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is the S-iteration map from N to N̂ . Hence �0⇡1
(ei) < �0⇡0

(ei), since
�0⇡0

: N �!⌃⇤ N̂ . Hence ⇡1
(ei) < ⇡0

(ei). Contradiction!

QED(Claim)

Let ih +1 Th µ with o = T h
(ih +1) for h = 0, 1. Then i0 = i1 = crit(⇡),

where ⇡ = ⇡0
0,µ

= ⇡1
0,µ

. Set:

F 0
= EQ0

⌫i0
, F 1

= EM0
⌫i1

.

Then:
F h

(X) = ⇡h

0,ih+1(X) for X 2 P(ih) \N.

Thus:
↵ 2 F h

(X) ! ↵ 2 ⇡(X) for ↵ < �ih ,

since ⇡ = ⇡h

ih+1,µ
� ⇡h

0,ih+1
. But then ⌫i0 6< ⌫i1, since otherwise F 0 2 JE

Mi1
⌫i1

by the initial segment condition, whereas ⌫i0 is a cardinal in JE
Mi1

⌫i1
. Contra-

diction! Similarly ⌫i1 6< ⌫i0 . Thus i0 = i1 = i and F 0
= F 1. But then ⌫i is

not a coiteration index! Contradiction.

QED(Claim 4)

This proves the simplicity lemma.

4.3 Solidity and Condensation

In this section we employ the simplicity lemma to establish some deep struc-
tural properties of mice. In §4.3.1 we prove the Solidity Lemma which says
that every mouse is solid. In §4.3.2 we expand upon this showing that any
mouse N has a unique core N and core map � defined by the properties:

• N is sound.

• � :�!⌃⇤ N .

• ⇢!
N

= ⇢!
N

and � �⇢!
N

:= id.

• �(pi
N
) = pi

N
for all i.

In §4.3.3 we consider the condensation properties of mice. The condensation
lemma for L says that if ⇡ : M �!⌃1 J↵ and M is transitive, then M /
J↵. Could the same hold for an arbitrary sound mouse in place of J↵? In
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that generality it certainly does not hold, but we discover some interesting
instances of condensation which do hold.

We continue to restrict ourselves to premice M such that M ||↵ is not of type
3 for any ↵. By a mouse we mean such a premouse which is fully iterable.
(Though we can take this as being relativized to a regular cardinal  > !,
i.e. card(M) <  and M is fully + 1-iterable.)

4.3.1 Solidity

The Solidity lemma says that every mouse is solid. We prove it in the slightly
stronger form:

Theorem 4.3.1. Let N be a fully !1+1-iterable premouse. Then N is solid.

We first note that we may w.l.o.g. assume N to be countable. Suppose not.
Then there is a fully !1 + 1 iterable N which is unsolid, even though all
countable premice with this property are solid. Let N 2 H✓, where ✓ is a
regular cardinal. Let � : H � H✓, �(N) = N , where H is transitive and
countable. Then H is a ZFC

� model. Since � �N : N � N , it follows by a
copying argument that N is a !1+1 fully iterable (cf. Lemma 3.5.6.). Hence
N is solid. By absoluteness, N is solid in the sense of H. Hence N is solid
in the sense of H✓. Hence N is solid. Contradiction!

Now let a = Pn

N
for some n < !. Let � 2 a. Let M = N�

a be the ��th
witness to a as defined in §4.1. For the reader’s convenience we repeat that
definition here. Let:

⇢l+1  � < ⇢l in N ; b =: ar(�+ 1)

Let N = N l,b be the l-th reduct of N by b. Set:

X = h(� [ b) where h = h
N

is the ⌃1-Skolem function of N.

Then X = h”(! ⇥ (� ⇥ {b})) is the smallest ⌃1-closed submodel of N con-
taining � [ b. Let:

� : M  ! N |X where M is transitive.

By the extension of embedding lemma, there are unique M,�, b such that
� � � and:

M = M l,b, � : M �!⌃0
1
N and �(b) = b.

Then N�
a =: M and ��

a =: �.
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It is easily seen that � witnesses the phalanx hN,M,�i. Employing the
simplicity lemma, we coiterate hN,M,�i against N , getting hIN , IM i, ter-
minating at ⌘, where:

• IN = hhNii, h⌫Ni i, h⇡N

ij
i, TN i is the iteration of N .

• IM = hhMii, h⌫Mi i, h⇡M

ij
i, TN i is the iteration of hN,Mi.

• h⌫i : i < ⌘i is the sequence of coiteration indices. We know that:

• M⌘ /N⌘.

• IM has no truncation on its main branch.

• 1 TM ⌘.

It follows that i � � for i <TM ⌘. Moreover ⌫i > � for i < ⌘, since
M |� = N |�.

We consider three cases:

Case 1. M⌘ = N⌘ and IN has no truncation on its main branch.

We know that ⇢l+1

M
 �, since every x 2 M is ⌃

(l)

1
(M) in � [ b. But i � �

for i <TM ⌘.

Hence:

(1) P(�) \M = P(�) \M⌘ and ⇢h
M

= ⇢h
M⌘

for h > i. But then j � ⇢l+1

N

for j <TN ⌘, since otherwise:

i < sup⇡N

h,j+1”⇢
l+1

N
 ⇢l+1

N⌘
= ⇢l+1

M⌘
 � < j

where h = TN
(j + 1). Hence for h > l we have:

(2) ⇢h
M

= ⇢h
N

and P(⇢h) \M = P(⇢h) \N .

Recall, however, that a = pn
N

, where m > l. Since every x 2 M is ⌃
(i)

1
(M)

in � [ b, there is a finite c ⇢ � such that c [ b 2 Pn

M
. Let A be ⌃

(n)

1
(M) in

c[b such that A\⇢n /2M . Let A be ⌃
(n)

1
(N) in c[b by the same definition.

Then:
A \ ⇢n = A \ ⇢n 2 N,

since c [ b <⇤ a = pn
N

. Thus,

P(⇢n) \M 6= P(⇢n) \N,
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contradiction! QED(Case 1)

Case 2. M⌘ is a proper segment of N⌘.

Then M⌘ is sound. Hence M did not get moved in the iteration and M = M⌘.
But then N is not moved and N = N⌘, ⌘ = 0, since otherwise ⌫1 is a cardinal
in N⌘. But then � < ⌫1  OnM and ⇢!

M
 � < ⌫1, where M is a proper

segment of N⌘. Hence ⌫1 is not a cardinal in N⌘. Contradiction!

QED(Case 2)

Case 3. The above cases fail.

Then M⌘ = N⌘ and IN has a truncation on its main branch. We shall again
prove: M 2 N .

We first note the following:

Fact. Let Q. be acceptable. Let ⇡ : Q �!⇤
F

Q0, where ⇢i+1   < ⇢i in
Q, = crit(F ). Then:

⌃
(n)

1
(Q0

) \ P() = ⌃
(n)

1
(Q) \ P() for n � i.

Note. It follows easily that:

⌃
(n)

1
(Q0

) \ P(H) = ⌃
(n)

1
(Q) \ P(H)

where H = HQ
 = HQ

0
 .

We prove the fact. The direction � is straightforward, so we prove ⇢ by
induction on n � i. The first case is n = i. Let A ⇢  be ⌃

(i)

1
(Q0

) in the
parameter a. Then:

A⇠  !
_

z 2 H i

Q0 B0
(z, ⇠, a)

where B0 is ⌃
(1)

1
(Q0

). But then ⇡ takes H 0
Q

cofinally to H i

Q0 . Hence:

A⇠  !
_

u 2 H i
0
Q

_
z 2 ⇡(u)B0

(⌧, ⇠, a).

Let a = ⇡(f)↵ where f 2 �
⇤
(, Q) and ↵ < �(F ) = F (). Let B be ⌃

(i)

0
(Q)

by the same definition as B0. Then:

A⇠  !
_

u 2 H i

Q{⇣ <  :

_
z 2 uB(z, ⇠, f(↵))} 2 F↵,

where F↵ 2 ⌃1(Q) by closeness.
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This proves the case n = i. The induction step uses the fact that ⇢n
Q
= ⇢n

Q0 ,
for n > i. (Hence Hn

Q
= Hn

Q0 .)

Let n = m+ 1 > i and let it hold at m. Let A ⇢  be ⌃
(m)

1
(Q0

). Then:

A⇠  ! hHn

Q0 , B1

⇠
, . . . , Br

⇠
i ` '

where ' is a ⌃1 sentence and:

Bh

⇣
= {z 2 Hn

Q : h⇠, zi 2 Bh} (h = 1, . . . , r)

and Bh is ⌃
(m)

1
(Q0

). We may assume w.l.o.g. that Bh ⇢ H. But then Bh is
⌃
(m)

1
(Q). Hence A is ⌃

(n)

1
(Q).

QED(Fact)

Recall that ⇢l+1  � < ⇢l in M . Using this we get:

(1) There is a ⌃
(l)

1
(M) set B ⇢ � which codes M (in particular, if Q is a

transitive ZFC
� model and B 2 Q, then M 2 Q.)

Proof. Recall from the definition of M that:

M = M l,b
= h

M
(! ⇥ (�⇥ {c})), where c = b \ ⇢lM .

Thus we can set:

Ṁ = {� i, ⇠ 2M : i < !, ⇠ < �, and h
M
(i, h⇠, ci) is defined}.

For � i, ⇠ �2 Ṁ set: h(� i, ⇠ �) = h
M
(i,� ⇠, c �). Let M = hJE

↵ , F i.
We set:

• 2̇ =: {hx, yi 2 Ṁ2
: h(x) 2 h(y)}

• İ =: {hx, yi 2 Ṁ2
: h(x) = h(y)}

• Ė =: {x 2 Ṁ : h(x) 2 E}
• Ḟ =: { x 2 Ṁ : h(x) 2 F}

Then:
hṀ, 2̇, Ė, Ḟ i/I ⇠= hJE

↵ , F i = M.

Let B be a simple coding of hṀ, 2̇, Ė, Ḟ i, e.g. we could take it as the
set of � ⇠, j � such that one of the following holds:

• j = 0 ^ ⇠2̇Ṁ
• j = 1 ^ ⇠ =� ⇠u, ⇠1 � with ⇠02̇⇠1
• j = 2 ^ ⇠ =� ⇠0, ⇠1 � with ⇠0I⇠1
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• j = 3 ^ ⇠ 2 Ė

• j = 4 ^ ⇠ 2 Ḟ .

It is clear that if B 2 Q and Q is a transitive ZFC
� model, then M

is recoverable from B in Q by absoluteness. Hence M 2 Q. But
M = M l,b and M is recoverable from M in Q by absoluteness. Hence
M 2 Q.

QED(1)

Let j+1 be the final truncation point on the main branch of IN . Then:

(2) B is ⌃
(l)

1
(Nj+1).

Proof. Let B be ⌃
(l)

1
(M) in the parameter p. Let B0 be ⌃

(✓)

1
(M⌘)

in ⇡(p) by the same definition, where ⇡ = ⇡M

1,⌘
. Then B = � \ B0 is

⌃
(l)

1
(N⌘). Let i be the least i �T j+1 in IN set. B is ⌃(l)

1
(Ni). i is not a

limit ordinal, since otherwise lub{h : h TN i} = lub{kh : h < i} > �
and there is h TN i such that h > � and a 2 rng(⇡N

hi
), where B is

⌃
(l)

1
(Ni) in the parameter a. Hence B is ⌃(l)

1
(Nh). Contradiction! But

then i = k + 1. Let t = TN
(k + 1). If k > j, then t � j + 1 and

k � �j � � > ⇢l+1

M
= ⇢l+1

N⇠
= ⇢l+1

Nt
. By the above Fact we conclude

that B 2 ⌃
(l)

1
(Nt) where t < i. Contradiction! Hence i = j + 1.

QED(2)

We consider two cases:

Case 3.1. j � �.

By the Fact, we conclude that B is ⌃
(i)

1
(N⇤

j
) is a proper segment of

Nt, where t = TN
(j + 1). Hence B 2 ⌃

(i)

1
(N⇤

j
) ⇢ N . But then

B \ P(�) \N ⇢ JE
N

�(�)
, since �(�) > � is regular in N . Hence JE

N

�(�)
is

a ZFC
� model and M 2 JE

N

�(N)
⇢ N .

QED(Case 3.1)

Case 3.2. Case 3.1 fails.

Then j < �. But ⌧j � �, since otherwise ⌧j < � is a cardinal in M ,
hence in N . Hence N⇤

j
= N and no truncation would take place at

j + 1. Contradiction! Thus:

� = ⌧ =: ⌧j , N
⇤
j = N⇤

= N ||�, j = ,

where  is the cardinal predecesor of � in M and � > � is maximal
such that ⌧ is a cardinal in N ||�. Then:

(1) ⇡ : N⇤ �!⇤
F
Nj+1 where ⇡ = ⇡N

0,j+1
, F = E

Nj
⌫j
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Since:
⇡j+1,⌘ : Nj+1 �!⌃⇤ M⌘ and crit(⇡j+1,⌘) > �,

we know that:
(2) ⇢l+1 < � < ⇢l in Nj+1

By the definition of N⇤ we have: ⇢!
N⇤ < �. But ⇢!

N⇤ � , since  is a
cardinal in N and N⇤ 2 N . Hence:
(3) ⇢!

N⇤ = .
Now let: ⇢i+1   < ⇢i in N⇤. Then:

⇢i+1   < �  ⇢i in Nj+1,

since:
� < sup⇡”� = �(F )  sup⇡”⇢iN⇤ = ⇢iNj+1

.

Hence i = l and:
(4) ⇢l+1

=  < ⇢l in Nj+1.
We now claim:
(5) B 2Def(N⇤

), i.e. B is definable in parameters from N⇤.
Proof. For ⇠ < � define a map g⇠ :  �!  as follows:
For ↵ <  set:

• X↵ = the smallest X � JE
N⇤

�
such that ↵ [ {⇠} 2 X.

• C⇠ = {↵ <  : X⇠ � k ⇢ ↵}.

For ↵ 2 C⇠, let �⇠ : Q⇠

⇠ ! X⇠ be the transitivator of X⇠. Set:

g⇠(↵) =:

(
��1

⇠
(⇠) if ↵ 2 C⇠

? if not

It is easily seen that:

⇡(g⇠)() = ⇠ where ⇡ = ⇡N

0,j+1.

Since B is ⌃
(l)

1
(Nj+1) we have:

B⇣  !
_

u 2 JE
Nv

⇢N⇤

_
z 2 ⇡(u)B0

(z, ⇣, u).

Let f 2 �
⇤
(, N⇤

) such that a = ⇡(f)(↵),↵ < �. We know that
⇠ = ⇡(g⇠)(k) for ⇠ < �. But then the statement B⇣ is equivalent to

_
u 2 JE

Nv

⇢
f
N⇤

{hµ, �i :
_

x 2 uB00
(x, g⇣(µ), f(�))} 2 FhK,↵i

where F = E
Nj
⌫j and B00 is ⌃(l)

0
(N⇤

) by the same definition. But Fh,↵i
is ⌃1(N

⇤
) by closeness. QED(5)

But then B 2Def(N⇤
) ⇢ JE

N

�(�)
⇢ N . Hence M 2 N .

QED(Lemma 4.3.1)
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4.3.2 Soundness and Cores

Let N be any acceptable structure. Let m < !. In §2.5 we defined the set
Rn

N
of very good n-parameters. The definition is equivalent to:

a 2 Rn iff a is a finite set of ordinals and for i < n, each x 2 N ||⇢i

has the form F (⇠, a) where F is a ⌃
(i)

1
(N) map and ⇠ < ⇢i+1.

We said that N is n-sound iff Rn

N
= Pn

N
. It follows easily that N is n-sound

iff pn 2 Rn, where pn = pn
N

is the <⇤-least p 2 Pn. We called N sound iff
it is n-sound for all n. It followed that, if N is sound, then ⇢nr⇢i = pi for
i  n < !.

We have now shown that, if N is a mouse then pnr⇢i = pi for i  n < !,
regardless of soundness. We set: p⇤ =

S
n<!

pn. Then p⇤ = pn whenever
⇢n = ⇢! in N . We know:

Lemma 4.3.2. If N is a mouse and ⇡ : N �!⌃⇤ N strongly, then N is a
mouse and ⇡(p⇤

N
) = p⇤

N⇤ .

Proof. N is a mouse by a copying argument. Hence N is solid. But then
⇡(pi

N
) = P i

N
for all i < !, by Lemma 4.1.11.

QED(Lemma 4.3.2)

We know generalize the notion Rn

N
as follows:

Definition 4.3.1. Let ⇢!
N
 µ 2 N, a 2 R(µ)

N
iff a is aa finite set of ordinals

and for some n,

• ⇢n  µ < ⇢n�1 in N .

• Every x 2 N ||⇢n�1 has the form F (~⇠, a), where ⇠1, . . . , ⇠r < µ and F

is ⌃
(n�1)

1
(N).

• If j > n� 1, then a 2 Rj

N
.

We also set:

Definition 4.3.2. N is sound above µ iff for some n, ⇢n  µ < ⇢n�1 in N

and whenever p 2 Pn

N
then prµ 2 R(µ)

N
.

(It again follows that N is sound above µ iff pn
N
rµ 2 R(µ)

N
.) We prove:
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Lemma 4.3.3. Let N be a mouse. Let ⇢!
N
 µ 2 N . There is a unique pair

�,M such that:

• � : M �!⌃⇤ N

• M is a mouse which is sound above µ

• � �µ = id and �(p⇤
M
) = p⇤

N
.

Before proving this, we develop some of its consequences.

Definition 4.3.3. Let N be a mouse. If M,� are as above, we call M the
µ-th core of N , denoted by: core(N) = core⇢!N

(N), and � the µ-th core
map, denoted by �N

µ .

We also set: core(N) = core⇢!N
(N) and �N

= �N

⇢
!
N

, M = core(N) is the core
of N , and �N is the core map.

We leave it to the reader to prove:

Corollary 4.3.4. Let N be a mouse. Then:

• coreµ(coreµ(N)) = coreµ(N).

• N is sound above µ iff N = coreµ(N).

• Let M = coreµ(N), µ  µ,M = coreµ(M).

Then M = coreµ(M) and �N
µ �M

µ
= �N

µ
.

We now turn to the proof of Lemma 4.3.3. By Löwenheim-Skolem argument
it suffices to prove it for countable N . We first prove uniqueness. Suppose
not. Let M,⇡ and M 0,⇡0 both have the property. If x 2 M , then x =

F (~⇠, P ⇤
N
) where F is good and ⇠1, . . . , ⇠r < µ, since M is sound above µ.

Hence:
⇡(x) = F̃ (~⇠, P ⇤

N )

where F̃ has the same good definition over N . But then in N the ⌃
⇤ state-

ment holds: _
y y = F̃ (~⇠, P ⇤

N ).

(This is ⌃
⇤ since it results from the substitution of F̃ (~⇠, P ⇤

N
) in the formula

⌫ = ⌫.) Hence in M 0 we have:
_

y y = F 0
(~⇠, P ⇤

N ),
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where F 0 has the same good definition over M 0. Thus rng(⇡) ⇢ rng ⇡0�1 and
⇡0�1⇡ is a ⌃

⇤-preserving map of M to M 0. A repeat of this argument then
shows that rng(⇡0

) ⇢ rng(⇡�1
) and ⇡0�1⇡ is an isomorphism of M onto M 0.

But M,M 0 are transitive. Hence M = M 0 and ⇡ = ⇡0.

QED

This prove uniqueness. We now prove existence. Let a = p⇤
N

. Let ⇢n+1 
µ < ⇢n. Set N = Nn,a. Let b = a \ ⇢n

N
and set:

X = h
N
(µ [ b) = the closure of µ [ b under ⌃1(N) functions.

Let � : M
⇠ ! N |X be the transitivazation of N |X. By the downward

extension lemma, there are unique M,� � �, a such that:

M = Mn,a, � : M �!
⌃

(n)
1

N, �(a) = a.

Clearly, � �µ = id. Moreover, a 2 R(µ)

M
. It suffices to prove:

Claim. � is ⌃
⇤-preserving and a = p⇤

M
.

If � = id and M = N , there is nothing to prove, so suppose not. Let
� = crit(�). (Hence µ  �.) There is then a h  n such that ⇢h+1  � < ⇢h

in N . � is a regular cardinal in M , since �(�) > �. It follows easily that
� witnesses the phalanx hN,M,�i. Note that ⇢!

M
 µ  �, since a 2 R(µ)

M
.

We now apply the simplicity lemma, coiterating N, hN,M�i with:

IN = hhNii, h⌫Ni i, h⇡N

i,ji, TN i

IM = hhMii, h⌫Mi i, h⇡M

i,ji, TM i

being the iteration of N, hN,M,�i respectively. We assume that the iteration
terminates at an ⌘ < !1 and that h⌫i : 1  i < ⌘i is the sequence of coindices.

It is now time to mention that some of the steps in the proof of solidity go
through with a much weaker assumption on the phalanx hN,M,�i and its
witness �. In particular:

Lemma 4.3.5. Let � witness hN,M,�i, where R(�)

M
6= ?. If cases 2 or 3

hold, then M 2 N .

The reader can convince himself of this by an examination of the solidity
proof. But the premises of Lemma 4.3.5 is given. Hence:
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(1) Case 1 applies.

Proof. Suppose not. Let A be ⌃
(h)

1
(N) in a such that A \ ⇢h+1

N
/2 N .

Let A be ⌃
(h)

1
(M) in a by the same definition. Then A \ ⇢h+1

N
=

A \ ⇢h+1

N
2 N , since A 2 ⌃!(M) ⇢ N . Contradiction!

QED(1)
Then M⌘ = N⌘ and there is no truncation on the main branch of IN .
Then ⇡M

1,⌘
: M �!⌃⇤ M⌘. Hence, by a copying argument, M is a

mouse, hence is solid. Since crit(⇡M

1,⌘
) � �, we have:

(2) P(�) \M = P(�) \M⌘ and ⇢i
M

= ⇢i
M⌘

for i > h.
But:

(3) crit(⇡N

1,⌘
) � ⇢h+1.

Proof. Suppose not. then there is j + 1 TN ⌘ such that j < ⇢h+1.
Let j be the least such. Let t = TN

(j + 1). Then:

j < sup ⇡t,j+1”⇢
h+1

N
 ⇢h+1

Nj+1
 ⇢h+1

N⌘
= ⇢h+1

M
> j .

Contradiction!
QED(3)

Hence:

(4) ⇢i
N

= ⇢i
M

for i > h. Moreover if ⇢i = ⇢i
N

, then P(⇢i) \N = P(⇢i) \M
for i > h.
Using this we get:

(5) � : M �!⌃⇤ N .
We first show that � is ⌃⇤-preserving. By induction on i � h we show:

Claim. � is ⌃
(i)

1
-preserving.

For i = h, this is given. Now let i = k + 1 � h and let it hold for k.
Let A be ⌃

(i)

1
(M). then:

Ax ! hH i, B1

x, . . . , B
r

xi |= '

where ' is a ⌃1-sentence and:

Bi

x{z 2 H i
: hz, xi 2 Bl},

where Bl is ⌃
(k)

1
(M) for l = 1, . . . , r. Let A0 be ⌃

(k)

1
(M) by the same

definition. Then:

Bl

zx  ! Bl
0

z�(x)
for z 2 H i

M = H i

N .
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Hence Ax ! A0�(x).
QED(5)

But

(6) � is strongly ⌃
⇤-preserving.

Proof. Let ⇢m = ⇢! in M and N . Let A be ⌃
(m)

1
(M) in x such that

A\⇢m /2M . Let A0 be ⌃
(m)

1
(M) in �(x) by the same definition. Then

A \ ⇢n = A0 \ ⇢m /2 N , since P(⇢m) \M = P(⇢m) \N .
QED(6)

But then �(P ⇤
M
) = P ⇤

N
. Hence P ⇤

M
= a = �0

(P ⇤
N
). We know that

a 2 R(µ)

M
. Hence M is solid above µ.

QED(Lemma 4.3.5)

4.3.3 Condensation

The condensation lemma for L says that if M is transitive and ⇡ : M �! J↵
is a reasonable embedding, then M / J↵. It is natural to ask whether the
dame holds when we replace J↵ by an arbitrary sound mouse. In order to
have any hope of doing this, we must employ a more restrictive notion of
reasonable. Let us call � : M �! N reasonable iff either � = id or �
witnesses the phalanx hN,M,�i and ⇢!

M
 �. We then get:

Lemma 4.3.6. If N,M are sound mice and � : M �! N is reasonable in
the above sense, then M /N .

It ifs not too hard to prove this directly from the solidity lemma and the
simplicity lemma. We shall, however, derive it from a deeper structural
lemma:

Lemma 4.3.7. Let N be a mouse. Let � witness the phalanx hN,M,�i.
Then M is a mouse. Moreover, if M is sound above �, then one of the
following hold:

(a) M = core�(N) and � = �N

�
.

(b) M is a proper segment of N .

(c) ⇡ : N ||� �!⇤
F
M , where F = FN

µ such that:

(i) � < � 2 N such that ⇢!
N ||� < �.
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(ii) � = +N ||� where  = crit(F ).
(iii) F is generated by {}.

Remark. In case (c) we say that M is one measure away from N . Then
� is maximal such that � is a cardinal in N ||�. Hence ⇢N ||�  . But 
is a cardinal in N and N ||� 2 N . Hence ⇢N ||� = . But ⇡ �  = id and
⇡(p⇤

N |�) = p⇤
M

. Hence N ||� = core(M) and ⇡ is the core map. Clearly, µ is
least such that EM

µ 6= EN
µ .

Remark. Lemma 4.3.6 follows easily, since the possibilities (a) and (c) can
be excluded. (a) cannot hold, since otherwise M = core�(N) = N by the
soundness of N . Hence ��

N
= id. Contradiction, since crit(��

N
) = �. If (c)

held, then N⇤
= core(M) where N⇤

= N ||�, and ⇡ is the core map. But M
is sound. Hence M = N⇤

= core(M) and ⇡ = id. Contradiction!

Remark. Lemma 4.3.7 has many applications, through mainly in setting
where the awkward possibility (c) can be excluded (e.g. when � is a limit
cardinal in M). We have given a detailed description of (c) in order to
facilitate such exclusions.

We now prove Lemma 4.3.7. We can again assume N to be countable by
Löwenheim-Skolem argument. We again coiterate against hN,M,�i getting
the iterations:

IN = hhNii, . . . , TN i, IM = hhMii, . . . , TM i

with coiteration indices h⌫i : i < ⌘i, where the coiteration terminates at
⌘ < !1. Then ⇡1,⌘ : M �!⌃⇤ M⌘ and M is a mouse by a copying argument.
Now let M be sound above �. We again consider three cases:

Case 1. M⌘ = N⌘ and IN has no truncation on the main branch.

We can literally repeat the proof in cases of Lemma 4.3.5, getting:

� is strongly ⌃
⇤-preserving.

Hence �(p⇤
M
) = p⇤

N
where M is sound above � and � = �N

�
.

QED(Case 1)

Case 2. M⌘ is a proper segment of N⌘.

We can literally repeat the proof in Case 2 of the solidity Lemma, getting:
M is a proper segment of N .

Case 3. The above cases fail.
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Then M⌘ = N⌘ and IN has a truncation on the main branch. Let j + 1 be
the last truncation point on the main branch. Then M is a mouse and ⇡M

1,⌘
is

strongly ⌃
⇤-preserving. Hence ⇡M

1,⌘
(p⇤

M
) = p⇤

M⇠
. But i � � for all i TM ⌘.

Hence crit(⇡1,⌘) � �. Hence:

M = core�(M⌘) and ⇡1,⌘ = �
M⇠

�
,

since M is sound above �. We also know:

i � �j � � for j + 1 <TN i+ 1 <TN ⌘.

Hence crit(⇡N

j+1,⌘
) � � and ⇡N

j+1,⌘
(P ⇤

Nj+1
) = p⇤

N⌘
= p⇤

M⌘
. Hence:

M = core�(Nj+1) and �
Nj+1

�
= (⇡N

j+1,⌘)
�1 � ⇡M

1,⌘.

We consider two cases:

Case 3.1. j � �.

Then N⇤
j

is a proper initial segment of Nj , hence is sound. Since j � �,
it follows as before that M = core�(N⇤

). Hence M = N⇤
j

by the soundness
of N⇤

j
. But this means that M was not moved in the iteration IM up to

t = TN
(j + 1), since if h < t in the least point active in I⇤, then EM

⌫h
6= ?

and hence ENt
⌫h

= E
N

⇤
j

⌫h = ?. Hence N⇤
j
6= M . Contradiction!

Thus Mt = M = N⇤
j

is a proper segment of Nt. Hence the coiteration
terminates at t < ⌘. Contradiction!

QED(Case 3.1)

Case 3.2. Case 3.1 fails.

Then j < �. But ⌧j � �, since otherwise ⌧j is a cardinal in N and N⇤
j
= N .

Hence j + 1 is not a truncation point in IN . Contradiction!

Thus ⌧j = �. t = TN
(j + 1) is the least i which is active in IN (since

j < �  �i). But then N = Nt and N⇤
j
= N⇤

= N ||�, where � is maximal
such that ⌧ = � is a cardinal in N ||�. Hence j =  = the cardinal predecesor
of ⌧ in N⇤.  = ⇢!

N⇤ , since  is a cardinal in N and N⇤ 2 N . We have:

i � � for 1 TM i+ 1 TM ⌘

Hence crit(⇡M

1,⌘
) � �. But:

i � �t � � for j + 1 <TN i+ 1 <TN ⌘
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Hence crit(⇡N

j+1,⌘
) � �. Hence:

M = core�(Nj+1), (⇡
N

j+1,⌘)
�1 � ⇡M

1,⌘ = �
Nj+1

�
,

⇢!
N⇤  . But then ⇢!

N⇤ =  since  is a cardinal in N and N⇤ 2 N . Set
hÑ , F̃ i = Nj ||⌫j . Then:

⇡t,j+1 : N
⇤
j �!⇤

F̃
Nj+1

By closeness we have: F̃ 2 ⌃1(N
⇤
). Hence F̃ 2 ⌃1(N

⇤
) ⇢ N ||�(⌧), where

�(⌧) is regular in N and � < �(⌧). By a standard construction there is a
unique premouse hQ,F i such that F = F̃, Q||⌧ = N ||⌧ and F is generated
by {}. To see this we have:

F̃ |+ 1(X) =

(
X [ {} if X 2 F̃

X if not

Then F̃ |+ 1 2 N ||�(⌧). Then hQ,F i is the extension of hN |⌧, F̃ |+ 1i in
the sense of §3.2. By a standard construction there exist:

⇡ : N⇤ �!⇤
F M 0, �0

: M 0 �!⌃⇤ Nj+1

such that �0
(⇡(f)()) = ⇡t,j+1(f)() for f 2 �

⇤
(, N⇤

).

To see this, let ⇡ : N ||⌧ �! Q be the extension map. Then each ↵ < �t

has the form ⇡(f)() for an f 2 N ||⌧ . Set: g(↵) = ⇡t,j+1(f)(). Then
g : �F �! �j and:

h id, gi : hN ||⌧, F i �!⇤ hÑ , F̃ i

as defined in §3.2. Hence, the are ⇡,M 0,�0 as above with:

�0
(⇡(f)(↵)) = ⇡t,j+1(f)(g(↵)) for ↵ < �F 0 .

Then �0 �⌧ = id and:

�0
(p⇤

M 0) = �0⇡(p⇤N⇤) = ⇡t,j+1(p
⇤
N⇤) = p⇤Nj+1

.

Hence M = core⌧ (M 0
) and �M

0
⌧ = (�0

)
�1 � �⌧

Nj+1
. However:

Claim 1. M 0 is sound above ⌧ . Hence M = M 0
= core⌧ (Nj+1).

Proof. Let ⇢n    pn�1 in N⇤. Hence  = ⇢n = ⇢! in N⇤. Let x 2 M 0.
Then x = ⇡(f)(), where f 2 �

⇤
(, N⇤

).

By the soundness of N⇤ we may assume:

f(⇠) = F (⇠, a, ~⇣)
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where F is a good ⌃
(n�1)

1
(N⇤

) function, a = pn
N⇤ and ⇣1, . . . , ⇣r < . Hence:

⇡(f)() = F 0
(,⇡(a), ~⇣)

where F 0 is ⌃(n�1)

1
(M 0

) by the same good definition, ⇡(a) = pn
M

, and ~⇣ < ⌧ .
But  < ⌧ , where ⇢n < ⌧ < ⇢n�1 in M 0.

QED(Claim 1)

All that remains is to show:

Claim 2. hQ,F i = N ||µ for a µ  �.

Proof. We note that if hQ,F i = N ||µ, then we automatically have µ  �,
since ⌧ is then a cardinal in N ||µ and � is maximal s.t. ⌧ is a cardinal in
N ||�.

(1) hQ,F i 2 N .

Proof.(EN�
⌫j ) = F 2 N ||�(⌧), where N ||�(⌧) is a ZFC� model.

Hence hQ,F i 2 N ||�(⌧) since the construction of hQ,F i can be carried
out in N ||�(⌧) by absoluteness.

(2) ⇢1hQ,F i  ⌧ .

Proof. As above, let ⇡ : N ||�(⌧) �! Q be the extension map given by
F . By §3.2 we know that ⇡ is ⌃1(hQ,F i) and that hQ,F i is amenable.
But then there is a ⌃1(ha,⇡i) partial map G of N ||⌧ onto Q defined
by: G(f) = ⇡(f)() for f 2 N ||⌧, : f :  �! N ||⌧ .

QED(2)

Define a map �̃ : hQ,F i �! Nj ||⌫j by:

�̃(⇡(f)()) := ⇡̃(f)() for f 2 N |⌧, f :  �! N ||⌧,

where ⇡̃ = ⇡N

t,i
�(N ||⌧) is the extension of Nj ||⌫j .

Then:

(3) �̃ : hQ,F i �!⌃0 Nj ||⌫j . In fact, it is also cofinal.

(4) �̃ �⌧ + 1 = id.

Proof. Set:

i+ =: the least ⌘ > i such that ⌘ = ⌘ � ! in Q

pl := hi+ : i < i.
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Then ⇡(pl)() = +Q
= +Nj ||⌫j = ⇡̃(pl)().

Set:

� =: {f 2 N ||⌧ : f :  �!  ^ f(i) < i+ for i < }
<̇ = {hf, gi 2 � : {i : f(i) 2 g(i)} 2 F}

Then every ⇠ < ⌧ has the form ⇡(f)() fo an f 2 �. Clearly, f<̇g  !
⇡(f)(a) < ⇡(g)(a) for f, g 2 �. Hence by <̇-induction on g 2 �:

⇡(g)() = {⇡() : f<̇g}.

But F = (E
Nj
⌫j ). Hence the same holds for ⇡̃ in place of ⇡. Thus, by

<̇-induction on g 2 �:

⇡̃(g)() = {⇡̃() : f<̇g} = {⇡() : f<̇g} = ⇡(f)().

Hence �̃ �⌧ = id. But:

�̃(⌧) = �̃(⇡(pl)()) = ⇡(pl)() = ⌧

QED(4)
Redoing the proof of (2) with more care, we get:

(5) ? 2 R(⌧)

hQ,F i.

Proof. X ⇢  and X =  are both ⌃1(hQ,F i), since:

X ⇢  ! X 2 dom(F ), X =  ! X 2 On\ dom(F ).

Thus this suffices to show that ⇡ is ⌃1(hQ,F i). We note that if f :

X
onto�! u and u is transitive, then ⇡(f) : ⇡(X)

onto�! ⇡(u) and ⇡(u) is
transitive. But ⇡(X) = F (X) for X ⇢ . Hence y = ⇡(x) can be
expressed by saying that there are:

X,Y, f, u,X 0, Y 0, f 0, u0

such that:
_

u ^X,Y 2 dom(F ) ^ f : X
onto�! u ^ x = f(0)

^
^

⇠, ⇣ 2 X(f(⇠) 2 f(⇣) !� ⇠, ⇣ �2 Y )

^X 0
= F (X) ^ Y 0

= F (Y ) ^ f 0
: X 0 onto�! u0 ^ y = f 0

(0)

^
^

⇠, ⇣ 2 X 0
(f 0

(⇠) 2 f 0
(⇣) !� ⇠, ⇣ �2 Y 0

)

QED(5)
We then prove:
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(6) One of the following holds:

(a) hQ,F i = core⌧ (Nj ||⌫j) and �̃ is the core map.

(b) hQ,F i is a proper segment of Nj ||⌫j
(c) ⇢! > ⌧ in hQ,F i.

Proof. If �̃ = id, hQ,F i = Nj ||⌫j , then (a) holds. Now let �̃ 6= id.
Let �̃ = crit(�̃). Then �̃ > ⌧ by (4). We know ⇢1  ⌧  �̃ in
hQ,F i. Moreover �̃ is ⌃0-preserving. It follows easily that �̃ verifies
the phalanx hNj ||⌫j , hQ,F i, �̃i. hQ,F i is then a mouse. Moreover, it is
sound above ⌧ since ? /2 R(�)

hQ,F i. Hence it is sound above �̃ since ⌧ < �̃.
We then coiterate Nj ||⌫j against hNj ||⌫j , hQ,F i, �̃i, using all what we
have learned up until now. We consider the same three cases. In case
1, (a) holds. In case 2, (b) holds. We now consider case 3, using what
we have learned up to now. We know that �̃ is a successor cardinal in
hQ,F i and that its predecessor ̃ is a limit cardinal in hQ,F i. Since
⌧ < �̃ is a successor cardinal in hQ,F i, we conclude: ⌧ < ̃ = ⇢!.

(7) hQ,F i is a proper segment of N .

Proof. Suppose not. We derive a contradiction. (c) cannot hold, since
⇢!  ⌧ in hQ,F i. Now let (b) holds. Then hQ,F i is a proper segment
of Nj . Hence Nj 6= N . Hence there is a least i < j which is active in
IN . Thus JE

N

⌫i
= JE

N�

⌫i
where ⌫i > ⌧ is regular in Nj . But ⇢!hQ,F i  ⌧.

Hence card(hQ,F i)  ⌧ in Nj and hQ,F i is a proper segment of JE
N

⌫i
.

Contradiction!

Now let (a) hold. If ⌫j 2 Nj , then Nj ||⌫j is sound. Hence �̃ =

id, hQ,F i = Nj ||⌫j . Hence hQ,F i is a proper segment of Nj and
we can argue as above. Contradiction!

Now let ⌫j /2 Nj . Then Nj = Nj ||⌫j = hJE
Nj

⌫j
, ENj

⌫j i. We now show:

Claim. Let h = TN
(i + 1) where i + 1 TN j and (i + 1, j]TN is

truncation free. Then i > ⌧ .

Proof. Suppose not. Recall that ⌧ = �0 < �i for i > 0.

We have ⌧ = ⌧j . But ⇡N

hj
: N⇤

i
�!⌃⇤ Nj . Hence N⇤

i
= hJE

N

⌫ , F i where
F 6= ?. Similarly, Nl = hJE

Nl
⌫l

, Fli, (Fl = ENl
⌫l) for i+1 TN l TN j.

If i + 1 <TN k + 1  j and k is active in IN , we have k � �i > ⌧ .
Hence crit(⇡N

i+1,j
) > ⌧ . Thus ⌧ = ⌧i+1 and ⇡N

i+1,j
� ⌧ = id. Clearly

[i,�i) \ rng(⇡N

h,i+1
) = ?. But i < ⌧ < �i and ⌧ = ⌧i+1 = ⇡N

h,i+1
(⌧),

where ⌧ = ⌧F . Contradiction!

QED(Claim)
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But then there is a truncation on the main branch of IN |j + 1, since
otherwise:

N = N1 = hJE
N

⌫1
, F i with ⌧1 = ⌧.

But ⌧ is not a cardinal in N . Contradiction! Let i + 1 be the final
truncation point on the main branch of IN |j + 1. Let h = TN

(i+ 1).
Then, letting ⇡ = ⇡⇤

h,j
, we have:

⇡ : N⇤
i �!⌃⇤ Nj , ⇡ �⌧ = id, ⇡(p⇤

N
⇤
i
) = p⇤Ni

.

Hence hQ,F i = core⌧ (Nj) = N⇤
i
. But N⇤

i
si a proper segment of Nh.

By our above arguments it again follows that N⇤
i

is a proper segment
of N .

QED(7)
QED(Lemma 4.3.7)

Using the condensation lemma, we prove a sharper version of the initial
segment condition for mice:

Lemma 4.3.8. Let N = hJE
⌫ , F i be an active mouse. Let � 2 N . Let

F = F |� be a full extender. Set:

M = hJE

⌫ , F i where ⇡ : JE

⌧ �! JE is the extension of ~F

. Then M is a a proper segment of N .

Proof. Let  = crit(F ). Define ⌧ = ⌧F ,� = �F , ⌫ = ⌫F as usual. Hence:
⌧ = +N ,� = F (�). Then ⌧ = ⌧

F
,� = �

F
, ⌫ = ⌫

F
. Let ⇡ : JE

⌧ : JE
⌫ be the

extension of F . Define: � : JE

⌧
�! JE

⌧ by:

�(⇡(f)(↵)) = ⇡(f)(↵) for ↵ < �, f 2 JE

⌧ , dom(f) = u.

Then � = crit(�),�(�) and � is ⌃0-preserving, where:

⇢!M  � and ? /2 R(�)

M
.

This is because ⇡ is ⌃1(M) and each element of M has the form ⇡(f)(↵)
where f 2 JE

⌧ and ↵ < �. It follows easily that � witnesses the phalanx
hN,M,�i. Applying the condensation lemma, we see that one of the possi-
bilities (a), (b), (c) holds. (c) cannot hold since � is a limit cardinal in M .
(a) cannot hold, since M 2 N by the initial segment condition. If (a) holds,
we would have: �(p⇤

M
) = p⇤

N
,� �� = id, where � is ⌃

⇤-preserving. But then
⇢!
M

= ⇢!
N

. Let ⇢ = ⇢!
N

. Let A be ⌃
⇤
(N) in p⇤

N
such that A \ ⇢ /2 N . Let A

be ⌃
⇤
(M) in p⇤

M
by the same defition. Then:

A \ ⇢ = A \ ⇢ 2 ⌃
⇤
(M) ⇢ N.
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Contradiction! Thus, only the possibility (b) remains.

QED(Lemma 4.3.8)

As a corollary of the proof of Lemma 4.3.7, we get:

Lemma 4.3.9. Let � = ⇢n
N

< On\M (n  !), where N is critic at �. Let
M = core�(N). Let µ =: �+N (with µ =: OnN if N has a largest cardinal).
Then µ = �+M and N ||µ = M ||µ.

Proof. Let � = ��

N
. Then � witnesses the phalanx hN,M,�i. Then (b)

and (c) in Lemma 4.3.7 cannot hold, since otherwise a 2 N where a ⇢ �

is ⌃
(m)

1
(M) such that a /2 N . Contradiction! Coiterate hN,M,�i, N to get

IM , IN as in the proof of Lemma 4.3.7. Then Cases 2 and 3 cannot hold,
since otehrwise (b) or (c) would hold. Hence Case 1 holds -i.e. M⇠ = N⇠ and
IN has not truncation on the main branch. We know that i � � on the
main branch of IM . Hence � = ⇢n

N⌘
. But ⇢n

M⌘
= ⇢n

N⌘
. Hence � = ⇢n

N⌘
. But

then i � � on the main branch of IN , since otherwise � < ⇡N

0,⌘
(�) = ⇢n

N⌘
.

Since there is no truncation on the main branch, we have �i � µ. Hence
M ||µ = M⌘||µ = N⇠||µ = N ||µ, where µ = �+M⌘ .

QED(Lemma 4.3.9)


