < �, X 2 P(i) \M . The statement ↵ 2 F (X) is uniformly ⌃1(M) in
↵, X. But it is also ⇧1(M) since:

↵ 2 F (X) ! ↵ /2 F (irX)

Hence:
↵ 2 F (X) ! �(↵) 2 F 0

(�(X))

by ⌃0-preservation. Finally we note that �i � (Mi � �i) embeds Mi||�i ele-
mentarily into �i(Mi||�i) = Ni||�0

i
. Hence:

�i(� ~↵ �) =� �i(~↵) � for ↵1, . . . ,↵n < �i.
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Thus all goes through as before, which proves (iii).

In our previous proof of (iv) we need that �h �M⇤
i

is ⌃⇤-preserving. This can
fail if 1 T h and [1, h]T has no drop point. But then �h is ⌃

(n)

0
-preserving

for � < ⇢M in M , where �  i. Hence the preservation is sufficient. Finally,
(v) is proven exactly as before.

(vi) is clear if �i is ⌃1-preserving. If not, then 1  i and (1, i] has no
drop. Hence ⇡1,i is cofinal, since only ⌃0-ultraproducts were involved. If
↵ is a cardinal in Mi, then ↵  � for a � which is a cardinal in M . By
acceptability it suffices to note that �i⇡1i(�) = ⇡0

1i
�(�) is a cardinal in Ni.

QED(Lemma 4.2.8)

Exactly as before we get the analogue of Lemma 3.4.15:

Lemma 4.2.9. There is at most one copy I 0 of I induced by �. Moreover,
the copy maps are unique.

As before we define:

Definition 4.2.8. Let hN,M,�i be a phalanx witnessed by �. hI, I 0, h�ii is
a duplication induced by � iff I is a normal iteration of hN,M,�i and I 0 is
the copy of I induced by � with copy maps h�i : i < µi.

We also define:

Definition 4.2.9. hI, I 0, h�i : i  µii is a potential duplication of length
µ+ 2 induced by � iff:

• hI|µ+ 1, I 0|µ+ 1, h�i : i  µii is a duplication of length µ+ 1 induced
by �.

• I is a potential iteration of length µ+ 2.

• I 0 is a potential iteration of length µ+ 2.

• �µ(⌫µ) = ⌫ 0µ.

To say that an actual duplication of length µ+ 2 is the realization of a po-
tential duplication means the obvious thing. If it exists, we call the potential
duplication realizable.

Our analogue of Theorem 3.4.16 is somewhat more complex. We define:
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Definition 4.2.10. i is an exceptional point (i 2 EX) iff:

1 T i, (1, i]T has no drop point, and ⇢1  � in M.

Note. Suppose ⇢1  � in M . For j 2 EX we have: ⇢1
Mj
 �, as can be seen

by induction on j.

Our analogue of Theorem 3.4.16 reads:

Lemma 4.2.10. Let hI, I 0, h�iii be a potential duplication of length i + 2,
where h = T (i+ 1). Suppose that i+ 1 /2 EX. Then:

h�h �M⇤
i ,�i ��ii : hM⇤

i , F i �!⇤ hN⇤
i , F

0i

where F = EMi
⌫i

, F 0
= ENi

⌫
0
i
.

Before proving this we note some of its consequences. Just as in §3.4.5 it
provides exact criteria for determining whether the copying process can be
carried one step further. We have the following analogue of Lemma 3.4.17:

Lemma 4.2.11. Let hI, I 0, h�i : i  µii be a potential duplication of length
µ+ 2 (where µ � 1). It is realizable iff N⇤

µ is ⇤-extendible by E
Nµ

⌫0µ
.

Proof. If N⌫
µ is not ⇤-extendable, then no realization can exist, so suppose

that it is. Form the realization Î 0 of I 0 by setting:

⇡0
h,i+1 : N

⇤
µ �!⇤

F 0 Nµ+1,

where h = T (µ+ 1), F 0
= E

Nµ

⌫0µ
. We consider three cases:

Case 1. �h �M⇤
µ is ⌃

⇤-preserving.

Bu Lemma 4.3.2 we have:

h�h �M⇤
µ,�µ ��µi hM⇤

µ, F i �!⇤ hN⇤
µ, F

0i,

where �h �M⇤
h

is ⌃
⇤-preserving. By Lemma 3.2.23 this gives us:

⇡h,µ+1 : M
⇤
µ �!⇤

F Mµ+1,

and a unique:
�µ+1 : Mµ+1 �!⌃⇤ Nµ+1

such that �mu+1⇡h,µ+1 = ⇡0
h,µ+1

�h,�µ+1 ��µ = �µ ��µ.
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The remaining verification are straightforward.

Case 2. Case 1 fails and ⌘ + 1 /2 EX.

By Lemma 4.3.2 we again have:

h�h,�µ ��µi : hMh, F i �!⇤ hNh, F
0i.

Moreover �h is ⌃
(m)

0
-preserving, where m  ! is maximal such that � < ⇢m

in M . Now let n  ! be maximal such that i < ⇢n in Mh. Then n  m,
since �  i. By Lemma 3.2.19 Mh is n-extendible by F . But then it is
⇤-extendible, since F is close to Mh. Set:

⇡h,µ+1 : Mh �!⇤
F Mµ+1.

Since � is ⌃(m)

0
-preserving, it follows by Lemma 3.2.19 that there is a unique:

�µ+1 : Mµ+1 �!
⌃

(n)
0

Nmu+1,

such that �0
µ+1

⇡h,µ+1 = ⇡0
h,µ+1

�h and �0�µ = �n � �. But �0 is, in fact,
⌃
(m)

0
-preserving. If n = m, this is trivial. If n < m, it follows by Lemma

3.2.24. We let �µ+1 = �0. The remaining verification are straightforward.

QED(Case 2)

Case 3. The above cases fail.

Then µ + 1 2 EX and ⇢1  � in M . Thus ⇢1  �  i in Mh. By Lemma
4.2.8 we have:

h�h,�µ ��µi : hMh, F i �! hNh, F
0i.

Hence by Lemma 3.2.19, there are ⇡,�0 with:

⇡ : Mh �!F Mµ+1,�
0
: Mµ+1 �!⌃0 Nµ+1

such that �0⇡ = ⇡0
h,µ+1

�h and �0 ��µ = �µ ��µ. But Mµ+1 is the ⇤-ultrapower
of Mh, since ⇢1

Mh
 i and F is close to Mh. We set: ⇡h,µ+1 = ⇡,�µ+1 = �0.

The remaining verifications are straightforward.

QED(Lemma 4.3.3)

Our analogue of Lemma 3.4.18 reads:
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Lemma 4.2.12. Let hI, I 0, h�i : i < µii be a duplication of limit length µ.
Let b0 be a well founded cofinal branch in I 0. Let b =

S
i2b0r2

{or(i), i} be the
induced cofinal branch in I. Our duplication extends to one of length µ + 1

with:
T”{µ} = b, T”{µ} = b0

and �µ⇡i,µ = ⇡0
iµ
�i for i 2 b.

The proof is left to the reader.

With these two lemmas we can prove Lemma 4.2.7:

Fix a successful normal iteration strategy for N . We construct a strategy
S⇤ for hN,M,�i as follows: Let I be a normal iteration of hN,M,�i of limit
length µ. If I has no S-conforming copy, then S⇤

(I) is undefined. Otherwise,
let I 0 be an S-conforming copy. Let S(I 0) = b0 be the cofinal well founded
branch given by S. Set S⇤

(I) = b, where b is the induced branch in I.
Clearly if I is S⇤-conforming, then the S-conforming copy I 0 exists. If I is
of length µ + 1(µ � 1), then by Lemma 4.3.3, if ⌫ 2 Mµ, ⌫ > ⌫i for i < µ,
then I extends to an S⇤-conforming iteration of length µ + 2 with ⌫µ = ⌫.
By Lemma 4.3.4, if I is of limit length µ, then S⇤

(I) exists. Hence S⇤ is
successful.

QED(Lemma 4.2.7)

We still must prove Lemma 4.3.2. This, in fact turns out to be a repetition
of Lemma 3.4.16 in §3.4. As before we derive it from:

Lemma 4.2.13. Let hI, I 0, h�jii be a potential duplication of length i + 1

where h = T (i + 1). Suppose that i + 1 /2 EX. Let A ⇢ ⌧i be ⌃1(Mi||⌫i) in
a parameter p. Let A0 ⇢ ⌧ 0

i
be ⌃1(Ni||⌫ 0i) in �i(p) by the same definition.

Then A is ⌃1(M⇤
i
) in a parameter q and A0 is ⌃1(N⇤

i
) in �h(q) by the same

definition.

Proof. The proof is a virtual repetition of the proof of Lemma 3.4.20 in
§3.4. As before we take hI, I 0, h�jii as being a counterexample of length
i + 1, where i is chosen minimally for such counterexamples. The proof is
exactly the same as before. The only difference is that �j may not be ⌃

⇤-
preserving if j 2 EX. But in the case where we need it, we will have that �j
is ⌃

(1)

0
-preserving, which suffices.

QED(Lemma 4.3.5).

Hence Lemma 4.2.7 is proven.
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However, we have only proven this on the special assumption that � is a
limit cardinal in M . We now consider the case: � = + in M . This will
require a radical change in the proof. Set:

N⇤
=: N ||� where � is maximal such that � is a cardinal in N ||�.

Then � = +N
⇤
< �(�) = +N . An anomaly occurs at i + 1 whenever

⌧i = �. Then 0 = T (i + 1) and  = i. Clearly N⇤
= M⇤

j
. Thus Mi+1 is

the ultraproduct of N⇤ by F = EMi
⌫i

and Ni+1 is the ultraproduct of N⇤
i

by
F 0

= ENi
⌫i

. In order to define �i+1, we require:

�(M⇤
i ) = N⇤

i .

This is false however, since �i ��0 = � ��i where ⌧i < �i. Hence:

⌧ 0i = �i(⌧i) = �(⌧i) = ⌧+N .

Hence N⇤
i
= N 3 �(N⇤

).

The answer to this conundrum is to construct two sequences I 0 and Î. The
sequence:

Î = hhN̂ii, h⌫̂i : i 2 Ai, h ˆ⇡ij : i T ji, T̂ i

will be a padded iteration of N of length µ in which many points may be
inactive. The second sequence:

I 0 = hhNii, h⌫ 0i : i 2 Ai, h⇡0
ij : i T ji, T 0i

will have most of the properties it had before, but, in the presence of anoma-
lies, it will not be an iteration . If no anomalies occurs, we will have: I 0 = Î.
If i+ 1 is an anomaly, then ⇡0,i+1 will not be an ultrapower and Ni will be
a proper segment of N̂i = N̂i+1. (Hence i is passive in Î). To see how this
works, let i+1 be the first anomaly to occur in I, then I 0|i+1 = Î|i+1, but at
i+1 we shall diverge. Under our old definition we would have taken N⇤

i
= N

and ⇡0
i,i+1

= ⇡00, where:

⇡00
: N �!⇤

F N 00, F = ENi
⌫
0
i
.

We instead take:

N⇤
i = N⇤, Ni+1 = ⇡00

(N⇤
), ⇡i,i+1 = ⇡00 �N⇤.

Note that ⇡00
(N⇤

) = ⇡0
(N⇤

), where ⇡0 is the extension of hJE
Mi

⌫i
, F i. But

then Ni+1 is a proper segment of JE
Ni

⌫i
hence of Ni = N̂i.

We can then define:
�i+1 : Mi+1 �! Ni+1
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by:
�i+1(⇡0,i+1(f)(↵)) =: ⇡0

(f)(�i(↵))

for f 2 �
⇤
(, N⇤

),↵ < �i. �i+1 will then be ⌃
(n)

0
�preserving, where n  !

s maximal such that  < ⇢n in N⇤. To see that this is so, let ' be a ⌃
(n)

0

formula. Let f1, . . . , fn 2 �
⇤
(, N⇤

) and let ↵1, · · · ,↵n < �i. Let:

xj = ⇡0,i+1(fj)(↵j), yj = ⇡0
(fj)(�i(↵j)) (j = 1, . . . , n).

Let X =: {� ⇠1, . . . , ⇠m �: N⇤ |= '[f1(⇠1), . . . , fn(⇠n)]}. Then �iF (X) =

F 0
(X), since �i �HM

�
= �0 �HM

�
= id. Hence:

Mi+1 |= '[ ~X] !� ~↵ �2 F (X)

 !� �i(~↵) �2 F 0
(X) = ⇡0

(X)

 ! �(N⇤
) |= '[~y].

Since we had no need to form an ultraproduct at i+ 1, we set: N̂i+1 = N̂i.
i is then an inactive point in Î and Ni+1 is a proper segment of N̂i+1.

We continue in this fashion: The active points in Î are just the points i > 0

such that i + 1 < µ is not an anomaly. If i is active, we set ⌫̂i = ⌫ 0
i
. (This

does not, however, mean that N̂i = N 0
i
.) If i is any non anomalous point, we

will have: Ni = N̂i. If h < i is also non anomalous, thus ⇡0
hi

= ⇡̂hi. If i is an
anomaly, we will have: Ni is a proper segment of N̂i. If µ is a limit ordinal it
then turns out that any cofinal well founded branch b0 in I 0, which, in turn,
gives us such a branch b in I. This enables us to prove iterability.

We now redo our definition of “copy” as follows:

Definition 4.2.11. Let I = hhMii, h⌫ii, h⇡iji, T i be a strict normal iteration
of hN,M,�i, where hN,M,�i is a phalanx witnessed by �.

I 0 = hhMii, h⌫ 0ii, h⇡0
iji, T 0i

is a copy of I with copy maps h�i : i < µi induced by � if and only if the
following hold:

(I) (a) T 0 is a tree such that iT 0j �! i < j.
(b) Let µ be the length of I. Then Ni is a premouse and

�i : Mi �!⌃0 Ni for i < µ
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(c) ⇡0
ij
(i T j) is a commutative system of partial maps from Ni to

Nj .

(II) (a)-(f) of our previous definition hold. Moreover:
(g) Let 0 T j. If (0, i]T have no anomaly, then �i is ⌃

⇤-preserving.
(h) Let h = T (i+ 1). Set:

N⇤
i =

(
�h(M⇤

i
) if M⇤

i
2Mh

Nh if not

Then ⇡0
h,i+1

: N⇤
i
�!⌃⇤ Ni+1.

(i) Let h, i be as above. If i+ 1 is not an anomaly, then:

⇡0
h,i+1 : N

⇤
i �!⇤

F 0 Ni+1

where F 0
= ENi

⌫
0
i
.

(j) Let i+ 1 be an anomaly. (Hence ⌧i = � = +M , where  = i is a
cardinal in M , hence in N .)
We then have:

M⇤
i = N⇤

=: N ||�,

where � is maximal such that � is a cardinal in N ||�. Let ⇡ be the
extension of Ni||⌫i = hJE

⌫0 , F
0i. Then:

Ni+1 = ⇡(N⇤
) and ⇡0

0,i+1 = ⇡ �N⇤.

Moreover, �i+1 : Mi+1 �! Ni+1 is defined by:

�i+1(⇡0,i+1(f)(↵)) = ⇡0
(f)(�i(↵))

where f 2 �
⇤
(, N⇤

),↵ < �i. (Hence �i+1 is ⌃
(n)

0
-preserving for  <

⇢n
N⇤ .)

(k) Let h T i, where h is an anomaly. If (h, i]T has no drop point,
then �i is ⌃(n)

0
-preserving for  < ⇢n in N⇤. If (h, i]T has a drop point,

then �i is ⌃
⇤-preserving.

(III) There is a background iteration:

Î = hhN̂ii, h⌫̂ii, h⇡̂iji, T̂ i

with the properties.

(a) Î is a padded normal iteration of length µ.
(b) i < µ is active in Î iff 0 < i+ 1 < µ and i+ µ is not an anomaly

in I. In this case: ⌫̂i = ⌫ 0
i
.
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(c) If i is not an anomaly in I, then N̂i = N 0
i
. Moreover, if h < i is

also not an anomaly, then:

h <
T̂
i ! h <T 0 i, ⇡̂h,i = ⇡0

h,i
if h <T 0 i.

This completes the definition. In the special case that � is a limit cardinal
in M , we of course have: I 0 = Î and the new definition coincides with the
old one. We note some simple consequence of our definition:

Lemma 4.2.14. The following hold:

(1) If i < j < µ, then �j(�i) = �i. (Hence �0
i
< �0

j
for j + 1 < µ.)

Proof. By induction on j. For j = 0 it is vacuously true. Now let it
hold for j.

�j+1(�j) = �j+1�h,i+1(j) = ⇡0
h,j+1�h(j) = ⇡0

h,j+1(
0
j) = �j .

(Here �h(j) = �j(j) = �0
j
, since j < �h and �j ||�h = �h ��h.)

For i < j we then have:

�j+1(�i) = �j(�
0
i)(since �i < �j).

QED(1)

(2) �i is a cardinal preserving for i < µ.

Proof. If �i is ⌃1-preserving, this is trivial, so suppose not. Then one
of two cases hold:

Case 1. 1 T i, (1, i]T has no drop, and ⇢1  � in M .

Then ⇡hj : Mh �!⌃⇤ Mj is cofinal for all h T j T i⌘ since each of
the ultrapower involved is a ⌃0-ultrapower. Hence, if ↵ is a cardinal
in Mi, then ↵  ⇡1,i(�) where � is a cardinal in M1. By acceptability
it suffices to show that �i⇡1,i(�) is a cardinal in Ni. But �i⇡1,i(�) =
⇡0
1t
�(�), where � and ⇡0

1i
are cardinal preserving.

Case 2. h T i where h is an anomaly, (h, i]T has no drop and
⇢1  k = ki in N⇤.

The proof is a virtual repeat of the proof in Case 1, with (0, i]T in place
of (1, i]T .

QED(2)

(3) I 0 behaves like an iteration at limits. More precisely:
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Let ⌘ <  be a limit ordinal. Let i0 <T ⌘ such that b = (i0, ⌘)T is free
of drops. Then

N⌘, h⇡i⌘ : i 2 bi

is the direct limit of:

hNi : i 2 bi, h⇡ij : i  j in bi.

Proof. No i 2 b [ {⌘} is an anomaly since every anomaly is a drop
point. Hence:

N 0
i = N̂i,⇡

0
i,j = ⇡̂i,j for i  j in b [ {⌘}.

Since I is an iteration, the conclusion is immediate.
QED(3)

(4) Let i < µ. If i+ 1 is an anomaly, then:

(a) Ni+1 is a proper segment of Ni||⌫ 0i. (Hence ⌫ 0
i+1

< ⌫ 0
i
).

(b) ⇢! = �0
i
in Ni+1.

Proof. (a) is immediate by II (i) in the definition of “copy”. But
Ni+1 = ⇡(N⇤

) where ⇡ is the extension of Ni||⌫ 0i. By definition, N⇤
=

N ||�, where � < �(�) = +N is the maximal � such that ⌧i = � is a
cardinal in N ||�. Hence ⇢! =  in N⇤. But then ⇢! = �0

i
in Ni+1.

QED(4)

(5) Let i < µ. There is a finite n such that i + n + 1 is not an anomaly.
(This includes the case: i+ n+ 1 = µ.)
Proof. If not then ⌫i+n+1 < ⌫i+n for n < µ by(4). Contradiction!

(6) Let i < µ. There is a maximal j  i such that j is not an anomaly.
Proof. Suppose not. Then i 6= 0 is an anomaly and for each j < i
there is j0 2 (j, i) which is an anomaly. But then i is a limit ordinal,
hence not an anomaly.
By(5) and (6) we can define:

Definition 4.2.12. Let i < µ. We define:

• l(i) = the maximal j  i such that j is not an anomaly.

• r(i) the least j � i such that j + 1 is not an anomaly.

Definition 4.2.13. An interval [l, r] in µ is called passive iff i is an anomaly
for l < i  r. A passive interval is called full if it is not properly contained
in another passive interval.
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It is then trivial that:

(7) [l(i), r(i)] = the unique full I such that i 2 I.

(8) Let [l, r] be a full passive interval. Then, for all i 2 [l, r]:

(a) Nl = Ni.

(b) If j  l and j 
T̂
i, then j 

T̂
l.

(c) If j � r and i 
T̂
j, then r 

T̂
j.

Proof. This follows by induction on j, using the general fact about padded
iterations that if j is not active, then:

• N̂j = N̂j+1

• h 
T̂
j  ! h <

T̂
j + 1

• j <
T̂
h ! j + 1 

T̂
h. QED(8)

(9) Let b be a branch of limit length in Î. There are cofinally many i 2 b
such that i is not an anomaly.

Proof. Let j 2 b. Pick i 2 b such that i > r(j). Then l(i) > r(j), since
r(j)+1  i is not an anomaly. Hence l(i) 2 b and l(i) > j is not an anomaly.

QED(9)

We define N⇤
i

for i < µ exactly as if I 0 were an iteration: Let h = T 0
(i+ 1).

Then:

N⇤
i =: Ni||� where � is maximal such that ⌧ 0i is a cardinal in Ni||�.

We then get the following version of Lemma 4.2.8.

Lemma 4.2.15. Let I 0 be a copy of I induced by �. Let h = T (i + 1). If
i+ 1 is not an anomaly. Then the conclusion (i)-(vi) of Lemma 4.2.8 hold.
If i+ 1 is an anomaly, then (v), (vi) continue to hold.

Proof. If i+ 1 is not an anomaly, the proof are exactly as before. Now let
i + 1 be an anomaly. (iv) is immediate by II (j) in the definition of “copy”.
But then (vi) follows as before.
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QED(Lemma 4.2.15)

Lemma 3.3.19 is strengthened to:

Lemma 4.2.16. I has at most one copy I 0. Moreover the background iter-
ation Î is unique.

Proof. The first part is proven exactly as before (we imagine I 00 to be a
second copy and show by induction on i that I 0|i = I 00|i). The second part
is proven similarly, assuming Î 0 to be a second background iteration.

QED(Lemma 4.2.16)

The concept duplication induced by � is defined exactly as before. Now let:

D = hI, I 0, h�i : i  ⌘ii

be a duplication of length ⌘+1. We turn this into a potential duplication D
of length ⌘ + 2 by appointing a ⌫⇠ such that ⌫⇠ > ⌫i for 0 < i < ⌘.

By a realization of D̃ of length ⌘ + 2 by appointing a ⌫⌘ such that ⌫⌘ < ⌫i
for 0 < i < ⌘. By a realization of D̃, we mean a duplication D̊ = hI̊ , J̊ , h�̇i :
i  ⌘ + 1ii of length ⌘ + 2 such that D̊|⌘ + 1 = D and ⌫̇⌘ = ⌫⌘. It follows
easily that D̃ has at most one realization.

Our analogue, Lemma 4.3.2, of Lemma 3.4.16 will continue to hold as stated
if we enhance the definition of exceptional point as follows:

Definition 4.2.14. i is an exceptional point (i 2 EX) iff either:

1 T i, (1, i]T has no drop, and ⇢1  � in M

or there is an anomaly h T i such that:

(0, i]T has no drop, and ⇢1   in N⇤.

With this change Lemma 4.3.2 goes through exactly as before. As before,
we derive this form Lemma 4.3.5. The proof is as before. As before the
condition i+1 /2 EX guarantees that the map �i will always have sufficient
preservation when we need it.

When we worked under the special assumption Lemma 4.3.3 was our ana-
logue of Lemma 3.4.17. In the presence of anomalies the situation is some-
what more complex. We first note:

Lemma 4.2.17. Let D̃ = hI, I 0, h�i : i  ⌘ii be a potential duplication of
length ⌘ + 2. If ⌘ + 1 is an anomaly, then D̃ is realizable.
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Proof. Form N⌘+1,⇡0,⌘+1 : N⇤ �! N⌘+1 and �⌘+1 as in II(j). Set: Ñ⌘+1 =

N⌘. The verification of I, II, III is straightforward.

QED(Lemma 4.2.17)

Now suppose that ⌘ + 1 is not an anomaly. Let h = T (⌘ + 1). Then ⌘ is an
active point is any realization of Î, so we set: ⌫̂⌘ = ⌫ 0⌘. In order to realize D̃,
we must apply F = E

M⌘
⌫⌘ to M⇤

⌘ , getting:

⇡h,⌘ : M⇤
⌘ �!⇤

F M⌘+1.

Similarly we apply F 0
= E

N⌘

⌫0⌘
to N⇤

⌘ getting:

⇡0
h,⌘

: N⇤
⌘ �!⇤

F 0 N⌘+1.

We then set:
�⌘+1(⇡h⌘(f)(↵)) = ⇡0

h⌘
�h(f)(�⌘(↵))

for f 2 �
⇤
(⌘̇,M⇤

⌘̇
),↵ < �⌘.

We must also extend Î. Since ⌫̂⌘ = ⌫⌘ and N⌘ is an initial segment of N̂⌘,
we have:

F 0
= E

N̂⌘

⌫̂⌘
.

Now let: k = T̂ (⌘ + 1). (k can be different from h!) III constrains us to set:

⇡̂k,⌘+1 : N̂
⇤
⌘ �!⇤

F N̂⌘+1.

However, III also mandates that N̂⌘+1 = N⌘+1. Happily, we can prove:

Lemma 4.2.18. Let D̃ = hI, I 0, h�i : i  ⌘ii be as above, where ⌘ + 1 is not
an anomaly. Then:

(a) N⇤
⌘ = N̂⇤

⌘ .

(b) D̃ is realizable iff N⇤
⌘ is ⇤-extendible by F 0.

Proof. We first prove (a). Let h = T 0
(⌘ + 1). Set:

l = l(h), r = r(h).

Then h 2 [l, r] where l is not an anomaly, j + 1 is an anomaly for l  j < r,
and r + 1 is not an anomaly. h is least such that 0⌘ < �0 or h = ⌘. k =

T 0
(⌘ + 1) is least such that k + 1 is not an anomaly and 0⌘ < �0

k
. Since j is

not an anomaly for l < j  r, we conclude that k = r. Then Nl = N̂j for
l  j  r.
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Case 1. h = l.

Then N̂h = Nh and:
N⇤

⌘ = N̂⌘ = Nh||�
where � is maximal such that ⌧ 0⌘ is a cardinal in Nh||�. QED(Case 1)

Case 2. l < h.

Then h = j + 1 where l  j. Nh is a proper segment of N̂h. We again have:
N⇤

⌘ = Nh||� where �  OnNh is maximal such that ⌧ 0⌘ is a cardinal in Nh||�.
We have r = T̂ (⌘ + 1) and N̂⇤

⌘ = N̂r||�̂, where �̂  On
N̂r

is maximal such
that ⌧ 0⌘ is a cardinal in N̂r||�̂. But ⇢!

Nh
= j , where h = j + 1 by Lemma

4.2.14 (4). Since �0
j
 0⌘ < ⌧ 0⌘ < �0

h
and Nh is a proper segment of N̂h = N̂r,

we conclude that �̂  OnNh . Hence � = �̂ and N⇤
⌘ = N̂⇤

⌘ . QED(a)

We now prove (b). If N̂⇤
⌘ is not extendable by F 0, then no realization can

exists, so assume otherwise. This gives us N⌘+1 and ⇡0
h,⌘+1

, where N̂⌘+1 =

N⌘+1 and ⇡̂k,⌘+1 = ⇡0
h,⌘+1

, where k = T 0
(⌘ + 1). �⌘+1 is again defined by:

�⌘+1(⇡h,⌘+1(f)(↵)) = ⇡0
h,⌘+1�h(f)(�⌘(↵))

for f 2 �
⇤
(⌘,M⇤

⌘ ),↵ < �⌘. The verification of I, II, III is much as before.
However Case 2 splits into two subcases:

Case 2.1. 1 T ⌘ + 1.

This is exactly as before.

Case 2.2. 0 T ⌘ + 1.

Then there is j T h such that j is an anomaly and (0, ⌘+1]T has no drop.
Moreover, ⇢1 >  in N⇤. Then �h is a ⌃

(m)

0
-preserving where m  ! is

maximal such that  < ⇢m in N⇤. The rest of the proof is as before.

Case 3 also splits into two subcases:

Case 3.1. 1 T ⌘ + 1.

We argue as before.

Case 3.2. 0 T ⌘ + 1.

Then j t h, where j is an anomaly and ⇢1   in N⇤. Hence ⇢1  h in
Mh and we argue as before. QED(Lemma 4.2.18)

Using Lemma 4.2.14 (9) we get:
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Lemma 4.2.19. Let D = hI, I 0, h�iii be a duplication of limit length µ. Let
b̂ be a cofinal well founded branch in Î. Let X be the set of i 2 b̂ which are
not an anomaly. Let:

b0 = {j :
_

i 2 Xj <T i}, b = {j :
_

i 2 Xj <T i}.

Then D has a unique extension to a D̃ of length µ+ 1 such that:

T̂”{µ} = b̂, T 0
”{µ} = b0, T”{µ} = b.

The proof is left to the reader.

Now let S be a successful normal iteration strategy for N . We define an
iteration strategy S⇤ for hN,M,�i as follows:

Let I be an iteration of hN,M,�i of limit length µ. We ask whether there
is a duplication hI, I 0, h�0ii induced by �⇤. If not, then S⇤

(I) is undefined.
Otherwise, we ask whether S(Î) is defined. If not, then S⇤

(I) is undefined.
If not, then S⇤

(I) is undefined. If b̂ = S(Î), define b0, b as above and set:
S⇤

(I) = b. It is easily seen that if I is any S⇤-conforming normal iter-
ation of hN,M,�i, then the duplication hI, I 0, h�iii exists. Moreover Î is
S-conforming. In particular, if I is of limit length, then S(I) is defined.
Moreover, if I is of length ⌘+1, and ⌫ > ⌫i for i < ⌘, then by Lemma 4.2.18,
we can extend I to an Ĩ of length ⌘ + 2 by setting: ⌫⌘ = ⌫. Hence S is a
successful iteration strategy.

This proves Lemma 4.2.7 at last!

We note however, that our strategy S⇤ is defined only for strict iteration of
hN,M,�i. We can remedy this in the usual way. Let:

I = hhMii, h⌫i : i 2 Ai, h⇡iji, T i

be a padded iteration of hN,M,�i, of length µ. Let h be the monotone
enumeration of:

{i : i = 0 _ i 2 A _ i+ 1 = µ}.

The strict pullback of I is then:

İ = hhṀii, h⌫̇ii, h⇡̇iji, T̂ i

where:
Ṁi = Mh(i), ⌫̇i = ⌫h(i), ⇡̇ij = ⇡h(i),h(i)

and:
iT̂ j  ! h(i)Th(j).
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İ is a strict iteration and contains all essential information about I. We
extend S⇤ to a strategy on padded iteration as follows: Let I be a padded
iteration of limit length µ. If A is cofinal in µ, we form İ, which is then also
of limit length. We set:

S⇤
(I) = b, where S⇤

(İ) = ḃ,

and b = {i :
W
j(i T h(j))}. If A is not cofinal in µ, there is j < µ such

that A \ [j, µ) = ?. We set:

S⇤
(I) = {i < µ : iT j _ j  i}.

It follows that I is S⇤-conforming iff İ is S⇤-conforming.

Since İ is strict, we have I 0, Î, h�i : i < µ̇i, (where µ̇ is the length of İ).
We shall make use of this machinery in analyzing what happens when we
coiterate N against hN,M,�i. This will yield the “simplicity lemma” stated
below.

Note. We could, of course, have defined I 0, Î and h�i : i < µi for arbitrary
padded I, but this will not be necessary.

Building upon what we have done thus far, we prove the following “simplicity
lemma”, which will play a central role in our further deliberations:

Lemma 4.2.20. Let N be a countable premouse which is presolid and fully
!1+1 iterable. Let hN,M,�i be witnessed by �. Set Q0

= N,Q1
= hN,M,�i.

There exist successful !1+1 normal iteration strategies S0, S1 for Q0, Q1 re-
spectively such that hI0, I1i is the coiteration of Q0, Q1 by S0, S1 respectively
with coiteration indices ⌫i, then the coiteration terminates at µ < !1 with:

I0 = hhQii, h⌫ii, h⇡0

iji, T 0i

I1 = hhMii, h⌫ii, h⇡1

iji, T 1i

such that:

(a) Mµ /Qµ.

(b) a T 1 µ in I1.

(c) There is no drop point i+ 1 T 1 µ in I1.

In the next section we shall use this to derive the solidity lemma, which says
that all mice are solid. We shall also us eit to derive a number of other
structural facts about mice.



428 CHAPTER 4. PROPERTIES OF MICE

We now prove the simplicity lemma.

Let N be countable, presolid and fully !1 + 1.iterable. Let hN,M,�i be a
phalanx witnessed by �. (Recall that this entails � 2 M and � = crit(�).

Moreover, � is ⌃
(n)

0
-preserving whenever � < ⇢n

M
). Fix an enumeration

e = he(n) : n < !i of On\N . Suppose that � : N �!⌃⇤ N 0. We can define
a sequence e0

i
2 N 0

(i < !) as follows. By induction on i < ! we define:

e0i = the least ⌘ 2 N 0 s.t. there is some �0
: N �!⌃⇤ N 0

with �0
(eh) = e0

h
for h < i and ⌘ = �0

(ei).

It is not hard to see that there is exactly one �0
: N �!⌃⇤ N such that

�0
(ei) = e0

i
for i < !. We then call �0 the e-minimal embedding of N

into N 0. The Neeman-Steel Lemma (Theorem 3.5.8) says that N has an
e-minimal normal iteration strategy S with the following properties:

• S is a successul !1 + 1 normal iteration strategy for N .

• Let N 0 be an iterate of N by an S-conforming iteration I. Let � :

N �!⌃⇤ M C N 0. Then I has no drop on its main branch M = N 0

and the iteration map ⇡ : N �! N 0 is the e-minimal embedding.

Hence, in particular, if M is a proper segment of N 0 or the main branch of
I has a drop, then there is no ⌃

⇤-preserving embedding from N to M .

From now on let e be a fixed enumeration of OnN and let S be an e-minimal
strategy for N . Let S⇤ be the induced strategy for hN,M,�i. Coiterate
Q0 = N against M0 = hN,M,�i using the strategies S, S⇤ respectively. Let
hI0, I1i be the coiteration with:

I1 = hhMii, h⌫0i i, h⇡0

iji, T 0i

I0 = hhQii, h⌫1i i, h⇡1

iji, T 1i

and coiteration indices h⌫i : 1  i  µi where µ+1 < !1 is the length of the
coiteration.

We note some facts:

(A) If N 0 is any S-iterate of N (i.e. the result of an S-conforming iteration),
then there is no ⌃

⇤-preserving map of N into a proper segment of N 0.

(B) Call N 0 a truncating S-iterate of N iff it results from an S-conforming
iteration with a truncation on its main branch. If N 0 is a truncating
S-iterate, then there is no ⌃

⇤-preserving embedding of N into N 0.
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(C) If N 0 is a non truncating S-iterate of N , then the iteration map ⇡ :

N �! N 0 is the unique e-minimal map.

Now form the strict pullback İ of I1 as before. Let I be of length
µ+ 1. İ will then be of length µ̇+ 1. Let I 0, Î, h�i : i  µ̇i be defined
as before. Set: N 0

=: N 0
µ̇, N̂ =: N̂µ̇, �0

= �0
µ̇
. The following facts are

easily established:

(D) N̂ is an S-iterate of N . Moreover: �0
: Mµ �!⌃0 N 0 where N 0 C N̂ .

(E) If there is a drop point i + 1 T 1 µ which is not an anomaly in I1,
then there is i+ 1 T 0 µ̇ which is not an anomaly in İ. Hence N̂ is a
truncating iterate of N and �0

: Mµ �!⌃⇤ N̂ .

(F) If there is no anomaly i + 1 T 1 µ in I, then there is no anomaly
i+ 1 

Ṫ
µ̇ in İ.

(G) Suppose 0 T 1 µ and no i + 1  µ is an anomaly. Hence the same
situation holds in İ. Then N̂ is an S-iterate of N by the iteration map
�0⇡0

0,µ
(since �̇µ̇⇡̇0,µ̇ = ⇡̂0,µ̇).

We now prove the simplicity lemma. We do this by eliminating all other
possibilities.

Claim 1. Qµ is not a proper segment of Mµ.

Proof. Suppose not. Then Qµ is a non-truncating iterate of N with iteration
map ⇡0

0,µ
. Hence �0⇡0

0,µ
: N �!⌃⇤ �µ(Qµ), where �µ(Qµ) is a proper segment

of N̂ and N̂ is an S-iterate of N . Contradiction!

QED(Claim 1)

Claim 2. There is no truncation point i+1 T 1 µ such that i+1 is not an
anomaly in I1.

Proof. Suppose not. Then �0
: Mµ �!⌃⇤ N̂ , where N̂ is a truncating S-

iterate of N . I0 is truncation free on its main branch, since I1 is not. Hence
Q0

µ /Mµ. Hence, Q0
µ /M 0

µ by Claim 1. Hence:

�0⇡0

0,1 : N �!⌃⇤ N̂ ,

where N̂ is a truncating iterate of N . Contradiction!

QED(Claim 2)

Claim 3. No i+ 1 T 1 µ is an anomaly in I1.
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Proof. Suppose not. Then i =  and ⌧i = �. Hence ⌧i < �(�) = +N .
Thus M⇤

i
= N⇤, where N⇤

= N ||⌘, ⌘ being maximal such that � is a cardinal
in N ||⌘. By Claim 2, there is no drop point j + 1 T 1 µ such that i < j.
Hence:

⇡0
0,µ : N⇤ �!⌃⇤ Mµ.

 = ⇢! in N⇤, since ⇢!   by the definition of N⇤, but ⇢! �  since N⇤ 2 N
and  is a cardinal in N . But i = crit(⇡1

0,µ
). Hence  = ⇢! in Mµ.

Qµ = Mµ as above. Moreover the iteration I0 is truncation free on its main
branch, since I1 is not. Thus:

⇡0

0,µ : N �!⌃⇤ Mµ

Hence 0
i
� ⇢!

N
for i+ 1 T 0 µ, since otherwise ⇢!

Mµ
� �i > . Hence:

⇢!N = ⇢!Qµ
= 

and:
P() \N = P() \Qµ = P() \Mµ = P() \N⇤.

This is clearly a contradiction, since N⇤ 2 N and card(N⇤
) =  in N . Hence

by a diagonal argument there is A 2 P() \N such that A /2 N⇤.

QED(Claim 3)

It remain only to show:

Claim 4. 1 T 1 µ.

Proof. Suppose not. Then o <T 1 µ. By Claim 3 there is no anomaly on
the main branch of I1. Hence, if i < � and i + 1 T 1 µ, we have ⌧i < �.
But then M⇤

⌫
1
i
= N . By claim 2 there is no drop on the main branch of I1.

Hence:
⇡1

0,µ : N �!⌃⇤ Mµ.

Mµ / Qµ by Claim 1. Hence Mµ = Qµ, since otherwise ⇡1
0,µ

would map N
into a proper segment of an S-iterator of N . Thus we have:

⇡0

0,µ;N �!⌃⇤ Mµ.

Set: ⇡0
= ⇡0

0,µ
,⇡1

= ⇡1
0,µ

. We claim:

Claim. ⇡0
= ⇡1.

Proof. Suppose not. Let i be least such that ⇡0
(ei) 6= ⇡1

(ei). Then ⇡1
(ei) >

⇡0
(ei) since the map ⇡0, being an S-iteration map, is e-minimal. But �0⇡1



4.3. SOLIDITY AND CONDENSATION 431

is the S-iteration map from N to N̂ . Hence �0⇡1
(ei) < �0⇡0

(ei), since
�0⇡0

: N �!⌃⇤ N̂ . Hence ⇡1
(ei) < ⇡0

(ei). Contradiction!

QED(Claim)

Let ih +1 Th µ with o = T h
(ih +1) for h = 0, 1. Then i0 = i1 = crit(⇡),

where ⇡ = ⇡0
0,µ

= ⇡1
0,µ

. Set:

F 0
= EQ0

⌫i0
, F 1

= EM0
⌫i1

.

Then:
F h

(X) = ⇡h

0,ih+1(X) for X 2 P(ih) \N.

Thus:
↵ 2 F h

(X) ! ↵ 2 ⇡(X) for ↵ < �ih ,

since ⇡ = ⇡h

ih+1,µ
� ⇡h

0,ih+1
. But then ⌫i0 6< ⌫i1, since otherwise F 0 2 JE

Mi1
⌫i1

by the initial segment condition, whereas ⌫i0 is a cardinal in JE
Mi1

⌫i1
. Contra-

diction! Similarly ⌫i1 6< ⌫i0 . Thus i0 = i1 = i and F 0
= F 1. But then ⌫i is

not a coiteration index! Contradiction.

QED(Claim 4)

This proves the simplicity lemma.

4.3 Solidity and Condensation

In this section we employ the simplicity lemma to establish some deep struc-
tural properties of mice. In §4.3.1 we prove the Solidity Lemma which says
that every mouse is solid. In §4.3.2 we expand upon this showing that any
mouse N has a unique core N and core map � defined by the properties:

• N is sound.

• � :�!⌃⇤ N .

• ⇢!
N

= ⇢!
N

and � �⇢!
N

:= id.

• �(pi
N
) = pi

N
for all i.

In §4.3.3 we consider the condensation properties of mice. The condensation
lemma for L says that if ⇡ : M �!⌃1 J↵ and M is transitive, then M /
J↵. Could the same hold for an arbitrary sound mouse in place of J↵? In


