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Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{z|p(z)} for the class of = such that p(z). We also write:

{t(x1,...,zn)|@(x1,...,2n)}, (where e.g.
tzxy, ... xn) ={ylY(y, z1,...,20)})

for:
{y| \/xl, oty =tz .., x0) ANe(x1, ..o, Tp)) )
We also write

P(A) ={z|z C A}, AUB ={z|z€ AV z € B}
ANB={zlz€ ANze€ B},-A={z| ¢ A}

(2) Our notation for ordered n—tuples is (x1,...,x,). This can be defined
in many ways and we don’t specify a definition.

(3) An n-ary relation is a class of n—tuples. The following operations are
defined for all classes, but are mainly relevant for binary relations:

dom(R) =: {z[ V y(y,z) € R}

mg(R) =: {y| V z(y,z) € R}
RoP={{y,z)|V2|{y,2z) € RA(z,z) € P}
RI1A={{y,x)|(y,z) e RNz € A}

R = {(y,z)|(z,y) € R}

We write R(z1,...,x,) for (z1,...,2,) € R.

(4) A function is identified with its extension or field — i.e. an n-ary
function is an n + l-ary relation F' such that

Nzi.cxn Nz Nw((F(z, 21, ..., 20) A F(w, 21, ..., 2,)) —
—z=w)

F(x1,...,x,) then denotes the value of F' at xy,...,x,.
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(5)

"Functional abstraction" (ty, . z.|¢(x1,...,2,)) denotes the function
which is defined and takes value t;, .. whenever ¢(z1,...,z,) and
tey,...xn 18 @ st

n

<t5517~"7xn’<10($1’ ce vxn)> =
{y, 1, ..., xn)|y =tay,. a0 Ne(x1, ... 20)},

where e.g. ty, 2, = {2|¥(z,21,...,20)}.

Ordinal numbers are defined in the usual way, each ordinal being iden-
tified with the set of its predecessors: a = {v|v < a}. The nat-
ural numbers are then the finite ordinals: 0 = 0,1 = {0},...,n =
{0,...,n — 1}. On is the class of all ordinals. We shall often em-
ploy small greek letters as variables for ordinals. (Hence e.g. {a|p(a)}
means {z|r € OnAp(z)}.) We set:

supA =: J(ANOn), inf A =:((AAOn)
lub A =: sup{a + 1|a € A}.
A note on ordered n—tuples. A frequently used definition of ordered
pairs is:
(r,y) = {{a}, {z, y}}-

One can then define n—tuples by:

() =1, (x1,29,...,20) =: (x1,{(T1, ..., 2n)).

However, this has the disadvantage that every n + 1-tuple is also an
n—tuple. If we want each tuple to have a fixed length, we could instead
identify the n—tuples with wvecton of length n — i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to define the notion of "function". Thus,
if we take this course, we must first make a "preliminary definition" of
ordered pairs — for instance:

(z,y) = {z} {2, y}}
and then define:
(o, ..y 2n—1) = {(20,0),..., (xp_1,n — 1)}.

If we wanted to form n—tuples of proper classes, we could instead iden-
tify (Ao, ..., Ap—1) with:

({2, (i =0Az € A)V...V(i=n—1Az € A1)}
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(11)

Overhead arrow notation. The symbol T is often used to donate a
vector (xy,...,x,). It is not surprising that this usage shades into what
I shall call the informal mode of overhead arrow notation. In this mode
Z simply stands for a string of symbols x1, ..., x,. Thus we write f(Z)
for f(z1,...,%n), which is different from f((z1,...,2,)). (In informal
mode we would write the latter as f((Z)).) Similarly, ¥ € A means that
each of x1,...,z, is an element of A, which is different from (Z) € A.
We can, of course, combine several arrows in the same expression. For
instance we can write f(§(Z)) for f(g1(z1, ... 2n), - s gm(T1, ..., Tp)).

) or f(g(Z)) for

~—

Hll

Similarly we can write f(g(

f(gl(xl,l’ s 7$17;D1)7 cee vQM(xm,lﬁ R ’xmﬁvm))'

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

A model or structure will for us normally mean an n+1-tuple (D, A1, ...
consisting of a domain D of individuals, followed by relations on that
domain. If ¢ is a first order formula, we call a sequence vy, ..., v, of
distinct variables good for o iff every free variable of ¢ occurs in the se-
quence. If M is a model, ¢ a formula, vy, ..., v, a good sequence for ¢
and z1,...,x, € M, we write: M = p(v1,...,vp)[x1,...,2y] to mean
that ¢ becomes true in M if v; is interpreted by x; for i = 1,...,n.
This is the satisfaction relation. We assume that the reader knows how
to define it. As usual, we often suppress the list of variables, writing
only M E ¢lzi,...,z,). We may sometimes indicate the variables
being used by writing e.g. ¢ = p(v1,...,vp).

€-models. M = (D, E,Ay,...,A,) is an €-model iff E is the restric-
tion of the €-relation to D?. Most of the models we consider will be
€-models. We then write (D, €, Ay,...,A,) or even (D, Aq,..., Ay)
for (D,€ ND?, Ay,..., A,). M is transitive iff it is an €-model and D
is transitive.

The Levy hierarchy. We often write Az € yp for Az(x € y — @),
and \/ z € yp for \/ z(z € y A ). Azriel Levy defined a hierarchy of
formulae as follows:

A formula is X (or Ilp) iff it is in the smallest class ¥ of formulae such
that every primitive formula is in ¥ and A v € up, \/v € up are in 3
whenever ¢ is in ¥ and v, u are distinct variables.

(Alternatively we could introduce Av € u, \/v € u as part of the
primitive notation. We could then define a formula as being ¥ iff it
contains no unbounded quantifiers.)
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(14)

The ¥,,+1 formulae are then the formulae of the form \/ vy, where ¢
is II,,. The II,,41 formulae are the formulae of the form A vy when ¢
is Xp,.

If M is a transitive model, we let ¥, (M) denote the set of realations
on M which are definable by a ¥,, formula. Similarly for IT,,(M). We
say that a relation R is X, (M)(I1,(M)) in parameters p1, ..., pm iff

R(Jﬁ'l, s ,wn) e R,($17 sy Ty PLy - apm)

and R’ is X, (M)(I1,(M)). X,(M) then denotes the set of relations
which are ¥; (M) in some parameters. Similarly for IT; (M).

Kleene’s equation sign. An equation 'L ~ R’ means: 'The left side is
defined if and only if everything on the right side is defined, in which
case the sides are equal’. This is of course not a strict definition and
must be interpreted from case to case.

F(%) ~ G(H1(Z),...,H,(¥)) obviously means that the function F is
defined at (xi,...,z,) iff each of the H; is defined at (¥) and G is
defined at (Hy(Z),..., H,(Z)), in which case equality holds.

The recursion schema of set theory says that, given a function G, there
is a function F with:

Fly, @) ~ G(y, T, (F(2,7)|z € y)).

This says that F' is defined at (y, Z) iff Fis defined at (z, Z) for all z € y
and G is defined at (y, Z, (F(z,%)|z € y)), in which case equality holds.

By the recursion theorem we can define:

TC(z) =z U | JTC(2)

z€x
(the transitive closure of x)

rn(z) = lub{rn(z)|z € =}
(the rank of x).

By a normal ultrafilter on xk we mean an ultrafilter U on P(x) with
the property that whenever f : kK — k is regressive modulo U (i.e.
{v|f(v) < v} € U), then there is a < k such that {v|f(v) < v} € U.
Each normal ultrafilter determines an elementary embedding © of V
into an inner model W. Letting

D = the class of functions f with domain &,

we can characterize the pair (W, ) uniquely by the conditions:
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o 7:V < W and write (1) =k
o W=A{r(f)()lx € D}
o 7(f)(v) e m(9)(r) & {v[f(v) € g(v)} € U.

U can then be recovered from 7 by:
U={xCklken(x)}

We shall call (W, ) the extension of V' by U. W can be defined from
U by the well known ultrapower construction: We first define a "term
model" D = (D, %, €) by:

fEge{vlfv) =g}t el
feg o {vlfv) =g} €U

D is an equality model in the sense that = is not the identity relation
but rather a congruence relation for ). We can then factor D by =2,
getting an identity model D\ 2, whose are the equivalence classes:

[z] = {yly = =}

D\ = turns out to be isomorphic to an inner model W. If o is the
isomorphism, we can define 7w by:

m(x) = o([consty])

where const, is the constant function x defined on «. W is then called
the ultrapower of V by U. 7 is called the canonical embedding.

(Extenders) The normal ultrafilter is one way of coding an embedding
of V into an inner model by a set. However, many embeddings cannot
be so coded, since 7(x) < 2" whenever (W, 7) is the extension by U. If
we wish to surmount this restriction, we can use extenders in place of
ultrafilters. (The extenders we shall deal with are also known as "short
extenders".)

An extender F at k maps |J P(u") into |J P(A\") for a\ > u.

n<w nw

It engenders an embedding 7 of V' into an inner model W characterized
by:

o m:V < Wecrit(n = k)

e Every element of W has the form 7 (f)(&) where aq,...,a, < A
and f is a function with domain k™

— — —

o m(f)(a@) € m(g)(@) < (@) € T({{OIF(E) € 9(E)})
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F' is then recoverable from (W, 7) by:
F(X)=n(X)Nn\" for X C r".

The concept "F' is an extender" can be defined in ZFC, but we defer
that to Chapter 3. If (W,x) is as above, we call it the extension
of V by F. We also call W the ultrapower of V by F and 7 the
canonical embedding. (W, ) can be obtained from F by a "term
model" construction analogous to that described above.

(Large Cardinals)

Definition 0.0.1. We call a cardinal x strong iff for all § > k there
is an extender F' such that if (W, ) is the extension of V' by F', then
Vg cWw.

Definition 0.0.2. Let A be any class. k is A-strong iff for all § > &
there is F' such that letting (W, 7) be the extension of V' by F, we
have:

ANVg ZW(A)QVB.

These concepts can of course be relativized to V; in place of V when
T is strongly inaccessible. We then say that k is strong (or A-strong)
up to T.)

Definition 0.0.3. 7 is Woodin iff 7 is strongly inaccessible and for
every A C V; there is k < 7 which is strong up to 7.

(Embeddings)

Definition 0.0.4. Let M, M’ be e-structures and let 7 be a structure
preserving embeddings of M into M’'. We say that 7 is X,,—preserving
(in symbols: m: M —yx, M') iff for all 3, formulae we have:

M E olar,...,a,) < M E pn(ar),..., (ay)]

for ay,...,a, € M. It is elementary (in symbols: © : M < M’ of
7w M —y, M') iff the above holds for all formulae ¢ of the M-
sprache. It is easily seen that 7 is elementary iff it is 3, —preserving
for all n < w.

We say that 7 is cofinal iff M' = J,cps 7(w).
We note the following facts, which we shall occasionally use:

Fact 1 Let 7 : M —x, M’ cofinally. Then 7 is X;—preserving.

Fact 2 Let m : M —x, M’ cofinally, where M is a ZFC™ model. Then
M’ is a ZFC™ model and 7 is elementary.



Fact 3 Let m: M —yx, M’ cofinally where M’ is a ZFC™ model. Then
M is a ZFC™ model and 7 is elementary.

We call an ordinal k the critical point of an embedding 7 : M — M’
(in symbols: x = crit(n)) iff 7[x =id and (k) > k.
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Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory — which dealt with “effective” functions
and relations on w — to transfinite domains. This, in turn, gave the impetus
for the development of fine structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek’s work, in which w is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on w can be developed in three different ways. We
can take the notion of algorithm on basic, defining a recursive function on w
to be one given by an algorithm. Since, however, we have no definition for the
general notion of algorithm, this approach involves defining a special class
of algorithms and then convincing ourselves that “Church’s thesis” holds —
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
on basic, defining an n-ary relation R on w to be recursively enumerable
(r.e.) if for some calculus involving statements of the form “R(iy,...,i,)”
(41,...,in < w), R is the set of tuples (i1,...,4,) such that “R(i1,...,i,)”
is provable. R is then recursive if both it and its complement are r.e. A
function defined on w is recursive if it is recursive as a relation. But again,
since we have no general definition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church’s
thesis.

11



12 CHAPTER 1. TRANSFINITE RECURSION THEORY

A third alternative is to base the theory on definability, taking the r.e. re-
lation as those which are definable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of defining formula tends to be a bit unnatural. The
situation changes radically, however, if we replace w by the set H = H,, of
heredetarily finite sets. We consider definability over the structure (H, €),
employing the familiar Levy hierarchy of set theoretic formulae:

IIy = ¥y =: formulae in which all quantifiers are bounded
Y41 =: formulae \/ zp where ¢ in II,

1,41 =: formulae A zy where ¢ in ¥,,.

We then call a relation on H r.e. (or H-r.e.) iff it is definable by a ¥;
formula. Recalling that w C H it then turns out that a relation on w is
H-r.e. iff it is r.e. in the classical sense. Moreover, there is an H-recursive
map 7 : H <> w such that A C H is H-r.e. iff 7”A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to transfinite
domains. Let N = (|N|, €, A;,..., Ay,) be any transitive structure. We first
define:

Definition 1.1.1. A relation on N is 3, (N) (in the parameters py,...,p, €
N) iff it is N-definable (in p) by a ¥, formula. It is A, (N) (in p) if both it
and its completement are ¥, (N) (in p). It is X,,(N) iff it is X, (N) in some
parameters. Similarly for A, (V).

Following our above example of N = (H, €), it is natural to define a relation
on N as being N-r.e. iff it is X;(N), and N-recursive iff it is A;(N). A
partial function F on N is N-r.e. iff it is N-r.e. as a relation. F is N—
recursive as a function iff it is N-r.e. and dom(F’) in A;(N).

(Note that X, ((H, €)) = £1((H, €)), which will not hold for arbitrary N.)

However, this will only work for an IV satisfying rather strict conditions since,
when we move to transfinite structures N, we must relativize not only the
concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of
H the finite sets were simply the elements of H.

Correspondingly we define:
u is N—finite iff u € N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:
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e If A is recursive and wu is finite, then A N is finite.

e If v is finite and F : uw — N is recursive, then F"v is finite.

Those transitive structures N = (|N|,€ Aj,...,A,) which yield a satis-
factory recursion theory are called admissible. An ordinal « is then called
admissible iff L, is admissible. The admissible structures were character-
ized by Kripke and Platek as those transfinite structures which satisfy the
following axioms:

(1) 0,{x,y}, Uz are sets
(2) The Xo axiom of subsets:
xN{z|lp(z)} is a set

(where ¢ is any Yg—formula)

(3) The Xo axiom of collection:

/\:1: Eu\/y o(z,y) —>\/v/\x eu\/yevgo(x,y),

(where ¢ is any Yp-formula).

Note Kripke-Platek set theory (KP) consists of the above axioms together
with the axoim of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the ¥ ones).

Note Although the definability approach is the one most often employed in
transfinite recursion theory, the approaches via algorithms and calculi have
also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = (|M|, € A,,...,Ay,) be admissible.

Lemma 1.1.1. Let w e M. Let A be A{(M). Then ANue M.

Proof: Let Az + \/ yAoyz;—Ax < \/yAiyz, where Ay, A are X,(M).

Then Az € u\ y(Aoyzr V Ajyz). Hence there is v € M such that
ANz eu\ye€v(AyzV Ayx). QED

Before verifying the second criterion we prove:
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Lemma 1.1.2. M satisfies:

/\x eu\/yl...yntp(:t,zj’) —>\/v/\m€u\/y1...yn € vp(x, )

for Xo-formulae .

—»

Proof. Assume Az € u\/ y1...ynp(z,7). Then

/\xeu\/w\/yl...yn € wo(z, 7).

Yo

Hence there is v/ € M such that Az € u\N/w € v\ y1...yn € we(x,y).
Take v = Jv'. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let u € M,u C dom(F), where F is a X,(M) function.
Then F"u e M.

Proof. Let y = F(z) > \/ zF'zyz, where F' is a X((M) relation. Then

Nz € u\ z,yF'zyxz. Hence there is v € M such that

ANz eu\ zy € vF zyx. Hence F'u=vN{y|\Vx €u\ z € vF'zzy}.
QED (Lemma 1.1.3)

Assuming the admissibility of M, we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let o(y,Z) be a X1—formula. Then \/ yp(y, T) is uniformly
1 in M.

Note “Uniformly” is a word which recursion theorists like to use. Here it
means that M = \/ yo(y, &) <> ¥(Z) for a ¥ formula ¥ which depends only
on ¢ and not on the choice of M.

Lemma 1.1.5. Let p(y,Z) be 1. Then Ny € up(y, T) is uniformly X1 in
M.

Proof. Let o(y, %) =\/ z¢/(z,y,x), where ¢ is Xy. Then

/\y € up(y, ) < \/U/\y € u\/z € vy (z,y,x)

o

in M. QED (Lemma 1.1.5)

Lemma 1.1.6. Let oo(Z), 1(Z) be 1. Then (0o(Z)Ap1(Z)), (@o(Z)Vep1(Z))
are uniformly 31 in M.
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Proof. Let ¢;(Z) =\ yi¥i(yi, £) where without loss of generality yo # yi.
Then

(o(@) A (@) < \/ w0 \/ w1 (6o, 2) A &1 (11, 7))
Similarly for V. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let 1, ..., o, be X1—formulae. Let WV be formed from ¢1,. .., ¢on
using only conjunction, disjunction, existence quantification and bounded
uniwersal quantification. Then W(x1,...,x,) in uniformly X1 (M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R C M" in X1(M) in the parameter O iff it is X1(M) in no
parameter.

Proof. Let R(Z) +» R'(0,Z). Then

r) < \/Z(R'(z,:f) /\/\y € zy #v).
QED (Lemma 1.1.8)
Note R is in fact uniformly X1 (M) in the sense that its ¥; definition depends
only on the original ¥ definition of R from (), and not on M.

Lemma 1.1.9. Let R(y1,...,yn) be a relation which is X1(M) in the the
parameter p. Fori=1,... n let fi(x1,...,xm) be a partial function on M
which (as a relation) is X1(M) in p. Then the following relation is uniformly
Y1 (M) in p:

R(f1(2), ..., fa(®)) ¢ \/ w1 un( N\ wi = £:(Z) AR(®G)).
i=1
This follows by Lemma 1.1.7. (“Uniformly” again means that the ¥; defini-

tion depends only on the 3 definition of R, f1,..., fn.)

Similarly:

Lemma 1.1.10. Let f(y1,.--,Yn), gi(1,...,xm)(@ = 1,...,n) be partial
functions which are ¥1(M) in p, then the function h(¥) ~ f(g(Z)) is uni-
formly 31(M) in p.

Proof.

QED (Lemma 1.1.10)
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Lemma 1.1.11. Let f;(Z) be a function which is 31(M) in p(i =1,...,n).
Let Ri(Z)(i = 1,...,n) be mutually exclusive relations which are ¥1(M) in
p. Then the function

f(&) >~ fi(T) if Ri(Z)
is uniformly ¥1(M) in p.

Proof.
) A Ri(7)).

<@
1
&H
o
<<
<
1
e
=7
8

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are X1 (M).

Lemma 1.1.12. The following functions are uniformly 31 (M):

(a) f(x) = $,f($) = Ul‘,f(l‘,y) = ny’f(x’y) = l‘ﬂy,f(ﬂf,y) = l’\y
(set difference)

(b) f(z) = Cu(x), where Co(x) = 2, Cpy1 () = Ca(w) UU Cu(a)

(c) f(z1,...,xn) ={21,...,2n}

(d) f(z) =1 (where i < w)

() f(z1,...,xn) = (T1,...,Tn)

(f) f(z) = dom(z), f(z) = mg(z), f(z,y) = "y, f(z,y) =z ]y
fl@)=a7"

(8) flx1,...,zp) =21 X T2 X ... X Ty

(h) f(z) = (x)! where ((20,...,2n-1))F = z and (u)! = 0 in all other

x(z) if x is a function
(i) f(z,z) =z[z] = ¢ and z € dom(x)
() otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (¢), y = {z1,...,z,} can be expressed by the ¥o—
statement

xl,...,xnGy/\/\zEy(z:azl\/...\/z:xn).
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(d) follows by induction on 4, since
0=0,i+1=1:U{i}

The proof of (e) depends on the precise definition of (z1,...x,). If we want
each tuple to have a unique length, then the following definition recommends
itself: First define a notion of ordered pair by: (z,y) =: {{z},{z,y}} Then
(x,y) is a ¥; function. Then iff: (xy,...,2,) =: {(21,0),..., (zp,n — 1)},
the conclusion is immediate.

For (f) we display the proof that dom(z) is a ¥; function. Note that
x,y € Cp({x,y)) for a sufficient n. But since every element of dom(x) is
a component of a pair lying in z, it follows that dom(x) C C,(z) for a
sufficient n. Hence y = dom(z) can be expressed as:

/\sz\/w(w,z> GmA/\z,w € Cp(x)((w,z) ex — 2z €y).

To see (g), note that y = x1 X ... X z,, can be expressed by:

Nz1€xi... Nzn €xp(z1,...,2n) €Y
ANNwey\zi€xr...\zn €xpw=(21,...,2n).

To see (h) note that, for sufficiently large m,y = ()} can be expressed by:

Vzo..ozn—1(x=(20,...,2n—1) Ny = 2;)
Viy=0ANzo...2n-1 € Crp(z)x # (20, -+ 2n—1))

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on w and f : w — w is defined by:

f0) =k, f(n+1) = g(n, f(n)),

then f isrecursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of w we can express
this in the elegant form:

Let g:wx H— w be ¥;.
Then f:w — wis X1, where f(n) = g(n, f [n).

If we take g : H?> — H, then f will be ¥ where f(x) = g(x, f | 2) for x € H.
We can even take g as being a partial function on H2. Then f is ¥ where:

f(x) = g(z, (f(2)|z € x)).
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(This means that f(z) is defined if and only if f(z) is defined for z € x and
g is defined at (z, f [ x), in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M. If f is a partial
X, function and x C dom(f), we know by Lemma 1.1.3 that "z € M. But
then fx € M, since f*(z) ~ (f(2), z) is a X; function with  C dom(f*),
and f*"x = f | x. The recursion theorem for admissibles M = (|M]|,€
JA1, ..., Ay) then reads:

Lemma 1.1.13. Let G(y,Z,u) be a X1(M) function in the parameter p.
Then there is exactly one function F(y,¥) such that

Fly, @) ~ G(y, 7, (F(z,7)|z € y)).

Moreover, F is uniformly ¥1(M) in p (i.e. the 31 definition depends only
on the X1 definition of G.)

Proof. We first show existence. Set:
I'z=: {f € M|f is afunction Adom(f) is
transitive A Ay € dom(f)f(y) = G(y,Z, fy)}

Set Fz =Tz F = {(y,Z)|ly € Fz}. Then F is in ¥;(M) in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some & there are f,f' € T'z, y €
dom(f) Ndom(f’) such that f(y) # f'(y). Let y be €-minimal with
this property. Then f [y = f'|y. But then f(y) = G(y,Z, f [y) =
Gy, Z, f',1y) = f'(y). Contradiction! QED (1)

Hence F(y) = f(y) if y € dom(f) and f € I'z.

(2) Let (y,%) € dom(F). Then y C dom(Fz),(y,Z, (F(z @)z € y)) €
dom(G) and
F(y, %) = Gy, T, (F(z,7)|z € ).

Proof. Let y € dom(f), f € I'z. Then

F(y,7) = f(y) =Gy,

QED (2)

(3) Let y C dom(F3), (y,Z, Fz|y) € dom(G). Then y € dom(Fy).

Proof. By our assumption: Az €y\/ f(f € TzAz € dom(f)). Hence
there is w € M such that

Nzey\ feulf €Tznzedom(f)).
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Set: f' = J(uNTz). Then f' € Tz and y C dom(f’). Moreover

f'ly=Fgly. Set " = ffU{(G(y,Z, f Ty),y)}. Then f” € 'y and
y € dom(f"), where f” C Fj. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F* satisfy the same condition. Set FZ(y) ~ F*(y,Z). Suppose
F* # F. Then Fi(y) # Fz(y) for some Z,y. Let y be €-minimal ect.
FZ(y) # Fz(y). Then F} |y = F[y. Hence

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively definable
by: TC(z) = xUJ,, TC(2). Similarly, the rank rn(x) of a set is definable
by rn(x) = lub{rn(z)|z € z}. Hence:

Corollary 1.1.14. TC,rn are uniformly X1(M).

The successor function sa = o + 1 on the ordinals is defined by:

[ xu{z}ifz € On
U=\ undefined if not

which is ;. The function a + 3 is defined by:

a+0=a«a
a+sv=s(a+v)
a+ A=, .ya+vfor limit A.

This has the form:
x4y ~Gy,x, (x+z|z €y)).
Similarly for the function = -y, ¥, ... etc. Hence:
Corollary 1.1.15. The ordinal functions o+ 1, + f3,0°, ... etc. are uni-
formly ¥, (M).
We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let h : M — M be 31 (M)
in p such that {(z,y)|x € h(y)} is well founded. There is a unique f such
that

Fly) = G(y, %, (F(2,7)|z € h(y)))-
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Moreover, F is uniformly' $1(M) in p.

The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {(z,y)|x € h(y)} in place of €—minimality. We now consider the
structure of “really finite” sets in an admissible M.

Lemma 1.1.17. Let u € H,. The class u and the constant function
f(x) = u are uniformly 31 (M).

Proof. By e-induction on u: Let u = {z1,..., 2}

n
reusr o=z
i=1

n
r=uc ANycrzycun \z €.
=1

1=
QED

x € w is clearly a g condition. But then:

Lemma 1.1.18. Let w € M. Then the constant function f(z) = w is

uniformly 31 (M).

Proof.

x:w<—>(/\zExzew/\Q)Gx/\/\zea:zU{z}Ex)
(where 'z € w’ is ¥) QED
Lemma 1.1.19. The class Firi and the function f(x) = Py, (z) are uniformly
Y1(M), where Fin = {z € M|z < w},P,(z) = P(z) N Fin.

Proof.

z € Fin «VnewV ffinex
y=Py(x) < AucyluCzAueFn)ADeyn
ANNzex{z} eyAANu,veyuUuv € y.

We must show that P,(x) € M. If w ¢ M, then rn(z) < w for all x € M,
Hence M = H,, is closed under P,,. If w € M, there is ¥,(M) f defined by

£(0) = {{z}]z € 2}, f(n + 1) = {uUv[(u,v) € f(n)*}.
Then Py(z) = fw € M. QED (Lemma 1.1.19)

But then:

! (“uniformly” meaning, of course, that the ¥; definition of F depends only on the ¥,
definition of G, h.)
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Lemma 1.1.20. Ifw € M, then H,, € M and the constant function f(x) =
H,, is uniformly X1 (M).

Proof. H, € M, since there is a X;(M) function g defined by g(0) =
0,9(n+1) = Py(g(n)). Then H, = Jg"w € M and f(x) = H, is X1(M)
since g and the constant function w are X1 (M). QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Godel’s definition of the constructible hierarchy (L,|r € On):

Lo=10
Ly+1 = Def(Ly)
Ly = U L, for limit A,

<A

where Def(u) is the set of all z C w which are (u, €)-definable in parameters
from u (taking Def() = {0}). (Note that if u is transitive, then u C Def(u)

and Def(u) is transitive.) Godel’s constructible universe is then L =: |J L,.
v€On

By fairly standard methods one can show:

Lemma 1.1.21. Let w € M. Then the function f(u) = Def(u) is uniformly
Y1 (M).

We omit the proof, which is quite lengthy. It involves “arithmetizing” the
language of first order set theory by identifying formulae with elements of w
or H,, and then showing that the relevant syntactic and semantic concepts
are M-recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let w € M. The function f(a) = Lo is uniformly
¥ (M).

The constructible hierarchy over a set u is defined by:

Lo(u) = TC({u})
Lys1(u) = Def(L, (1)
Ly(u) = U Ly(u) for limit A.

<A

Oviously:
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Corollary 1.1.23. Let w € M. The function f(u,a) = Lq(u) is uniformly
Y1 (M).

The constructible hierarchy relative to classes Ay, ..., A, is defined by:

Lo[A] =0 L

L ] = Def(L, (4], 4)

Ly[A] = U L,[A4] for limit A,
<

where Def(U, Ay, ..., A,) is the set of all z C u which are
(u,€,A1 Nu,..., A, Nu)—definable in parameters from u.

Much as before we have:

Lemma 1.1.24. Letw € M. Let Ay,..., A, be Ay (M) in the parameter p.
Then the function f(u) = Def(u, A1, ..., Ay) is uniformly 31 (M) in p.

Corollary 1.1.25. éet w € M. Let Ay,..., A, be as above. Then the
function f(a) = La[A] is uniformly X1 (M) in p.

—.

(In particular, if M = (|M|, €, A1, ..., A,). Then f(a) = Ly[A] is uniformly
X1 (M).)
(One could, of course, also define Lq(u)[A] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is defined over (u, €) by a tuple (p,z1,...,2,), where ¢
is a formula and z1,...,x, are elements of u which interpret free variables
of p. If u is transitive (hence u C Def(u)), we can also arrange that the well
ordering, which we shall call < (u,r), is an end extension of . The function
< (u,r) is uniformly ;. If we then set:

<o=0,<p11=< (Ly, <)

<= U <, for limit A,
<A

it follows that <, is a well ordering of L, for all v. Moreover <, is an end
extension of <, for v < a.

Similarly, if A is ¥1(M) in p, there is a hierarchy < (v € OnNM) such that
<2 well orders L,[A] and the function f(v) =<2 is ¥1(M) in p (uniformly
relative to the X; definition of A).

By corollary 1.1.25 we easily get:
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Lemma 1.1.26. Let M = (|M|, €, A1,...,A,) be admissible. Lel o =

—. -,

OnNM. Then (Lo[A], € A) is admissible.

—.

Proof: Set: L§ = (L,[A], €, A). Axiom (1) holds trivially in Lf.
To verify the ¥p—axiom of subsets, let B be ZO(Lf). Let u € Lf.
Claim un B € LA,

Proof: Pick v < a such that u € Lf and B is ¥ in parameters from Lf.
By X,—absoluteness we have:

wn B € Def(LY) = LA, ¢ LA,
QED (Claim)

We now prove ¥p—collection. Let Rzxy be a X,-relation. Let u € Lf such
that Az € u\/ yRzy.

Claim \/v € Lf/\x €u\/y € vRxy.

For each x € u let g(x) be the least v < « such that x € LlfY. Then g is in
3, (M) and u C dom(g). Hence § = sup ¢"u < a and

/\IB € u\/y € L§Rwy.
QED (Lemma 1.1.26)

Definition 1.1.2. Let « be an ordinal.

o « is admissible iff L, is admissible

—. -,

o « is admissible in Ay, ..., A, Ciff Lf =: (L4[A4], € A) is admissible

— -

o f:a" — ais a—recursive (in A) iff fis B (La)(Z;(L2))

o RCamis re. (in A)iff Ris Xy (La(Z1(LY)).

(Note The theory of a-recursive functions and relations on an admissible
« has been built up without references to Ly, using a formalized notion of
a-bounded calculus (Kripke) or a—bounded algorithm (Platek).

Similarly for a—recursiveness in Ay, ..., 4,, taking the A; as "oracles")
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—,

A transitive structure M = (|M|,€ A) is called strongly admissible iff, in
addition to the Kripke—Platek axioms, it satisfies the X1 aziom of subsets:

xN{z|p(z)} is a set (for ¥; formulae ).

Kripke defines the projectum J, of an admissible ordinal « to be the least
d such that ANd ¢ L, for some X;(M) set A. He shows that d, = « iff
« is strongly admissible. He calls « projectible iff §, < «. There are many
projectible admissibles — e.g. d, = w if « is the least admissible greater
than w. He shows that for every admissible « there is a X, (Ly) injection f,
of L, into d,.

The definition of projectum of course makes sense for any a > w. By
refinements of Kripke’s methods it can be shown that f, exists for every
a > w and that §, < a whenever a > w is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions
f:Vvr=Vv

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f: V"™ — V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:

) = x; (here Zis x1, ..., xy)
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(v) fly, %) = Ug(z7)

zZ€yY

(vi) f(y, %) = g9(y, T, (f(2,D)|z € y))

We also define:

Definition 1.2.2. R C V"™ is a primitive recursive relation iff there is a
primitive recursive function r such that R = {(Z)|r(Z) # 0}.

(Note It is possible for a function on V' to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If f: V™ = V is primitive recursive and k : n — m, then g
18 primitive recursive, where

9(xo, -+, Tm—1) = f(Tr0), -+ Th(n-1))-

proof by (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) By (i), (v), Lemma 1.2.1, since Jz; = U =

St

The proof depends on the precise definition of n—tuple. We could for in-

stance define (z,y) = {{z}, {z,y}} and (x1,...,z,) = (@1, (x2,...,2pn))
for n > 2.
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If, on the other hand, we wanted each tuple to have a unique length, we
could call the above defined ordered pair (z,y) and define:

(1, xn) = {(21,0),...,(xp,n —1)}.

QED (Lemma 1.2.2)



1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 27

Lemma 1.2.3. (a) ¢ is pr

(b) If f: V"™ =V, R C V™ are primitive recursive, then so is

oty ={ 4 11

(¢) R C V"™ is primitive recursive iff its characteristic functions Xg is a
primitive recursive function
(d) If R C V" is primitive recursive so is R =: V" \ R
(e) Let f; : V" = V,R; C V™ be pr(i = 1,...,m) where Ry,..., R, are
n

mutually disjoint and |J R; = V™. Then f is pr where:
i=1

f(Z) = fi(x) when R;Z.

(f) If RzZ is primitive recursive, so is the function
fly, @) = yn{z|Rzz}

(9) If Rz is primitive recursive so is \| z € yRz%

m
(h) If R;Z is primitive recursive (i = 1,...,m), then so is \/ R;%
i=1
(i) If Ry,..., Ry are primitive recursive relations and ¢ is a Xg formula,

then {(Z)|(V, R, ..., Ry) = @[Z]} is primitive recursive.

() If f(z,Z) is primitive recursive, then so are:

9(y, %) = {f(2, 7|z € y}
g/(yaf) - <f(Z7f)‘z € y>

(k) If R(z,Z) is primitive recursive, then so is

That z € y such that RzZ if exactly
f(y, @) =< one such z € y exists;

0 if not.
Proof.

() gy {z}\y#0
(b) Let RT <> (%) £ 0. Then ¢(z) = |J f(@).

zer(Z)
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L[ 1if R
() X&) { 0 if not

(d) X-gr(Z) =1\ Xg(Z)

() et i@ = { 0

Then f(%) = f1(Z)U...U f(Z).

) fly,2) = ZLEJyh(Z,f), where:

| {2} if Rz%
Mz 7) = { 0 if not

(g) Let PyZ <»:\/ z € yRzZ. Then Xp(Z) = | Xr(z, 7).

zZ€yY

m
(h) Let PZ <> \/ R;Z. Then
=1

1=

Xp(ii") = Xp, U...UXRH(:Z").

(i) is immediate by (d), (g), (h)
() 9(y. @) = U{f(z. )}, 0 (v, ) = U{{f(2,7),2)}

zZEyY ZEyY

(k) R'zuZ <: (z € u NRzZANN\Z € u(z # 2/ — —RZ'Z)) is primitive
recursive by (i). But then:

fy, @) =N {z|R zy#})
QED (Lemma 1.2.3)

Lemma 1.2.4. Fach of the functions listed in §1 Lemma 1.1.12 is primitive
TECUTSIVE.

The proof is left to the reader.

Note Up until now we have only made use of the schemata (i) - (v). This
will be important later. The functions and relations obtainable from (i)
~ (v) alone are called rudimentary and will play a significant role in fine
structure theory. We shall use the fact that Lemmas 1.2.1 — 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(x),rn(z) are primitive recursive.
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The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. f: On" xV™ — V is primitive recursive iff f’ is primitive
recursive, where

f/(?j,f):{ f(yax) lfyh?yneon

() if not
As before:
Lemma 1.2.6. The ordinal function o+ 1,a+ B,a- 3,05, ... are primitive
recursive.

Definition 1.2.4. Let f: V"l 5 V.

f%(a € On) is defined by:

oy, %) =y
faJrl(y?f) = f(fa(y’ f)?'f)

Py, @) = U f(y, %) for limit A.
r<

Then:

Lemma 1.2.7. If f is primitive recursive, so is g(o,y,Z) = f*(y,T).

There is a strengthening of the recursion schema (vi) which is analogous to
§1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let h : V — V be primitive recursive. h is manageable
iff there is a primitive recursive o : V' — On such that

x € h(y) = o(z) < o(y).

(Hence the relation = € h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V"2 =V be primitive recur-
sive. Then f: V"1 =V is primitive recursive, where:

fy,T) = g(y, 7, (f(2,7)|z € h(y)))-

Proof. Let o be as in the above definition. Let |z| = lub{|y|ly € h(z)} be
the rank of x in the relation y € h(z). Then |z| < o(z). Set:

O(z, 7, u) = | J{{9(y, &, 2 1h(y)), y)ly € u A h(y) C dom(2)}.



30 CHAPTER 1. TRANSFINITE RECURSION THEORY

By induction on «, if u is h—closed (i.e. z € u — h(x) C u), then:
0%(0,7,u) = {f(y, F)ly € u A [y| <)

Set h(v) =v U |Jh(z). Then h®({y}) is h—closed for o > |y|. Hence:

zZEv

fly, &) = 7WH0, 2 k7Y ({y}))(y)-
QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let uw € H,. The constant function f(x) = u is primitive
recursive.

Proof: By e-induction on u. QED

As we shall see, the constant function f(z) = w is not primitive recursive, so
the analogue of §1 Lemma 1.1.18 fails. We say that f is primitive recursive
in the parameters p1,...,pmH:

f(&) = g(#,p), where g is primitive recursive.

In place of §1 Lemma 1.1.19 we get:

Lemma 1.2.10. The class Fin and the function f(x) = Py (x) are primitive
recursive in the parameter w.

Proof: Let f be primitive recursive such that f(0,z) = {0} U {{z}|z € =},
fn+1,2) = {uUv|(u,v) € f(n,r)?}. Then Py(z) = |J f(n,x). But then:

ncw

$6F1n<—>\/n€w\/ge UIP)Z(:wa)g:nH:J:.

n<w
QED

Corollary 1.2.11. The constant function f(x) = H, is primitive recursive
in the parameter w.

Proof: H, = |J P"(0). QED
n<w
Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter
w.
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The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
recursive. We give not further details here (though filling in the details can
be an arduous task). A fuller account can be found in [PR] or [AS].

Hence:

Corollary 1.2.13. The function f(«) = L, is primilive recursive in w.

Similarly:
Lemma 1.2.14. The function f(a,x) = Lo (x) is primitive recursive in w.

Lemma 1.2.15. Let A C V be primitive recursive in the parameter p. Then
f(a) = LA is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in
the class A C V (or in the classes Aq,..., A, C V).

We define:
Definition 1.2.6. Let A;,..., A, C V. The function f : V" — V is
primitive recursive in A1,..., A, iff it is obtained by successive applications

of the schemata (i) — (vi) together with the schemata:
flz)=Xa,(z)(i=1,...,n).

A relation R is primitive recursive in Aq,..., A, iff

R={@)|f(@) # 0}

for a function f which is primitive recursive in Ay,..., A,.

It is obvious that all of the previous results hold with "primitive recursive in
Aq, ..., A" in place of "primitive recursive".

By induction on the defining schemata of f we can show:

Lemma 1.2.16. Let f be primitive recursive in Ai,...,A,, where each
A; is primitive recursive in Bi,..., Bn. Then f is primitive recursive in
By,...,Bpn.

The proof is by induction on the defining schemata leading from Aq,..., A,
to f. The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from By,..., B, are
not dependent on By, ..., By or Ay,..., Ay, but only on the schemata which
lead from Aq,..., A, to f and the schemata which led from By,..., By, to
AZ(Z = 1,...,n).

This will be made more precise in §1.2.2
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1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive definitions. By
a primitive recursive definition we mean a finite sequence of equations of the
form (i) — (vi) such that:

e The function variable on the left side does not occur in a previous
equation in the sequence

e every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized — i.e. formulae, terms, variables etc. have been identified in a
natural way with elements of w (or at least H,).

Every primitive recursive definition s defines a function Fs. If s = (sg, ..., Sp—1),
then Fy, = FP~! where F! interprets the leftmost function variable of s;.

This is defined in a straightforward way. If e.g. s; is "f(y,Z) = U g(z, 2)"
zey
and g was leftmost in s;, then we get

Fi(y,7) = | JF(2,%).

Let PD be the class of primitive recursive definitions. In order to define
{{(z,s)|]s € PD ANx € Fs} in ZF we proceed as follows:

Let s = (soy...,8n—1) € PD. Let M be any admissible structure. By
induction we can then define (Fo™|i < n) where F! a function on M™ (n;
being the number of argument places). By admissibility we know that F!
exists and is defined on all of M™. We then set: FM = Fg' ~LMThis defines
the set (FM|s € PD). If M C M’ and M’ is also admissible, it follows by
an emy induction on i < n that F®*M = F&>M' [ M. Hence FM < FM'. We
can then set:
Fo = | J{F)|M is admissible}.

Note that by §1, each FM has a uniform ¥ definition ¢, which defines FM
over every admissible M. It follows that ¢ defines Fs in V. Thus we have
won an important absoluteness result: Every primitive recursive function has
a Y1 definition which is absolute in all inner models, in all generic extensions
of V, and indeed, in all admissible structures

M = (M|, €). This absoluteness phenomenon is perhaps the main reason
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for using the theory of primitive recursive functions in set theory. Carol
Karp was the first to notice the phenomenon — and to plumb its depths.
She proved results going well beyond what I have stated here, showing for
instance that the canonical 31 definition can be so chosen, that F [ M is the
function defined over M by ¢, whenever M is transitive and closed under
primitive recursive function. She also improved the characterization of such
M: Call an ordinal « nice if it is closed under each of the function:

fO(aaB> = Oé—f-ﬁ;fl(a,ﬂ) =« ﬁ,fg(o&,ﬁ) = Oéﬁ ... etc.

(More precisely: fit1(a, ) = ff(a) for i > 1, where fi(a) = fi(a, @), ¢°(a)

is defined by: ¢°(a) = a, ¢?*t1(a) = g(¢°(a)), g™ (o) = supg®(«) for limit \.)
V<A
She showed that L, is primitive recursively closed iff « is nice. Moreover,

L,JAy, ..., A,] is closed under functions primitive recursive in Ay, ..., A, iff
« is mnice.

Primitive recursiveness in classes Ay, ..., A, can also be discussed in terms of
primitive recursive definitions. To this end we appoint new designated func-
tion variable a;(i = 1,...,n), which will be interpreted by X4,(i =1,...,n).

By a primitive recursive definition in a1, ..., a, we mean a sequence of equa-
tion having either the form (i) — (vi), in which a4, ..., a, do not appear, or
the form

(*) flz1,...,zp) =ai(zj)(i=1,...,n,5=1,...,p)

We impose our previous two requirements on all equations not of the form
(*).

If s = (so,...,8p—1) is a pr definition in a1, ...,a,, we successively define
FiAL-An (i < n) as before, setting Fo (1, . . . ,Tp) = X a,(x;) if s; has the

form (*). We again set FS/Y = F? Y The fact that {(z,s)|z € F;Y} is
uniformly (V, €, Ay, ..., A,) definable is shown essentially as before:

Given an admissible M = (|M|, €, a1, . .., ay) we define Fo™ FM = pp=tM
as before, restricting to M. The existence of the total function FXM follows
as before by admissibility. Admissibility also gives a canonical ¥ definition
s such that
y=F(&) & M gy, 7.

(Thus FM is uniformly ¥; regardless of M.) If M, M’ are admissibles of
the same type and M C M’ (i.e. M is structurally included in M), then
EM — FM' [ M. Thus we can let F41-4ns be the union of all FM such
that M = (|]M|,e, Ay N|M]|,..., A, N|M]) is admissible. ¢ then defines

F2 over (V, A). (Here, Karp refined the construction so as to show that
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FATM = FM whenever M = (|M|, €, Ay A|M]|,..., A, N |M]) is transitive
and closed under function primitive recursive in Aj,...,A,. It can also
be shown that M = (|M]|, €,a4,...,ay) is closed under functions primitive

recursive in aq, . . ., a, iff | M| is primitive recursive closed and M is amenable,
(iie.zNA; e Mforallz e M, v=1,...,n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let A; C
V' be primitive recursive in By,..., B, with primitive recursive def s; in
bi,...,bp(i = 1,...,m). Let f be primitive recursive in Ay,..., A, with
primitive recursive definition s in aq,...,a,. Then f is primitive recursive
in By, ..., By by aprimitive recursive definition s in by, ..., by. &' is uniform
in the sense that it depends only on si,...,s, and s, not on By,...,B;,. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

/
S1y--ySm, S+ S

with the following property: Let By, ..., By, be any classes. Let s; define g;
from B(i =1,...,n). Set: A; = {z|gi(z) #0} ini=1,...,n. Let f be the
function defined by s from A. Then s’ defines f from B.

Note (H,, €) is an admissible structure; hence Fy [ H, = fH«. This shows
that the constant function w is not primitive recursive, since w ¢ H,. It
can be shown that f : w — w is primitive recursive in the sense of ordinary
recursion theory iff

flz)ifzx ew

f*(x):{ 0 if not

is primitive recursive over H,,. Conversely, there is a primitive recursive map
o : H, < wsuch that f: H, — H,, is primitive recursive over H,, iff ¢ fo~!
is primitive recursive in sense of ordinary recursion theory.

1.3 1ll founded ZF~ models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF~ (where the language of ZF~ may contain predicates other than €).
Let A = <a7§,Bl,...,Bn> be such a model. For X C A we of course

write A|X = <X,§ NX2,...). By the well founded core of A we mean the
set of all v € A such that < NC(z)? is well founded, where C(z) is the

closure of {z} under €4. Let wic(A) be the restriction A|C of A to its
well founded core C. Then wfc(A) is a well founded structure satisfying
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the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A’ such that wfc(A’) is
transitive (i.e. wic(A') = (A’,; €, m) where A’ is transitive). We call such A’
grounded, defining:

Definition 1.3.1. A = (A, &® .. ) is grounded iff wfc(A) is transitive.

(Note Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.)

By the argument just given, every consistent set of sentences in ZF~ has a
grounded model. Clearly

(1) wC wic(A) if A is grounded.
For any ZF~ model A we have:
(2) If x € A and {z]z €* 2} C wfc(A), then = € wic(A).

Proof: C(z) = {z} UU{C(2)|z €* z}. QED

By ¥o—absoluteness we have:

(3) Let A be grounded. Let ¢ be ¥ and let x1,...,x, € wic(A). Then
wic(A) | ol7] © A | o[,

By €-induction on x € wfc(A) it follows that the rank function is
absolute:

(4) rn(z) = rm®(z) for x € wfc(A) if A is grounded.
The converse also holds:
(5) Let rn®(z) € wfc(A). Then = € wfc(A).

Proof: Let 7 = rn®(z). Then r is an ordinal by (3). Assume that r is the
least counterexample. Then rn®(z) < r for z € x. Hence {z]z €* 2} C
wic(A) and x € wic(A) by (2).

Contradiction! QED

We now prove:
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Lemma 1.3.1. Let A be grounded. Then wic(A) is admissible.

Proof: Axiom (1) and axiom (2) (X—subsets) follow trivially from (3). We
verify the axiom of ¥y collection. Let R(x,y) e Xy(wic(A)). Let u € wic(A)
such that Az € u\/ yR(x,y). It suffices to show:

Claim: \/v Az € u\/y € vR(x,y).

Let R’ be Xy(A) by the same definition in the same parameters as R. Then
R = R'nwifc(A)? by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is » € On® such that 7 ¢ wfc(A). Hence

A = rn(y) < r for all y € wic(A)

by (4). Hence there is an r € On® such that
(6) Az euVy(R (z,y) NA = rn(y) <7)

Since A models ZF~, there must be a least such r. But then:
(7) r e wic(A).

Since by (2) there would otherwise be an 7’ such that A = r/ < r and
r" ¢ wic(A). Hence (6) holds for »/, contradicting the minimality of r.
QED (7)

But there is w such that

8) Nz euVyew(R (x,y) Arn(y) <r).

Let A = v = {y € w|Arn(y) < r}. Then rn*(v) < r. Hence rn®(v) €
wic(A) and v € wic(A) by (5). But:

/\x Gu\/yEUny.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let 6 = OnNwic(A). Then Ls(u) is admissible whenever
u € wic(A).

Corollary 1.3.3. L{ = (Ls[A], A N Ls[A]) is admissible whenever A €
X, (A) (since (A, A) is a ZF~ model.
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Note It is clear from the proof of lemma 1.3.1 that we can replace ZF~ by
KP (Kripke-Platek set theory). In this form lemma 1.3.1 is known as Ville’s
Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary
(but M-finite) languages in countable admissible structures M. In so doing,
he created a powerful and flexible tool for set theory, which we shall utilize
later in this book. In this chapter we give an introduction to Barwise’s work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which ar-
bitrary M-finite conjunction and disjunction are allowed. The predicates,
however, have only a (genuinely) finite number of argument places and there
are no infinite strings of quantifiers. In order that the notion "M-finite"
have a meaning for the symbols in our language, we must "arithmetize" the
language — i.e. identify its symbols with objects in M. There are many ways
of doing this. For the sake of definitness we adopt a specific arithmetization
of Mfinitary first order logic:

Predicates: For each z € M and each n such that 1 < n < w we appoint
an n-ary predicate P}’ =: (0, (n, z)).

Constants: For each z € M we appoint a constant ¢, =: (1, z).

Variables: For each x € M we appoint a variable v, =: (2, ).

Note The set of variables must be M—infinite, since otherwise a single for-
mula might exhaust all the variables.

We let P02 be the identity predicate = and also reserve P? as the €-predicate

(€).

By a primitive formula we mean Pty ...t, =: (3,(P,t1,...,t,)) where P is
an n—ary predicate and tq,...,t, are variables or constants.
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We then define:
—p =: (4,0), (¢ V) = (5,{(p,¥)),
(e A1) =: (6, (p,9)), (0 = ¥) =: (7, {0, ¥)),
(0 ) =: (8, {w,¥)), ANve = (9, (v, ),
Vg = (10, (v, ¢)).

The infinitary conjunctions and disjunctions are

/Y\f:: <117f>7Wf:: <127f>

The set Fml of first order M —formulae is then the smallest set X which
contains all primitive formulae, is closed under =, A, V, —, <>, and such that

e If v is a variable and ¢ € X, then Avp € X and \Jvp € X.

o If f = (pili € I) € M and ¢; € X for i € I, then /\ f € X and
W feX.

(In this case we also write:

M ei= MW ei= M £

i€l i€l

If B is a set of formulae we may also write: /\ B for M\ ¢.)
peB

It turns out that the usual syntactical notions are Aq(M), including: F'ml,
Const (set of constants), Vbl (set of variables), Sent (set of all sentences),
as are the functions:

Fr(p) = The set of free variables in ¢

©(Y/t) ~ the result of replacing occurences of the variable v by ¢ (where
t € VblUConst), as long as this can be done without a new occurence
of t being bound by a quantifier in ¢ (if ¢ is a variable).

That Vbl, Const are A; (in fact Xg) is immediate. The characteristic func-
tion X of F'ml is definable by a recursion of the form:

X(x) =G(z,(X(2)]z € TC(x))

where G : M? — M is Ay. (This is an instance of the recursion schema in §1
Lemma 1.1.16. We are of course using the fact that any proper subformula
of ¢ lies in TC(y).)
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Now let h(gp) be the set of immediate subformulae of ¢ (e.g. h(—¢) = {¢},

h(M\pi) = {¢ili € I}, h(Avyp) = {p} etc.) Then h satisfies the condition in
i€l
§1 Lemma 1.1.16. It is fairly easy to see that

Fr(p) = Glp, (F(z)|z € h(p)))

where G is a ¥; function defined on Fml. Then Sent = {¢|Fr(y) = 0}.

To define ¢(Y/t) we first define it on primitive formulae, which is straightfor-
ward. We then set:

(e ANY)(V/t) = (p(Y/t) Ap(Y/t)) (similarly for A, —, <)
—p(Y/t) = =(p(*/1))
(Mei) (/) = M(pi(*/t)) similarly for \¥/.

iel el
Nupifu=wv
(Aup)(¥/t) ~ < Au(p(®/t)) if u#v,t (similarly for \/)

otherwise undefined

This has the form:

p(*/t) = G, 0, (X (/)| X € h(p))),

where G is X1 (M). The domain of the function f(p,v,t) = ¢(Y/t) is A1 (M),
however, so f is M-recursive.

(We can then define:

(p(m,...,vn/tl’ o ,tn) — (,O(Ul/wl) .. (U"/wn>(w1/t1) ... (w"/tn)

where vy,...,v, is a sequence of distinct variables and wy,...,w, is any
sequence of distinct variables which are different from wvy,...,vy,, t1,...,t,
and do not occur bound or free in ¢. We of cours follow the usual conventions,
writing ¢(t1,...,t,) for vp(**"n/ty, ... t,), taking v1,...,v, as known.)

M —finite predicate logic has the axioms:

e all instances of the usual propositional logic axiom schemata (enough
to derive all tautologies with the help of modus ponens).

e MNwi—¢j, pi— Wei(j€UeM)
il il

o Nzp — o(*/t), p(*/t) = Vayp
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o 2=y — (p(z) ¢ ©(y))
The rules of inference are:

. W (modus ponens)

o wf?\ﬁw if x ¢ Fr(p)

. Vlﬁsz if x ¢ Fr(p)

* o (we M)

° 7¢Wi(f£) (ue M)

We say that ¢ is provable from a set of sentences A iff ¢ is in the smallest set
which contains A and the axioms and is closed under the rules of inference.
We write A F ¢ to mean that ¢ is provable from A. F ¢ means the same as
0F .

However, this definition of provability cannot be stated in the 1st order lan-
guage of M and rather misses the point which is that a provable formula
should have an M—finite proof. This, as it turns out, will be the case when-
ever A is 3 (M). In order to state and prove this, we must first formalize the
notion of proof. Because we have not assumed the axiom of choice to hold
in our admissible structure M, we adopt a somewhat unorthodox concept of
proof:

Definition 1.4.1. By a proof from A we mean a sequence (p;|i < «) such
that o € On and for each ¢ < «, p; C Fml and whenever ¢ € p;, then either

1 € A or v is an axiom or 1 follows from |Jp, by a single application of
h<i
one of the rules.

Definition 1.4.2. p = (p;|i < «) is a proof of ¢ from A iff p is a proof from
Aand p € | p;.

i<a
(Note that this definition does not require a proof to be M—finite.)

It is straightforward to show that ¢ is provable iff it has a proof. However,
we are more interested in M—finite proofs. If A is 31(M) in a parameter
q, it follows easily that {p € M|p is a proof from A} is 31(M) in the same
parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be X,(M). Then At ¢ iff there is an M—finite proof
of ¢ from A.
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Proof: («) trivial. We prove (—)
Let X = the set of ¢ such that there is p € M which proves ¢ from A.
Claim: {p|AF ¢} C X.

Proof: We know that A C X and all axioms lie in X. Hence it suffices to
show that X is closed under the rules of proof. This must be demonstrated
rule by rule. As an example we show:

Claim: Let ¢ — 1; be in X for i € u. Then ¢ — My € X.
€U

Proof: Let P(p, ) mean: pis a proof of ¢ from A. Then P is ¥;(M). We
have assumed:

(1) NieuV, P(p,e — ).
Now let P(p,z) > \/ 2P'(z,p, z) where P’ is ¥y. We then have:

(2) Nieu\p\VzP'(zp.¢— ;).
Hence there is v € M with:

(3) NicuVp,zevP (z,p,0— ).
Set: w={pev|\Viecu\zevP(z,p,0— )}
Set: a = |J dom(p). For i < « set:
peEW

q = U{pz”p € wAi € dom(p)}

Then ¢ = (¢;|i < a) € M is a proof.

But then ¢"{ M\ v;} is a proof of N\ ;. Hence M\v; € X.
€U €U ieU
QED (Lemma 1.4.1)

From this we get the M —finiteness lemma:

Lemma 1.4.2. Let A be ¥,(M). Then A ¢ iff there is a C A such that
a €M and at .

Proof: (<) is trivial. We prove (—). Let p € M be a proof of ¢ from A.
Set:

a = the set of 9 such that for some i € dom(p), ¥ € p; and ¥ is neither an

axiom nor follows from |Jp; by an application of a single rule.
I<i
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Then a C A, a € M, and p is a proof of ¢ from a. QED (Lemma 1.4.2)

Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be ¥1(M) in q. Then {p|A F ¢} is ¥1(M) in the
same parameter (uniformly in the ¥, definition of A).

Proof: {¢|AF ¢} ={¢|\Vp € M p proves ¢ from A}.

Corollary 1.4.4. Let A be ¥1(M) in q. Then "A is consistent” is 11 (M)
in the same parameter (uniformly in the X1 definition of A).

"p proves ¢ from u" is uniformly ¥;(M). Hence:
Lemma 1.4.5. {(u,)|u € M ANut ¢} is uniformly X1(M).
Corollary 1.4.6. {(u € M|u is consistent} is uniformly I, (M).

Note. Call a proof p strict iff P; = 1 for i € dom(p). This corresponds
to the more usual notion of proof. If M satisfies the axiom of choice in the
form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with
"strict proof" in place of "proof". We leave this to the reader.

1.4.2 Models

We will not normally employ all of the predicates and constants in our M-
finitary first order logic, but cut down to a smaller set of symbols which we
intend to interpret in a model. Thus we define a language to be a set L of
predicates and constants. By a model of L we mean a structure:

A= (A, (t]t € L))

such that |A| # ), P C |A|™ whenever P is an n-ary predicate, and c¢* € |A|
whenever ¢ is a constant. By a variable assignment we mean a map of f of
the variables into A. The satisfaction relation A | ¢[f] is defined in the
usual way, where A |= [f] means that the formula ¢ becomes true in A if
the free variables of ¢ are interpreted by the assignment f. We leave the
definition to the reader, remarking only that:

A Neilfl & NieuA | gilf]

€U

AEWeilfl < Viecuh = gilf]

€U

We adopt the usual conventions of model theory, writing A = (|A[,#1,...) if
we think of the predicates and constants of L as being arranged in a fixed
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sequence ty,ta,.... Similarly, if ¢ = ¢(v1,...,v,) is a formula in which at
most the variables vy,...,v, occur free, we write A = ¢lay,...,ay] for:

A = ¢[f] where f(v;) =a; fori=1,... n.

If ¢ is a sentence we write: A = . If A is a set of sentences, we write A - A
to mean: A = ¢ for all p € A.

Proof: The correctness theorem says that if A is a set of L sentences and
A = A, then A is consistent. (We leave this to the reader.)

Barwise’s Completeness Theorem says that the converse holds whenever our
admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let IL be an
M -language and let A be a set of statements in L. If A is consistent in
M ~finite predicate logic, then L has a model A such that A = A.

Proof: (Sketch)

We make use of the following theorem of Rasiowa and Sikorski: Let B be
a Boolean algebra. Let X; C B(: < w) be such that the Boolean union
U X, = b; exists in the sense of B. Then B has an ultrafilter U such that

biEUHXiﬂU#@fori<w.

(Proof. Successively choose ¢;(i < w) by: ¢o = 1, ¢j+1 = ¢; N'b # 0, where
be X;U{=b}. Let U= {a € B|\ic; C a}. Then U is a filter and extends
to an ultrafilter on B.)

Extend the language L by adding an M—infinite set C of new constants. Call
the extended language L*. Set:

[p] = {Y]AF (¥ < ¢)}
for L*—sentences ¢. Then
B =: {[¢]|p € Sentr~}
is the Lindenbaum algebra of L* with the defining equations:
[e] U] = [p VYL [e] N [Y] = [p A Y], —lg] = [~¢]
U les] = [/X(\Jsoz'](i €u), N o] = [Mwil(i € u)

€U S €U €U
U [p(0)] = [V ve()], N [p(e)] = [Ave(v)].
ceC ceC

The last two equations hold because the constants in C', which do not occur in
the axiom A, behave like free variables. By Rasiowa and Sikorski there is then
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an ultrafilter U on B which respects the above operations. We define a model
A = (JA], (t*|t € L)) as follows: For c € C set [¢] =: {¢' € C|[c = ] € U}.
If p € L is an n—place predicate, set:

P([e1], ..., [en]) <2 [Pet, ... cn) € UL
If t € L is a constant, set:
th =[] where c€ C,[t =] € U.
A straightforward induction then shows:

AEpllal,...,[e] < [plery...,en)] €U

for formulae ¢ = ¢(v1,...,v,) with at most the free variables vq,...,v,. In
particular, A |= ¢ <> [p] € U for L*—statements ¢. Hence A = A.
QED (Theorem 1.4.7)

Combining the completeness theorem with the M—finiteness lemma, we get
the well known Barwise compactness theorem:

Corollary 1.4.8. Let M be countable. Let I be a language. Let A be a
X, (M) set of sentences in L. If every M—finite subset of A has a model,
then so does A.

1.4.3 Applications

Definition 1.4.3. By a theory or aziomatized language we mean a pair
L = (Lp, A) such that L is a language and A is a set of Ly—sentences. We
say that A models L iff A is a model of Ly and A = A. We also write L - ¢
for: (p € Fmly, and A F ¢). We say that L = (Lo, A) is £1(M) (in p) iff
Lo is Ay(M) (in p) and A is ¥1(M) (in p). Similarly for: L is A(M) (in p).

We now consider the class of axiomazized languages containing a fixed pred-
icate €, the special constants z(z € M) (we can set e.g. z = (1,(0,))), and
the basic axioms:

e Extensionality
o Nv(vézx « W v=z) for z € M.

ZET

(Further predicates, constants, and axioms are allowed of course.) We call
any such theory an "€-theory". Then:
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Lemma 1.4.9. Let A be a grounded model of an €-theory L. Then z* =
x € wic(A) forx € M.

In an €-theory L we often adopt the set of axioms ZFC™ (or more precisely
ZFCy ). This is the collection of all L-sentences ¢ such that ¢ is the universal
quantifier closure of an instance of the ZFC™ axiom schemata — but does
not contain infinite conjunctions or disjunctions. (Hence the collection of all
subformulae is finite.) (Similarly for ZF~, ZFC, ZF.)

(Note If we omit the sentences containing constants, we get a subset B C
ZFC™ which is equivalent to ZFC™ in L. Since each element of B contain
at most finitely many variables, we can restrict further to the subset B’ of
sentences containing only the variables v;(i < w). If w € M and the set
of predicates in IL is M-finite, then B’ will be M-finite. Hence ZFC™ is
equivalent in L to the statement /\ B’.)

We now bring some typical applications of e-theories. We say that an ordinal
a is admissible in a C « iff (Ly[a], €, a) is admissible.

Lemma 1.4.10. Let o > w be a countable admissible ordinal. Then there is
a C w such that « is the least ordinal admissible in a.

This follows straightforwardly from:

Lemma 1.4.11. Let M be a countable admissible structure. Let L be a
consistent X,(M) €-theory such that L = ZF~. Then L has a grounded
model A such that A # wic(A) and OnNwfc(A) = OnnNM.

We first show that lemma 1.4.11 implies lemma 1.4.10. Take M = L. Let
L be the M—theory with:

Predicate: €
Constants: z(z € M), a

Axioms: Basic axioms +ZFC™ 4/ is not admissible in a(3 € M)

Then L is consistent, since (H,,,€,a) is a model, where a is any a C w
which codes a well ordering of type > «. Let L be a grounded model of LL
such that wfc(A) # A and OnNwifc(A) = a. Then wfc(A) is admissible by
§3. Hence so is Ly[a] where a = a®. QED

Note This is a very typical application in that Barwise theory hands us an ill
founded model, but our interest is entirely concentrated on its well founded
part.
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Note Pursuing this method a bit further we can use lemma 1.4.11 to prove:
Let w < ap < ... < ap—1 be a sequence of countable admissible ordinals.
There is a C w such that o; = the +—th o < w which is admissible in
a(l=0,...,n—1).

We now prove lemma 1.4.11 by modifying the proof of the completeness
theorem. Let I'(v) be the set of formulae: v € On, v > B(8 € OnAM). Add
an M-infinite (but A, (M)) set E of new constants to L. Let L' be L with
the new constants and new axioms: I'(e) (e € E). Then L’ is consistent,
since any M—finite subset of the axioms can be modeled in an arbitrary
grounded model A of I by interpreting the new constants as sufficiently
large elements of a. As in the proof of completeness we then add a new
class C of constants which is not M—finite. We assume, however, that C' is
A1(M). We add no further axioms, so the elements of C' behave like free
variables. The so—extended language L” is clearly X, (M).

Now set:
Aw)={v¢On}u | J{v<ptuJ{e<v}.
BeM e€E
Claim Let ¢ € C. Then J{[¢]|¢ € A(c)} =1 in the Lindenbaum algebra of
L”.

Proof: Suppose not. Then there is ¥ such that A+ ¢ — 1 for all p € A(c)
and AU {—} is consistent, where L = (ILjj, A). Pick an e € E which does
not occur in 1. Let A* be the result of omitting the axioms I'(e) from A.
Then A* U{—¢} UT(e) F ¢ < e. By the finiteness lemma there is 5§ € M
such that A* U {-9} U {8 < e} F ¢ < e. But e behaves here like a free
variable, so A* U {—)} ¢ <. But AD A* and AU{—¢} F B < c. Hence
AU{—}F B < B and AU {—} is inconsistent. B

Contradiction! QED (Claim)

Now let U be an ultrafilter on the Lindenbaum algebra of I” which respects
both two operations listed in the proof of the completeness theorem and the
unions | J{[¢]|¢ € A(c)} for ¢ € C. Let X = {p|[p] € U}. Then as before,
L” has a grounded model A, all of whose elementes have the form ¢* for
¢ € C and such that:

AEgpiff pe X

for L"—statements ¢. But then for each € A we have either z ¢ Ony or
x < fforaf e OnnM or e® < v for all e € E. In particular, if z € Ony
and z > (3 for all B € OnNM, then there is e < z in A. But 8 < e for all
B € OnNM. Hence Ony \ Onjs has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:
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Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W, U
is a normal measure on k. Let T > Kk be reqular in W. Set: M = (HV U).
Assume that M is countable in V. Then for any o < k there is M = (H,U)
such that

e M = U is a normal measure on % for a & € M

o M iterates to M in o many steps.
(Hence M is iterable, since M is.)

Proof: The case a = 0 is trivial, so assume a > 0. Let & be least such that
Ls(M) is admissible. Let L be the e-theory on Ls(M) with:

Predicate: €
Constants: z(x € Ls(M)), M

Axiom: e Basic axioms +ZFC™
e M = (H,U) |= (ZFC™ +U is a normal measure on a x < H)

e M iterates to M in o many steps.

It will suffice to show:
Claim L is consistent.

We first show that the claim implies the theorem. Let A be a grounded model
of L. Then Ls(M) C wfc(A). Hence M, M € wifc(A), where M = M*. But
then in A there is an iteration (M;|i < a) of M to M. By absoluteness
(M;|i < ) really is such an iteration. QED

We now prove the claim.

Case 1l a <k

Iterate (W,U) « many times, getting (W;,U;)(i < «) with iteraton maps
;. Then mpo(a) = . Set M; = mo;(M). Then (M;|i < o) is an iteration
of M with iteration maps m; ; [ M;. But My = moo(M). Hence (H,+, M)
models 7y o(L). But then 7 o (L) is consistent. Hence so is L. QED

Case 2 a =k

Iterate (W,U) 8 many times, where 79 g(k) = 3. Then (M;|i < f3) iterates
M to Mg in B many steps. Hence (H,+, M) models my g(IL). Hence mg g(LL)
is consistent and so is L. QED (Lemma 1.4.12)
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Barwise theory is useful in situations where one is given a transitive struc-
ture @ and wishes to find a transitive structure Q with similar properties
inside an inner model. Another tool, which is often used in such situations,
is Schoenfield’s lemma, which, however, requires coding ) by a real. Unsur-
prizingly, Schoenfield’s lemma can itself be derived from Barwise theory. We
first note the well known fact that every X3 condition on a real is equivalent
to a 31(H,, ) condition, and conversely. Thus it suffices to show:

Lemma 1.4.13. Let H,, = ¢la],a C w, where ¢ is ¥1. Then:

H., k= ola) in L(a).

Proof: Let ¢ =/ 2z, where ¢ is Xo. Let H,, = 9|z, a] where
m(z) = § < a < wy and « is admissible in a. Let L be the language on
L, (a) with:

Predicate: €
Constants: z(x € L,(a))

Axioms: Basic axioms +ZFC™ +\/ 2(¢(z,a) Arn(z) = 9).

Then L is consistent, since (H,,,a) is a model. We cannot necessarily chose
« such that it is countable in L(a), however. Hence, working in L(a), we
apply a Skolem-Lowenheim argument to L,(a), getting countable @,d,w
such that m : Lg(a) < La(a) and 7(d) = 6. Let L be defined from o
over Lz(a) as L was defined from & over L,(a). Then L is consistent by
corollary 1.4.4. Since Lz(a) is countable in L(a), L has a grounded model
A € L(a). But then there is z € A such that A = 9[z,a] and rn*(z) = 4.
Thus rn(z) = B € wfc(A) and z € wfc(A). Thus wic(A) | [z, a], where
wic(A) C H,, in L(a). Hence H,, = ¢[a] in L(a). QED



Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the
way the constructable hierarchy grows. There are many natural questions.
We know for instance by Godel’s condensation lemma that there are count-
able «y such that L, models ZFC™ +w; exists. This means that some 3 <~y
is a cardinal in L, but not in L. Hence there is a subset b C 8 lying in L
but not in L,. Hence there must be a least o > v such that such a subset
lies in L4171 = Def(L,). What happens there, and what do such « look like?
It turns out that there is then a ¥ ,(L,) injection of L, into 3, and that «
can be anything — even a successor ordinal. The body of methods used to
solve such questions is called fine structure theory.

In chapter 1 we developed an elaborate body of methods for dealing with
admissible structures. In order to deal with questions like the above ones,
we must try to adapt these methods to an arbitrary L,. A key concept in
this endeavor is that of amenability:

Definition 2.1.1. A transitive structure M = (|M|, €, A1,..., A,,) is amen-
able iff ANz e Mforalz e M,i=1,...,n.

Omitting almost all proofs, we now sketch the fine structural demonstration
that if 5 < cand b < fisa X,(L,) set with b ¢ L,, then thereis a ¥ ,(L,)
injection of L, into 5. Given any structure of the form M = (L, By, ..., By)
w define its projectum to be the least ¢ such that there is A C L, such that
Ais Xy(M) and A ¢ M. (Thus (L,, A) is amenable whenever A C L, is
3, (M).) It turns out that, whenever g is the projectum of L,, then there is
a 3, (L) injection of L, into p. Now suppose that b is X, (L), where a, 8, b

49
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are as above. Let o” be the projectum of L, and let fO be a 3, (L) injection
of L, into ¢°. Clearly 0° < 3, so f° injects L, into 3. Now suppose that b
is ¥y(Ly) but not X, (Lg,)-

If p° < B the result follows as before, so suppose 3 < ¢°. By the existence of
fO there is an A° C " which completely codes L. (For instance we could
take:

A% = {{f°(2), f'y)lz € y in La}.

The structure N° = (L, AY) then called a reduct of L. It then follows
that any set a C Lyo is ¥,(N?) if and only if it is X, (Ls). In particular
bis X1(N?) and b ¢ N°. Hence o' < 3, where o' is the projectum of NU.
It turns out, however, that in very many respects N° behave exactly like an
L. In particular there is a ¥, (N?) injection f! of N? into o'. Thus f!o fO
is a ¥ (L) injection of L, into 5.

Now suppose that b is ¥3(L,) but not ¥5(L,) and that 3 < ¢'. Then b
is ¥5(N%) and we can repeat the above proof, using N in place of L.
This gives us a reduct N of N and a X, (N') injection f2? of N! into the
projectum o2 of N'. But bis X;(N') and b ¢ N'. Hence o®> < 8. f2oflof®
is then a ¥ (L) injection of L, into 8. Proceeding in this way, we see that
if bis X,,1(La), then there is a X, (Ly) map f = f"o...o f¥ injecting L,
into 8. But bis X, for some n.

The first proof of the above result was due to Hilary Putnam and did not use
the full fine structure analysis we have just outlined. However, our analysis
yielded many new insights; giving for instance the first proof that L, is X,
uniformizable for all n > 1. (L.e. every X, relation is uniformizable by a X,
function.)

Not long afterwards fine structure theory was used to prove some deep global
properties of L, such as:

L = Opg for all infinite cardinals £.

It was also used to prove the covering lemma for L. That, in turn, led to
extended versions of fine structure theory which could be used to analyze
larger inner models, in which some large cardinals could be realized. (Here,
however, the fine structure theory was needed not only to analyze the inner
model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability
over an arbitrary L. In order to achieve this, however, one must overcome
some formidable technical obstacles which arise from Goédel’s definition of
the constructible hierarchy: At successors «, L, is not even closed under
ordered pairs, let alone other basic set functions like unit set, crossproduct
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etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, §2, Lemma 1.1.4). If rn(x;) < yfori=1,...,nand fis
rudimentary, then rn(f(x1,...,2,)) < 7+ w. All reasonable "elementary"
set theoretic functions are rudimentary. If « is a limit ordinal, then L,
is closed under rudimentary functions. If « is a successor, then closing L,
under rudimentary functions yields a transitive structure L7, of rank a+w. It
then turns out that every ¥,(L}) definable subset of L, is already X (L%),
and conversely. Hence we can, in effect, replace the rather weak definability
theory of L, by the rather nice definability theory of LY. (This method was
used in [JH|, except that L} was given a different but equivalent definition,
since the rudimentary functions were not yet known.) It turns out that if V is
transitive and rudimentarily closed, and Rud(N) is defined to be the closure
of N U{N} under rudimentary functions, then P(N) N Rud(N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting:

Jo = H,, = Rud(0)

Jotw = Rud(J,) for a € Lm

Jy= U J, for A a limit p.t. of Lm.
v<A

(Note Setting J = |JJ,, we have: J = L in fact J, = L, whenever « is pr
(03

closed.)

(Note This indexing was introduced by Sy Friedman. In [FSC| we indexed

by all ordinals, so that our J,, corresponds to the J, of [FSC|. The usage

in [FSC| has been followed by most authors. Nonetheless we here adopt

Friedman’s usage, which seems to us more natural, since we then have: a =

rn(Jy) = OnnJ,.)

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. f : V" — V is a rudimentary (rud) function iff it is
generated by successive applications of schemata (i) — (v) in the definition
of primitive recursive in chapter 1, §2.
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A relation R C V™ is rud iff there is a rud function f such that: RZ <
f(&@) = 1. In chapter 1, §1.2 we established that:

Lemma 2.2.1. Lemmas 1.2.1 — 1.2.4 of chapter 1, §1.2 hold with rud’ in
place of ’pr’.

(Note Our definition of 'rud function’, like the definition of "pr function’ is
ostensibly in second order set theory, but just as in chapter 1, §1.2 we can
work in ZFC by talking about rud definitions. The notion of rud definition
is defined like that of pr definition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud definition s a rud function
F, : V™ = V with the property that FM = F, | M whenever M is admissible
and FM . M™ — M is the function on M defined by s. But then if M is
transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FM = F, [ M.)

A rudimentary function can raise the rank of its arguments by at most a
finite amount:

Lemma 2.2.2. Let f: V" — V be rud. Then there is p < w such that
f(@) CcPP(TC(x1U...Uxy)) for all x1,..., 2.

(H)ejce m(f7) < max{rn(z1),...,m(z,)} +p and J° f(Z¥) Cc TC(x1U...U

Proof: Call any such p sufficient for f. Then if p is sufficient, so is every
g > p. By induction on the defining schemata for f, we prove that f has
a sufficient p. If f is given by an initial schema, this is trivial. Now let
f(@) = h(g1(Z),...,9m(Z)). Let p be sufficient for h and ¢ be sufficient for
gi(t = 1,...,m). It follows easily that p + ¢ is sufficient for f. Now let

fly, @) = Ug(z, &), where p is sufficient for g. It follows easily that p is
ST
sufficient for f. QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every X relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We first define:

Definition 2.2.2. f: V™ — V is simple iff whenever R(z, ) is a ¥ relation,
then so is R(f(Z),¥).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) = € f(9) is Zo
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(ii) If A(z, @) is Xo, then A\ z € f(Z)A(z, @) is Xo,

for given these we can verify by induction on the Xg definition of R that
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of f that f is simple. The proof is left to the reader. QED

In particular:

Corollary 2.2.4. FEvery rud function f is Xg as a relation. Moreover f[U
is uniformly Xo(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Xg.

In chapter 1, §2 we relativized the concept 'pr’ to 'prin Aq,..., A,’. We can
do the same thing with rud’.

Definition 2.2.3. Let A; C V(i=1,...,m). f: V"™ — V is rudimentary in
A1,..., A, (rud in Aq,..., A,) iff it is obtained by successive applications
of the schemata (i) — (v) and:

f(x)=xa(z) (i=1,...,n)

where x4 is the characteristic function of A.

Lemma, 1.1.1 and 1.1.2 obviously hold with rud in A4,..., A, in place of
rud’. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the
relation {x} € A is not ¥y in A.

However, we do get:

Lemma 2.2.6. If f isrud in Ay,..., Ay, then

F(@) = fo(Z, A0 f1(Z), .. An N fo(T))

where fo, f1,..., fn are rud functions.

Proof: We display the proof for the case n = 1. Let f be rud in A. By
induction on the defining schemata for f we show:

f(@) = fo(Z, AN f1(Z)) where fo, f1 are rud.
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Case 1 f is given by schemata (i) — (iii). This is trivial.

Case 2 f(x) = Xa(z). Then

1@ ={ g itan P = an @

where f’ is rud. QED (Case 2)

Then f(Z) = f(& ANk(Z)), where f, k are rud. This follows from the
facts:

hi(E, ANwv) = hi(Z, AN KL(F)) = hi(Z) if hi(Z) C v
G(Z,ANv) = go(Z, AN z2) if g1(2) C .
QED (Case 3)

Case 4 f(ya'f) = Ug(Z,f) Let g(Z,,f) = gO(Z>faAmgl(va))‘ Set

zZEey
9(z,%,u) = go(z, Z,uN g1(z, T))
fly, Z,u) = Ug(z,Z,u)
zey
k(yvf) = Ugl(z’f)
zey

Then f(y, @) = f(y, Z, AN k(y, Z)) where f,k are rud.
QED (Lemma 2.2.6)

Definition 2.2.4. X is rudimentarily closed (rud closed) iff it is closed
under rudimentary functions. (M, Ay, ..., Ay,) is rud closed iff M is closed
in functions rudimentary in Ay,..., A,.

If M = (|M|,Ax,...,A,) is transitive and rud closed, then it is amenable,
since it is closed under f(x) = x N A. By lemma 2.2.6 we then have:
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Corollary 2.2.7. Let M = (|M|Ay, ..., Ay) be transitive. M is rud closed
iff it is amenable and |M| is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. FEvery function f which is rud in A is X1 in A as a
relation. Moreover f[U is 31 ((U, ANU)) by the same X1 definition whenever
(U, ANU) is transitive and rud closed. (Similarly for "rud in Ay, ..., A,".)

Proof: Let f(Z) = fo(Z, AN f1(Z)) where fo, fi are rud. Then:

y=f@ o \u\20y=fol@2) Au=H@)Az=ANuw).
QED (Corollary 2.2.8)

In chapter 1 §2.2 we extended the notion of "pr definition" so as to deal with
functions pr in classes Ai,...,A,. We can do the same for rudimentary
functions:

We appoint new designated function variables ay, ..., a, and define the set of
rud definition in ay, .. ., a, exactly as before, except that we omit the schema
(vi). Given Ay, ..., A, we can, exactly as before, assign to each rud definition
s in aq,...,a, a function Ffl"“’A" are then exatly the functions rud in
A1,...,A,. Since lemma 2.2.6 (and with it corollary 2.2.8) is proven by
induction on the defining schemata, its proof implicitly defines an algorithm
which assigns to each s as ¥ formula ¢, which defines F.

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f berud in A1, ..., A,, where each A; istud in By,. .., By,.
Then f isrud in By,..., Bn,.

The proof is again by induction on the defining schemata. It shows, in fact
that f is wniformly rud in B in the sense that its rud definition from B
depends only on its rud definition from A and the rud definition of A; from
B(i=1,...,n).

We also note:

Lemma 2.2.10. Let m : M —x, M, where M, M are rud closed. Then
7 preserves rudimentarily in the following sense: Let f be defined from the
predicates of M by the rud definition s. Let f be defined from the predicates
of M by s. Then n(f(Z)) = f(n(Z)) for x1,...,2, € M.
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Proof: Let ¢, be the canonical ¥y definition. Then M = ¢sly, 7] — M =
ws[m(y), 7(Z)] by Lo—preservation. QED (Lemma 2.2.10)

We now define:

Definition 2.2.5.
rud(U) =: The closure of U under rud functions

4, (U) =: The closure of U under functions rud in Ay,..., A,

-----

(Hence rud(U) = rudy(U).)
Lemma 2.2.11. If U is transitive, then so is rud(U).

Proof: Let W = rud(U). Let Q(z) mean: TC({z}) C W. By induction on
the defining schemata of f we show:

Q1) Ao ANQ(xy)) = Q(f(x1,...,20))

for x1,...,x, € W. The details are left to the reader. But x € U — Q(x)
and each z € W has the form f(Z) where f is rud and z1,...,z, € U. Hence
TC({z}) Cc W for z € W. QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rud 3(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction
of any Xo(W) relation to U is Xy(U).

Proof: Let R be X3(W). Let R(Z) «» R/(Z,p) where R’ is Xo(W) and
Ply...,pn € W. Let p; = fi(Z), where f; is rud and z1,...,2, € U. Then
for x1,...,zy, € U:
R(7) « R(7 f(2)
<~ R'(Z,Z)
where R” is ¥o(U), by lemma 2.2.3. QED (Lemma 2.2.13)

We now define:
Definition 2.2.6. Let U be transitive.

Rud(U) =: rud(U U{U})
Rud 4(U) =: rud (U U{U})

Then Rud(U) is a proper transitive extension of U. By Lemma 2.2.13:
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Corollary 2.2.14. Def(U) = P(U) NRud(U) if U # 0 is transitive.

Proof: If A € Def(U), then A is 3y(U U{U}). Hence A € Rud(U). Con-
versely, if A € Rud(U), then A is ¥,(U U {U}) by lemma 1.1.7. It follows
easily that A € Def(U). QED (Corollary 2.2.14)

[Note To see that A € Def(U), consider the €-language augmented by a
new constant U which is interpreted by U. We assign to every g formula
¢ in this language a first order formula ¢’ not containing U such that for all
T1,...,Ty € U:

UUu{U} Eela] < U = ¢'[7].

(Here z; is taken to interpret v; where vq,...,v, is an arbitrarily chosen
sequence of distinct variables, including all variables which occur free in ¢.)
We define ¢’ by induction on . For primitive formulae we set first:

(yGw)’:vew,(yGU)’:v:v,
Uev)=v#v,(UeclU)=\Vvv#o.

For sentential combinations we do the obvious thing:
(eA¥) = (&' N, (me) = ¢,
etc. Quantifiers are treated as follows:

(AvEwp) =Avewy
(AveUp) = Avy']

Given finitely many rud functions si,...,s, we say that they constitute a
basis for the rud function iff every rud function is obtainable by successive
application of the schemata:

o f(z1,...,zn)=2; (j=1,...,n)

o (%) =s5i(g1(Z),...,gm(ZT)) (i=1...,p)

Note that if sq,...,s, is a basis, then rud(U) is simply the closure of U
under the finitely many functions s1,...,s,. We shall now prove the Basis
Theorem, which says that the rud functions possess a finite basis. We first
define:

Definition 2.2.7. (z,y) =: {{z},{z,y}}; (z) = =,
(x1,...,2n) = (21, (22,...,2p)) for n > 2.
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(Note: Our "official" notation for n—tuples is (z1,...,z,). However, we
have refrained from specifying its definition. Thus we do not know whether

(Z) = (2).)
We also set:
Definition 2.2.8.

r@y={(z,w)|z€xAw ey}
dom™(z) = {z|Vy(y, 2) € =}
v*z =A{yl(y, 2) € x}

Theorem 2.2.15. The following functions form a basis for the rud function:

Fo(a:,y) - {Q?,y}

Fl(xa y) =7 \ Yy

By(z,y)=z®y

Fs(z,y) = {(u,z,v)|z € A (u,v) € y}
Fy(z,y) = {(u,v,2)|z € x A (u,v) € y}
Fs(z,y) = U=

Fg(z,y) = dom™(x)

Fr(z,y) ={(z,w)|z,w € x A z € w}
Fy(z,y) ={z"z|z € y}

Proof: The proof stretches over several subclaims. Call a function f good
iff it is obtainable from Fp, ..., Fg by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We first note:

Claim 1 The good functions are closed under composition —i.e.if g, hy, ..., hy

—

are good, then so is f(Z) = g(h(Z)).

Proof: Set G = the set of good function g(yi,...,¥yy) such that whenever
hi(Z) is good for i = 1,...,7, then sois f(Z) = g(h(Z)). By a straightforward
induction on the defining schemata it is easily shown that all good functions
are in G. QED (Claim 1)

Claim 2 The following functions are good:

{z.yhe\y,z@y,zUy =z, y},
:cﬁy::v\(x\y),{:vl,...,agn}:{:Bl}U...U{xn},

——
C’n(u):uUUuU...UU...Uu,(xl,...,;vn)

(since (x1,...,xy,) is obtained by iteration of Fy.) By an €-formula we
mean a first order formula containing only € as a non logical predicate. If
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¢ = p(v1,...,v,) is any €-formula in which at most the distinct variables
(v1,...,vy,) occur free, set:

to(u) = {(21, ..., 20)|7 € uA (u,€) E o[d]}.

(Note We follow the usual convention of suppressing the list of variables.
We should, of course, write: ty ;. v, (1).)

(Note Recall our convention that # € u means that z; € ufori=1,...,n.)
Then ¢, is rud. We claim:

Claim 3 ¢, is good for every €—formula ¢.

Proof:

(1) It holds for p =v; €v; (1 <i < j<n)
Proof: For i = 2,3 set:
Fio(uvw) = w, szerl(u’w) = -Fl(uv Fzm(u’w))

then F™ is good for all m. For m > 1 we have:

F'(u,w) ={(x1,...,2m, 2)|T €unz € w}
F(u,w) = {(y, 21, .., @m, 2)|T € u A (y,2) € w}

We also set

u™={(z1,...,2)|T € u}
= F3" "} (u,u)

If j = n, then

to(u)={(z1,....2)|[T € u A w; € z;}
= Fy Nu, F3 ™" (u, Fr(u,u))).

Now let n > j. Noting that:
Fy(u™ w) = {(y, 2,21, ..., xm)|T € u A (y,2) € w},
we have:
o) = By (u, B, Fa(u ™), Fy(u,u)))).
QED (1)

(2) Tt holds for ¢ = v; € v;.
Proof: t,(w) =0 =w\ w.
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(3) If it holds for ¢ = p(v1,...,vy,), then for —gp.

Proof:
tog(w) = (W™ \ tp(w))
QED (3)
(4) If it holds for ¢, 1, then for ¢ A, ¢ V1. (Hence for ¢ — ¥, ¢ <> ¢
by (3).)
Proof:
tovy(w) = to(w) Uty (w) = U{te(w), ty(w)}
tong(w) = to(w) Niy(w), where z Ay = (z\ (z\y))
QED (4)
(5) If it holds for ¢ = ¢(u,v1,...,vy), then for Aup, \V/, ¢.
Proof:
tv ugo(w) = Fﬁ(t@<w)v t@(w)) hence
t/\ugo(w) = tﬁ\/uﬁw(w) by (3)
QED (5)
(6) It holds for ¢ = v; = v; (i,j < n).
Proof: Let ¢(v1,...,v,) = A 2(z € v; ¢ 2 € v;). Then for (7) € UM
we have:

z) 6t¢(uUUu) T =z,

since z;, z; C (vUJu). Hence

to(u) = u™ N ty(uU Uu)

QED (6)
(7) It holds for ¢ =v; € v; (i < j)
Proof:
vj € v; <—>\/u(u:vj/\u€vi).
We apply (6), (5) and (4). QED (7)

But then if p(v1,...,v,) = Qui,...QuyY (4,
normal form, we apply (1), (2), (6), (7) and (3
But then ¢, is good by iterated applications of (5

¥) is any formula in prenex
), (4) to see that ¢ is good.
(5)- QED (Claim 3)

In our application we shall use the function ¢, only for ¥ formulae ¢. We
shall make strong use of the following well known fact, which can be proven
by induction on n.
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Fact Let ¢ = ¢(v1,...,vn) be a 3¢ formula in which at most n quantifiers
occur. Let u be any set and let z1,..., 2, € u. Then V |= ¢[7] <> Cp(u) E

p[].
Definition 2.2.9. Let f: V"™ — V be rud. f is verified iff there is a good
f*:V — V such that f"U™ C f*(U) for all sets u. We then say that f*

verifies f.

Claim 4 Every verified function is good.

Proof: Let f be verified by f*. Let ¢ be the ¥ formula: y = f(x1,...,2,).
For sufficient m we know that for any set u we have:

y=[f(Z) < (y, %) € tp(Crm(uU f*(u)))
for y, ¥ € uU f*(u).

Define a good function F' by:
F(u) = (f*(u) ®u™) N to(Cru(uU f*(u))).

Then F(u) is the set of (f(Z),Z) such that & € w. In particular, if v =
{z1,...,2,}, then:

R(F({F)){(@®)) = (@)
and £(7) = U F(P{#)), {(@)}). QED (Claim 4)

Thus it remains only to prove:
Claim 5 Every rud function is verified.

Proof: We proceed by induction on the defining schemata of f.
Case 1 f(¥) =u;
Take f*(u) =u=u\ (u\u).

Case 2 f(Z) =x; \ z;
Let ¢ be the formula z € z \ y. Then for z,x,y € v we have

zex\y < vEpz,yl
< (z,2,y) € tyo(v).
But z,y € u — z \ y C [Ju. Hence for all z,y,u and all z we have:
zex\y <+ (z,2,y) Etw(uUUu).
Hence:
f"u™ C {z \ ylr,y € u} = Fy(t,(uU Uu),u(z)).

QED (Case 2)
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Case 3 f(Z) = {zs,z;}
Then f"u" = {{z,y}|z,y € u} = Ju®. QED (Case 3)
Case 4 f(7) = g(h(%))
Let h} verify h; and g* verify g. Then f*(u) = ¢*(Uh}(u)) verifies f.
QED (Case 4)

Case 5 f(y, %) = Ug(z,&). Let g* verify g. Let ¢ = ¢(u,y,Z) be the Xy
zZEy
formula: \/z € y w € ¢g(z,Z). For sufficient m we have:

\/z ceywe g(z,7) < (w,y,%) € t,(Cr(uU UQ*(U)))

for all w,y,Z € uUJg*(u).
Set F(u) = to(Cp(uUJg*(u))). Then g(2,%) C Jg*(u) whenever
Yy, T € u and z € y. Hence

F(u)*(y.7) = | Jo(z, %)

zZ€yY

for y, & € U. Hence
f//unJrl C Fg(F(u),u("H))

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let Ay,..., A, C V. Then Fy,..., Fy together with the
functions a;(x) = x N A;(i = 1,...,n) form a basis for the functions which
are rudimentary in Aq,..., A,.

Let M = (|]M|, €, A1,...,An). 'Fpr' denotes the satisfaction relation for M
and ’)z%f’ denotes its restriction to ¥, formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. ):%/? is uniformly 31 (M) over transitive rud closed M =
(|M], €, A1,..., Ap).

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = (M|, €, A).
By a wvariable evaluation we mean a function e which maps a finite set of
variables of the M-language into |M|. Let E be the set of such evaluations.
If e € E, we can extend it to an evaluation e* of all variables by setting:

« | e(v)if v e dom(e)
‘ (U)_{ () if not
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= le] then means that ¢ becomes true in M if each free variable v in ¢
is interpreted by e*(v).

We assume, of course, that the first order language of M has been "arithme-
tized" in a reasonable way — i.e. the syntactic objects such as formulae and
variables have been identified with elements of H,, in such a way that the
basic syntactic relations and operations become recursive. (Without this the
assertion we are proving would not make sense.) In particular the set Vbl of
variables, the set F'ml of formulae, and the set F'mly of Yp—formulae are all
recursive (i.e. Aj(H,)). We first note that every ¥o(M) relation is rud, or
equivalently:

(1) Let ¢ be Xg. Let vy,...,v, be a sequence of distinct variables contain-
ing all variables occuring free in . There is a function f uniformly
rud in A such that

Eum ple] <& fe*(v1),...e"(v)) =1

foralle € E.
Proof: By induction on ¢. We leave the details to the reader.
QED (1)

The notion A—good is defined like "good" except that we now add the
function Fy(x,y) = x N A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A-good. We now define in H, an
auxiliary term language whose terms represent the A-good function.
We first set: Fj(x,y) =: (i, (x,y)) for i =0,...,9: & = (10,z). The set
Tm of Terms is then the smallest set such that

e ¥ is a term whenever v € Vbl
e If t,' are terms, then so is F(¢, ') for i =0,...,9.

Applying the methods of Chapter 1 to the admissible set H,, it follows
easily that the set T'm is recursive (i.e. A1(Hy)). Set

C(t) = The smallest set C such that the term ¢ € C' and C' is closed
under subterms (i.e. Fi(s,s') € C — 5,8 € C).

Then C(t) € H, for t € T'm, and the function C(t) is recursive (hence
Aq(H,)). Since Vbl is recursive, the function
Vbl(t) ~: {v € Vbl|o € C(t)} is recursive.

We note that:

(2) Every recursive relation on H,, is uniformly ¥, (M).
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Proof: It suffices to note that: H,, is uniformly (M), since

x € H, H\/f\/u\/ngo(f,u,n,:c)

where ¢ is the Xg formula: f is a function A w is transitive
A EWANfin<uNx € u. QED (2)

Given e € E we recursively define an evaluation (e(t)|t € T'm) by:

e(v) = e*(v) for v € Vbl

e(Fi(t, 5)) = Fi(e(t), e(s).
Then:
(3) {{y,e,t)leec EANt € Tm Ay ==e(t)} is uniformly 3, (M).
Proof: Let e € E, t € Tm. Then y = €(t) can be expressed in M by:
\ g\ u\/ o(u = C(t) A v = VBIE) A gy, 1,0, 3, )

where ¢ is the Yy formula:

(g is a function Adom(g) =uAAz€cvzeu

ANz € v((z € dom(e) A g(2) = e(z))V
V(z ¢ dom(e) A g(&) =0))

9 .
AN Nt s, i €u(t=Fi(s,s') =

B — g(t) = Fi(g(s), y(s")

QED (3)

(4) Let f(x1,...,zy,) be A—good. Let vq,...,v), be any sequence of distinct
variables. There is ¢ € T'm such that

fle*(v1),...,e"(vyn)) = €(t)

for all e € .
Proof: By induction on the defining schemata of f. If f(Z) =
we take t = v;. If e*(¥)) = €(s;) for e € E(i = 0,1), and f(:E') =
Fi(go(%), g1(X)), we set t = F;(sg,s1). Then
e(t) = Fi(e(s0),e(s1)) = Fi(go(), 91(7)) = f ().
QED (4)

But then:
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(5) Let ¢ bea X formula. Thereist € T'm such that M = ple] <> €(t) =1
foralle € .

Proof: Let vy,...,v, be a sequence of distinct variables containing all
variables which occur free in . Then

M | ple] <> M | ple*(v1), ..., e (vn)]
for all e € E. Set

DIO= it uar

Then f is rudimentary, hence A—good. Let t € T'm such that

(xx) f(e"(v1),...,e"(vy)) = €(t).
Then: M |= ¢le] <> e(t) = 1. QED (6)

(5) is, however, much more than an existence statement, since our
proofs are effective: Clearly we can effectively assign to each ¥ formula
¢ a sequence v(p) = (v1,...,v,) of distinct variables containing all
variables which occur free in ¢. But the proof that the f defined by
(%) is rud in fact implicity defines a rud definition D, such that D,
defines such an f = fp, over any rud closed M = (M, €, A). The
proof that f is A—good is by induction on the defining schemata and
implicitly defines a term ¢ = T, which satisfies (**) over any rud closed
M. Thus our proofs implicitly describe an algorithm for the function
¢ — T,. Hence this function is recursive, hence uniformly »(M).
But then ¥ satisfaction can be defined over M by:

M = ple] < e(T,) = 1.
QED (Lemma 2.2.17)

Corollary 2.2.18. Let n > 1. }:ﬁ" is uniformly X, (M) for transitive rud
closed structures M = (|M|, €, A1,..., Ap).

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = (U, €) reads:

Lemma 2.2.19. Let U = (U, €) be transitive and rud closed. Let X <y, U.
Then there is an isomorphism 7 : U +— X, where U is transitive and rud
closed. Moreover, w(f(Z)) = f(n(Z)) for all rud functions f.
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Proof: X satisfies the extensionality axiom. Hence by Moztowski’s isomor-
phism theorem there is 7 : U +— X, where U is transitive. Now let f be
rud and z1,...,7, € U. Then there is ¢’ € X such that ¢/ = f(7(%)), since
X <5, U. Let m(y) = /. Then y = f(Z), since the condition 'y = f(Z)’ is
Yo and 7 is Xj—preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = (|M|, €, Ay,..., Ay) is much
weaker, however. We state it for the case n = 1.

Lemma 2.2.20. Let M = (|M|, €, A) be transitive and rud closed. Let
X <s, M. There is an isomorphism 7 : M <— X, where M = (|M|, €, A)
is transitive and rud closed. Moreover:

(a) n(ANz) = ANnn(z)

(b) Let f be rud in A. Let f be characterized by: f(Z) = fo(Z, AN fi1(Z)),
where fo, fi are rud. Set: f(%) =: fo(Z, AN f1(F)). Then:

m(f(@)) = f(n(Z)).

The proof is left to the reader.

2.3 The J, hierarchy

We are now ready to introduce the alternative to Godel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.

J, = Rud(0)

Jg+w = Rud(Jp) for B € Lm

Jy= U J, for XA a limit point of Lm
F<A

It can be shown that L = |JJ, and, indeed, that L, = J, for a great many
(0%
a (fr. ins. pr closed «). Note that J, = L, = H,,.

By §2 Corollary 2.2.14 we have:
P(Jo) N Jotw = Def(Jy),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J-hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between J, and (J,, €).
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Lemma 2.3.1. rn(J,) = OnnJ, = a.

Proof: By induction on a € Lm. For a = w it is trivial. Now let a = 5+ w,
where § € Lm. Then f = OnNJg € Def(Jg) C J,. Hence f+n € J, for
n < w by rud closure. But r(J,) < 84 w = « since J, is the rud closure
of Jo U{Jn}. Hence OnNJ, = a =rn(Jy).

If a is a limit point of Lm the conclusion is trivial. ~ QED (Lemma 2.3.1)
To make our notation simpler, define

Definition 2.3.2. Lm* = the limit points of Lm.

It is sometimes useful to break the passage from J, to J,t, into w many
steps. Any way of doing this will be rather arbitrary, but we can at least do

it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s : V. — V such that for all U:

(a) U C s(U)
(b) rud(U) = U s"(U)

n<w

(c) If U is transitive, so is s(U).

Proof: Define rud functions G;(i = 0,1, 2, 3) by:

Go(z,y,2) = (z,y)
Gl(SU Y,z ) ('T Y,z )
GQ('T Y,z >_{$ (yv )}
Gs(@,y,2) = 2"y

Set:
9 3
s(U)=Uu|JF'U?ulJGYu?.
=0 =0

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a € s(U). We claim: a C s(U). There are 14 cases: a € U, a = F;(z,y)
for an i = 0,...,8, where z,y € U, and a = G;(z,y,2) where z,y,z € U
and i = 0,...,3. Each of the cases is quite straightforward. We give some
example cases:
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a=F(r,y) =z ®y. If z € a, then z = (2, y') where 2’ € z, y € y.
But then /.y’ € U by transitivity and z = Go(z', ¢/, 2') € s(U).

a= Fi(xz,y) ={(w,z,v)|z € x A (u,v) € y}. If ' = (w, z,v) € a, then
w, z,v € U by transitivity and o' = G1(w, z,v) € s(U).

a = Fg(x,y). If d’ € a, then ' = *z where z € y. Hence z € U by
transitivity and o’ = G3(z, z, 2) € s(U).

a= Go(z,y,2) = {{z},{z,y}}. Then a C FJU? C s(U).

a=Gi(x,y,2) = (z,y,2) = {{z},{z, (y,2)}}. Then {zx} = Fy(z,x) €
s(U) and {z, (y,2)} = Ga(x,y, z) € s(U). QED (Lemma 2.3.2)

If we then set:
Definition 2.3.3. S(U) = s(UU{U}) we get:

Corollary 2.3.3. S is a rud function such that

(a) UUUY C S(U)
() U 5"(U) = Rud(V)

n<w

(c) If U is transitive, so is S(U).

We can then define:

Definition 2.3.4.

So=10

SV+1 = S(Su)

Sy = U S, for limit A.
<A

Obviously then: J, = S, for v € Lm. (It would be tempting to simply
define J, = S, for all v € On. We avoid this, however, since it could lead to
confusion: At successors v the models S, do not have very nice properties.
Hence we retain the convention that whenever we write J, we mean « to be
a limit ordinal.)

Each J, has 31 knowledge of its own genesis:

Lemma 2.3.4. (S,|v < «) is uniformly ¥1(Jy).

Proof: y =5, <\ f(e(f) ANy = f(v)), where p(f) is the ¥ formula:
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f is a function Adom(f) € OnAf(0) =0

ANE € dom(f)(§+1 € dom(f) = f(€+1) = S(f(£)))
ANAX € dom(f|(Nis alimit — f(N) = f"N).

Thus it suffices to show that the existence quantifier can be restricted to J,
—i.e.

Claim (S,|v < 1) € J, for 7 < a.

Case 1 o = w is trivial.

Case 2 a=f+w, f € Lm.

Then (S,|v < ) € Def(Jg) C J,. Hence Sg = |J S, € Jo. By rud
v<p
closure it follows that Sgi, € J, for n C w. Hence S [v € J, for

v <o QED (Case 2)

Case 3 a € Lm*".
This case is trivial since if v < 8 € aNLm. Then S[v € Jg C J,.
QED (Lemma 2.3.4)

We now use our methods to show that each J, has a uniformly 3;(J,) well
ordering. We first prove:
Lemma 2.3.5. There is a rud function w : V. — V such that whenever r
is a well ordering of w, then w(u,r) is a well ordering of s(u) which end
extends r.
Proof: Let 73 be the rlexicographic ordering of u?:
(x,y)ro(z,w) <> (zrz V (x = z A yrw)).
Let r3 be the r—lexicographic ordering of u3. Set:
Uy = U, Ui = Fz-//u2 fori=0,...,8, ui0+; = Gé’u?’ fori=0,...,3.

Define a well ordering w; of u; as follows: wg =1r, For i =0,...,9 set

rwiry < Va,b € u?(z = Fi(a) Ny = Fi(b)A

Aargb A N\ d' € u?(a'raa — x # Fi(a'))A

ANY € u?(broeb — y # Fi(1)))

For i = 0,...,3 let wig4+; have the same definitions with G; in place of F;
and 3,73 in place of u2, 7.
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We then set:

w = w(u) = {{z,y) € s(u)?| ‘?0((‘1’11)2‘3/ Ny U )V

V(@ € Upeitn Ay & Uun))}

n<i

(where |J un =10). QED (Lemma 2.3.5)
h<0

If r is a well ordering of u, then
roe = {{z,y)l{z,y) €V (z €uny =u)}
is a well ordering of u U {u} which end extends r. Hence if we set:

Definition 2.3.5. W(u,r) =: w(uU {u},ry).

We have:

Corollary 2.3.6. W is a rud function such that whenever r is a well order-
ing of u, then W (u,r) is a well ordering of S(u) which end extends r.

If we then set:

Definition 2.3.6.
<SGp= 0
<Spy1= W(Sl/7 <Su)

<s,= U <g, for limit A,
v<A

it follows that <g, is a well ordering of S, which end extends <g, for all
v <a.

Definition 2.3.7. <,=<;,=:<g, for a € Lm.

Then <, is a well ordering of J, for o € Lm.
By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. (<g,

v < a) is uniformly 31(Jq).

Proof:
y=<s,¢ \ F\ 9e(f) Ad(f,9) Ny = g(v))

where ¢ is as in the proof of Lemma 2.3.4 and ¢ is the ¥g formula:
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g is a function A dom(g) = dom(f)
ANg(0=0ANE € dom(g)| + 1 € dom(g) —

= 9(§+1) = W(f(£),9(£)))
AN X € dom(g) (N is alimit — g(A) = Jg"N).

Just as before, we show that the existence quantifiers can be restricted to
Jo- QED (Lemma 2.3.7)

But then:

Corollary 2.3.8. <,= | <g, is a well ordering of J, which is uniformly

v<o

¥1(Jo). Moreover <, end extends <, for v € Lm, v < a.

Corollary 2.3.9. u, is uniformly ¥1(Ja), where uq(x) ~ {z|z <o x}.

Proof:
Y = uq(x) < \/y(ac eSyNy={z€ 8|z <g, z})

QED (Corollary 2.3.9)

Note We shall often write <, for <,. We also write <, or <j or <y, for

U <a- Then <, well orders L and is an end extension of <.
aceOn

We obtain a particularly strong form of Gédel’s condensation lemma;

Lemma 2.3.10. Let X <x, Jo. Then there are &, m such that 7 : Jx X,

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive
and 7 :¢— X. Note that the condition

S(f,v) < f = (Selv < &)
is X, since:

S(f,v)+ (f is a function A
ANdom(f)=v A f(0)=01if 0 < vA
A€ € dom(f)(€ + 1 € dom(f) —
= f(€+1) = 5(f()))-

Let @ = OnNU and let 7 < @. Let m(¥) = v. Then f = (S¢|l{ <v) € X
since X <5, Jo. Let 7(f) = f. Then f = (S¢|¢ < 7), since S(f,7). But
then Jg = |J S¢ C U. But since 7 is ¥; preserving we know that

¢<a

zreU=\fiveUS(f,v)NzeUf"v)
—x € Jg.

QED (Lemma 2.3.10)
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Corollary 2.3.11. Let 7: Jg: Jg =%, Jo. Then:

(a) v <1 7(v)<mn(r) forv,7 <a.

(b) v <py< n(z) <pn(y) for v,y € Ja.
Hence:

(c) v<m(v) forv <a.

(d) x <p w(x) for x € Jg.
Proof: (a), (b) follow by the fact that < NJ2 and <y NJ? =<, are uni-
formly 31 (Js). Butif 7(v) < v, then v, 7(v), 72(v), . . . would form an infinite

decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)

2.3.1 The J/-hierarchy

Given classes Ay, ..., A, on can generalize the previous construction by form-
ing the constructible hierarchy ( A1s0dn la € T) relativized to Aq, ..., Ay.

We have this far dealt only with the case n = 0. We now develop the case
n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n = 1 is sufficient for most applications.)

Definition 2.3.8. Let A C V. (J2|a € Lm) is defined by:
JA = (J,[A], €, AN Ju[A])
Ju[A] = Ruda(0) = H,
Ja4wlA] = Ruda(Jg) for f € Lm
IA] = U J[A4] for A € Lm*

<A

Note AN J,[A] is treated as an unary predicate.

Thus every J4 is rud closed. We set
Definition 2.3.9.
LA =J[A] = U JalA];

LA =J4 = <L[?4€]?2,A N LIA]).

Note that J,[0] = J, for all @ € Lm.

Repeating the proof of Lemma 1.1.1 we get:
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Lemma 2.3.12. rn(JZ) = OnnJZ = a.

We wish to break JA

oiw into w smaller steps, as we did with J,4. To this
end we define:

Definition 2.3.10. S4(u) = S(u) U {A Nwu}.

Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. S4 is a function rud in A such that whenever u is transi-
tive, then:

(a) uU{u}U{ANu} C S(u)
(b) U (84)"(v) = Ruda(u)

n<w

(c¢) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a C S(u) and
ANu C u. (b) holds since S(u) D u is transitive and A Nu C u. But if
we set: U = w (S (u), then U is rud closed and (U, ANU) is amenable.

QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.
SA =0

584-1-1 - SA<S&4)
S = U 87 for limit A.

<A

We again have: J,[A] = S4 for a € Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. (S2|r < ) is uniformly %1(J2).
Proof: This is exactly as before except that in the formula ¢(f) we replace
S(f(v)) by SA(f(v)). But this is Xo(J2), since:
zeShu) & (zeSu)Ve=ANu),
hence:

y =S4u) & Nz €yzecS4u)
ANN\zeSu)zeynVzeyz=ANu.
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QED (Lemma 2.3.14)

We now show that J2 has a uniformly % (J2) well ordering, which we call
<é or <J&4.

Set:

Definition 2.3.12.

If u is transitive and r well orders u, then W4 (u,r) is a well ordering of
S4(u) which end extends 7.

We set:
Definition 2.3.13.
<{=10
<= WA <

<{= U < for limit <.
v<A

Then <2 is a well ordering of S which end extends <? for ¢ < v. In
particular <2 well orders J2 for a € T. We also write: <J£::<§. We set:
<pa=<ga=<i=: U <

v<oo

Just as before we get:

Lemma 2.3.15. (<2 |v < «) is uniformly %1(J2).

The proof is left to the reader. Just as before we get:

Lemma 2.3.16. <2 and f(u) = {z]z <2 u} are uniformly X1(J2).

Up until now almost everything we proved for the J, hierarchy could be
shown to hold for the JZ' hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X <y, J2

5 2. Then there are @, m, A such that
T Jg‘ s X.
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Proof: By Lemma 2.2.19 there is (U, A) such that 7 : (U, A) +— X and
(U, A) is rud closed. As before, the condition

SAfw) o F= (S <€)
si Xo in A. Now let 7 <@, m(v) = v. As before f = (S¢|{ <v) € X. Let
7n(f = f. Then f = <Sé4|§ < 7), since SA(f,7). Then J& C 5955? cU.
UcC Jg then follows as before. QED (Lemma 2.3.17)
A sometimes useful feature of the J2 hierarchy is:

Lemma 2.3.18. z € J2 — TC(z) € JA.

(Hence (TC(c)|z € JAY is Ty (J2) since u = TC(x) is defined by:
w s transitive ANz C u A \v((v is transitive Ax C v) = u C v)
Proof: By induction on «.

Case 1 a = w (trivial)

Case 2 a = 4w, € Lim.
Then every x € JZ has the form f(2) where z1,...,2, € Jg[A] U
{Js[A]} and f is rud in A. By Lemma 2.2.2 we have

UJrxc O TC(z) C JslA].
=1

Hence TC(x) = Cp(x) UTC (Ui, TC (%), where (T'C(z)|z € Ja[A]) is
J g‘fdeﬁnable, hence an element of J4.

Case 3 « € Lm* (trivial). QED (Lemma 2.3.18)
Corollary 2.3.19. If o € Lm*, then (T'C(x)|z € J2) is uniformly A1(J2).
Proof: We have seen that it is IT; (J2). But T7C [ J2 € J4 for all 8 € Lm Na.
Hence u = TC(x) is definable in JZ' by:

V f(f is a function A dom(f) is transitive Au = f(z)
ANz € dom(f)f(x)=axzUl fx)

QED (Corollary 2.3.19)
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2.4 J—models

We can add further unary predicates to the structure Jf . We call the struc-

ture:
M = (Ji4 By, ..., By)

a J-model if it is amenable in the sense that = N B; € J2 whenever z € J2
and ¢ = 1,...,m. The B; are again taken as unary predicates. The type of
M is (n,m). (Thus e.g. J, has type (0,0), J2 has type (1,0), and (J,, B)
has type (0,1).) By an abuse of notation we shall often fail to distinguish
between M and the associated structure:

M = (Jo|A,AY,... AL By,...,By)

where A; = A; N Jo[A] (i=1,...,n). )

We may for instance write 1 (M) for Xy (M) or 7 : N =5, M form: N =y,
M. (However, we cannot unambignously identify M with M, since e.g. for
M = (JA, B) we might have: M = J5"P))

In practice we shall usually deal with J models of type (1, 1), (1,0), or (0,0).
In any case, following the precedent in earlier section, when we prove general
theorem about J-models, we shall often display only the proof for type (1,1)
or (1,0), since the general case is then straightforward.

Definition 2.4.1. If M = <J§, B) is a J-model and 3 < a in Lm, we set:

M|B=:(J5,BiNJZ, ..., B. 0.

In this section we consider ¥ (M) definability over an arbitrary M = <Ja‘jY ,B).
If the context permits, we write simply ¥ instead of 31(M). We first list
some properties which follow by rud closure alone:

° )zf/[l is uniformly X1, by corollary 2.2.18 (Note 'Uniformly’ here means
that the 37 definition is the same for any two M having the same type.)

o If R(y,x1,...,2y) is a X relation, then so is \/ yR(y, x1, ..., x,) (since
VyV z2P(yz, %) < \Vu\y,z € uP(y, 2, 7) where R(y, T) <+ \/ 2P(y, 2, T)
and P is X).

By an n—ary 3, (M) function we mean a partial function on M™ which
is ¥1(M) as an n + l-ary relation.

e If R, R’ are n—ary X relations, then so are RN R/, RUR’. (Since e.g.

(VyP(y, ©) A Py, %)) <
Vuy' (P(y,Z) APy, 7))
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o If R(y1,...,ym) is an n—ary X; relation and f;(¥) is an n—ary ¥, func-
tion for ¢ = 1,...,m, then so is the n—ary relation

R(f(@) ¢ \/ y1, -, ym( /\yz () A R(7)).

o If g(y1,...,Yym) is an m-ary %1 function and fi(Z) is an n—ary ¥,
function for then h(Z g(f(&)) is an n-ary ¥ function. (Since

T) ~
z2=h(Z) <V, ,.( [\ fil@) Nz = g()).)
Since f(x1,...,xy) = x; is X1 function, we have:

o If R(xy,...,2,) is X1 and o : n — m, then

P(z1,...,2m) < R(25(1), - -+ 5 Zo(n))

18 X1.
o If f(z1,...,2zy) is a 31 function and o : n — m, then the function:
921, -5 2m) = (26015 » Zon)
in Y.

J-models have the further property that every binary 3; relation is uni-
formizable by a ¥; function. We define

Definition 2.4.2. A relation R(y,¥) is uniformized by the function F(Z)
iff the following hold:

e \/yR(y,¥) — F(Z) is defined

o If F(Z) is defined, then R(F(Z),Z)
We shall, in fact, prove that M has a uniformly ¥y definable Skolem function.
We define:

Definition 2.4.3. h(i,z) is a ¥1-Solem function for M iff h is a X;(M)
partial map from w x M to M and, whenever R(y,x) is a 31 (M) relation,
there is ¢ < w such that h; uniformizes R, where h;(z) ~ h(i, ).

Lemma 2.4.1. M has a ¥1-Skolem function which is uniformly 31 (M).
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Proof: )z%} is uniformly ¥;. Let (p;|i < w) be a recursive enumeration of
the ¥ formulae in which at most the two variables vy, v; occur free. Then
the relation:

T(i,y,z) i3 @ily,al
is uniformly ;. But then for any ¥ relation R there is ¢ < w such that
R(y,z) < T(i,y,x).
Since T is X1, it has the form:
\/ 2T (2,4, y, 1)
where T" is ¥g. Writing <, for <§, we define:

y = h(i,z) <\ z2({z,y) is the <ps —least
pair (2, y) such that T"(2',i,y/, x).

Recalling that the function f(z) = {z|z <pr x} is X1, we have:

y=h(i,x) <\ 2V u(T'(z,i,y, )\
AN = {w|w <, (z,y) I
AN Y) € uT"(2,4,y,2))

QED 2.4.1

We call the function h defined above the canonical 31 Skolem function for M
and denote it by hps. The existency of h implies that every X1 (M) relation
is uniformizable by a (M) function:

Corollary 2.4.2. Let R(y,x1,...,x,) be X1. R is uniformizable by a 31

function.

Proof: Let h; uniformize the binary relation

{.2)|\/ 21 2n(R(y, B) A 2 = (1,...,20))}.
Then f(Z) ~: h;((Z)) uniformizes R. QED

We say that a ¥;(M) function has a functionally absolute definition if it
has a 31 definition which defines a function over every J—model of the same

type.

Corollary 2.4.3. Every ¥1(M) function g has functionally absolute defini-
tion.
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Proof: Apply the construction in Corollary 2.4.2 to R(y,Z) + y = g(Z).
Then f(x) ~: h;((Z)) is functionally absolute since h; is.
QED (Corollary 2.4.2)

Lemma 2.4.4. Every x € M is X1(M) in parameters from OnNM.

Proof: We must show: 2 = f(&1,...,&,) where fis S (M). If M = (J4, B),
it obviously suffices to show it for the model M’ = J4. For the sake of
simplicity we display the proof for J2. (i.e. M has type (1,0)). We proceed
by induction on a € T'.

Case 1l a=w.
Then J4 = Rud(@) and 2 = f({0}) where f is rudimentary.

Case 2 a=f+4+w, f € Lm.
Then z = f(zl,...,zn,,]g‘) where 21,...,2, € Jg‘ and f is rud in A.
(This is meant to include the case: n = 0 and =z = f(Jg‘).) By the
induction hypothesis there are £ € f such that z; = gi(€) (i =1,...,n)
and g; is 31 (J, g‘) For each i pick a functionally absolute ¥; definition
for g; and let g} be ¥1(JZ) by the same definition. Then z; = g{(f_')
since the condition is ¥1. Hence z = f/(€, ) = f(§(&, Jﬁ?) where f’ is
. QED (Case 2)

Case 3 o € Lm™.
Then x € JBA for a 8 < o. Hence z = f(£) where f is El(JﬁA). Pick
a functionally absolute ¥ definition of f and let f’ be ¥1(J4) by the
same definition. Then z = (). QED (Lemma 2.4.4)

But being Y1 in parameters from OnNM is the same as being ¥ in a finite
subset of OnNM:

Lemma 2.4.5. Let & = f(£) where f is ©1(M). Let a C OnNM be finite
such that &1,...,&, € a. Then x = g(a) for a X1(M) function g.

Proof: Set:

the i—th element of a in order
of size if a C On is finite

and card(a) > i,

undefined if not.

k‘i (CL) =

Then k; is X1 (M) since:

y=ki(a) > VfVn<w(f:nean i, j<n(f(i) <) <i<))
Aa C On Ay = (7))
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Thus x = f(ki, (a), ..., ki, (a)) where § = k;,(a) for [ =1,...,n.
QED (Lemma 2.4.5)

We now show that for every J-model M there is a 3(M) partial map of
OnNM onto M. As a preliminary we prove:

Lemma 2.4.6. There is a partial £, (M) map of OnNM onto (OnNM)2.

Proof: Order the class of pairs On? by setting: (o, 8) <* (v, 6) iff

(max(a, ), a, B) is lexicographically less than (max(~,d),~,d). This order-
ing has the property that the collection of predecessors of any pair form a
set. Hence there is a function p : On — On? which enumerates the pairs in
order <*.

Claim 1 p[Onjy is X1(M).
Proof: If M = <J§, ﬁ), it suffices to prove it for Jf. To simplify
notation, we assume: M = J4 for an A C M (i.e. M is of type (1,0).)
We know:
y=p) < \/ flelf) Ny =fv))

where ¢ is the Yo formula:

f is a function A dom(f) € OnA

ANu€rng(f)V B, v € Culu)u = (B,7)A

ANv,7 €dom(f)(v <1 f(v) <* f(7))

ANw € mg(f) Ap, § < max(u)((p, &) <" u—(u,§) €rng(f)).
Thus it suffices to show that the existence quantifier can be restricted

to J2 — i.e. that p[¢ € J2 for € < a. This follows by induction on «
in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on o = Onyy, considering three cases:

Case 1 p(a) = (0,a).
Then p|a maps a onto

{ulu <. (0,a)} = a?

and we are done, since p[a is £1(JZ). (Note that w satisfies Case 1.)

Case 2 a =+ w,f € Lm and Case 1 fails.
There is a ¥1(JA) bijection of 8 onto « defined by:

f2n)=p+nforn<w
f@n+1)=nforn<w
flv)y=viorw<v<p
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Let g be a Z1(J§) partial map of 8 onto 82. Set ({y0,71))i = ~ for
i=0,1.
g9i(v) ~ (9(¥))i(i = 0,1).
Then f(v) ~ (fgo(v, fg1(v)) maps B onto o?. QED (Case 2)
Case 3 The above cases fail.
Then p(a) = (v, 7), where v, 7 < a. Let v € Lm such that max(v, 7) <

v < a. Let g be a partial ¥;(J4) map of v onto 2. Then g € M, p~!
is a partial map of 2 onto «; hence f = p~! o g is a partial map of

v onto a. Set: f({&,0)) ~ (f(&), f(9)) for £,6,7. Then fg is a partial
map of v onto a?. QED (Lemma 2.4.6)

We can now prove:
Lemma 2.4.7. There is a partial £,(M) map of Onpr onto M.
Proof: We again simplify things by taking M = J4. Let g be a partial map

of a onto o? which is ¥1(J4) in the parameters p € JZ'. Define "ordered
pairs" of ordinals < « by:

(v,7) =g~ ({v, 7).
We can then, for each n > 1, define "ordered n—tuples" by:
(v) =2v,(v1,...,vn) = (v1, (V2,...,vp))(n > 2).

We know by Lemma 2.4.4 that every y € JZ has the form: y = f(v1,...,vp)
where vy,...,v, < a and fis $1(J2). Define a function f* by:

y=f* (1)< Vvi,...,vpn(t = (v1,...,vp)A
/\y:f(ylv"'ayn»'

Then f*is $1(J2) in p and y € f*a. If we set: h*(i,z) =~ h(i, (z,p)),
then each binary relation which is ¥1(J4) in p is uniformized by one of the
functions hj(z) ~ h*(i,z). Hence y = h*(i,y) for some v < «a. Hence
J4 = h*"(w x a). But, setting:

y:il(,u)<—>\/i,v(u:(i,y)/\y:h*(z',y))

we see that h is $1(JA) in p and y € h”a. Hence JA = h'a, where h is
1 (J2) in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let x € M. There are f,y € J2 such that f maps v onto
x.
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Proof: We again prove it for M = J2. If a = w it is trivial since J2 = H,,,.
If « € Lm* then z € JE‘ for a B < « and there is f € J4 mapping 8 onto
Jg‘ by Lemma 2.4.7. There remains only the case a« = 4+ w where § is a
limit ordinal. By induction on n < w we prove:

Claim There is f € JZ mapping 3 onto SBA+n' If n = 0 this follows by
Lemma 2.4.7.

Now let n = m + 1.
Let f: 5 28 Sé4+m and define f' by f'(0) = S§+m,f’(n+ 1) = f(n) for
n <w, f'(&) = f(€) for £ > w. Then f' maps  onto U = S3,, U{S§, .}

and S5, = L8J F'U?u GG;’US u{AnsSE,.}
0=p =0
Set:
fori=0,...,8
98+i+1 = {<G’L‘f/(§)7f/(g)7f/(u))a <8 +i+ 17 <§7<7M>>‘§7<7M < 6}
fort=0,...,3

g13 = {{AN S5,,,(13,0))}

13

Then g = Jg; € JZ is a partial map of Jg‘ onto Sg‘Jrn and gh € J4 is a
i=0

partial map of 8 onto Sg. QED (Corollary 2.4.8)

Define the cardinal of xz in M by:

Definition 2.4.4. 7 = 7" =: the least ~ such that some f € M maps ~

onto x.

(Note this is a non standard definition of cardinal numbers. If M is e.g. pr
closed, we get that there is f € M bijecting T onto z.)

Definition 2.4.5. Let X C M. h(X) = hy(X) =: The set of all y € M
such that y = f(z1,...,zy), where x1, ..., 2, € X and f is a 31 (M) function

Since X1 (M) functions are closed under composition, it follows easily that
Y = h(X) is closed under (M) functions.

By Corollary 2.4.2 we then have:
Lemma 2.4.9. Let Y = h(X). Then M|Y <5, M where

MY = (YA NnY,....,A,nY,B1NY,...,B,NY).
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(Note We shall often ignore the distinction between Y and M|Y, writing
simply: Y <s, M.)

If fis a ¥1(M) function, there is i < w such that h(i, (Z)) ~ f(Z). Hence:
Corollary 2.4.10. h(X) = |J A" (w x X™).

n<w

There are many cases in which h(X) = h"(w x X), for instance:

Corollary 2.4.11. h({z}) = h"(w x {x}).

Gddels pair function on ordinals is defined by:
Definition 2.4.6. < v,6 ==: p~!(< v, =), where p is the function defined
in the proof of Lemma 2.4.6.

We can then define Gddel n—tuples by iterating the pair function:
Definition 2.4.7. <y >==:79; <71, ., === Y1, < Y2y -+, Yn = (0 >

2). -

Hence any X which is closed under Gdédel pairs is closed under the tuple—
function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. IfY C Onyy is closed under Gédel pairs, then:

(a) h(Y)=h"(wxY)

(b) h(Y U{p}) =1"(w x (Y x {p})) forpe M.
Proof: We display the proof of (b). Let y € h(Y U {p}). Then y =
f(vy- vy Yn,p), where y1,...,v, € Y and f is 31(M).
Hence y = f*((d,p)) where 6 =< ~v1,...,7v, > and

y=[f"(2) &V, m Voz = (K71, = P)A
Ny = f(7,p)).

Hence y = h(i, (0, p)) for some i. QED (Corollary 2.4.12)

Similarly we of course get:

Corollary 2.4.13. IfY C M is closed under ordered pairs, then:

(a) h(Y)=h'(wxY)
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(b) h(Y U{p}) = h"(w x (Y x {p}) Jor p € M.

By Lemma 2.4.5 we easily get:
Corollary 2.4.14. Let Y C Onps. Then h(Y) = b (w x Py (Y)).

In fact:

Corollary 2.4.15. Let A C P,(Onyy) be directed (i.e. a,b € A — \/c €
Aa,bCc). Let Y =JA. Then h(Y) =h"(w x A).

By the condensation lemma we get:

Lemma 2.4.16. Let 7 : M —x, M where M is a J-model and M is
transitive. Then M is a J-model.

Proof: M is amenable by ¥ preservation. But then it is a J-model by the
condensation lemma. QED (Lemma 2.4.16)
We can get a theorem in the other direction as well. We first define:

Definition 2.4.8. Let M, M be transitive structures. o : M — M cofinally
iff o is a structural embedding of M into M and M = |Jo" M.

Then:
Lemma 2.4.17. If 0 : M —x, M cofinally. Then o is 1 preserving.

Proof: Let R(y, %) be Xo(M) and let R(y, Z) be Xq(M) by the same defini-

tion. We claim: B
\/ yR(y,0(%)) = \/ yR(y,?)

for x1,...,2, € M. To see this, let R(y,o(Z)). Then y € o(u) for a u € M.
Hence \/y € o(u)R(y,o(Z)), which is a Xy statement about o(u),o(Z).
Hence \/y € uR(y, 7). QED (Lemma 2.4.17)

Lemma 2.4.18. Let 0 : M —x, M cofinally, where M is a J-model. Then
M s a J-model.

Proof: Let e.g. M = (J2), M = (U, A, B).

(e}

Claim 1 U = JZ where a = Onyy.
Proof: y = A v is a Yg condition, so U(SZ[ v) =8410(v). But o
takes @ cofinally to o, so if € < o, & < o(v), then SA(SA lo(v))(€) €
Hence J2 ¢ U. Tosee U C J&, let x € U. Then z € o(u) Where

u € JA Hence u C S and = € U(SA) SA(V) c JA. QED (Claim 1)



2.5. THE ¥ PROJECTUM 85
Claim 2 M is amenable.

Let & € §2,. Then o(BNS;') = BNS4, and 2N B = (BNS{)Na €

U, since S is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M, M be J-models. Then o : M —x, M cofinally iff
o: M —s, M and o takes Ony; to Onyy cofinally.

Proof: (—) is obvious. We prove (+<). The proof of J(S,/Z) = S?(y) goes
through as before. Thus if x € M, we have z € Sgl for some . Let £ < o(v).

Then @ € 57, = o(S}). QED (Lemma 2.4.19)

2.5 The X; projectum

2.5.1 Acceptability

We begin by defining a class of J-models which we call acceptable. Fvery
Jo is acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to 3 at some later stage v of the construction, then
v is, in fact, collapsed to S at that stage:

Definition 2.5.1. Jg is acceptable iff for all 5 < v < o in Lm we have:

(a) faC Bandac JA \ JA then v < Bin JA .

(b) If z € Jg and v is a ¥; condition such that JVA;w E ¥[8, x] but
JA B ap[B, ), @eg U< Bin JA . )
A J-model (JA, B) is acceptable iff J2 is acceptable.

Note "Acceptability’ referred originally only to property (a). Property (b)
was discovered later and was called ¥, acceptability’.

In the following we shall always suppose M to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x € M has a cardinal T = 7
We call v a cardinal in M iff v =7 (i.e. no smaller ordinal is mappable onto
v in M).

Lemma 2.5.1. Let M = (J2, B) be acceptable. Let v > w be a cardinal in
M. Then:
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(a) v € Lm*
(b) JA <s, J2

«

(c) QSEJ,I;X*)MQP(SL‘) CJ:;‘,

Proof: We first prove (a). Suppose not. Then v = f+w, where 5 € Lm, § >
w. Then f € M maps 8 onto v where: f(2i) =1, f(2i+1)=8+1, f(§) =¢
for £ > w.

Contradiction! QED (a)

If (b) were false, there would be v such that v < v < a, and for some = € J,‘;‘
and some Y; formula ¢ we have:

Tt E V), I E ).

But then x € Jg‘ for some 8 < v in Lm. Hence 7 <7 < §5.
Contradiction! QED (b)

To prove (c) suppose not. Then z is not finite. Let 3 = T in J:;‘. Then
B > w,f € Lm by (a). Let f € ij map [ onto x. Let u C x such that
u ¢ {f Then v = f~u ¢ J,‘Y“. Let v > « such that v € J7', \ J7'. Then
v <UL B.

Contradiction! QED (Lemma 2.5.1)

Remark We have stated and proven this lemma for M of type (1, 1), since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(z) exists and T > w, then

P(z) =7 (where o is the least cardinal > «).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M, be as above. Let a € M,a C J,‘;‘. Then:

(a) (Jf,a) models the axiom of subsets and GCH.
(b) If v is a successor cardinal in M, then <J§‘, a) models ZFC™.

(¢) If v is a limit cardinal in M, then (Jf, a) models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (c). (c¢) follows from (a) and rud
closure of J,‘Y“. We prove (b). We know that Jf is rud closed and that the
axiom of choice holds in the strong form: Az \/ v\ f f maps v onto z. We
must prove the axiom of collection. Let R(x,y) be LU(J:;‘) and let u € J:;‘
such that Az € u\/ yR(z,y).
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Claim \/v < yAz €u\y € J}R(x,y). Suppose not.

Let v = 8% in M. For each v < « there is a partial map f € M of 3 onto v.
But then f € J:;1 since fCvx € Jf. Set f, — the <jga — least such f.
For x € w set:

h(z) = the least p such that \/y € JfR(y,:r).

Then sup h”’u = 7 by our assumption. Define a partial map k on u x 3 by:
k(x,€) = fr(z)(§). Then k is onto v. But k € M, since k is El(JWA). Clearly
uxfB=pFinM,soy<f<~vin M.

Contradiction! QED (Corollary 2.5.2)

Corollary 2.5.3. Let M,~ be as above. Then
J:;‘ = Hy =: U{u € Mlu is transitive N <~y in M}.

Proof: Let u € M be transitive and u < v in M. It suffices to show that
uEJ;‘. Let v=u<~in M. Let f € M map v onto u. Set:

r={(£0) € V’|f(§) € f(O)}.

Then r € J' by Lemma 2.5.1 (c), since v? € JZ'. Let § = 7" = the
least cardinal > v in M. then Jg‘ models ZFC™ and r,v € Jg‘. But then

f € Jg‘ C Jf, since f is defined by recursion on r : f(x) = f"r"{z} for
x € v. Hence u = rng(f) € Jf. QED (Corollary 2.5.3)

Lemma 2.5.4. If 7 : M —x, M and M is acceptable, then so is M.

Proof: M is a J-model by §4. Let e.g. M = J', M = JEA. Then M has a
counterexample — i.e. there are 7 < @, 8 < 7,a such that card(¥) > 3 in
Jytw and either @ C B and @ € J&, )\ J& or else @ € J4', J24 | = ¢[a, B] and
J2 = —[a, B], where ¢ is X1 But then letting 7(8,7,a) = 3, v, a it follows
easily that 3,1, a is a counterexample in M.

Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If 7 : M —x, M cofinally and M is acceptable, then so is
M.

Proof: M is a J-model by §4. Let M = J2& M = J2.

Case 1 a=w.
Then M = M = J4 7 =id.
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Case 2 @ € Lm™.
Then "M is acceptable’ is a 111 (M) condition. But then o € Lm* and
M must satisfy the same II; condition.

Case 3 a=f +w,[ € Lm. B
Then @ = 4+ w,B € Lm and f = w(5). Then JE‘ = m(J-

acceptable, so there can be no counterexample (J,v,a) € J [’34.

N

) is

s

We show that there can be no counterexample of the form (§,5,a). Let
~ = card(f) in M. The statement card(f) <7 is ¥1(M). Hence card(f) <
v = w(¥) in M. Hence there is no counterexample (J, 3,a) with 6 > .
But since M is acceptable and 7 < /3 is a cardinal in M, the following II;
statements hold in M by Lemma 2.5.1

A6 <FNaCédacJd
NS <F Az € JAN yR(x,8) — \Vy € J2)

where R is ¥o(M).

But then the corresponding statements hold in M. Hence (4, 5, a) cannot be
a counterexample for § < 7. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.

Definition 2.5.2. Let M be acceptable. The ¥ —projectum of M (in sym-
bols gp) is the least o < Onyy, such that there is a X, (M) set a C o with
a¢ M.

Lemma 2.5.6. Let M = (J2, B), 0 = oar. Then

(a) If 0 € M, then o is cardinal in M.

b) If D is X, (M) and D C J, then (JA, D) is amenable.
1 0 0

(c) If u € Jz;l, there is no X, (M) partial map of u onto Jg‘.

(d) o € Lim*

Proof:

(a) Suppose not. Then there are f € M, v < p such that f maps v onto p.
Let a C ¢ be ¥;(M) such that a ¢ M. Set @ = f~'"a. Then a is ¥1(M)
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and a C . Hence a € M. But then a = f”a € M by rud closure.
Contradiction! QED (a)

(b) Suppose not. Let u € Jg‘ such that DNwu ¢ Jg‘. We first note:

Claim DNu ¢ M.
If o = « this is trivial, so let ¢ < . Then p is a cardinal by (a) and
by Lemma 2.5.1 we know that P(u) N M C Jé. QED (Claim)

By Corollary 2.5.2 there is f € Jg‘ mapping a ¥ < p onto u. Then d =
f~1Dnu)is X, (M)andd C v < 9. Henced € M. Hence DNu = f"d € M
by rud closure. QED (b)

(c) Suppose not. Let f ba a counterexample. Set a = {x € u|x € dom(f) A
x ¢ f(x)}. Then ais X;(M), a C uw € M. Hence a € JZ' by (b). Let
a= f(x). Then z € f(x) < x ¢ f(z).

Contradiction! QED (c)

(d) If not, then o = B+w where 8 € Lim. But then there is a 3 (M) partial
map of 5 onto p, violating (c). QED (Lemma 2.5.6)

Remark We have again stated and proven the theorem for the special case
M = (JZ, B), since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p € M which
witnesses that o = pps is the projectum — i.e. there is B C M which is
¥1(M) in p with BNH)" ¢ M. But by §3 any p € M has the form p = f(a)
where f is a ¥ (M) function and a is a finite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which ar finite sets of ordinals:

Definition 2.5.3. P = Py =: The set of p € [Ony/]<¥ which are good
parameters.

Lemma 2.5.7. Ifp€ P, thenp\ op € P.

Proof: It suffices to show that if ¥ = min(p) and v < g, then p’ = p\(v+1) €
P. Let B be $1(M) in p such that BN H) ¢ M. Let B(z) <> B'(z,p)
where B’ is 31 (M).

Set:
B*(z) ©: \/z\/l/(a: = (2,v) A B'(2,p U {v})).
Then B* N H, ¢ M, since otherwise

BNH,={z|{(z,v) e BN H,} € M.



90 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Contradiction! QED (Lemma 2.5.7)

For any p € [Ony]<¥ we define the standard code TP determined by p as:
Definition 2.5.4.

TP = Ty, = {{i,2)| Ear pile,pl} 0 Hyy, }
where (p;|i < w) is a fixed recursive enumeration of the ¥;-fomulae.

Lemma 2.5.8. pe P < TP ¢ M.
Proof:

(«-) TP =T N H) for a T which is X1(M) in p.
(—) Let B be ¥1(M) in p such that BN H)* ¢ M. Then for some i:
B(z) + (i,x) € TP
for x € H)'. Hence TP ¢ M. QED (Lemma 2.5.8)

A parameter p is very good if every element of M is i definable from

parameters in opr U {p}. R is the set of very good parameters lying in
[Onp,|<v.

Definition 2.5.5. R = Rj; =: the set of r € [Ony/]<“ such that M =
har(on U A{r}).
Note This is the same as saying M = hps(op UT), since
h(oUr) =h"(w x [pUr]¥).
But pUr =pU(r\ p). Hence:
Lemma 2.5.9. Ifr € R, then r\ o € R. We also note:
Lemma 2.5.10. R C P.

Proof: Let r € R. We must find B C M such that B is X;(M) in 7 and
BNH) ¢ M. Set:

B = {(i,z)| \/Z/ y = h(i,(z,r)) A (i,z) & y}.

If b= BNH) € M, then b = h(i,(z,r)) for some i. Then (i,z) € b ¢

(i,z) ¢ .
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.
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Lemma 2.5.11. There is a function h™ uniformly X1(M) in r such thal
whenever r € Ry, then M = h"" opy.

Proof: Let x € M. Since z € h(p U {r}) there is an f which is X;(M)
in r such that © = f(&1,...,&,). But g is closed under Godel pairs, so
r=f'(<&,...,& =), where

=1 o\, &l =<E- rr=f(E).

—

f'is X1(M) in r. Hence x = h(i, ((£),r)) for some i < w. Set
z=h"(6) < \[E\i<w@= (0,8 Az =h(i, (7).

Then = = h"((i, (£))). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called TP a code: If r € R, then T" gives com-
plete information about M. Thus the relation €'= {(z,7)|h"(v) € h"(7)}
is rud in 77, since v € 7 < (i,(v,7)) € T" for some i < w. Similarly,
it M = (JA,B), then A, = {v|W"(v) € A;} and B} = {v|W"(v) € B;} are
similary rud in 7 (as is, indeed, R’ whenever R is a relation which is X1 (M)
in p). Note, too, that if B C Hé\/[ is X(M), then B is rud in T". However, if
p € P'\ R, then TP does not completely code M.

Definition 2.5.6. Let p € [Ony]<“. Let M = (J4, B).

[0}

The reduct of M by p is defined to be

MP =: (J2 TP,

oM’

Thus MP is an acceptable model which — if p € Rj; — incorporates complete
information about M.

The downward extension of embeddings lemma says:
Lemma 2.5.12. Let 7 : N —x, M? where N is a J-model and p €
[OnM]<‘”.
(a) There are unique M,p such that M is acceptable, p € Ryz, N = M.
(b) There is a unique © D 7 such that 7@ : M —x, M and 7(p) = p.

(c) @ M —x, M.
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Proof: We first prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = (J2&, B), M? = (J, T),N = (J2,T). Set: o =supn'g, M =
MP|p = (Jg‘,f) where T'= T'N ng. Set X = rng(n), Y = hy(X U {p}).
Then 7 : N —x, M cofinally by §4.

(1)

(2)

(3)

YNM=X i
Proof: Let y € YNM. Since X is closed under ordered pairs, we have
y = f(z,p) where x € X and fis ¥1(M). Then

Yy = f(xvp) H):M cm[(y,@,p]
& (i, (y,z)) e T.

Since X <y, M, there is y € X such that (i, (y,z)) € T. Hence
y=f(z,0) € X. QED (1)
Now let @ : MY, where M is transitive. Clearly p € Y, so let
7(p) = p. Then:

7:M —x, M, 7| N =m, 7(p) =p.

But then:

M = hy(N U {p}).

Proof: Let y € M. Then 7(y) € Y = hy"(wz(Xa{p})), since X
is closed under ordered pairs. Hence 7(y) = has(i, (m(x),p)) for an
x € M. Hence y = hyz(i, (z,D). QED (3)

0 2 O57- _ —
Proof: It suffices to find a 31(M) set b such that b C N and b ¢ M.
Set

b={(i,z) cwx NIVy (y=hy(i(zp))
A x) & y)}
If b € M, then b = hyz(i, (z,p)) for some z € N. Hence

(i,z) € b4> (i,z) ¢ b.

Contradiction! QED (4)
T = {(i,z) € w x N| =57 @ili, {, p)]}
Proof: T C wx N, since T'C w x M. But for (i,z) € w x N we have:

(i,x) €T < (i,n(z)) €T
< M= pil((=

)]

< )7
(z,p)] by (2)

QED (5)
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(6) 2= o5
Proof: By (4) we need only prove p < o57. It suffices to show that if

b C N is ¥;(M), then <J§, b) is amenable. By (3) bis X1(M) in z,p

where z € N.
Hence L

b={z|M = ¢il(z ), P]} =

= {z|(i,z,2) € T}
Hence b is rud in T where N = <J§Z, T) is amenable. QED (6)
But then M = hyz(2 U {p}) by (3) and the fact that h +(g) = J2
Hence 9

By (6) we then conclude:

(8) N =",
This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M? = N where p € R,

We claim: M = M, p = p.
Since the Skolem function is uniformly 31 there is a j < w such that
hyr(is (2, D)) € hy (i, (y, p)
& M E gjl(x,y),p] & (4, (e,9) €T

Similarly: ) -

hy (i (z,p)) € A hﬁ( (r,p)) € A

hy(i,(z,p)) € B« hyz(i, (x,p)) € B
where M = (JA B), M = <J§ B). Then there is an isomorphism o :
M & M defined by o(h M(' (, ﬁ>) hy7 (3, (, )) for x € N. Clearly

o(p) = p. Hence o = id, M, M,p=p, since M, M are transitive.

We now prove (b). Let # D 7 such that # : M —x, M and #(p) = p.
If x € N and hg;(i, (x,p)) is defined, it follows that:

#(hgr (i, (2, p)) = hae (i, (m (), p)) = 7(ha (i, (x,P)))-

Hence 7 = 7. QED (Lemma 2.5.12)

If we make the further assumption that p € Rj; we get a stronger result:

Lemma 2.5.13. Let M,N,M,n,7,p,p be as above where p € Ry and 7 :
N —yx, MP for anl < w. Thenﬁ':ﬂﬁgl+1 M.
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Proof: For [ = 0 it is proven, so let [ > 1 and let it hold at [. Let R be
Yi41(M) if Lis even and I1j, 1 (M) if L is odd. Let R have the same definition

over M. It suffices to show:

R(Z) <> R(7(%)) for z1,...,2, € M.

But:
R(Z) > Quy1 € M ...Quy € MR'(y, %)

and
E(f) <~ Q1y1 S M .. Qlyl S MR/(:J, f)

where Q1 ... Qy is a string of alternating quantifiers, R’ is ¥1(M), and R is
Y¥1(M) by the same definition. Set

D =:{(i,x) € w X Jg‘]hM(i, (x,p)) is defined}
D =:{(i,z) cwx J?|hﬂ(i, (x,p)) is defined}.

Then D is ¥1(M) in p and D is ¥1(M) in p by the same definition. Then

D is rud in 7%, and D is rud in Tpﬁ by the same definition, since for some
j < w we have:

(i,) € D +> (j,xz) € TV,, x € D + (j, x) ETPM.

Define k on D

Set:

Then: as before, P is rud in T}, and Dis rud in TP by the same definition.
Now let x; = k(z;) for i = 1,...,n. Then 7(x;) = k(m(z;)). But since 7 is
Y —preserving, we have:

E(f) + Qi € D... Quuy; € D ﬁ(u‘)’, Z)
< Qw1 €D...Quy € DP('(B,TI'(Z))
© R(7(7))

QED (Lemma 2.5.13)
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2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
(otyIn < w). this is the classical method of doing fine structure theory,
which was used to analyse the constructible hierarchy, yielding such results
as the U principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of fine structure theory,
which is developed in §2.6.

It is easily seen that:

Lemma 2.5.14. Let p € Ry;. Let B be X(M). Then BN Jé is rud in
parameters over MP.

Proof: Let B be ¥ in r, where r = hs(4, (v,p)) and v < p. Then B is 3
in v, p. Let:

B(z) & M |= il(z,v), p]
where (p;]i < w) is our canonical enumeration of ¥; formulae. Then:

r€B e (i,(x,v) eT?

QED

It follows easily that:
Corollary 2.5.15. Let p,q € Ry Let D C Jg‘. Then D is X, (MP) iff it is
,(M9).
Assuming that Rj; # 0, there is then a uniquely defined second projectum
defined by:

Definition 2.5.7. Q%w ~: onpp for p € Ryy.

We can then define:

R%, =: The set of a € [Ony/]<* such that
a€ Ry and aNp € Ryja\e)-

If R3, # () we can define the second reduct:

M = (M®)*¢ for q € R2,.
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But then we can define the third projectum:
0% = o2 for a € R%%

Carrying this on, we get R, M™% for a € R}, and ¢"*1, as long as RY, # (.
We shall call M weakly n-sound if R, # 0.

The formal definitions are as follows:

Definition 2.5.8. Let M = (J2, B) be acceptable.
By induction on n we define:

e The set R}, of very good n—parameters.
o If R}, # (), we define the n + 1st projectum g’jjl.

e For all a € R}, the n-th reduct M™*.
We inductively verify:

* If D C Jfh and a,b € R", then D is X, (M™?) iff it is 3, (M™?).

Case 1 n=0. Then R? =: [Ony|<¥, ¢° = Onyy, M*® = M.

Case 2 n=m+1. If R™ = (), then R" = () and 0" is undefined. Now let
R™ 2 (). Since (*) holds at m, we can define

e 0" =: popyma whenever a € R™.
e R™ =: the set of a € [@]<¥ such that a € R™ and a N @™ € Rym.a.

o M™® =: (M™)ae™ for g € R".

(Note It follows inductively that a \ ¢" € R™ whenever a € R".)

We now verify (*). It suffices to prove the direction (—). We first note that
M™% has the form (sz}l, T), where T is the restriction of a X;(M™*) set T"

to JE‘,‘}L. But then 7" is X, (M™") by the induction hypothesis. Hence T is
rudimentary in parameters over M™? = (M™")"1¢" by Lemma 2.5.14.

Hence, if D C Jg, is £, (M™"), it is also X, (M™). QED
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This concludes the definition and the verification of (*). Note that R}, =
Ry, o' = ot,, and MY = M* for a € Ryy.

We say that M is weakly n—sound iff R, # (0. It is weakly sound iff it is
weakly n—sound for n < w. A stronger notion is that of full soundness:

Definition 2.5.9. M is n—sound (or fully n— sound) iff it is weakly n—sound
and for all i < n we have: If a € R’, then Pyjia = Ryjia.

Thus Ryr = Pu, Ry = Pype for a € Py ete. If M is n—sound we write
Pi, for RY,(i <n), since then: a € P < (a flo* € PPAang € R
for i < n).

Mi,aﬁgi

There is an alternative, but equivalent, definition of soundness in terms of
standard parameters. in order to formulate this we first define:

Definition 2.5.10. Let a,b € [On]|<%.

a<*bH:vM(a\/¢:b\uAu€b\a).

Lemma 2.5.16. <, is a well ordering of [On]<¥.
Proof: It suffices to show that ever non empty A C [On]<“ has a unique
<, —minimal element. Suppose not. We derive a contradiction by defining
an infinite descending chain of ordinals (u;|i < w) with the properties:

o {po,...,pun} <ibforallbe A

e There is b € A such that b\ p, = {po, ..., tn}-
() ¢ A, since otherwise () would be the unique minimal element, so set:

po = min{max(b)|b € A}. Given p, we know that {po,...,un} ¢ A, since
it would otherwise be the <,—minimal element. Set:

fnt1 = min{max(bN p,)|b € ANb\ pn, = {po, -, tin}}-
QED (Lemma 2.5.16)
Definition 2.5.11. The first standard parameter pys is defined by:
pym =: The <,—least element of Py,.
Lemma 2.5.17. Py = Py iff par € Ry

Proof: (—) is trivial. We prove (+). Suppose not. Then there is r € P\ R.
Hence p <. r, where p = pps. Hence in M the statement:
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(1) Vg <«rr=h(i(v.q)
holds for some i < w, v < py. Form M" and let M, 7,7 be sucht that
M =M" 7¢c Ryp, m: M —x, M, and 7(7) = r. The statement (1)
then holds of 7 in M.

Let g € M, 7 = hyz(i,q) where ¢ <, 7. Set ¢ = w(q). Then r = h(i,q) in
M, where q <. r. Hence q € Py;. But then ¢ € Rj; by the minimality of r.
This impossible however, since

q e 7'M = har(op Ur) # M.
Contradiction! QED (Lemma 2.5.17)

Definition 2.5.12. The n-th standard parameter ply, is defined by induction
on n as follows:

Case 1 n=0. p° = (.
Case 2 n=m+ 1. If p™" € R™
" =p" Upymem

"+l = () by <, minimality.)

(Note that we always have: p" Np
If p™ ¢ R™, then p" is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n—sound iff py; is defined and p'y, € RY;.

This is the definition of soundness usually found in the literature.

Note that the sequences of projecta o™ will stabilize at some n, since it is
monotonly non increasing. If it stabilizes at n, we have R"™"* = R"™ and
Pth = P for h < w.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a € R}, and let 7 : N —x, M™. Then there are M.a

and © O 7 such that M = M, @ € Ry, m: M =y, .., M and 7(a) = a.

We also have:

Lemma 2.5.20. Let a € RYy;. There is an M —definable partial map of o"
onto M which is M—definable in the parameter a.
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Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of o™ onto M which is definable in a \ ¢". Let
N = M™9N\e" b =an g™ Then N = hy(0" U {b}) = hn"(w x (0" x {b})).
Set:

g(=<i,v =)~ hy(i, (v,b)) for v < o".

Then N = ¢”o". Hence M = fg"o", where fg is M—-definable in a. QED

We have now developend the "classical" fine structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Fvery J, is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1-sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If J, is acceptable, then it is sound.

Proof: By induction on n we show that J, is n—sound. The case n =0
is trivial. Now let n = m + 1. Let p = pY;. Let ¢ = pyym» = The
<s—least g € Pym.p.

Claim q € Rym».

Suppose not. Let X = hyms(0" Uq). Let T : N «— X, where N is
transitive. Then 7™ : N —x, M™ and there are M,p, 7 O 7 such that

M

M p:Mmp,ﬁeR%, 7:M —x, M, and 7(p) = p. Then M = J5
for some @ < « by the condensation lemma for L.

Let A be 31(M™P) in ¢ such that AN oY, ¢ M™P Then AN}, ¢ M.

Let A be ¥1(N) in ¢ = 7~ '(q) by the same definition. Then AN " =
AN " is Jg definable in §. Hence @ = a, M = M, since otherwise
ANg" € M. But then 7 = id and N = M = M™. But by definition:
N = hpymp (0™ Uq). Hence g € Rpymp. QED

By induction on a we then prove:

(B) J, is acceptable.
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Proof: The case o = w is trivial. The case « € Lim* is also trivial.
There remains the case o = f + w, where [ is a limit ordinal. By the
induction hypothesis Jg is acceptable, hence sound.

We first verify (a) in the definition of acceptability. Since Jg is accept-
able, it suffices to show that if v < g and a € J, \ Jg with a C 7,
then:

Claim B < v in J,.

Suppose not. Since P(Jg) N Jo = Def(J3), we show that a is Jg—
definable in a parameter . We may assume w.l.o.g. that r € [§]<%.
We may also assume that a is 3,(Jg) in 7 for sufficiently large n.
There is then, no partial map f € Def(Jg) mapping v onto 3. Hence,
by Lemma 2.5.20 we have v < ¢" = g’}ﬂ for all n < w.

Pick n big enough that a is X,(Jg) in r. Set: p = p"™ Ur (where
p" = p). Thenp € R". Let M = Js, N = M"™. Let X =
hy(yUq) where ¢ = pN o™ Let 7 : N <~ X, where N is transitive.
Then 7 : N —yx, N and hence there are M, p, 7 O 7 such that
Mnf =N,pe€ Ry, m M i M, = (p) = p". Hence M = Jz
for B < B. Moreover, a is ¥,(M) in p. Hence 3 = j3, since otherwise
a € Def(Jz) C Jg. But then m = id, N = N = hn(yUq). Hence

v > on =0y’
Contradiction! QED (Claim)

This proves (a). We now prove (b) in the definition of "acceptable". Most
of the proof will be a straightforward imitation of the proof of (a). Assume
Jo |E Y[z, 7], but Jg f= [z, 7], where z € J,, v < 5 and 9 is 3q. As before

we claim:

Claim B3 < 7 in J,.

Suppose not. Then v < 8. Let ¢p = \/ yp where ¢ is ¥y. Let J, E
o(y,x,7v). Then y = f(z,x,7, Jg) where f isrud and z € Jz. But

Jo ): go[f(z,:c,% JB),SE,ﬂ]

reduces to:
Ja ): (p/[Z, T,7, Jﬁ]
where ¢’ is ¥. But then
JsU{Js} E ¢'[z,2,7, Jp).

As we have seen in §2.3, this reduces to:

Js E x[z,2,7]
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where x is a first order formula. Note that this reduction is uniform.
Hence if v < v < B, z € J, and J, = xlz,x,7], it follows that
Jy+w | ¥[x,7]. This means that J, = —x/[x,7] for v < v < 3, where
X = x(vo,v1,v,) and ¥ = Vvgx. We know that v < Qf}ﬁ for all n.
Choose n such that x’"is ¥,. Let M = Jg, N : M™P when p = py.
Let X = hy(y+1U{z}) and let T : N <— X, where N is transitive.

As before, there are M,p,m D 7 such that M 'p= N, 7 : @ —y, M,
and 7(p) = p. Let M = Jz. Then Jz E X/'(z,7). Hence 8 = 8 and
7 =id. Hence N = hy(y+ 1U{z}). Hence v > o" ™! = on.

Contradiction! QED (Lemma 2.5.21)

2.6 Y*—theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = (J2, B) which — at first sight — seems more natural. ¥, we
recall, consists of the relation on M which are Y definable in the predicats
of M. ¥ then consists of relations of the form \/ yR(y,Z) where R is Xo.

Call these levels Z((]O) and Ego). Our next level in the new hierarchy, call it
E((]l), consists of relations which are " in Ego) " — e Bo((M,A)) where

Aq,..., A, are ESO). Egl) then consists of relations of the form \/ yR(y, ¥)
where R is E((]l). 282) then consists of relations which are Y in Egl) ... etc.

By a ZZ(-”) relation we of course mean a relation of the form
R(Z) + R'(Z,p),

where p1,...,pm € M and R’ is El(»n) (m). It is clear that there is natural
(n) (n)

class of ¥, '—formulae such that R is a ¥,

—relation iff it is defined by a
Z(()n)fformula. Thus e.g. we can define the Eél) formula to be the smallest

set 2 of formulae such that

All primitive formulae are in X.

All Ego) formulae are in .

> is closed under the sentential operations V, —, <+, —.

If ¢ isin X, then so are Av € up, \/ v € up (where v # u).

By a Zgl) formula we then mean a formula of the form \/ vy, where ¢ is E((]l).
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How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful refinement of the Levy hierarchy:

If o%; = «, then Eén) C Apyp and Zgn) = Yn+1. If, however, a projectum
drops, it trivializes and becomes useless. Suppose e.g. that M = J, and
0 = 0}y < a. Then every M—definable relation becomes Zgl)(M). To see
this let R(Z) be defined by the formula ¢(7), which we may suppose to be

in prenex normal form:
@(0) = Qrui ... Qmum ' (U, 1),
where ¢’ is quantifier free (hence Xy). Then:
R(Z) <> Quy1 € M ... Qmym € MR (Z,7%)

where R’ is 3. By soundness we know that there is a X, (M) partial map f
of o onto M. But then:

—

R(Z) < Q1&¢ € dom(f)...Qm&m € dom(f)R'(Z, f(£)).

—

Since f is Xy, the relation R/(Z, f(£)) is ;. But dom(f) is ¥; and dom(f) C
o, hence by induction on m:

R(Z) ¢ Q1&1 € 0... Qumém € oR"(Z,8),

where R” is a sentential combination of ¥; relations. Hence R is ;él)(M)
and so is R.

The problem is that, in passing from Ego) to Eél) our variables continued to
range over the whole of M, despite the fact that M had grown "soft" with
respect to X, sets. Thus we were able to reduce unbounded quantification
over M to quantification bounded by o, which lies in the "soft" part of M. in
section 2.5 we acknowledged softness by reducing to the part H = H, é\/f which
remained "hard" wrt X; sets. We then formed a reduct MP containing just
the sets in H. If M is sound, we can choose p such that MP contains complete
information about M. In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want
to hold on to the original structure M. In passing to Z[()l), however, we want
to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1,
the old ones being of Type 0. Using u”,v"(h = 0,1) as metavariables for
variables of Type h, we can then reformulate the definition of Z(()l) formula,
replacing the last clause by:

e If © is in X, then so are Ao’ € ulyp, \/v' € ulyp where i = v, 1 and
vl £ ul.
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A Z‘,gl) formula is then a formula of the form \/vly, where ¢ is E(()l). We

cal AC M a Egl) set if it is definable in parameters by a Egl) formula. The
second projectum o is then the least o such that o N B ¢ M for some Egl)
set B. We then introduce type 2 variables v2, u?, ... ranging over \J§| (|J§‘\
being the set of elements of the structure Jf, where e.g. M = (J4 B).)
Proceeding in this way, we arrive at a many sorted language with variables
of type n for each n < w. The resulting hierarchy of Zgn) formulae (h =0,1)
offers a much finer analysis of M—definabilty than was possible with the Levy
hierarchy alone. This analysis is known as ¥* theory. In this section we shall
develop X* theory systematically and ab ovo.

Before beginning, however, we address a remark to the reader: Most people
react negatively on their first encounter with ¥* theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing 3*—
theory and making its first applications, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that X* theory facilitates the fine structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let M = <J“Y, B) be acceptable.

(e
The ¥* M -language L* = 1L}, has

e a binary predicate €
e unary predicates Ay, ... ,An, Bi,...,B,
e variables Ug(i,j <w)
Definition 2.6.2. By induction on n < w we define sets Eé”)(h =0,1) of

formulae

E((]n) = the smallest set of formulae such that

all primitive formulae are in 3.

M Us™ S for m < n.

> is closed under sentential operations A, V, —, <>, —.

If  isin ¥,5 < n, and v/ # u™, then Av/ € u"p, \/v/ € u"p are in
>
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We then set:
Zgn) =: The set of formulae \/ v"p, where ¢ € Egn).
We also generalize the last part of this definition by setting:

Definition 2.6.3. Let n < w, 1 < h < w. EEL") is the set of formulae

\ ot Avs ... Que,

where ¢ is Zén) (and @ is \/ if h is odd and A if h is even).

We now turn to the interpretation of the formualae in M.

Definition 2.6.4. Let Fml™ be the set of formulae in which only variables
of type < n occur.

By recursion on n we define:

e The n-th projectum o" = of,.
e The n-th variable domain H" = H,.

e The satisfaction relation =" for formulae in Fml".

=" is defined by interpreting variables of type i as ranging over H® for i < n.
We set: o° = a, H® = |M| = |JA|, when M = (JA, B).

Now let o™, H" be given (hence =" is given). Call aset D € H" a Zgn) set.

if it is definable from parameters by a Zgn) formula ¢:

Dz M E" ¢z, a1,...,ap),

where ¢ = @(v™,u™,... uim) is Egn). o™ is then the least p such that
there is a Zgn) set D C o with D ¢ M. We then set:

™ = |74,

This then defines "1,

It is obvious that |=! is contained in |=/ for i < j, so we can define the full

>* satisfaction relation for M by:

==

n<w
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Satisfaction is defined in the usual way. We employ v, u’, w’ etc. as metavari-
ables for variables of type ¢. We also employ z*,y*, 2* etc. as metavariables

for elements of H*. We call vil, ..., vl a good sequence for the formula ¢ iff
it is a sequence of distinct variables containing all the variables which occur
free in . If vi',...,vir is good we write:
ol vl ot i
to mean that ¢ becomes true if UZ” is interpreted by :1:2” (h=1,...,n). We
shall follow normal usage in suppressing the sequence v{',...,vi" writing
only: 4
Fum ‘P[xlllv c T
(However, it is often important for our understanding to retain the upper
indices i1,...,i,.) We often write ¢ = @(v)',...,v;)) to indicate that
these are the suppressed variables. ¢ (together with (v{,...,vi") defines a
relation: ‘ ‘
R(z(,...,¢x) <=M plal, ...

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but (i1,...,4,). An ordinary 1-sorted relation
is usually identified with its field. We shall identify a many sorted relation
with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair (|R|,r) such
that for some n:

(a) |R| C M

(b) r={(r1,...,rn) where r; < w

(¢) R(x1,...,xp) max; CHVifori=1,...,n.

|R| is called the field of R and r is called the arity of R.

In practice we adopt a rough and ready notation, writing R(xlf, @) to
indicate that R is a many sorted relation of arity (i1, ..., ).

(Note Let I = LLy; be the ordinary first order language of M (i.e. it has
only variables of type 0). Since H" € M or H" = M for all n < w, it follows
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that every L*—definable many sorted relation has a field which is L-definable
in parameters from M)

(Note If R is a relation of arity (i1,...,4,), then its complement is T\ R,
where: 4
I'={(z1,...,xp)|xp € H™ for h=1,...,n},

the arity remaining unchanged.)

Definition 2.6.6. R(z!',...,zim)isa Eé") (M) relation iff it is defined by a

Egn) formula. R is E%n)(M) in the parameters p1,...,p, ifft R(Z) <> R'(Z,p),
where R’ is Eén)(M). R is a Egn) (M) relation iff it is Z;Ln)(M) in some
parameters.

It is easily checked that:

Lemma 2.6.1.

o If R(y™, %) is Egn), sois \| y"R(y", )

o If R(Z), P(Z) are X\, then so are R(Z)V P(%), R(Z)A P().

Moreover, if R(z, ... ,x;" 1) is Zgn), so is any relation R'(y)’,...,y." ") ob-

tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type — i.e.

1 I — Jo Jo(m—
Ry, ...,y 7))+ R(yg(g))), . yg(;nflli)
where o : m — r such that j,q) =4 for [ <m.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = (JZ', B) be acceptable. Let o= ", H = H". Then

(a) If o € M, then ¢ is a cardinal in M. (Hence H = H)')
(b) If D is Zgn)(M) and D C H, then (H, D) is amenable.
(¢c) If u € H, there is no Z‘gn)(M) partial map of u onto H.

(d) o€ Lm* if n > 0.

Proof: By induction on n. The induction step is a virtual repetition of the
proof of Lemma 2.5.6. QED (Lemma 2.6.2)
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Definition 2.6.7. Let R(acill7 ...,xim) be a many sorted relation. By an
n-specialization of R we mean a relation R’(ml ..., xh) such that
o >y forl=1,...,m

o =g ifl<n

o If 21,..., 2, are such that z; € H’ for [ = 1,...,m, then:
R(Z) < R/(2).

Given a formula ¢ in which all bound quantifiers are of type < n, we can
easily devise a formula ¢’ which defines a specialization of the relation defined

by ¢:

Fact Let o = p(vl',.. ., };L") be a formula in which all bound variables are
of type < n. Let u{l, . 7 be a sequence of distinct variables such that
g1 > i and j; = 4 if z'l < n(l = 1,...,m). Suppose that ¢’ = ¢'(u) is

obtained by replacing each free occurence of vl’ by a free occurence of ul’ for
l=1,...,m. Then for all z1,...,z,, such that ; € H for i =1,...,m we

have:

Far o(0)[E] < ¢ (@) [2].
The proof is by induction on ¢. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(z%',... xim) be El("). Then every n—specialization of
R s Zl(n).

Proof: R’(acill, ..., im) be an n-spezialization. Let R be defined by p(vl!,... v
Suppose (ujll, .. U%ZL") is a sequence of distinct variables which are new —
i.e. none of them occur free or bound in . Let ¢’ be obtained by replacmg
every free occurence of Ull by u{l(l =1,...,m). Then ¢ (u1 s U de-
fines R’ by the above fact. QED (Lemma
2.6.3)

im
m

Corollary 2.6.4. Let R be E(ln) in the parameter p. Then every n—spezialization

of R is Egn) in p.

Lemma 2.6.5. Let R’(:):1 L. be Zgn). Then R is an n—specialization
of a El relation R(x',... xim) such that iy <n forl=1,...,m
Proof: Let R’ be defined by ¢ (u1 - ,v%&”), when ¢’ is Egn). Let vi", ok

be a sequence of distinct new variables, where i; = min(n,j;) for [ =

).



108 CHAPTER 2. BASIC FINE STRUCTURE THEORY

1,...,m. Replace each free occurence of u{l by vli‘ forl =1,...,m to get
o(uf,...,vim). Let R be defined by ¢. Then R’ is a specialization of R by
the above fact. QED (Lemma 2.6.5)
Corollary 2.6.6. Let R’(x{l,...,m%”) be Z(ln) in p. Then R’ is a spe-
cialization of a relation R(xill, oo, xim) which is Egn) mn p with i < n for
l=1,...,m.

Every ng) formula can appear as a "primitive" component of a E(()mH)

formula. We utilize this fact in proving:

Lemma 2.6.7. Letn = m+1. Let Qj(zzl, e ,zgfpj,azil, ..., xtP) be Egm)(j =
1,...,7).

Set: Qjz = {(Z)|Q;(Z},T)}
Set: Hf = <Hn, Ql,i"v cee 7Qr,f>~
Let ¢ = p(v1,...,74) be Xy in the language of Hz. Then

(@, @) Hz |= o[} is 2",
Proof: We first prove it for [ = 0, showing by induction on ¢ that the
conclusion holds for any sequence vy, ..., v; of variables which is good for .

We describe some typical cases of the induction.

Case 1 ¢ is primitive.
Lete.g. ¢ = Qj(vp,,. .. ’Uhpi)7 where (); is the predicate for Q;z. Then
(m)

Hgz [= @[2™] is equivalent to: Qj(z ;... ,xﬁp, , @), which is ¥, (hence
J
E(()”)). QED (Case 1)

Case 2 ¢ arises from a sentential operation.
Let e.g. ¢ = (¢o A ¢1). Then Hz = p[Z"] is equivalent to:

Hz = @o[2"] A Hz = ¢1[2"]
which, by the induction hypothesis is Zén). QED (Case 2)

Case 3 ¢ arises from a quantification.
Let e.g. ¢ = Aw € v;¥U. By bound relettering we can assume w.l.0.g.
that w is not among vy, ...,v,. We apply the induction hypothesis to
U(w,vy,...,vp). Then Hg = ¢[2"] is equivalent to:

Nz € 2} Hz = U[w, ")

which is E(()n) by the induction hypothesis. QED (Case 3)
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This proves the case I = 0. We then prove it for [ > 0 by induction on [,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note It is clear from the proof that the set {(Z", )| Hz = ¢[Z"]} is uniformly

El(n) — i.e. its defining formula x depends only on ¢ and the defining formula
U, for Q;(i = 1,...,p). In fact, the proof implicitly describes an algorithm
for the function ¢, ¥y,..., ¥, — x.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Let n =m+ 1. Let R(Z", xill, . ,xz,g) be Zgn) where iy <m

forl=1,...,g. Then there are EYL) relations Q;(Z1",Z)(i =1,...,p) and a
> formula ¢ such that

R(Z", T) < Hz [= [2"],

where Hg is defined as above.

(Note This is weaker, since we now require i; < m.)
Proof: We first prove it for [ = 0. By induction on x we prove:

Claim Let y be E[(]n). Let o™, v?, e ,vé" be good for x, where i1, ...,1; < m.
Let x (7", ¥) define the relation R(2™, ). Then the conclusion of Lemma 2.6.8
holds for this R (with [ = 0).

Case 1  is 2\™).

Let x(Z", %) define Q(z", ). Then R(Z",T) < Hy = Qu"[Z"].
QED (Case 1)

Case 2 y arises from a sentential operation.
Let e.g. x = (U A V). Appliyng the induction hypothesis we get
Qi(Z?,Z)(i =1,...,p) and ¢ such that

M W&, 2] H b= ola]

where Hy = (H", Q1z, - . ., Qpz). Similarly we get Q} (47, Z)(i = 1,...,¢)
and ¢’
M = Wi, ) o HY = 7).

Let Q; be the predicate for Q;z in the language of Hz. Let Q; be the
predicate for Q' in the language of H. Assume w.l.0.q. that Q; # Q;-
for all ¢, j. Putting the two languages together we get a language for

—
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Clearly:
M= (x AX)[E", 2] < Hy = (p A Q)]

QED (Case 2)

Case 3 y arises from the application of a bounded quantifier.
Lete.g. x = Aw" € v;?x’. By bound relettering we can assume w.l.o0.g.
that w™ is not among ¢™. Then w"d", v is a good sequence for x' and
by the induction hypothesis we have for x' = x/(w™, o™, ¥):

M = X[, 3", 2] < Hz = o[2", 7", 7).

But then:

< Hz = ANw € vjp["].

QED (Lemma 2.6.8)

Note Our proof again establishes uniformity. In fact, if x is the El(n)f

definition of R, the proof implicitely describes an algorithm for the function
xX—= e, V,..., ¥,

where ¥, is a Egm) definition of @;.

Remark Lemma 2.6.7 and 2.6.8 taken together give an inductive definition

of ”Zl(n) relation"” which avoids the many sorted language. It would, however,
be difficult to work directly from this definition.

By a function of arity (i1, ... ,i,) to H we mean a relation F(y/,z% ... ')
such that for all 2%, ...,z there is at most one such 7. If this y exists, we

)

denote it by F(z™,... 2'). Of particular interest are the Egi functions to

H.

Lemma 2.6.9. R(y", %) be a Zgn) relation. Then R has a Egn) uniformizing
function F(Z).

Proof: We can assume w.l.0.g that the arguments of R are all of type < n.
(Otherwise let R be a specialization of R/, where the arguments of R’ are of
type < n. Let F’ uniformize R’. Then the appropriate specialization F of
F’ uniformizes R.)
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Case 1 n=0.
Set:

F(%) ~: y where (z,y) is <js —least such that R'(z,y, T).

By section 2.3 we know that ups(x) is 31, where up (z) = {y|ly <um z}.
Thus for sufficient r we have:

y =F() < V2(R(z,y, ©)A
Aw € up({(z,y)) N2,y € Cr(w)
(w={,y) = ~R(<,y, 7)),
which is uniformly > (M).

Case 2 n>0. Let n=m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(y", 2", ), where the Z are of type < m. Then there

are Q;(2}', 2", Z)(i = 1,...,p) such that Q; is Egm) and
R(y", 7", %) < Hy = oly", "],
where ¢ is ¥ and

Hf = <Hn7 Qlf) ey Qn:i'>
If e.g. M = (J4, B), we can assume w.l.0.g. that Q1(z", Z) < A(z").
Then <pyz, ugz are uniformly 1 (Hz) and by the argument of Case 1
there is a 31 formula ¢’ such that F' uniformies R where
QED (2.6.9)

Note The proof shows that F'(Z) is uniformly Egn) — l.e. its Zgn) definition
depends only on the Zg") definition of R(y", Z), regardless of M.

Note It is clear from the proof that the Zgn) definition of F' is functionally
absolute — i.e. it defines a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Fvery Z(ln) function F(Z) to H™ has a functionally ab-
solute Egn) definition.

Note The Egn) functions are closed under permutation of arguments, inser-
tion of dummy arguments, and fusion of arguments of same type. Thus if

F(z, ... xin) is Z(ln), sois F'(yI',...,ylr) where
j im Jo Jo(n
F’(y{l,...,yﬁn):F(ya((ll)),...,ya(;)))
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and o : n — m such that j,q) =4 for [ <n.

If R(x{l, e 7935,”) is a relation and F;(Z) is a function to H7 fori =1,...,n,
we sometimes use the abbreviation:

R(F(2)) < \[ o', o (\ o] = Fi(2) AR(T)).
=1

Note that R(F(Z)) is then false if some Fj(Z) does not exist. Zgn) relations

are not, in general, closed under substitution of Egn) functions, but we do

get:

Lemma 2.6.11. Let R(m{l, e ,a:ép) be Egn) such that j; <n fori=1,...,p.
Let Fi(Z) be a Egji) map to H¥ for i = 1,...,p. Then R(F(Z)) is Zgn)
(uniformly in the Egn) definitions of R, F,...,F})

Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(f,y{l,...,y,{p) be E(ln) where j; < n for i =
1,...,p. Let Fi(%) be a Zgj"') map to H¥ fori=1,...,p. Then R(Z,F(Z))
is (uniformly) Zgn).

Proof: We can assume w.l.0.g. that each of & has type < n, since otherwise
R is a specialization of an R’ with this property. But then R(Z, F(z)) is

a specialization of R/(Z, F(z)). Let & = 37}1”, . .,:cgq with h; < n for ¢ =
1,...,q. Fort=1,...,p set:

For:=1,...,q set:

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.

Case 1 n=0.
The conclusion is immediate by the definition of R(F(Z)):

R(F(2) + \/29.. .xg(/\ 29 = Fy(2) A R(Z)).
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Case 2 n=m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:
R(fn,xlf,...,xff) where ; <mfori=1,...,q.

We first show:
Claim R(z",F(2)) is \".

Proof: Let Q;(Z]", %) be Egm) (i =1,...,r) such that

R(2",7) «» H = ola"]
where ¢ is 37 and:
Hy = (H", Q13 .-, Qrz)-

Set:

If zli = Fy(2) for i = 1,...,¢q, then Q;(Z, 2) > Qi(z",7) and Hy =
Hgz. Hence:

If, on the other hand, F;(Z) does not exist for some i, then R(Z", F(2))
is false. Hence:

R(@", F(7) < (AL, Va2l = Fi(2))
NH E olE").

q

But A Vzli(zh = F(2)) is E(()n), so the result follows by applying
i=1

Lemma 2.6.7 to ¢. QED (Claim)

But then, setting: R'(Z", 2) <> R(Z", F (%)), we have:

R(F(%)) «» va"( )\ 2} = Fi(2) A R/(Z", 7).
=1
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QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(&™,zl,.. :z:q) as being E( ")

instead of Eg ), then in the proof of the claim we could take ¢ as being X
instead of ¥;. But then the application of Lemma 2.6.7 to H > = ¢[z"] yields

a Eén) formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let R(f”,ylll, .. .,yéq) be Zén) where l1,...,l, <n. Let
Fi(2) be a Egli) map to H' fori=1,...,r. Then R(z", F(Z)) is (uniformly)
IS

As corollaries of Lemma 2.6.11 we then get:

Corollary 2.6.14. LetG(:vl ,...,:Ugf’) be aZY) map to H", wherejl,...,jp

n. Let F;(2) beaﬁg)map to H7i fori=1,...,p. Then H(Z) ~ G(F ( 7))
n)

is uniformly Z(l

Proof:
(2) & \/ /\x” = F(2) Ny = G(T)).
QED (Corollary 2.6.14)
Corollary 2.6.15. Let R(l‘1 e jp) be E(n) where j; <n fori=1,...,p.
There is a Zg ") relation R(29,..., p) with the same field
Proof: Set:

p
?) < \/Z(\ 2l" = 2 A R(E)).
=1
QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Let one make too much of this, however, we remark that the
defining formula of R’ will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type < n,
then the property of being Egn) depends only on the field of R. Let us define:

Definition 2.6.8. R’(z1 ..., 2"} is a reindezing of the relation R(zl, ... alr
iff both relations have the same field i.e.

R/(§) © R() for y,....yr € M.
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Then:

Corollary 2.6.16. Let R(xill,...,x?‘) be Egn) where i1,...,4, < n. Let
R’(z{l, ...,2") be a reindexzing of R, where jy,...,jr <n. Then R is Egn).

Proof:
RZ) © R(FA(21), ..., Fo(z)
& VEV)_, 2t = 2" A R(Z))
where 4 ' 4 '
' = F(2) < 2" = 2L

QED (Corollary 2.6.16)

We now consider the relationship between ¥* theory and the theory devel-
oped in §2.5. Ego) is of course the same as X1 and p;7 is the same as the ;1
projectum o which we defined in §2.5.2. In §2.5.2 we also defined the set P
of good parameters and the set R of very good parameters. We then define
the reduct M of M for any € [Ony]<*. We now generalize these notions

to Egn). We have already defined the Egn) projectum ™. In analogy with
the above we now define the sets P™, R™ of Egn) —good parameters. We also
define the Egn) reduct M™ of M by p € [Onps]<¥].

Under the special assumption of soundness, there will turn out to be the
same as the concepts defined in §2.5.3.

Definition 2.6.9. Let M = (JZ', B) be acceptable. We define sets M", _,
and predicates T"(z",...,2") as follows:

e

M° = M,T° =: B (i.e. M} = M for n =0)
M;H'l ::<J$+1,T§+1> for ¥ =2",... 2"
T"+1(xn+1,f) o vzn+1 \/2 < w(xn+1 — <i, Zn+1>

NMD oo b il o)
(where (p;]i < w) is our fixed canonical enumeration of ¥; formulae.)
(Then T ((i, 2"t 2n ... 2Y) MP 0 i[z" L 2m)).

Clearly 77! is uniformly Zgn)(M).

Lemma 2.6.17.

(a) T s Egn)
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(b) Let ¢ be ;. Then {(Z"1, @) M |= o[z} is 2.

Proof: We first note that M2 "' can be written as Hz = (H"+1, A% T§+1>,
where A" (271 F) <52 A(2"*1). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n =0 is trivial since Il—i1 is 31 (V) for all rud closed N.

Case 2 n =m+ 1. Then T("*1) s Egn) by (1) applied to m.
QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.

Lemma 2.6.18. (a) Let R(z"* ... 2% be Eg"). Then there is i < w
such that

R(z", @) « T ((i, 2" 1), ).

(b) Let R(Z"L ... 20) be Egnﬂ). Then there is a X1 formula ¢ such that

R, %) ¢ MIT = o[z .
Proof:
(1) Let (a) hold at n. Then so does (b).

Proof: We know that

R(@ %) « \/ PUARY I L L))

for a ZénH) formula P. Hence it suffices to show:

Claim Let P(z""1 %) be E(()n+1). Then there is a 3 formula ¢ such that

PE ) ¢ MIT = o[z .

Proof: We know that there are Qi(gfﬂ,f)(i = 1,...,p) such that Q; is
Egn) and
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(2) P(@, %) «» HY'' = O[3 1] where U is ¥ and
HE = (H"',Qq).
Applying (a) to the relation:
V" = () A Qi @)
we see that for each ¢ there is j; < w such that

Qi D) & (i (1)) € Tichs

vecr *®

Thus Q;, 7 is uniformly rud in Tg“ fori=1,...,p. Pz is the restric-
tion of a relation rud in Q;z(i = 1,...,p) to H"™', by (2). By §2
Corollary 2.2.8 it follows that Pz is the restriction of a relation rud in
T+ to H™*! uniformly. Since M2 = <JQ‘L}Z+1,T§H) is rud closed,
it follows by §2 Corollary 2.2.8 that:

P@E.3) 0 M ol ]

for a ¥; formula . QED (1)
Given (1) we can now prove (a) by induction on n.

Case 1 n=0.
Since X1 = 250)7 there is y; such that

R(z',2°) & M = @2, 20
o T({a"),20).
Case 2 n=m+ 1.

Let R(z"*, ... 20) be Egn). By the induction hypothesis and (1) we
know that (b) holds at n. Hence:

R(z"H amtt am . 20) «
Mo b @il e
for some 7. But then
R(z™ . . 2% < TP (G, 2Ty 2™t 20).

QED (Lemma 2.6.18)

Note The reductions in (a) and (b) are both uniform. We have in fact im-

plicitly defined algorithms which in case (a) takes us from the Egn) definition

of R to the integer 7, and in case (b) takes us from the Zgnﬂ) definition of

R to the ¥; formula .

We now generalize the definition of reduct given in §2.5.2 as follows:
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Definition 2.6.10. Let a € [Ony|<¥. M%¢ =: M; M™Hhe = pnil

a(0)7_,_7a(n)

where a® = an 0%
Thus M1 = (4 77409 where T e = T7fte
Thus by Lemma 2.6.18
Corollary 2.6.19. Set ') = an ¢’ for a € [Onp]<¥.

(a) If D ¢ H" is Egn) in a®,...,a™, there is (uniformly) an i < w

such that
D(z"™) & (i,z"t) e T
(b) If D(Z"*1) is Egnﬂ) in a9, ..., a™ there is (uniformly) a ¥; formula

¢ such that D(F") ¢ MHLa = o[zt

(Note Being Egn) in a is the same as being Egn) ina®,...,a™ butIdonot

see how this is uniformly so. To see that a Zgn) relation R in a(¥)

Eg") in a we note that for each n there is k such that y =ano"” <\ f (f
is the monotone enumeration of a and y = f”k), which is ¥ in a. However,
k cannot be inferred from the Zgn) definition of R, so the reduction is not

uniform.)

N IORT:

We can generalize the good parameter sets P, R of §2.5.2 as follows:

Definition 2.6.11. PJ; =: [On]<%.

Pl =: the set of a € P}, such that there is D which is Egn)(M) in a with
DNHY, ¢ M.

(Thus we obviously have P! = P.)

Similarly:

Definition 2.6.12. R?M =: P](\}.

ervfl =: The set of a € R}, such that
MTL,CL = th,a(QnJ’_l U (a ﬂ Qn))

Comparing these definitions with those in §2.5.6 it is apparent that RY,
has the same meaning and that, whenever a € RY,, then M™“ is the same
structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:
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Lemma 2.6.20. a € P" < T"* ¢ M.

We also note the following fact:

Lemma 2.6.21. Let a € R™. Let D be Z(ln). Then D 1s Zgn) i parameters
from 0"t U {a®), ... ™}, where o) =: an o', (Hence D is Zgn)(M) mn
parameters from "1 U {a}.)

Proof: We use induction on n. Let it hold below n. Then:
D(%) < D' (% a(o), .. ,a(”fl), E),

0)

where &1,...,& < 0" (If n =0 the sequence a®, ... a1 is vacuous and

0" = Onyy.)
Let & = hyns1 (Gi, (s, a™)), where p1, ..., < 0"+, The functions:
Fi(w) = haga (i, (2, a!™))
are Zgn) to H™ in the parameters a(?), ..., a(™. But D(Z) then has the form:
D'(z,a9, .. a" Y Fi(u),..., Falu)),

which is Egn) ina©®,...,a™ u,..., p by Corollary 2.6.12.
QED (Lemma 2.6.21)

Definition 2.6.13. 7 is a Egln) preserving map of M to M (in symbols
T M — () M) iff the following hold:
h

e M, M are acceptable structures of the same type.
. w”Hiﬁ C H}M for i < n.

o Let p = go(v{l, ol be a Zén) formula with a good sequence ¥ of
variables such that ji,...,Jm < n. Let z; € HJMZ fori =1,...,m.

Then:
M o[z] & M [= o[ (2)].

7 is then a structure preserving injection. If it is Egn)fpreserving, it is
Egm)fpreserving for m < n and Egn)fpreserving for i < h. If h > 1 then

-1 rn n o
m "Hy, C Hi7, as can be seen using:

x € Hy & M= \/u”u” = %z].
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We say that 7 is strictly Egn) preserving (in symbols 7 : M o M strictly)
h

iff it is Egn) preserving and 7~ HY, C HZ-. (Only if h =0 can the embed-
ding fail to be strict.)

We say that 7 is X* preserving (7 : M —s« M) iff it is Zg") preserving for

aln <w. Wecall 7 Z&n) preserving iff it is Z,(Ln) preserving for all h < w.

Good functions

Let n < w. Consider the class F of all Egn) functions F'(z,...,a') to H7,
where j,41,...,%,;, < n. This class is not necessarily closed under compo-
sition. If, however, G is the class of Egj) functions G(z%,...,2"m) to HJ
where j,i1,...,i, < n, then GY C F and, as we have seen, elements of G"
can be composed into elements of F — i.e. if F(2%,...,2") is in F and
Gy(Z) isin G for [ = 1,...,m, then F(G(Z)) lies in F. The class G of good
Egn) functions is the result of closing G under composition. The elements

of G are all Egn) functions and G is closed under composition. The precise
definition is:

Definition 2.6.14. Fix acceptable M. We define sets GF¥ = GF of Zgn)
functions by:

G = The set of partial Egi) maps F(x{l, .. ,:B%T) to H', where i < n and
jl,...,jm Sn

GF1 = The set of H(Z) ~ G(F(Z)), such that G(y’,...,ylr) isin G* and
FieG%isamaptojforl=1,...,m.

It follows easily that GF € G}, (since G(¥]) ~ G(h(i)) where h(yl*, ... ylr) =
gl for i = 1,...,m). G = G, =: |JG* is then the set of all good %\")
k
Junctions G* = |JG,, is the set of all good X* functions. All good Eg") func-
n
tions have a functionally absolute Egn) definition. Moreover, the good Egn)
functions are closed under permutation of arguments, insertion of dummy

arguments, and fusion of arguments of same type (i.e. if F(wél, .. .,xig_l)
is good, then so is F'(¢) ~ F(yi(z(ll)), . ,yi‘zg’;) where o : m — p such that

ja(l) =1q; for I < m.

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each G has the above properties.
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The proof is quite straightforward. We then get:

Lemma 2.6.23. The good Zgn) functions are closed under composition: Let
G(yl',...,ym") be good and let Fi(Z) be a good function to H'' forl = ... ,m.
Then the function G(F(E)) is good.

Proof: By induction in & < w we prove:

Claim The above holds for F; € G*(1 =1,...,m).

Case 1 £ =0.
This is trivial by the definition of "good function".

Case 2 k=h+1.
Let:
F(7) ~ Hi(F11(Z), - - ., Fip,(T))

for | = 1,...,m, where Hi(21,...,2,p,) is in G" and F,eGisa
map to H’iforl=1,...,m,i=1,...,p.

Let ((l¢,i¢)|€ = 1,...,p) enumerate
{{,)ll=1,....m;i=1,...,p}.
Define oy : {1,...,m} — {1,...,p} by:
oy(i) = that & such that ([,7) = (l¢, i¢).

Set:
Hl’(zl, Ce ,Zp) ~ Hl(zgl(l), . ,Zgl(pl))
forl=1,...,m. Fézﬂg,ig for £ =1,...,p.

Clearly we have:
Fy(Z) = H{(F1(Z),. .., Fj(7))
where H] € G" for I =1,...,m. Set:
G'(z1,... 2| ~ G(H1(2),..., Hn(2)).
Then G’ is a good Egn) function by the induction hypothesis. But:
G(F (%)) = G'(F{(Z),..., F)()).

The conclusion then follows by Case 1, since F! € GY for i = 1,...,p.
QED (Lemma 2.6.23)
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An entirely similar proof yields:

Lemma 2.6.24. Let R(z!', ... xir) be Egn) where i1,...,i, <n. Let Fi(2)

»Tr

be a good Zgn) map to H'(L =1,...,m). Then R(F(%)) is Egn).

—

Recall that R(F'(Z)) means:

Vo, w(N\ v =FE) AR®)).)
=1

Applying Corollary 2.6.13 we also get:

Lemma 2.6.25. Let n = m + 1. Let R(Z",x%,... zi) be Z(()n) where

T
i1y, 0r < m. Let Fi(Z) be a good Zgn) map to H" for 1 =1,...,r. Then
R(z", F(7)) is £{".

, ) we mean any function G’ which
is a reindexing of G as a relation. (In other words G, G’ have the same field,
ie.

By a reindexing of a function G(xlf, o, ahr

G(%) ~ G'(Z) for all z1,..., 2, € M.)
Then:

Corollary 2.6.26. Let Gz, ..., zir) be a good ng) map to H'. Let

G'(y{l,...,yﬁ") be a map to HI, where j,j1,...,5r < n. If G' is a rein-
dezing of G, then G’ is a good Egm) function.

Proof: G'(y) ~ F(G(Fl(yil), .., F(y"))) where F is defined by 2! = y

and Fj is defined by z}' = y/'. (Then e.g.

. min{i,j}
yifye H ,
F(y) = M
undefined if not.

where F' is a map to ¢ with arity j.)
But F, Fy ..., F, are ") good. QED (Corollary 2.6.26)

The statement made earlier that every good Eg") function has a functionally

absolute Egn) definition can be improved. We define:

Definition 2.6.15. ¢ is a good Egn) definition iff p is a Egn) formula which

defines a good Egn) function over any acceptable M of the given type.

Lemma 2.6.27. Every good Egn) function has a good Egn) definition.
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Proof: By induction on k we show that it is true for all elements of G*.
If F € GY then F is a Zgl) map to H’ for an i < n. Hence any func-

tionally absolute Egz) definition will do. Now let F' € G*¥*!. Then F(¥) ~
G(Hy(Z), ..., Hy(%)) where G € G* and H; € G° for i = 1,...,p. Then
G has a good definition ¢ and every H; has a good definition ¥;. By the
uniformity expressed in Corollary 2.6.14 there is a Egn) formula x such that,
given any acceptable M of the given type, if ¢ defines G’ and ¥; defines
H!(i =1,...,p), then yx defines F'(Z) ~ G'(H'(Z)). Thus  is a good Egn)
definition of F. QED (Lemma 2.6.27)

Definition 2.6.16. Let a € [Onp]<“. We define partial maps h, from
w x H" to H" by:
hZ(Z,{L‘) >~ th,a(i, <x’a(n)>)

Then hy is uniformly Egn) in a™, ... a® by Corollary ??. We then define
maps h? from w x H"™ to HY by:

hS (i, @) = hg (i, x)

hit (i, @) = By (D)o, by (D1, 2)).

Then }NZZ is a good Egn) function uniformly in a™ . ... a0,

Clearly, if a € R™!, then
RV (w x "t = H™.
Hence:
Lemma 2.6.28. Ifa € R"™', then h"(w x ¢"t') = M.

Corollary 2.6.29. If R" # 0, then S, C =™ for 1> 1.

Proof: Trivial for n = 0, since Zl(o) = ;. Now let n = m + 1. Set:

D = H"Ndom(h}), where a € R". Then D is Egn) by Lemma 2.6.24, since:
" €D < h(z") = hl(a")
< V2220 = hn(a™) A 20 = 20).

a

Let R(Z) be X;(M). Let
R(f) <~ lel B QZ[P(E, f)

where P is Xg. Set:
P'(@", %) <»: P(h™(a"), T).
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Then P’ is Eg") in a. But for uf,...,u} € D, =P'(d", £) can also be written

)

as a Z(ln formula. Hence

R(Z) < Qut € D...Qu} € DP'(a", %)
is El(n) in a. QED (Corollary 2.6.29)

We have seen that every ZU(J”) relation is X ,. Hence:

Corollary 2.6.30. Let R" # 0. Then 20 = 3.

An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a € RY;. Then every element of M has the form
F(£,a9, ... a™) where F is a good Egn) function and & < o"t1.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n =m+ 1. Let a € [Onpy|<% and let N = M™*. Let
T:N —y; N, where N is a J-model. Then:

(a) There are unique M,a such that @ € R and M =N.

(b) There is a unique © O T such that @ : M —rsmy M strictly and
0

m(a) = a.

(c) WZM—)E(_n) M.
J

Proof: We first prove existence, then uniqueness. The existence assertion
in (a) follows by:

Claim 1 There are M,a,# D 7 such that M =N, a € R"M,
ﬁ':M—)EI M, ﬁ(a) =a.
Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h 4+ 1. We first apply Lemma 2.5.12
to M™¢. It is clear from our definition that oprm.e > ol Set N' =
(M™@)aNei; . Then N’ = (Jg,‘,T’}, where ¢’ = gpma. But it is clear
from our definition that 77 = T" N Jé%zw. Hence:

(1) ﬁ:ﬁ—)go N'. ~ ~
By Lemma 2.5.12 there are then M, a,7 D 7 such that M% =N,
a€ Ry, 71 M —y, M™® and 7(a) = an oy = a™).
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(Note: Throughout this proof we use the notation:
) =:an g’ fori=0,...,m.)
By the induction hypothesis there are then M,a@, 7 D 7 such that
M™ =M, #: M —x, M, and 7(a) = a.
We observe that:
N — 7 m
(2) a=an o
Proof:

(C) Let 9 =: ¢
aNoyy Ca=nm

= OnNM. Then a C §. But #(a) = 7(a) =
). Hence a C a.

=E

D) w(ang) =a"(ang) C ot Na = @(a), since 7”9 C o7;. Hence
M M

ang=a. QED (2)
Since @ € R we conclude that a € RY- and N = (M™@)ane —
MM QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let M" = N and a € Rz There is m D 7 sucht that 7 : M —>Z§m>

M and 7(a) = a.
Proof: Let 21,...,2, € M with 2; = F;(2)(i = 1,...,r), where F; is
a Egm) (M) good function in the parameters @, ... , @™ and z; € N.
Let F; have the same Egm)(M)fgood definition in a®,...,a(™. Let
R(uy,...,u,) bea Egn) (M) relation and let R be Eg")(M) by the same
definition.
Then R(Fi1(z1), ..., Fr(z)) is ™ (A1) in a®,...,a™ and
R(Fi(z1),...,Fr(z)) is Egm)(M) in a,...,a™ by the same defini-
tion. Hence there is 4 < w such that

R(F(2) < (i,(D)eT

R(F(2)) & (i, (2)) € T
where N = (J2,T),N = (J),T). Thus R(F(2)) is rud in N and
R(F(Z)) is rud in N by the same rud definition. But 7 : N —x, N.

Hence:

R(F1(2i),-..,Fr(2)) & R(F\(7(21)), - -, Fr(T(2))).
Thus there is 7 : M o M defined by 7(F(£)) =: F(7(¢)) whenever

¢ € OnnN, F is S (M)~ good in @®,...,a™ and F is 2™ (M)-
good in @@, ..., al™ by the same definition. But then

7(z) = w(id(2)) = 7(z) for z € N.
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Hence m D 7. But clearly

m(@)=n@" u...ua™)
=aOu...ua™ =aq.

QED (Claim 2)

We now verify (c):

Claim 3 Let M,a,r be as in Claim 2. Then 7 : M —_ ) M.

(n
2

Proof: We first note that 7, being Egn)fpreserving, is strictly so —

ie. QZ]V—[ =g 1ol for i =0,...,m. It follows easily that:

r@") = «"a® = o for i = 0,...,m.

We now proceed the cases.

Case 1 j=0.
It suffices to show that if ¢ is Egn) and 1,...,2, € N, then

M = o1, ..., 2] = M = plr(z),...,m(z)].

Let o1,...,2, € M. Then z; = Fy(2)(i = 1,...,7) where z; € N
and F; is ng) (M)-good in @®,...,@a™. Let F; be ng)(M)f
good in @, ..., a™ by the same good definition.

By Corollary 2.6.19, we know that M = ¢[F1(21),..., Fy(2)] is
equivalent to
N ): \IJ[Zl,...,ZT]

for a certain X1 formula V. The same reduction on the M side
shows that M = ¢[Fi(z1),...,F-(2)] is equivalent to: N |=
Ulz1,...,2,] for z1,...,2, € N, where ¥ is the same formula.

Since 7 is Yp—preserving we then get:

M | oldle M o[F(2)]
N E
= N E Ur()

F(x(

Z))]
m(Z)]-

[
[
QED (Case 1)

Case 2 j > 0.

This is entirely similar. Let ¢ be X{". By Corollary 2.6.19 it
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follows easily that there is a ¥; formula ¥ such that: M |
o[F1(21), ..., Fr(2)] is equivalent to:

N EY2,..., 2]
Since the corresponding reduction holds on the M—side, we get
M E ¢l] & M = ¢[n(2)],
since 7(x;) = 7(Fi(2)) = F;i(7(2:)). QED (Claim 3)
This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let M, a be such that M™% =N and a € R]\]\Z.
Claim M = M, a = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a

T M _>E(7n) M deﬁned by

(3) 7(F(2)) = F(z) whenever z € N, F is a good E(m)( M) function
in a©@,...,a™ and F is the E(m)( M) function in @, ... @™
with the same good definition.

But 7 is then onto. Hence 7 is an 1somorphlsm of M with M. Since
M M are transitive, we conclude that M = M a=a.
QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let 7' : M —rom) M strictly, such that 7'(a) = a. Then 7’ = 7.
0

Proof: By strictness we can again conclude that 7/(@?) = a( for
i=0,...,m. Let v € M, z = F(z), where z € N and F is a E(m)(ﬁ)
good function in the parameters @®,...,a™). Let F be E( )(M) in
a9 ... al™ by the same good deﬁnition
The statement: z = F(2) is ng)(ﬁ) in a®,...,@a"™. Since 7’ is
Eém)fpreserving, the corresponding statement must hold in M — i.e.
m'(z) = F(7(2)) = m(z).

QED (Lemma 2.6.32)
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2.7 Liftups

2.7.1 The X, liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the X liftup). We can define it as
follows:

Definition 2.7.1. Let M be a J-model. Let 7 > w be a cardinal in M. Let
H=HM ¢ M and let 7 : H —y, H’' cofinally. We say that (M’, ') is a ¥
liftup of (M, ) iff M’ is transitive and:

(a) @ Dmand ' : M —y, M’

(b) Every element of M’ has the form 7'(f)(z) for an x € H’ and an
f € T° where I'° = I'°(7, M) is the set of functions f € M such that
dom(f) € H.

(Note The condition of being a J-model can be relaxed considerably, but
that is uninteresting for our purposes.)

Until further notice we shall use the word ’liftup’ to mean Y liftup’.
If (M’ 7'} is a liftup of (M, 7) it follows easily that:

Lemma 2.7.1. 7' : M —x, M’ cofinally.

Proof: Let y € M’', y = «'(f)(x) where x € H' and f € T, then y €
7' (rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. (M’ 7'} is the only liftup of (M, ).

Proof: Suppose not. Let (M* 7*) be another liftup. Let ¢(v1,...,v,) be
Eo. Then

M' = e[ (fi)(@1), ... 7' (fa)(2n)]

(@1, s 70) € T({(DIM |= @ F(2)]))

M= = plr(f) (1), - 7 (fu) (20)].

Hence there is an isomorphism o of M’ onto M* defined by:

o(m'(f)(x)) = 7*(f)(z)
for f € T, x € w(dom(f)).
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But M', M* are transitive. Hence 0 = id, M’ = M*, /' = 7*.
QED (Lemma 2.7.2)

(Note M = ¢[f(Z)] means the same as

Vi wn( N\ vi = filz) A M = oli]).
i=1
Hence if e = {(2)|M E ¢[f(2)]}, then e C >< dom(fz) € H. Hence e € M
by rud closure, since e is X(M). But then e e H, since P(u) N M C H for
ue H.)

But when does the liftup exist? In answering this question it is useful to
devise a 'term model’ for the putative liftup rather like the ultrapower con-
struction:

Definition 2.7.2. Let M, 7,7 : H —x, H' be as above. The term model
D = D(M,7) is defined as follows. Let eg. M = (JF,B). D =: (D,=
, €, A, B) where

D = the set of pairs (f,z) such that f € Iy and x € H’

) = (g, y) < (z,y) € T({{z,w)|f(2) = 9(¥)})
(f,2)€(9,y) < (z,y) € m({{z, w)[f(2) € 9(y)})

A(f,x) € m({2|Af(2)})

B(f,x) <z € 7({2|Bf(2)})

(Note D is an ’equality model’, since the identity predicate = is interpreted
by = rather than the identity.)

Los theorem for D then reads:

Lemma 2.7.3. Let ¢ = p(v1,...,v,) be Xg. Then

D ¢[{fi,21),. - {fas@a)] & (21, 20) € T({(DIM E o[f(D])-

Proof: (Sketch)

We prove this by induction on the formula . We display a typical case of the
induction. Let ¢ = \/u € v1¥. By bound relettering we can assume w.l.0.g.
that v is not among vy, ..., v,. Hence u, vy, ..., v, is a good sequence for U.
We first prove (—). Assume:

D = o[(fi,21),- - {fa, Tn)]-
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Claim (zy,...,z,) € 7(e) where

€= {(2'1, R 7zn>’M 'Z 90[f1<21) .- fn(zn)]}

Proof: By our assumption there is (g,y) € D such that (g,y)E(f1,z1) and:
D ): \I’[<97y>7 <f17$1>7 ey <fn>$n>]

By the induction hypothesis we conclude that (y,¥) € w(€) where:

—

& = {(w, D)lg(w) € fi(z1) A M E Ulg(w), F(D)}.

Clearly e, e € H and

HE N\w Z(w,2) €é— (2 €e).

Hence
H = \w,Z(w,2) € m(e) — (2) € n(e)).
Hence (%) € 7 (e). QED (=)

We now prove (+)
We assume that (z1,...,z,) € 7(e) and must prove:

Claim D ): (p[<f17$1>7 SRR <fn7$n>]
Proof: Let r € M be a well ordering of rng(f1). For (2) € e set:

g({(2)) = the r-least w such that
M ): \I/[w, fl(zl), e ,fn(zn)]

Then g € M and dom(g) = e € H. Now let € be defined as above with this
g. Then:

HE Naeezal(B) € e o (2,5 €2).
But then the corresponding statement holds of m(e), w(€) in H'. Hence
((2),T) € m(e).
By the induction hypothesis we conclude:
D ’: \I/[<g, <f>>7 <f1, x1>7 SRR <fna xn)]
The conclusion is immediate. QED (Lemma 2.7.3)

The liftup of (M, ) can only exist if the relation € is well founded:

Lemma 2.7.4. Let € be ill founded. Then there is no (M',«') such that
7' M —y, M'. M’ is transitive, and 7 D 7.
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Proof: Suppose not. Let (fi11,zit1)€(fi,x;) for i < w. Then
(i1, 2) € m{(z, w)|fir1(2) € fi(w)}.

Hence m'(fit1)(@it1) € 7'(fi)(2:) (i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let € be well founded. Then the liftup of (M, ) ezists.

Proof: We shall explicitly construct a liftup from the term model D. The
proof will stretch over several subclaims.

Definition 2.7.3. z* = 7*(x) =: (const,,0), where const, =: {(z,0)} =
the constant function x defined on {0}.

Then:

(1) #*: M —yx, D.
Proof: Let ¢(vy,...,v,) be ¥g. Set:

e={(z1,...,2n)|M |= ¢[consty, (21), ..., consty, (z,)]}.

Obviously:

@ if not.

{ {(0,...,0)} if M = plz1,...,24)

Hence by t.oz theorem:

D= glz},...,25] < (0,...,0) € (e)
M Eplr,...,x)

(2) D = Extensionality.
Proof: Let p(u,v) == Awecuwev NA\wevw e u.

Claim D | ¢la,b] — a 2 b for a,b € D. This reduces to the Claim:
Let a = (f,z),b = (g,y). Then

D= o[(f,2), (g, 9] < (z,y) € n(e)
o (f) =

where

(z,0)[M = plz, wl}
(z,0)[f(2) = g(w)}

@
Il

{
{
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QED (2)

Since 2 is a congruence relation for D we can factor D by 22, getting:
D= (]D)\ g) = <E7€7AvB>

where:

D = {4]s € D}
s=:{tlt = s} forse D
3Et +»: s€L

A o fls, B§ «: Bes.
Then D is a well founded identity model satisfying extensionality. By

Mostowski’s isomorphism theorem there is an isomorphism k of D onto
M’ where M' = (|M'|, €, A’, B") is transitive.

Set:

[s] =: k(8) for s € D

7' (x) =: [2*] for z € M.
Then by (1):
M —y, M.

Lemma 2.7.5 will then follow by:
Lemma 2.7.6. (M’ 7') is the liftup of (M, ).

We shall often write [f,z] for [(f,z)]. Clearly every s € M’ has the
form [f,z] where f € M; dom(f) € H, z € H'.

Definition 2.7.4. H =: the set of [f, ] such that (f,z) € D and
feH.

We intend to show that [f,z] = 7(f)(z) for z € H. As a first step we
show:

H is transitive.
Proof: Let s € [f,x] where f € H.
Claim s = [g,y] for a g € H.
Proof: Let s = [¢/,y]. Then (y,z) € w(e) where: e = {{u,v)|¢'(u) €
f(v)} set:

¢ ={ulg'(u) € mg(f)}, g=4'I¢"
Then g C rng(f) x dom(¢') € H. Hence g € H. Then [¢,y] = [g, y]
since 7(g¢’)(y) = 7(g)(y) and hence
(y,9) € 7({{u,v)]g'(u) = g(v)}). But e = {(u,v)|g(u) € f(v)}. Hence
l9.y] € [f,x]. QED (4)
But then:
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(5) [f,z] = n(f)(x) for f € H,{f x) € D.
Proof: Let f,g € H,(f,x),(g,y) € D. Then:

[f,z] € [9,y] < (z,y) € 7(e)
< m(f)(x) € m(g)(y)

where e = {(u,v)|f(u) € g(v)}. Hence there is an €-isomorphism o of
H onto H defined by:

o(r(f)(z)) =:[f,].

But then o = id, since H, H are transitive. (5)
But then:

(6) ' D
Proof: Let © € H. Then 7'(z) = [const,, 0] = 7(const,)(0) = 7(z)
by (5).

(7) [f,z] = 7'(f)(2) for (f,z) € D.
Proof: Let a = dom(f). Then [id,, 7| = id;(,(x) = = by (5). Hence
it suffices to show:

[f,x] = [consty, 0]([idg, ]).
But this says that (z,0) € m(e) where:

(z,w)|f(2) = consty(u)(ida(2))}

(2,0)|f(2) = f(2)} = a x {0}.

(&

{ f
{ f

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let 7 D 7 such that 7" : M —x, M*. Then the liftup
(M, 7"y of (M, =) exists. Moreover there is a o : M' —x, M* uniquely
defined by the condition:

!/ . /
olH =id, on’ = 7",

Proof: (M’ 7') exists, since € is well founded, since (f, z)E(g,y) +> 7*(f)(x) €
7™(g)(y). But then:

M ol () ) () )] ©
— (z1,...,2,) € m(e)
o M* gl (F) (@), 7 () )]
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where e = {(z1,...,2)|M = ¢[f(Z)]}. Hence there is o : M’ —y, M*
defined by:

o(n'(f)(x)) = 7*(f)(x) for (f,z) € D.
Now let 6 : M’ —x, M* such that 6 | H' = id and o7’ = 7".

Claim ¢ = 0.
Let s € M', s = @(f)(z). Then &(7'(f)) = 7*(f), o(x) = x. Hence
a(s)=7*(f)(z) =o(s). QED (Lemma 2.7.7)

2.7.2 The " liftup

From now on suppose M to be acceptable. We now attempt to generalize
the notion of Xy liftup. We suppose as before that 7 > w is a cardinal in
M and H = HM. As before we suppose that 7’ : H —x, H’' cofinally. Now
let " > 7. The Yp-liftup was the "minimal" (M’, 7’) such that 7’ D 7 and
7' M —yx, M'. We shall now consider pairs (M’, ) such that 7’ D 7 and
7't M —sp M'. Among such pairs (M’,7') we want to define a "minimal"
one and show, if possible, that it exists. The minimality of the ¥ liftup was
expressed by the condition that every element of M’ have the form #'(f)(z),
where x € H and f € T'V(7, M). As afirst step to generalizing this definition
we replace I'°(7, M) by a larger class of functions ' (7, M).

Definition 2.7.5. Let n > 0 such that 7 < p%,. I'" =I'"(7, M) is the set
of maps f such that

(a) dom(f) € H

(b) For some i < n there is a good Zgi)(]\/[) function G and a parameter

p € M such that f(z) = G(x,p) for all x € dom(f).

Note Good Z(lz) functions are many sorted, hence any such function can be
identified with a pair consisting of its field and its arity. An element of I,
on the other hand, is 1-sorted in the classical sense, and can be identified
with its field.

Note This definition makes sense for the case n = w, and we will not exclude
this case. A Z(()w) formula (or relation) then means any formula (or relation)
which is B for an i < w — i.e. B = o,

We note:

Lemma 2.7.8. Let f € T™ such that tng(f) C H', where i < n. Then

f(z) = G(z,p) for x € dom(f) where G is a good Egh) function to H® for
some h < n.
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Proof: Let f(z) = G'(z,p) for x € dom(f) where G’ is a good Zgn) function

to H7 where h, j < n. Since every good Egh) function is a good ¥¥ function

for k > h, we can assume w.l.0.g. that ¢, 7 < h. Let F be the identity function
defined by v’ =/ (i.e. y* = F(27) < y* = 27). Set: G(z,y) ~: F(G'(z,v)).
Then F' is a good Egh) function and so is G, where f(z) = G(z,p) for
x € dom(f).

QED (Lemma 2.7.8)

Lemma 2.7.9. (7, M) C T™(7, M) for i < n.

Proof: For 0 < 4 this is immediat by the definition. Now let ¢ = 0. If
f €T° then f(x) = G(x, f) for € dom(f) where G is the E(()O) function
defined by
y=G(z, f) +: (fis a function A
Ny, z) € f).
QED (Lemma 2.7.9)

The "natural" minimality condition for the Eén) liftup would then read: Each
element of M has the form #'(f)(z) where z € H' and f € T'". But what
sense can we make of the expression "7/(f)(x)" when f is not an element of
M? The following lemma rushes to our aid:

Lemma 2.7.10. Let ' : M —g(m) M’ where n > 0 and ©' D 7. There is a
0
unique map 7' of T™(r, M) to T"(w(7), M") with the following property:

x Let f € I'™(m,M) such that f(x) = G(x,p) for x € dom(f) where G
s a good Egi) function for an i < n and x is a good Egi) definition of
G. Let G’ be the function defined on M' by x. Let f' = ©"(f). Then
dom(f") = w(dom(f)) and f'(x) = G'(x, 7' (p)) for x € dom(f’).

Proof: As a first approximation, we simply pick G, x with the above prop-
erties. Let G’ then be as above. Let d = dom(f). The statement

Nz ed\yy=G(z,p)is Z(()n) is d, p, so we have:

Nz en@\/yy=_G"nrp).

Define fo by dom(fy) = 7(d) and fo(x) = G'(z,7(p)) for € m(d). The
problem is, of course, that G, x were picked arbitrarily. We might also have:

f(x) = H(x,q) for x € d,

where H is Zgj)(M) for a j < n and ¥ is a good Egj) definition of H. Let
H' be the good function on M’ defined by . As before we can define f;
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by dom(f1) = n(d) and fi(zx) = H'(x,7'(q)) for € m(d). We must show:
fo = f1. We note that:

N\ = € dG(x,p) = H(z,q).
But this is a Eén) statement. Hence

/\z € n(d)G'(z,p) = H'(z,q).
Then fo = fi. QED (Lemma 2.7.10)
Moreover, we get:
Lemma 2.7.11. Let n,7, 7,7, 7" be as above. Then 7"(f) = #'(f) for

fer(r,M).

Proof: We know f(z) = G(z, f) for x € d = dom(f), where:
y=G(z, f) <: (f is a function Ay = f(x)).

Then ©”(f)(z) = G'(z,7'(f)) = ©'(f)(x) for z € 7(d), where G’ has the
same definition over M’. QED (Lemma 2.7.11)

Thus there is no ambignity in writing #’(f) instead of 7”(f) for f € I'™.
Doing so, we define:

Definition 2.7.6. Let w < 7 < g}, where n < w and 7 is a cardinal in M.
Let H = HM and let 7 : H —x, H' cofinally. We call (M', ') a Zén) liftup
of (M, ) iff the following hold:

(a) 7’ D mand 7’ : M_>E(()") M.

(b) Each element of M’ has the form #'(f)(z), where f € I'"™(7, M) and
x e H.

(Thus the old X liftup is simply the special case: n = 0.)

Definition 2.7.7. I''(7, M) =: the set of f € I'"(r, M) such that either
i<nandrmg(f) C Hiyyori=n<wand f € H},.

(Here, as usual, H' = Joi, [A] where M = (J2 B).)

Lemma 2.7.12. Let f € T}(7,M). Let 7' : M — ) M' where 7' O m.
0
Then 7' (f) € TP (x' (1), M").
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Proof:

- M / M’
Case 1 i =n. Then f € Hy . Hence 7'(f) € Hpn .

Case 2 i < n.

By Lemma 2.7.9 for some h < n there is a good Zgn)(M) function G(u,v)
to H' and a parameter p such that

f(x) = G(z,p) for z € dom(f).

Hence:
' (f)(z) = G'(z,7'(p)) for x € dom(n(f)),

where G’ is defined over M’ by the same good X(n) definition. Hence
mg(7'(f)) C H,. QED (Lemma 2.7.12)

The following lemma will become our main tool in understanding E(()n) liftups.

Lemma 2.7.13. Let R(z%',... i) be E(()n) where i1,...,i9 < n. Let f; €
[e(l=1,...,r). Then:

(a) The relation P is Z(()n) in a parameter p where:
P(Z) <1 R(f1(21), - -+ fr(2r)).

(b) Let ©' D7 such that ©' : M — ) M'. Let R be Zén)(M’) by the same
0

definition as R. Then P’ is E[(]n)(M’) in @' (p) by the same definition
as P in p, where:

P'(Z) & R (7' (f1) (1), 7' (£i) (20)-

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Lete = {(Z)|P(2)}. Thene € H and w(e) = {(Z)|P'(2)}.

Proof: Clearly e C d = X dom(f;) € H. But then d € Hy» and e € Hyn
=1

since (Hyn, PN H,n) is amenable. Hence e € H, since H = HM and therefore
P(u)yNM C H for u € H.

Now set €/ = {(2)|P'(Z)}. Then ¢’ C 7(d) = l
hence 7(dom(f;)) = dom(w(f;)). But

A €d((@) € e o P(2))

Il X =

dom(m(f;)) since 7’ D m and
1
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which is a E(()n) statement about e,p. Hence the same statement holds of
m(e), m(p) in M'. Hence

A € m(@)((2) € n(e) & P).
Hence 7(e) = €'\ QED (Corollary 2.7.14)

Corollary 2.7.15. (M, w) has at most one E(()”) liftup (M', 7).

Proof: Let (M* ) be a second such. Let (vl ..., vir) be a E((]n) for-

»rr

mula. (In fact, we could take it here as being E((]O).) Let e = {(&)|M =
olfi(z1), -, fr(2)]} where fi € TL(1=1,...,7). Then:

M E el (fi)(@1),. ... 7' (fr)(zr)] <

< (21,...,2.) € w(e)

< M* ): 50[77*(]01)(331)7 cee ’ﬂ*(fr)(xr)]
for ; € m(dom(f;)(I =1,...,r).

Hence there is an isomorphism o : M’ M* defined by:

for f €T, x € w(dom(f)). But M', M* are transitive. Hence o = id, M’ =
M* 7' =7 QED (Corollary 2.7.15)

We now prove Lemma 2.7.13 by induction on n.

Case 1 n=0.
Then f1,...,fr € M and P is Xg in p = (f1,..., fr), since f; is rudi-
mentary in p and for sufficiently large h we have:

,
P(E) &\ yi,u € Ch)(N\ i = fi(Z) A R(@)
=1
where R is Y. If P’ has the same X definition over M’ in 7/(p), then

P(z) <V, .y € Cnlr®)( /r\lyi = 7(fi)(z:) A R(9))

< R(n(f)(2))

QED
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Case 2 n =w. 4
Then 3¢ = U ™. Let R(z%,...,2%) be . Since every £{"
h<w

relation is Egk) for k > h, we can assume h taken large enough that
i1,...,4r < h. We can also choose it large enough that:

fi(z) 2 Gi(z,p) forl=1,...,v

where G is a good Egh) map to H%. (We assume w.l.o.g. that p is the

same for [ = 1,...,r and that d; = dom(f;) is rudimentary in p.) Set:
P('E; y) < R(Glxh y)v s 7G(m7“7 y))

By §6 Lemma 2.6.24, P is Zgh) (uniformly in the Egh) definition of R
and G1,...,G,). Moreover:

P(2) < P(Z,p).
Thus P is uniformly Egh) in p, which proves (a). But letting P’ have

the same Egh) definition in 7’(p) over M’, we have:
P(3) & P(E ()
o R (f1)(z1), .. 7 (fr)(20)),
which proves (b). QED (Case 2)

Case 3 0 <n<w.
Let n = m+ 1. Rearranging arguments as necessary, we can take R as
given in the form:

n n .01 i
R(yY, ...,y oz, ..., x)7)

where 41,...,5, <m. Let fy €I for [ =1,...,r and let g1,...,g1 €
re.
Claim

(a) P is Egﬂ) in a parameter p where
P(i, 2) ¢: R(5(1D), (7).

(b) If 7/, M’ are as above and P’ is Eén)(M’) in 7'(p) by the same
definition, then

—

P'(w,Z) R (' (§)(@), 7' ()(2))

where R’ has the same Zén) definition over M'.



140 CHAPTER 2. BASIC FINE STRUCTURE THEORY

—

We prove this by first substituting f(2) and then §(w), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
Po(§",2) <= R(y", fi(z1), ..., fr(2)).
Then:

(a) Py is Z(()n) (M) in a parameter py.

(b) Let 7/, M', R’ be as above. Let P} have the same E(()n) (M) defi-
nition in 7/(pg). Then:

Py, 2) < R'(y", 7' (/)(2)).
Claim 2 Let
P(w,2) <: Po(gr(wy), ..., gs(ws), 2).
Then:
(a) P is Z(()n)(M) in a parameter p.
(b) Let 7/, M’', P} be as above. Let P’ have the same Zgn) (M) defi-

nition in 7/(p). Then

P'(w, ) <+ Fy(n' (§) (), 2).

We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove
Claim 2 by imitating the argument in Case 1: We know that ¢g1,...,gs € H".
Set: p=1{g1,...,9n,p). Then P is Eén)(M) in p, since:

P(@,2) < \/ y1--.ys € Ca(p)(/\ vi = gi(wi) A Po (7, 2))
=1

where g;, po are rud in P, for a sufficiently large h. But if P’ is E(()")(M ) in
IT'(P) by the same definition, we obviously have:

Pl(#,2) < V... y(/\y — ' (g)(w;) A Py(7, 2))

B (' (§) (D), 7).
QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments 4". Thus, after re-
arranging arguments we would have R(a™, §", x{}, ..., %) where i1, ... i, <
n. We would then define

—

P(@",%, 2) < R(T", §(@), f(2)).

This gives us:
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Corollary 2.7.16. Letn < w. Let R(u", x’f, o) be 2(()”) where iy,. .., iy <
n. Let fye I} forl=1,...,r. Set:

P(@, 2) i R(T, f1(21), - .., fr(2).

Then:

(a) P(u", %) is Z((]n) in a parameter p.
(b) Let «' D such that ©' : M — ) M'. Let R’ be E(()")(M’) by the same
0

definition. Let P’ be E(()n)(M’) in 7 (p) by the same definition. Then

P/, 2) & R(@ 7 (f)(21), o 7 (£)(20)).

By Corollary 2.7.15 (M, 7) can have at most one E((]n) liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D™ for the supposed liftup, which will then exist whenever D is well
founded.

Definition 2.7.8. Let M, 7, H, H',m be as above where o}, > 7,n < w.

The E(()n) term model D = ~ID)(”) is defined as follows: (Let e.g. M = (J2 B).)
We set: D = (D, =, €, A, B) where:

D =DM =: the set of pairs (f,z)
such that f € I'"(7, M) and
x € w(dom(f))

(f.z) = (g,y) > (z,y) € 7(e), where
e = {(zw)|f(2) = g(w)}.
(f,x)E(g,y) <>: (z,y) € 7(e), where
e ={(zw)|f(2) € g(w)}
(similarly for A, B).
We shall interpret the model D in a many sorted language with variables of

type i < w if n = w and otherwise of type i < n. The variables v* will range
over the domain D; defined by:

Definition 2.7.9. D; = D" =: {(f,z) € D|f € T"}.

Under this interpretation we obtain Los theorem in the form:
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Lemma 2.7.17. Let p(v!', ..., vir) be E(()"). Then:

D ): (p[<f1,1'1>,... ) <fr7wr>] A <$17"'7x7“> S 7'('(6)

where e = {(2)|M = ¢[fi(z1),- .., fr(z)]} and (fi,x;) € D;, forl=1,... 7.
Proof: By induction on ¢ we show:

Claim If i < n or ¢ = n < w, then the assertion holds for E[()i) formulae.

Proof: Let it hold for j < i. We proceed by induction on the formula ¢.

Case 1 ¢ is primitive (i.e. ¢ is v;€vj, vi=v;, Av; or Bu; (for M = (JA, B)).
This is immediate by the definition of .

Case 2 ¢ is Zg) where j < i and h = 0 or 1. If A = 0 this is immediate
by the induction hypothesis. Let h = 1. Then ¢ = \/u/¥, where ¥

is E((f). By bound relettering we can assume w.l.0.g. that u' is not in
our good sequence vy, ..., vy . We prove both directions, starting with

(=):
Let D = ¢[(f1,21), ..., (fr,zr)]. Then there is (g,y) € D; such that

D ): \I/Kg’y>, <f1,$1>, SRR <f7"7x7’>]

(u?, ¥ being the good sequence for ¥). Set ¢’ = {(w, 2)|M | ¥[g(w), Z(F)]}.
Then (y,Z) € w(€e’) by the induction hypothesis on i. But in M we
have:

Nw 2w, 2) € € — () €e).

This is a II; statement about €¢’,e. Since m : H —y, H' we can
conclude:

N w, 2w, 2) € m(e') = (Z € m(e)).

But (y,#) € w(e’) by the induction hypothesis. Hence (Z € w(e). This
proves (—). We now prove («). Let (Z) € w(e). Let R be the E(()j)
relation

R(w, z1,...,2) <=M E plw, 21, ..., 2]

Let G be a E(()j)(M) map to H’ which uniformizes R. Then G is a
spezialization of a function G’(2]",. .., zPr) such that h; < j for | < j.

Thus G’ is a good E((]j) function. But

fi(z) = Fi(z,p) for z € dom(f;) for Il =1,...,r



2.7. LIFTUPS 143

where Fj is a good E(()k) map to H" forl =1,...,rand j < k <i. (We
assume w.l.0.g. that the parameter p is the same for alll =1,...,7,.)
Define G”(u*, w) by:

G (u,w) = G' (W)™t .. (w)' "], w)

r—1»

then G” is a good Egk) function. Define g by: dom(g) = _;1 dom( f;)

and: g((2)) = G"((2),p) for (Z) € dom(g). Then g € I'™ and 9((2)) =
G(fi(z1),..., fr(2r)). Hence, letting:

—

¢ = {{w, 2)|M | ¥[g(w), f(2)]},
we have:
N\Z(2) ee e ((2),2) € €).

This is a IT; statement about e, e’ in H. Hence in H' we have:

A2 € ne) & (2), 2) € n(e).
But then ((Z),2) € w(e’). By the induction hypothesis we conclude:

D = ¥[(g, (%)), (fr, 1), (frr )]

Hence:

D= el(fr,21), - (fro )]
QED (Case 2)

Case 3 pis Ug AU, Ug AV, Uy — Uy, Uy <> Uy, or -0,

This is straightforward and we leave it to the reader.

Case 4 ¢ = \/u' € vy or Au® € vy, where v; has type > i. We display
the proof for the case ¢ = \/u’ € v;x. We again assume w.l.0.g. that
u #wvjfor j=1,...,r. Set: ¥ = (u’ € vy A x). Then ¢ is equivalent
to \/ u'¥. Using the induction hypothesis for x we easily get:

DE Y{g,y), (fis @) (frox)]

(y,21,...,2p) € w(€)

()

—

where ¢/ = {{w,2)|M E ¥[g(w), f(Z)]}. Using (*), we consider two
subcases:

Case 4.1 i < n.
We simply repeat the proof in Case 2, using (*) and with ¢ in place of
7.
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Case 4.2 i =n < w.
(Hence v; has type n.) For the direction (—) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for ¥¢ liftups.

We know that e € H and (Z) € 7(e), where e = {(2)|M = ¢[f1(21),--., fr(z)]}
Set:
R(wna 5) o M ‘: \Ij[wn> fl(zl)v cee >fr(zr)]'

Then R is Zén) by Corollary 2.7.16. Moreover \/ w"R(w", 2) <+ (%) € e.
Clearly f; € Hj; since f; € I'. Let s € Hy; be a well odering of
Jrng(f;). Clearly:

R(w™, 2) — w" € fi(z)
— w™ € Jrng(fy).

We define a function g with domain e by:
g9((Z)) = the s-least w such that R(w, ).

Since R is 2(()”), it follows easily that g € H%. Hence g € I'}. But
then

/\Z((Z} €e+ ((2),2) € €), where € is defined as above, using this g.
Hence in H' we have:

NZ((Z) € nle) & ((2),2) € ().
Since (Z) € 7(e) we conclude that ((Z),Z) € m(e’). Hence:

D ): \Il[<g7 <f>>7 <f17371>7 ) <f7’7 CUT>]
Hence:
D ): 90[<f17$1>7 L) <fr7557">]‘
QED (Lemma 2.7.17)
Exactly as before we get:

Lemma 2.7.18. If € is ill founded, then the Eén) liftup of (M, 7) does not
exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If € is well founded, then the E(()n) liftup of (M, ) exists.
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(n)

Proof: We shall again use the term model D to define an explicit 3~ liftup.
We again define:

Definition 2.7.10. z* = 7*(z) =: (consty, 0), where const, =: {(z,0)} =
the constant function z defined on {0}.

Using Los theorem Lemma 2.7.17 we get:

(1)

. M — o) D
0 .
(where the variables v* range over D; on the D side).

The proof is exactly like the corresponding proof for ¥p-liftups ((1) in
Lemma 2.7.5). In particular we have: 7* : M —yx, D. Repeating the
proof of (2) in Lemma 2.7.5 we get:

D E Extensionality.
Hence 22 is again a congruenzrelation and we can factor D, getting:

A~

D= (D\ =) =(D,¢ A, B)
where X
D =:{sl]se D}, s={t|t = s} forse D
§€t > sEL
A§ ¢ fls, B& ¢s: Bs
Then D is a well founded identity model satistying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism & of D onto
M’ where M' = (|M'|,€, A’, B') is transitive. Set:
[s] =: k(8) for s € D
m'(x) =: [z*] for x € M
H;={3|]seDj}(i<nori=n<uw).
We shall initially interpret the variables v’ on the M’ side as ranging
over H;. We call this the pseudo interpretation. Later we shall show

that it (almost) coincides with the intended interpretation. By (1) we
have

M —gm) M’ in the pseudo interpretation. (Hence «’ : M —
0
M)

=

Lemma 2.7.19 then follows from:

Lemma 2.7.20. (M’ 7') is the Zén) liftup of (M, ).
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For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again
use the abbreviation:

[f,x] =: [(f, )] for (f,z) € D.

Defining H exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

H is transitive.
[f,2] = n(f)(x) if f € H and (f,z) € D. (Hence H = H'))

' D .
(However (7) in Lemma 2.7.6 will have to be proven later.)
In order to see that m: M —5m) M’ in the intended interpretation we

must show that H; = H}'w, for ¢ < n and that H, C H};. As a first
step we show:

H; is transitive for i < n.

Proof: Let s € H;,t € s. Let s = [f, x| where f € I'?. We must show
that t = [g,y] for g € T}. Let ¢t = [¢/,y]. Then (y,x) € w(e) where

e = {(u,v)lg'(u) € f(v)}.

Set:
a=:{ulg'(u) e mg(f)},9=¢'la.

Claim 1 g I7.
Proof: a C dom(¢') is ;(()n). Hence a € H and g € I'". If i < n,
then rng(g) C rng(f) C H},. Hence g € I'?". Now let i = n. Then
rng(f) € ' and the relation z = g(y) is Z[()n). Hence g € Hy;.
QED (Claim 1)
Claim 2 ¢t = [g, y]
Proof:

N wv((u,v) € e = (u,u) € ¢)

where ¢ = {(u,w)|g(u) = ¢'(w)}. Hence the same II; statement
holds of 7(e),m(e’) in H'. Hence (y,y) € w(e¢’). Hence [g,y] =
lg',y] = 1. QED (7)

We can improve (3) to:

Let ¥ = \/vil, ... virp, where ¢ is Eén) and i < mnor i =n < w for

V17
Il =1,...,7. Then 7’ is "WU—elementary" in the sense that:

M = ¥[Z] <+ M' = ¥[r'(Z)] in the pseudo interpretation.
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(10)

Proof: We first prove (—). Let M = [z, Z]. Then M’ |= o[r(2), 7' (Z)]

by (3).
We now prove (). Let:
M ): SO[[thlL RS [frazr]ﬂﬂl(f)]
where f; € I'} for [ =1,...,7. Since 7'(x) = [const,, 0], we then have:
(z1,...,2r,0...0) € 7(e), where:

—

e={(ug,...,ur,0...0) : M |= p[f(1),Z]}.

Hence e # (). Hence

\ v1...o M = o[ f(7), 7]
where rng(f;) C H% for [ =1,...,r. Hence M = ¥[F]. QED (8)
If i < n, then every ng‘) formula is E[()"). Hence by (8):
If + < n then

7 M — () M’ in the pseudo interpretation.
2

We also get:

Let n < w. Then:

7' | Hyy : Hyy —s, Hy cofinally.

Proof: Let x € H,. We must show that € 7/(a) for an a € Hy;. Let
x = [f,y], where f € T"'. Let d = dom(f),a = rng(f). Then y € 7(d)
and:

/\zed(z,0>€e

where

e = {{u,v)|f(u) € consty(v)}
= {{u,0)|f(u) € a}.

This is a X statement about d,e. Hence the same statement holds of
m(d), m(e) in Hy,. Hence (z,0) € w(e). Hence [f,y] € n'(a). QED (10)

(Note: (10) and (3) imply that 7' : M — ) M’ is the pseudo inter-
1
pretation, but this also follows directly from (8).)
Letting M = (JZ, B) and M’ = (|M'|, A, B') we define:
M; = (Hj;,AnH};, BN Hy), M} = (H;,A'n H;, B'N H,)

for i <n or ¢ =n < w. Then each M; is acceptable. It follows that:
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M! is acceptable.

Proof: If i = n, then «' [ M,, : M,, —x, M}, cofinally by (3) and (10).
Hence M), is acceptable by §5 Lemma 2.5.5. If i < n, then 7' | M; :
M; ) M/ by (9). Hence M/ is acceptable since acceptability is a
IIy condition. QED (11)
We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

Let i+ 1 <n. Let A C Hiyq be Egi) in the pseudo interpretation.
Then (H;;1,A) is amenable.

Proof: Suppose not. Then there is A’ C H; 1 such that A’ is Zgi) in
the pseudo interpretation, but (H;, A’) is not amenable. Let:

A'(z) < B'(z,p)
where B’ is Zgi) in the pseudo interpretation. For p € M’ we set:
A, =:{z|B'(z,p)}.
Let B be Zgi)(M) by the same definition. For p € M we set:
Ap = {z|B(z,p)}.
Casel i+1<n.
Then \/p\/ @™ A6+ #£ /1 0 Al holds in the pseudo in-
terpretation. This has the form: \/p\/ a'™lo(p,a’*!) where ¢
is ng+1)’ hence E(()n) in the pseudo interpretation. By (8) we
conclude that M = ¢(p,a’*!) for some p,a’™ € M. Hence
(HiF', Ap) is not amenable, where A, is EEZ)(M).
Contradiction! QED (Case 1)

Case 2 Case 1 fails.
Then ¢ + 1 = n. Since 7’ takes H}, cofinally to H,. There
must be a € H}, such that w(a) N A" ¢ H,. From this we
derive a contradiction. Let A" = A} where p = [f,z]. Set:

B = {{z,w)|B(w, f(2))}. Then Bis 2\ (M). Set: b= (dxa)NB,
where d = dom(f). Then b € H},. Define g : d — HJ}; by:

9(z) =1 ApxyNa = {z € al(z,z) € b}.

Then g € H};, since it is rudimentary in a, b € H};. Let po(u™,v", w)

be the Eén) statement expressing

u= A, Nv" in M.
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(14)

(15)

Then setting:
e = {(v,0,w)|M = ¢[g(v),a, f(2)]}

we have:
/\v €d (v,0,v) €e.

But then the same holds of 7(d),n(e) in H,. Hence (z,0,z2) €
m(e). Hence: [g,2] = Ajy N7(a) € Hy.
Contradiction! QED (12)

On the other hand we have:

Let i+ 1 <n. Let AC Hyf' be Egi)(M) in the parameter p such that
A¢ M. Let A" be S (M) in #'(p) by the same S{”(M’) definition
in the pseudo interpretation. Then A’ N H; 11 ¢ M'.

Proof: Suppose not. Then in M’ we have:
\/a/\v”l(v“rl €aw A(WT).

This has the form \/ ap(a,m(p)) where ¢ is H(liﬂ) hence Z(()n). By (8)
it then follows that \/ ap(a,p) holds in M. Hence A € M.
Contradiction! QED (13)

Recall that for any acceptable M = (JZ, B) we can define o, H:, by:

= a

o't = the least p such that there is A which is
»O(M) with Ano ¢ M

Hi= J,[A]

Hence by (11), (12), (13) we can prove by induction on i that:

Let ¢ < n. Then

(a) oy = 0i, Hyy = Hi
(b) The pseudo interpretation is correct for formulae ¢, all of whose
variables are of type < 1.

By (9) we then have:

i M =6 M for i <n.

2
This means that if n = w, then 7’ is automatically X*-preserving. If
n < w, however, it is not necessarily the case that H, = Hjy,, — i.e.
the pseudo interpretation is not always correct. By (12), however we
do have:
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on < 0}y, (hence H,, C H};,).
Using this we shall prove that 7’ is E(()n
we show:

)

—preserving. As a preliminary

Let n < w. Let ¢ be a EE)") formula containing only variables of type
i < n. Let v}',...,v% be a good sequence for ¢. Let z1,...,x, € M’
such that z; € H;, for l = 1,...,7. Then M E ¢[z1,...,z,] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let Cp be the set of all such ¢ with: ¢ is Egz) for an ¢ < n. Let C be the
closure of Cy under sentential operation and bounded quantifications
of the form Av™ € w"p, \/v"™ € w"p. The claim holds for ¢ € Cy
by (15). We then show by induction on ¢ that it holds for ¢ € C. In
passing from ¢ to \v"™ € w™p we use the fact that w” is interpreted
by an element of H,. QED (17)

Since 7" H%, C H; for i < n, we then conclude:
M —)E(n) M.
0

It now remains only the show:

[f, 2] = 7' (f) ().
Proof: Let f(z) = G(z,p) for x € dom(f), where G is Zgj) good for

aj <n. Let a =dom(f). Let ¥U(u,v,w) be a good Egj) definition of
G. Set:

e={(z,y,w)|M = V[f(2),ida(y), consty,(w)]}.

Then z € a — (z,2,0) € e. Hence the same holds of 7(a),7w(e). But
x € m(a). Hence:

M' & V[[f, 2], [ida, 7], [const,, ],
where [idg, 2] = z, [consty, 0] = 7’(p). Hence:
[f, 2] = G'(z, 7' (p)) = ='(f) (@),

where G’ has the same Egj) definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).

QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let (M',x') be the E(()n) liftup of (M, 7). Let i <n. Then
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2
(b) If o4, € M, then 7' (0%,) = oiy.
(c) If Qéw = Onyy, then g?vj, = Onyy.

Proof:

(a) follows by (9) and (14).

(b) In M we have:

NV € <oy <€ =¢.
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This has the form A £°W(£Y, ¢',) where W is E((]n). But then the same

holds of 7(0',) in M’ by (8) and (14) — i.e.

AN\ €€ <mlehy) ¢ & =¢).

(c) In M we have A\ €0\ €0 = ¢ hence the same holds in M’ just as

above.

QED (Lemma 2.7.21)

(n)

The interpolation lemma for X5 liftups reads:

Lemma 2.7.22. Let 0 : H' —y, [M*| and 7* : M — @) M* such that
0

™ D om. Then the E lzftup (M', 7"y of (M, ) exists. Moreover there is a

unique map o' : M' — —gm M* such that o'|H =0 and o'n’ = 7*.
0

Proof: € is well founded since:

(f,2)€(g,y) < 7 (f)(o(x)) € 7 (9)(o(y))-

Thus (M’ 7'} exists. But for E(()n) formulae p = (v, ...

M’ = o[ (fi)(21), ..., 7' (fr)vr)]
— (x1,...,2,) € T(e)

& (0(21),-. 5 0(2n)) € a(m(e)) = 7" (e)

o M = @[W o (@n)), .. m(fr) (o (2

where:

e={(z1,...,z)|M = p[fi(z1), ..., fr(z:)]}
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and (fj, x;) € It for i =1,...,r. Hence there is a E(()n)fpreserving embed-
ding o : M/ — M* defined by:

o' (x'(f)(x)) = 7*(f)(o(x)) for (f,z) €T".

Clearly ¢/ | H = o and o/'7’ = n*. But ¢’ is the unique such embedding,
since if ¢ were another one, we have

o(n'(f)(x)) = 7*(f)(o(x)) = o' (7' (f)(2)).
QED (Lemma 2.7.22)

We can improve the result by making stronger assumptions on the map m,
vor instance:

Lemma 2.7.23. Let (M*,7*) be the E lzftup of (M, 7). Letm* fQT]\ljl id
and IP’(‘QT]\ZII) NM* C M. Then o}j;. =supn* QM

n)

(Hence the pseudo interpretation is correct and 7* is Zg preserving.)
Proof: Suppose not. Let g = sup W*,,Q% < Oy« Set:
Ay, 7 AN

H" = Hy, = J My H = J3M.

Then H € M*. Let A be X" (M) in p such that AN o} ¢ M. Let:
Az < \/y"B(y", x),
where B is Eén) in p. Let B* be Eén) (M*) in 7*(p) by the same definition.
Then ) 3
7 |H" : (H",BNH") =y, (H,B*NH).

Then AN Q”H AN Q?V[H, where:

A={z|\/ € H B*(y,2)}.

yn
But A is E[(]n)(M*) in 7*(p) and H. Hence
ANt = An ot e Pl N M* € M.

Contradiction! QED (Lemma 2.7.13)



Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine struc-
tural inner models which go beyond L. The concept of "mouse" is central
to this endeavor. We begin with a historical introduction which traces the
genesis of that notion. This history, and the concepts which it involves, are
familiar to many students of set theory, but the thread may grow fainter
as the history proceeds. If you, the present reader, find the introduction
confusing, we advise you to skim over it lightly and proceed to the formal
development in §3.2. The introduction should then make more sense later
on.

Fine structure theory was originally developed as a tool for understanding
the constructible hierarchy. It was used for instance in showing that V' =L
implies [g for all infinite cardinals 3, and that every non weakly compact
regular cardinal carries a Souslin tree. It was then used to prove the covering
lemma for L, a result which pointed in a different direction. It says that,
if there is no non trivial elementary embedding of L into itself, then every
uncountable set of ordinals is contained in a constructible set having the
same cardinality. This implies that if any a > ws is regular in L, then its
cofinality is the same as its cardinality. In particular, successors of singular
cardinals are absolute in L. Any cardinal a@ > wy which is regular in L
remains regular in V. In general, the covering lemma says that despite
possible local irregularities and cofinalities in L is retained in V.

If, however, L can be imbedded non trivially into itself, then the structure
of cardinalities and cofinalities in L is virtually wiped out in V. There is

153
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then a countable object known as 07 which encodes complete information
about the class L and a non trivial embedding of L. 0% has many concrete
representations, one of the most common being a structure LY = (L,[U], €
,U), where v is the successor of an inaccessible cardinal x in L and U is
a normal ultrafilter on P(k) N L. (Later, however, we shall find it more
convenient to work with extenders than with ultrafilters.) This structure,
call it My, is iterable , giving rise to iterates M;(i < oo) and embedding
mij « My =y, M; (i < j < 00). The iteration points k; (i < co) are called
the indiscernables for L and form a closed proper class of ordinals. Each k.
is inaccessible in L. Thus there are unboundedly many inaccessibles of L
which become w—cofinal cardinals in V. It can also be shown that all infinite
successor cardinals in L are collapsed and become w—cofinal in V. If we chose
ko minimally, then My = 0% is unique. We briefly sketch the argument for
this, since it involves a principle which will be of great importance later on.
By the minimal choice of k¢ it can be shown that hag (0) = My (i.e. g}wo =w

and ) € P}, ). Now let M} = LY be another such structure. Tterate My, M,
Mo 2 0

out to wy, getting iteration (M;|i < wy), (M]|i < wq) with iteration points
ki, K. Then Ky, = k[, = wi. Moreover the sets:

C={rili <wi},C" = {kl)i <wi}

are club in wy. Hence C'NC" is club in wy. But the ultrafilters U, , U, are
uniquely determined by C'N C’. Hence M,,, = M/, . But then:

Mo = hay,, 0) = hMLI (0) ~ M.

Hence My = M. This comparision iteration of two iterable structures will
play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which sig-
nificantly differed from L was made by Solovay in the early 1970’s. Solo-
vay developed this fine structure of LY (where U is a normal measure on
P(x) N LY). He showed that each level M = J{ had a viable fine structure,
with 0%, Pi;, R} (n < w) defined in the usual way, although M might be
neither acceptable nor sound. If e.g. a > k and o}, < k (a case which cer-
tainly occurs), the we clearly have R}, = 0. However, M has a standard
parameter p = pys € lew and if we transitivize hps(P), we get a structure

M = Jg which iterates up to M in x many steps. M is then called the core
of M. (M itself might still not be acceptable, since a proper initial segment
of M might not be sound.) (If n < 1 and g%, < k, we can do essentially
the same analysis, but when iterating M to M we must use E(()n)fpreserving
ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay’s analysis on its head by defining a
mouse (or Solovay mouse) to be (roughly) any J,, or iterable structure of the
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form M = J{ where U is a normal measure at some x on M and ¢%; < .
They then defined the core model K to be the union of all Solvay mice. They
showed that, if there is no non trivial elementary embedding of K into K,
then the covering lemma for K holds. If, on the other hand, there is such
an embedding 7 with critical point x, then U is a normal measure on x in
LY = (L[u], €, u), where:

U ={z € P(r) N K|x € n(X)},

(This showed, in contrast to the prevailing ideology, that an inner model with
a measurable cardinal can indeed be "reached from below".) The simplest
Solovay mouse is 0% as described above. What K is depends on what there
is. If 07 does not exist, then K = L. If 0% exists but 07# does not, then
K = L(0%) etc. In order to define the general notion of Solovay mouse, one
must employ the full paraphanalia of fine stucture theory.

Thus we have reached the situation that fine structure theory is needed not
only to analyze a previously defined inner model, but to define the model
itself.

If we have reached LU with U a normal ultrafilter on x and 7 = k¥ in LY,
then we can regard LU as the "next mouse" and continue the process. If
(L%)# does not exist, however, this will mean that LY is the core model. The
full covering lemma will then not necessarily hold, since V' could contain a
Prikry sequence for k.

However, we still get the weak covering lemma:
cf(B) = card(B) if B > wsq is a cardinal in K.
We also have generic absoluteness:

The definition of K is absolute
in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discov-
ered. For instance the "core model below two measurables" defined a unique
model with the above properties under the assumption that there is no inner
model with two measurable cardinals. Similarly with the "core model up
to a measurable limit of measurables” etc. Initially this work was pursued
by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other.
Mitchell got further, introducing several important innovations. He divided
the construction of K into two stages: In the first he constructed an inner
model K¢, which may lack the two properties stated above. He then "ex-
tracted" K from K¢, in the process defining an elementary embedding of K
into K¢. This approach has been basic to everything done since. Mitchell
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also introduced the concept of eztenders, having realized that the normal
ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a
mouse is regarded as a structure M = JE where E describes an indexed
sequence of ultrafilters or extenders. A major requirement is that M be
iterable , which entails that any of the indexed extenders or ultrafilters can
be employed in the iteration. But this would seem to imply that eny F' lying
on the indeved sequence must be total — i.e. an ultrafilter or extender on
the whole of P(k) N M (k being the critical point). Unfortunately the most
natural representations of mice involve "allowing extenders (or ultrafilters)
to die". Letting M = JU be the representation of 07 described above, it is
known that o}, = w. Hence JU ; contains new subsets of x which are not
"measured" by the ultrafilter U. The natural representation of 0## would
be M’ = Jg’U/ where:
U' = {X|x" € m(x)},

and 7 is an embedding of LY into itself with critical point ' > k. But

U is not total. How can one iterate such a structure? Because of this

conundrum, researchers for many years followed Solovay’s lead in allowing

only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay’s

representation of 077% was J,f],/ This structre is not acceptable, however, since

there is a v < 1/ set. k' < v and QljU = w < K'. Such representation of
Y

mice were unnatural and unwieldy. The conundrum was finally resolved by
Mitchell and Stewart Baldwin, who observed that the structures in which
extenders are "allowed to die" are in fact, iterable in a very good sense. We
shall deal with this in §3.4. All of the innovations mentioned here were then
incorporated into [MS| and [CMI]. They where also employed in [MS| and
[NFS].

It was originally hoped that one could define the core model below virtually
any large cardinal — i.e. on the assumption that no inner model with the
cardinal exists one could define a unique inner model K satisfying weak
covering and generic absoluteness. It was then noticed, however, that if we
assume the existence of a Woodin cardinal, then the existence of a definable
K with the above properties is provably false. (This is because Woodin’s
"stationary tower" forching would enable us to change the successor of wy,
while retainig w,, as a singular cardinal. Hence, by the covering lemma,
K would have to change.) This precludes e.g. the existence of a core model
below "an inaccessible above a Woodin", bit it does not preclude constructing
a core model below one Woodin cardinal. That is, in fact, the main theorem
of this book: Assuming that no inner model with a Woodin cardinal exists,
we define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
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proving the following theorem: Let s be a measurable cardinal. Assume that
V.. has no inner model with a Woodin cardinal. Then there is V—definable
inner model K of V, which, relativized to Vi, has he above two properties.
This result, which was exposited in [CMI| was an enormous breakthrough,
which laid the foundation for all that has been done in inner model theory
since then. There remained, however, the pesky problem of doing without
the measurable — i.e. constructing K and proving its properties assuming
only "ZFC + there is no inner model with a Woodin". The first step was
to construct the model K¢ from this assumption. This was almost achieved
by Mitchell and Schindler in 2001, except that they needed the additional
hypothesis: GCH. Steel then showed that this hypothesis was superfluous.
These results were obtained by directly weakening the "background condi-
tion" originally used by Steel in constructing K¢. The result of Mitchell
and Schindler were published in [UEM]. Independently, Jensen found a con-
struction of K¢ using a different background condition called "robustness".
This is exposited in [RE]. There reamained the problem of extracting a core
model K from K¢. Jensen and Steel finally achieved this result in 2007. It
was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential
to the rest of the book. (We shall, however, deal only with so called "short
extenders", whose length is less than or equal to the image of the critical
points.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter
at x can be described by a two valued function on P(x). An extender, on
the other hand, is characterized by a map of P(x) to P()\), where A > k. \is
then called the length of the extender. Like a normal ultrafilter an extender
Finduces a canonical elementary embedding of the universe V into an inner
model W. We express this in symbols by: 7 : V —p W. W is then called
the wltrapower of V' by F and 7 is called the canonical embedding induced
by F. The pair (W, ) is called the extension of V by F. We will always
have: A < mw(k). However, just as with ultrafilters, we shall also want to
apply extenders to transitive models M which may be smaller than V. F
might then not be an element of M. Moreover P(x) might not be a subset
of M, in which case F' is defined on the smaller set U = P(x) N M. Thus we
must generalize the notion of extenders, countenancing "suitable" subsets of
P(k) as extenders domain. (However, the ultrapower of M by F may not
exist.)
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We first define:

Definition 3.2.1. S is a base for x iff S is transitive and (S, €) models:
ZFC™ + k is the largest cardinal.

By a suitable subset of P(k) we mean P(k) N S, where S is a base for k.

We note:

Lemma 3.2.1. Let S be a base for k. Then S is uniquely determined by
P(k)NS.

Proof: For a,e € P(k) NS set:

u(a, e) ~: that transitive U such that
(u, €) is isomorphic to (a, é),
where ¢ = {(v,7)| < v,T -€ e}.

Claim S = the union of all u(a,e) such that a,e € P(x) NS and u(a,e) is
defined.

Proof: To prove (C), note that if w € S is transitive, then there exist
a <k, f €S such that f: a <> u. Hence u = u(a, e) where e = {< v, 7 =<
f(v) € f(r)}. Conversely, if u = u(a,e) and a,e € P(k) NS, then u € S,
since the isomorphism can be constructed in S. QED (Lemma 3.2.1)

Definition 3.2.2. An ordinal )\ is called Géddel closed iff it is closed under
Godel’s pair function <, > as defined in §2.4. (It follows that X is closed
under Godel n—tuples < z1,...,z, >=.)

We now define

Definition 3.2.3. Let S be a base for k. Let A be Gddel closed. F' s an
extender at k with length X\, base S and domain P(k) N S iff the following
hold:

e F'is a function defined on P(k) NS

e There exists a pair (S, ) such that

(a) m:S < S’ where S’ is transitive

(b) kK =crit(m),m(k) > A >k
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(c) Every element of S’ has the form 7(f)(a) where « < Aand f € S
is a function defined on k.

(d) F(X)=n(X)NnXforx e P(k)NS.
Note If F' is an extender at k, then k is its critical point in the sense that
Flr =1id, F(k) is defined, and k < F(k). Thus we set: crit(F) =: k.
Note (c) can be equivalenly replaced by:
7m:8 < S cofinally.

We leave this to the reader.

Note P(k)NS C S since X = 7n(X)Nk € S’. But the proof of Lemma 3.2.1
then shows that S C S’. (We leave this to the reader.)

Note As an immediate consequence of this definition we get a form of Loz
Theorem for the base:

S"Eelr(fi)(ar), -, (fa)(om)]

—

<a =€ F({{OIS E »lfi(&1), .-, fal&)]})
where aq,...,a, < A and f; € S is a function defined on « for i =1,...,n.

Note (S’,7) is uniquely determined by F since if (S, #) were a second such
pair, we would have:

m(f)(a) e m(g)(B)r=<a,B € F({< &0~ |f(§) € 9(5)})
< 7(f)(a) € 7(g)(B)-

Thus there is an isomorphism i : S¢S defined by i(7(f)(a)) = 7(f)(a).

Since §’, S are transitive, we conclude that i = id, S’ = S.
But then we can define:

Definition 3.2.4. Let S, F, S’, 7 be as above. We call (S’, 7) the extension
of S by F (in symbols: 7: S —p 7).

Note It is easily seen that:

e S5’ is a base for 7(k)

e The embedding 7 : S — S’ is cofinal (since 7(f)(«) € 7(rng(f))).
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Note The concept of extender was first introduced by Bill Mitchell. He
regarded it as a sequence of ultrafilters (or measures) (Fa|la < A), where
F, ={X]a € F(X)}. For this reason he called it a hypermeasure. We shall
retain this name and call (F,,|a < A) the hypermeasure representation of F.
We can recover F by: F(X) = {a|X € F,}.

Definition 3.2.5. We call an extender I’ on s with base S and extension
(S’ ) full iff w(k) is the length of F.

In later sections we shall work almost entirely with full extenders. We leave
it to the reader to show that if S is a ZFC™ model with largest cardinal &
and 7 : S < S cofinally. Then 7 [P(k) is a full extender with base S and
extension (S', ).

/

Lemma 3.2.2. Let F' be an extender with base S and extension (S’, 7).

Then:

(a) (S',m) is amenable

(b) If F is full, then (S, F) is amenable.

Proof: (b) follows from (a), since then:
Fnu={Y,X)ernulX CkAY C A}

We prove (a). Since 7 takes S to S’ cofinally, it suffices to show: 7Nz (u) € S’
for u € S. We can assume w.l.o.g. that w is transitive and non empty. If
(m(X),X) € mNm(u), then 7(X) € m(u) by transitivity, hence X € u. Thus
mNmw(u) = (7 u) Nw(u) and it suffices to show:

Claim 7 lu € 5.
Let f = (f(i)|(9) < k) enumerate u. Then 7 [u = {(7(f)(@), f(2))|i < k}.
QED (Lemma 3.2.2)

Definition 3.2.6. Let F' be an extender at x with base S, length X\, and
extension (S’, 7). The expansion of F is the function F* on |J P(k") NS

n<w
defined by:
F*Y(X)=n(X)N A" for X € P(k")N S.
We also expand the hypermeasure by setting:
Foy o = {X (@) € F*(X)}
for aq,...,a, < A. By an abuse of notation we shall usually not distinguish

between F' and F*, writing F'(X) for F*(X) and Fy for FZ.
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Using this notation we get another version of Los Lemma:

Sl ): @[W(fl)(&)a s vﬂ-(fn)(d')} A

{E)S = elfi(€),- -, falE))} € Fa

for aq,...,;m < X and f; € M a function with domain k™ fort=1,...,n.

Note Most authors permit extenders to have length which are not Gdédel
closed. We chose not to for a very technical reason: If A is not Gddel closed,
the expanded extender F™* is not necessarily determined by F' = F*[P(k).

Hence if we drop the requirement of Gédel completeness, we must work with
expanded extenders from the beginning. We shall, in fact, have little reason
to consider extenders whose length is not Godel closed, but for the sake of
completeness we give the general definition:

Definition 3.2.7. Let S be a base for k. Let A > . F is an ezpanded
extender at k with base S, length X\, and extension (S’, ) iff the following
hold:

e F'is a function defined on |J, _ P(k") NS

nw

m: 8 < S where S’ is transitive

k = crit(m), 7(Kk) > A

Every element of S’ has the form 7(f)(a1,...,a,) where aq,...,a, <
Aand f € S5 is a function defined on k™

o F(X)=m(X)Nk"for X e P(k™)NS.

This makes sense for any A > k. If, indeed, A is Gddel closed and F' is an
extender of length A as defined previously, then F™* is the unique expanded
extender with F' = F* [P(k).

Definition 3.2.8. Let F' be an extender at k of length A\ with base S and
extension (S, 7). X C A is a set of generators for F iff every 8 < X has the
form 8 = w(f)(&) where ay,...,a, € X and f € S.

If X is a set of generators, then every x € S’ will have the form 7(f)(&)
where ay,...,a, € X and f € S. Thus only the generators are relevant. In
some cases {k} will be a set of generators. (This will happen for instance if A
is the first admissible above k or if A = K+ 1+ F is the expanded extender.)
This means that every element of S” has the form 7(f)(x) and that:

" [r(f)(x)] & €IS | @l f (O]} € F.
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Thus, in this case, S’ is the ultrapower of S by the normal ultrafilter Fj.

In §2.7 we used a "term model" construction to analyze the conditions under
which the liftup of a given embedding exists. This construction emulated
the well known construction of the ultrapower by a normal ultrafilter. We
could use a similar construction to determine wheter a given F is, in fact,
an extender with base S — i.e. whether the extension (S’,7) by F' exists.
However, the only existence theorem for extenders which we shall actually
need is:

Lemma 3.2.3. Let S be a base for k. Let * : S < S* such that k = crit(n™)
and k < A < 7*(k) where \ is Gdidel closed. Set

F(X)=7"(X)NAX for X e P(k) N S.

Then

(a) F is an extender of length \.
(b) Let (S',7) be the extension by F. Then there is a unique o : S" < S*

such that om = 7* and 7|\ = id.

Proof: We first prove (a). Let Z be the set of 7*(f)(«) such that o < A
and f € S is a function on k.

(1) Z < S*

Proof: Let S* | \/ vp[Z] where x1,...,2, € Z. We must show:

Claim Vy € ZS* = ¢[y, Z].

We know that there are functions f; € S and «; < X such that z; =
7™ (fi)(a) for i = 1,...,n. By replacement there is a g € S such that
dom(g) = k and in S:

/\£1£n <K (\/ y@(yvfl(fl)a s 7fn(€n)) —
SO(Q(‘< 617 s 7§n It f1(£1)7 st 7fn(€n))))

But then the corresponding statement holds of 7* (), 7*(g), 7*(f1), . . ., 7" (fn)
in S*. Hence, setting f =< ay,...,a, > we have:

S*Eelm(9)(B), 7 (fi)(ea), -, 7 (fn) (on)]-

QED (1)
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Now let o : S’ <& Z where S’ is transitive. Set: m = o~ !7*. Then S < 5.
o:5 <5% and o(n(f)(a)) = 7*(f)(«) for a < A\. It follows easily that F'
is an extender and (S’, ) is the extension by F.

This proves (a). It also proves the existence part of (b), since o [ A = id and
om = 7. But if ¢’ also has the properties, then o'(7(f)(a)) = 7*(f)(a) =
o(m(f)(a)). Then ¢/ = o and o is unique. QED (Lemma 3.2.3)

Definition 3.2.9. Let F' be an extender at x with extension (S’, 7). Let
k < A < w(k) where X is Godel closed. F|\ is the function F” defined by:
dom(F’") = dom(F') and

F'(X)=n(X)N X for X € dom(F).

It follows immediately from Lemma 3.2.3 that F|) is an extender at x with
length A.

The main use of an extender F' with base S is to embed a larger model M
with P(k) N M =P(k) NS € M into another transitive model M’, which we
then call the ultrapower of M by F. Ther is a wide class of models to which
F can be so applied, but we shall confine ourselves to J-models.

Definition 3.2.10. Let M be a J-model. F'is an extender at k on M iff F
is an extender with base S and P(k) " M = P(k) NS € M, where k is the
largest cardinal in S. (In other words S = HM € M were 7 = xt.)

Making use of the notion of liftups developed in §2.7.1 we define:

Definition 3.2.11. Let F be an extender at x on M. Let H = HM be the
base of F and let (H',7') be the extension of H by F. We call (N, 7) the
extension of M by F (in symbols 7 : M —p N) iff (N, x) is the liftup of
(M, "),

We then call N the wltrapower of M by F'. We call  the canonical embedding
given by F.

Note that 7 is 3 preserving but not necessarily elementary.

Lemma 3.2.4. Let F be an extender at k on M of length \. Let (N, ) be
the extension of M by F. Then every element of N has the form 7(f)(«)
where o < A and f € M is a function with domain k.

Proof: Let H = HM and let (H',7') be the extension of H by F, where
7 =7tM_ Each x € N has the form x = 7(f)(z), where f € M is a function,
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dom(f) € H and z € w(dom(f)). But then z = m(g)(a) where a < \,g € H
and dom(g) = k. We may assume w.l.o.g. that rng(g) C dom(f). (Otherwise
redefine g slightly.) Thus z = 7(f o g)(«). QED (Lemma 3.2.4)

Using the expanded extenders we then get L.os Theorem in the form:

Lemma 3.2.5. Let M, F, A\, N, 7 be as above. Let ay,...,an < A and let
fi € M be such that f; : k™ — M fori=1,...,n. Let p be Xg. Then

N = oln(f(@)] « (€)M = o[ fE)]} € Fa.
Proof: As in §2.7.1 we set:
%= T9%7, M) = the set of f € M such that

f is a function and dom(f) € HM.

Then f; € 'Y, dom(f;) = k™. By Los Theorem for liftups we get:

—

N E lr(/)(@)] ¢ (@) € m(e) N A™ = F(e)

where

— —

e = {{E)IM = ¢[f()]}-
QED (Lemma 3.2.5)

The following lema is often useful:

Lemma 3.2.6. Let F,r, M, m be as above. Let T be regular in M such that
T # k. Then w(t) = supn’7.

Proof: If 7 < k this is trivial. Now let 7 > k. Let £ = 7(f)(a) < 7(7),
where o < \. Set 8 = sup f”k. Then 8 < 7 by regularity. Hence:

¢ =7(f)(a) < supm(f)'m(r) #m(B) < (7).
QED (Lemma 3.2.6)

The following lemma is often useful:

Lemma 3.2.7. Let F,r, M, m be as above. Let T be regular in M such that
T # k. Then 7(1) =supn’7.

Proof: If 7 < k this is trivial. Now let 7 > \. Set 8 = sup f”k. Then 8 < 7
by regularity. Hence:

§=n(f)(a) <supn(f)'n(k) =7(B) < ().
QED (3.2.7)
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3.2.1 Extendability

Definition 3.2.12. Let F' be an extender at x on M. M is extendible by F
iff the extension (N, 7) of M by F' exists.

(Note This requires that NV be a transitive model.)

(N, ), if it exists, is the liftup of (M, n’) where H = HM 7 = k*tM and
(H',7') is the extension of its base H by F. In §2.7.1 we formed a term
model D in order to investigate when this liftup exists. The points of D
consisted of packs (f, z) where

f eT%7, M) := the set of functions f € M such that dom(f) € H.
The equality and set membership relation where defined by
(f,2) = (g, w) & (z,w) € 7' ({{z,y)|f(x) = 9(y)})
(f,2)€(g,w) <: (z,w) € ' ({(z,y)[f(x) = 9(y)})
Now set:

Definition 3.2.13. I =TY(k, M) =: {f € I'’| dom(f) = x}.

Set D* = D*(k, M) =: the restriction of D to terms (¢, ) sucht that ¢ € T'¥
and a < A. The proof of Lemma 3.2.4 implicitely contains a basely disguised
proof that:

/\x €D\/y e Dz ~y.
The set membership relation of D* is:
(fia) € (g, B) = a, B =€ 7' ({& CH f(E) € 9(O})-

In §2.7.1. we used the term model to show that the liftup (N, 7) exists if and
only if € is well founded. In this case D* contains all the points of interest,
so we may conclude:

Lemma 3.2.8. M is extendible iff € x is well founded.

Note In the future, when dealing with extenders, we shall often fail to
distinguish notationally between I'?, D*, €* and I'°, D, €.
Using this principle we develop a further criterion of extendability. We define:

Definition 3.2.14. Let F be an extender on M at & of length . Let F be
an extender on M at k of length A.

(m.g): (M, F) = (M, F)

means:
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(a) m: M —o M and 7(R) =
(b) g: X — A

(c) Let X C &, n(X) = X, ai,...,an, < A Let g = g(ay) for i =
1,...,n. Then

<@ =€ F(X) < =€ F(X).

Lemma 3.2.9. Let (m,g) : (M,F) =M, F), where M is extendible by F.
Then M is extendible by F'. Moreover, if (N,o), (N,T) are the extensions
of M, N respectively, then there is a unique 7' such that

7N =y, N, ©'cd =om, and 7' [ X = g.
7' is defined by:
m'(@(f)(@)) = on(f)(g(e))
for f €Y and o < \.

Proof: We first show that Mjs extendible by F. Let 0 : M —r N. The
relation € on the term model D = D(&, M) is well founded, since:

(f,a)€(h, B) <=<a,B-c F{<&¢>[f(€) € h(()})
&= g(a),g(B) =€ F{=< & ¢ = [m(f)(€) € m(R)(()})
& on(f)(g9(e) € om(h)(g(8))

Now let : M — N. Let ¢ be a Xy formula.

Then:
N Eela(fi)(@),...,a(fa)(on)]
o< d-e F{= &~ [M E ¢[f(E)]})
= g(a@) € FHEIM = o[r(HE)})
& N = plom(fi)(g(ea)), ..., om(fn)(an)].

Hence there is 7' : N —y, N defined by:

T (@(f)(@) = on(f)(9(e)).

But any 7’ fulfilling the above conditions will satisfy this definition.
QED (Lemma 3.2.9)
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3.2.2 Fine Structural Extensions

These lemmas show that N is the ultrapower of M in the usual sense. How-
ever, the canonical embedding can only be shown to be Yg—preserving. If,

however, M is acceptable and x < of;, the methods of §2.7.8 suggest another

tpe of ultrapower with a E(()n)fpreserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F' be an extender at x on M.
Let H = HM be the base of F and let (H', 7’) be the extension of H by F.

Let o}y > & (hence o}, > 7). We call (N, 7) the E(()”) —extension of M by F
(in symbols: 7 : M =" N iff (N, 7) is the B liftup of (M, 7).

The extension we originally defined is then the 3¢ ultrapower (or Zéo) ultra-

power). The Zé") analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained
by a virtual repetition of our proofs, which we leave to the reader.

Letting I'™ = I'"(7, M) be defined as in §2.7.2 we get the analogue of Lemma
3.24.

Lemma 3.2.10. Let F' be an extender at k on M of length X\. Let o > K

and let (N, ) be the E(()n) extension of M by F. Then every element of N
has the form w(f)(a) where a < X and f € '™ such that dom(f) = k.

Lemma 3.2.11. Let M, F, A\, N, 7 be as above. Let ay,...,qy, < X and let
fi € T™ such that dom(f;) = k™ fori=1,...,p. Let ¢ be a Z(()n) formula.
Then:

— — - =

N = olr(£)(@)] < {{OIM = ¢[f ()]} € Fa.

Note We remind the reader that an element f of I'" is not, in general, an
element of M. The meaning of 7(f) is explained in §2.7.2.

Using Lemma 2.7.22 we get:

Lemma 3.2.12. Let 7* : M — ) M where £ = crit(7*) and 7% (k) = A,
0
where X is Godel closed. Assume: P(k) N M € M. Set:

F(X)=7"(X)NAX for X € P(k) N M.

Then:

(a) F is an extender at K of length A on M.

(b) The E(()n) extension (M', ) of M by F exists.
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c) There is a unique o : M' — ) M* such that o' [\ = id and om = 7*.
by
0

Proof: Let H = HM H* = 7*(H). Then H is a base for x and 7* |

H : H < H*. Hence by Lemma 3.2.3 F' is an extender at x with base H
and extension (H',7'). Moreover, there is a unique o’ : H' < H* such that

o' A =id and o’n’ = 7* | H. But by Lemma 2.7.22 the X{") liftup (M, )
of (M, n') exists. Moreover, there is a unique o : M’ —om M* such that
0

o | H =o' and o’ = 7*. In particular, o [ A = id. But o is then unique
with these properties, since if 6 had them, we would have:

for f € I', dom(f) = Kk, < A. QED (Lemma 3.2.12)
By Lemma 2.7.21 we get:

Lemma 3.2.13. Let 7 : M _}%n) N. Leti<mn. Then:

(a) 7 is Eg) preserving.
(b) w(ehs) = Oy if ohy € M.

(c) o4y =OnnM’ if of, = OnnNM.

The following definition expresses an important property of extenders:

Definition 3.2.16. Let F' be an extender at « of length A with base S. F'is
weakly amenable iff whenever X € P(k?)N S, then {v < k|{v,a) € F(X)} €
S for a < A\

Lemma 3.2.14. Let F' be an extender at k with base S and extension (S', 7).
Then F is weakly amenable iff P(k) NS C S.

Proof:

(=) Let Y €e P(k) NS, Y = 7(f)(a),a < \. Set X = {(v,&) € K?|v €
f(&)}. Then n(f)(a) = {v < k[{r,a) € F(X)} € S, since F(X) =
m(X) N A

(+) Let X € P(k?)NS, a < A. Then {v < k|(v,a) € 7(X)} € P(k) NS’ C
S.

QED (Lemma 3.2.14)
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Corollary 3.2.15. Lel M be acceptable. Let F' be a weakly amenable ez-

tender at K on M. Let (N,7) be the E(()n) extension of M by F. Then
P(k) NN C M.

Proof: Let H = HM, H =,y 7(u), # =« [ H. Then H is the base for
F and (H,7) is the extension of H by F. Hence P(x)NH C H C M. Hence
it suffices to show:

Claim P(k) NN C H.

Proof: Since (k) > & is a cardinal in N and N is acceptable, we have:

P(k) NN C HY, ) ==(H") € H.

™

QED (Corollary 3.2.15)

Corollary 3.2.16. Let M, F, N, be as above. Then k is inaccessible in M
(hence in N by Corollary 3.2.15).

Proof:

(1) & is regular in M.
Proof: If not there is f € M mapping a v < & cofinally to x. But

then 7(f) maps « cofinally to 7(k). But n(f)(&) = n(f(&)) = f(&) <k
for & < . Hence sup{n(f)(§)|{ <~} C k. Contradiction!

(2) kK #~" in M for v < k.
Proof: Suppose not. Then m(k) = 4t in N where 7(x) > k. Hence
k= in N and N has a new subset of k. Contradiction!

QED (Corollary 3.2.16)

By Corollary 3.2.15 and Lemma 2.7.22 we get:

Lemma 3.2.17. Let 7 : M —>¥f) N where F s weakly amenable. Then

o =supn’olt,. (Hence m is Zgn) preserving. )

With further conditions on F’ and n we can considerably improve this result.
We define:

Definition 3.2.17. Let F' be an extender at x on M of length X. F is close
to M if F' is weakly amenable and F,, is ¥;(M) for all a < .
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This very important notion is due to John Steel. Using it we get the following
remarkable result:

Theorem 3.2.18. Let M be acceptable. Let F' be an extender at k on M
which is close to M. Let n > w be mazximal such that o > k in M. Let

(N, 7) be the E(()n) extension of M by F'. Then m is X* preserving.

Proof: If n = w this is immediate, so let n < w. Then "' C k < " in
M. By the previous lemma 7 is 31—preserving. Hence 7(k) is regular in N.
Set: H=HM. Then H = HY.

(1) Let D C H be 2" (N). Then D is 2™ (M).
Proof: Let:
D(z) & \/2"D'(z", 2z, 7(f)())

where o < A\, f € I' such that dom(f) = &, and D’ is E(()n). Then by
Lemma 3.2.14:

D(z) < VueHYy\Vzen(uD (z,zm(f)(a))
< \Vue Hjaen(e)
< \Vue HyjeecF,

where e = {£|\/ 2 € uD(x, z, f(£))} where D is Eén)(]\/[) by the same
definition as D" over N. QED (1)

By induction on m we then prove:

(2) (a) Hyy = HY
(b) =" () npHE) = =" (N) N P(H)

(¢) 7is ng)fpreserving.

Proof:

Caselm=n+1

(a) Let M = (JA,B), N = (J4,B'). Then: H = J! = J&'. But
P(o)NM =P(p) NN =P(p) N H for p < k.
But then in M and N we have:
o™ = the least 0 < k such that DN Jé“ ¢ H for D € ;5”)
and H™ = Jg‘m.
Hence o}y = o}, Hy; = H}. QED (a)
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(b) Let A(z™,2",...,i,) be Egm)(M), where i1,...,i, < n. Let A be
Eim)(N ) by the same definition. Then there are Egm)(M ) relations
B (Z",#)(j =1,...,q) and a ¥ formula ¢ such that

A@@™,T) « Hy = ol™]
where Fg = (Hm,E;, ...,BL) and
By = (@B " ®)( = 1.....q).
Let BJ/(z™, %) have the same Egn) definition over N. Define HZ' the
same way, using B',..., B? in place of El, ...,B?. Then
A@E™,3) & HE = ol

But H}; = Hj;. Hence, since 7 is Eg") preserving, we have: Ejf =

Bfr(f). Hence Hy = HT . But then:
AT, )« Hg o™
= Hz = lz™]
< A(Z™, 7(T))
& A(m(T™), 7(T))
since w(Z™) = &™. QED (b)

(c) The direction C follows straightforwardly from (c). We prove the di-
rection D. Let A C H}} be Egm)(N). Then there are B/ C HY(j =
1,...,q) and a X formula ¢ such that B/ is Zgn)(N) and

A, & (HE, BY.. BY) E o).
But HY = HY, and Bl ... B9 are Zgn)(M) by (1). Hence A is
=™ (). QED (Case 1)
Case 2 m = h+ 1 where h > n.
This is virtually identical to Case 1 except that we use:
h h
= ne(ly) = 2 ne()
in place of (1). QED (Theorem 3.2.18)
As a corollary of the proof we have:

Corollary 3.2.19. Let m > n where M, N,n are as in Theorem 3.2.18.
Then
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o Hy, = HY

o S (M)NP(HY) = £ (N) NP(HR).

Theorem 3.2.18 justifies us in defining:

Definition 3.2.18. Let F be an extender at kK on M. Let n < w be maximal
such that oy > k. We call (N, ) the ¥*—extension of M by F (in symbols

m: M —} N)iff Fis close to M and (N, ) is the E(()n) extension by F.

3.2.3 n—extendibility

Definition 3.2.19. Let F' be an extender of length A at x on M. M is
n-estendible by F iff k < o7, and the X" extension (N, ) of M by F
exists.

(N, ), if it exists, is the E(()n) liftup of (M, ') where H = HM is the base
of F, 7 = k™ and (M’,7') ist the extension of H by F. To analyse this
situation we use the term model D = D™ (x’, M) defined in §2.7.2. The
points of D are pairs (f, z) such that f € I'™ = TI'"(r, M) as defined in §2.7.2.
and z € 7'(dom(f)). The equality and set membership relation of D are
again defined by:

(f,2) = (g, w) & (z,w) € 7' ({(z,y)|f(x) = 9(v)})
(f,2)€(g,w) < (z,w) € ' ({{z, y)|f(z) = 9(y)})

Set: I't = I'}(k, M) =: the set of f € I'™ such that dom(f) = k. Let
D, = Din) (F, M) be the restriction of D to points (f,d) such that f € T'?
and a < A. The proof of Lemma 3.2.8 tells us that

/\xeD\/yeD*x:y.

Hence M is E(()") extendable iff the restriction €* of the relation € to D, is
well founded.

We have:

(fra) € (9,8) = a,B - F{&,¢ = [f(£) € 9(O})-

Note When dealing with extenders, we shall again sometimes fail to distin-
guish notationally between I'7, ka”), €* and I, [D)(n)7 =

We now prove:
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Lemma 3.2.20. Let (r,g) : (M, F) — (M, F), where M is m-extendible by
F. Let n < m and let w be strictly E[()n) preserving. Then M is n—extendible
by F. Moreover, if (N, o) is the E[()m) extension of M by F and (N,5) is the
E(()n) extension of M by F. There is a unique 7' such that

N — () N, 7’5 = o7, 7' [ X =g.
0

7 is defined by:
T (@(f)()) = o7 (f)(g(e))
for f € TR, M), a < .

Proof: k < ¢, since otherwise x > W(Q?TI) > oy, by strictness. Let €* be

the set membership relation of D, = D.(F, M

~—

Then:

(fra) € (h,B) ©=a,B-€ F{<&Cf(§)€9(Q)})
“=g(a),g(B) =€ F{= & ¢~ [n(f)(€) € m(9(0)})
< om(f)(€) € om(h)(Q).

Hence there is 7/ : N —rgm N defined by:
0

' (@(f) (@) = on(f)(g(c)).

But any 7’ fulfilling the above conditions satisfies this definition.
QED (Lemma 3.2.20)

Taking m, g as id, we get:

Corollary 3.2.21. Let M be Eém) extendible by F'. Let n <m. Then M is
Eén) extendible by F'. Moreover, if o : M —>%m) Nando: M —>§;m) N, there
isT: N —sm N defined by:

0

7(3(f)(@) = o(f)(a) for f €T, a < A

Lemma 3.2.20 is somewhat unsatisfactory, since although we assumed the

strictness of the Z(()n) embedding 7, we could not conclude that 7’ is strict.

Similary, even if we assume that 7 is fully Zgn) preserving, we get no corre-
sponding strenghtening of /. We can remedy this situation by strengthening

our basic premiss. We define:

Definition 3.2.20. (r7,g): (M,F) —* (M, F) iff the following hold:
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e (m,g9): (M,F)— (M, F)
e F.F are weakly amenable

e Let @ < A = length (F). Then F, is ¥;(M) in a parameter p and
Fy(a) is X1(M) in p = 7(p) by the same definition.

(Hence F is close to M.) Taking n = M in Lemma 3.2.20 we prove:

Lemma 3.2.22. Let (m,g) = (M, F) —=* (M,F). Let o : M —>S?) N where
T 1S Egn) preserving. Let & : M —>g}) N, 7 : N = N be given by Lemma

3.2.20. Then 7' is Zgn) Preserving.

We derive this from a stronger lemma:

Lemma 3.2.23. Let (m,g) : (M,F) —* (M,F). Let n,N,N~, 7’ be as
above, where m 1is Zgn) preserving. Let D(y,x1,...,,) be E(ln)(ﬁ) and
D(y,x1,...,x,) be Egn)(N) by the same definition. Let 7'(Z;) = z;(i =
1,...,7). Then

{t# € HY|D(@ 71, 7,)}
is Egn) (M) in a parameter D
and:

{(9) € HYD(, 21, 20)}

is Eg")(M) inp=m(p) by the same definition.

Before proving Lemma 3.2.23 we show that it implies Lemma 3.2.22. Let

D(xq,...,x,) be Zgn)(ﬁ) and let D(z1,...,z,) be Egn)(N) by the same
definition. Set:

D'(y,%) <+:y = o AD(Z); D (y, %) <»: y = o A D(Z).

Let n'(z;) = z; (i =1,...,r). Applying Lemma 3.2.23 and the Egn) preser-
vation of m we have:
D(Zy,...,%,) +roc{ye HID'(y,7,...,7)}
oc{ye HY|D'(y,x1,...,2,)}
D(zy,...,x,).

QED



3.2. EXTENDERS 175

We now prove Lemma 3.2.23. For the sake of simplicity we display the proof
for the case n = 1. Let D(#, ) be E(ln) (N) and D(%, ) be Egn) (N) by the
same definition. We may assume:

D(,x) < \/ 2"B(z",y,2), D(i,x) < \[ 2", y,)

where B is Zé") (N) and B is Eén)(N) by the same definition. Let A have the
same definition over M and A the same definition over M. Let x = 7'(T).
Then 7 = o(f)(a) for an f € I'" and a < A. Hence z = o7(f)(g(c)). Then
for 7 € HM:
D(y,7) <\ 2"B(z",4,7)
< VueH\ze (u)B(2", ij,oH)(a)
o Vue HEHE <R/ 2 € uA(, 7, £(€)) € P

Similarly for ¥ € H we get:

D(§,7) < \/ue Hy{\/ 2 € ul(z,5,7(f)(€)} € Fya).

F,is ¥1(M) in a parameter p and Fy(a) is X1(M) in a parameter p = 7(p).
But by the definition of I'™ we know that there are g, ¢ such that either:

f=7q¢€ Hj; and ¢ = 7(f)

or:
f(€) ~ G(£,q) where G is a good Egz) (M) map
and:
7(f)(&) ~ G(&q) where G has the same good definition over M.
Hence:

{(7) € HY|D(7,7)}
is Zgn) (M) in %, q,p and:
{(HHM|D(7,2)}

is 2™ (M) in k,q,p by the same definition. QED (Lemma 3.2.23)

3.2.4 x—extendability

Definition 3.2.21. Let F' be an extender of length A at x on M. M is
x—extendible by I iff F is close to M and M is n—extendible by F', where
n < w is maximal such that x < of;.
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Hence m : M —% N where (N, ) is the 2" _extension.
( F 0

Lemma 3.2.24. Assume (7, g) : (M, F) —* (M, F) where M is x—extendible
by F'. Assume that w 1s X* preserving. Then M is x—extendible by E. More-
over, if o : M _>*F N and o : M —% N, there is a unique ™' : N =y« N

such that 7'c = om and ™' |\ = g.

Proof: Let n be maximal such that x < of;. Let 0 : M —>§f) N. By
Lemma 3.2.22 we have k < g’}v and ther is & : M —>(fn) M. Moreover there

is7: N —gm N such that 7'c =omand ' |\ =g.
1

Claim 1 n is maximal such that ¥ < Q”M.

Proof: If not n < w and Q’](jl < Kk < g};. Hence

/\ 2" £ g holds in M.

e . 1 .
Thus A 2"tz # & in M, since 7 is 2((]714- ) preserving. Hence

n+1 — n :
057 SR <04 (QED Claim 1)
Note In the case n < w we needed only the ZénH) preservation of 7w to

establish Claim 1.

By Claim 1 we then have:

(1) W:M—)%N.

Hence M is —extendible by F. It remains only to show:

Claim 2 7 is ¥* preserving.
Proof: If n = w, ther is nothing to prove, so assume n < w. We must

show that 7’ is E(()m) preserving for n < m < w. Let n < m < w. Since
o: M —% N, we know that:

(2) oy = 0% and o [ o}f} = id.
By Claim 1 an (1) we similarly conclude:
(3) off = o and 7 [ o7 = id.

Using (2), (3) and Lemma 3.2.23 we can then show:
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(4) Let D(7™, ) be £ (N). Let D(7™, ) be £\ (N) by the same
definition. Let
W,(fi) = 1‘2(2 =1,... ,7’).
Then:

th---,fr = {<gm> rﬁ(g’mvflv s 757”)}
is Egm) (M) in a parameter p and:
D:rl,...,xr = {<?jm>‘D(37ma xlv cee >xr)}

is ng) (M) in p = 7(p) by the same definition.
Proof: By induction on m.

Casel m=n+1
We know: B
D(gm, T) < Hz E o[y

where ¢ is Y; and
HY = (H". B;,...,BY

where E; = {<Zm)|§z(2’m, x)} and B is SM(N) fori=1,...,q. Since

D(y™, %) has the same Egm) definition, we can assume

D(ym,7) < HF' |= ¢lym]
where:
¥ = (Hf}, By,.... BY)
where BL = {(z™)|B(Z™,x)} and B’ is Egn) (N) by the same definition
as B' over N. Letting 7/(%;) = 2; (i = ¢, ...,7), we know by Lemma
3.2.23 that each of E%,...Er is 2%71) (M) in a parameter p and Bl
is Zgn) (M) in p = 7(p) by the same definition. (We can without loss

of generality assume that p is the same for ¢ = 1,...,7.) But then
Dz, is S (M) in pand Dy, is " (M) in p = m(p) by the
same definition. QED (Case 1)

Case 2 m = h + 1 where h > n.
We repeat the same argument using the induction hypothesis in place
of Lemma 3.2.23. QED (4)
But Claim 2 follows easily from Claim 4 and the fact that = is ¥*
preserving. Let D(T) be Eém) (N) and D(Z) be El(]m)(N) by the same
definition. Set: -, o

D (y, %) <»:y =0A D(Z)

D'(y,Z) <»:y = 0 A D(Z)
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By (4) we have:

D(&) ¢+ 0 € Dz < 0 € Dyu(z) < D('(2))

for x1,...,x, € M, using the Eém) preservation of 7 and 7 (0) = 0.
QED (Lemma 3.2.24)

Note The last past of the proof also shows that 7’ is (m) preserving if w
§ g
is.)

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of
infinity". These are principles which posit the existence of a large set or class,
not provable in ZFC. Among these principles are the embedding axioms,
which posit the existence of a non trivial elementary embedding of one inner
model into another. The best known example of this is the measurability
aziom, which posits the existence of a non trivial elementary embedding 7
of V into an inner model. ("Non trivial" here means simply that 7 # id.
Hence there is a unique critical point k = crit(m) such that 7 [ x = id and
m(k) > k.) The critical point x of 7 is then called a measurable cardinal,
since the existence of such an embedding is equivalent to the existence of an
ultrafilter (or two valued measure) on k.

This is a typical example of the recursing case that an axiom positing the
existence of a proper class (hence not formulable in ZFC) reduces to a state-
ment about set existence. The weakest embedding axiom posits the existence
of a non trivial embedding of L into itself. This is equivalent to the existence
of a countable transitive set called 00#, which can be coded by a real number.
(There are many representations of 0%, but all have the same degree of con-
structability.) The "small" object 0% in fact contains complete information
about both the proper class L and an embedding of L into itself. We can
then form L(0%), the smallest universe containing the set 0%. If L(0%) is
embeddable into itself we get 07#, which gives complete information about
L(07) and its embedding ... etc. This process can be continued very far.
Each stage in this progression of embeddings, leading to larger and larger
universes, is coded by a specific set, called a mouse. 07 and 0% are the
first two examples of mice. It is not yet known how far this process goes, but
it is conjectured that all stages can be represented by mice, as long as the
embeddings are representable by extenders. (Extenders in our sense are also
called short extenders, since one must modify the notion in order to go still
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further.) The concept of mouse, however hard it is to explicate, will play a
central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which
takes a set a to a™, since applications of this operation give us the smallest
mice 0%, 0##  etc.

Let a be a set such that a € L[a]. Suppose moreover that there is an
elementary embedding 7w of L* = (L[a], €,a) into itself such that a € L2,
where xk = crit(m). We also assume without loss of generality, that « is
minimal for m with this property. Let 7 = ™" and v = supn”7. Then
7 L% < LY cofinally, where # = w [ L%. Set F' = w [[P(k). F is then an
extender at x with base L.[a] and extension (L, [a], T).

(L%, F) = (Lyla],a, F) is then amenable by Lemma 3.2.2. It can be shown,
moreover, that F'is uniquely defined by the above condition. We then define:

Definition 3.3.1. a is the structure (L,[a],a, F).

Note In the literature a has many different representations, all of which
have the same constructibility degree as (L,[a],a, F). a* has a number of
interesting properties, which we state here without proof. F' is clearly an
extender at x on (L%, F'). Moreover, we can form the extension:

o - <L3,F> —F <La F1>

14
We then have mp D 7, mo(k) = v. (In fact mg = «’ [ L2.) But we can then
apply F1 to (L% , F1) ... etc. This can be repeated indefinitely, showing that

vy?
a” is iterable in the following sense:

There are sequences k;, 74, v, Fj(i < 00) and m;;(1 < j < 00) such that

e K=K, T9o=T,Vg =V, Fy =F.

+Lg.
/ / <
® Rit1 = 7Ti,i+1(“i), Vi = 7Ti,i+1(7ri)a Ti =Ry
e F;is afull extender at ; with base L, [a] and extension (L,,[a], 7}, |

L.
o m i (Ly. Fi) —r (L, Fin)-
e The maps m;; commute — i.e.
ﬂ'gi = id; W;jﬂ';n- = ﬂ';n-.
e For limit A, (LY, , F)), (mjy|i < A) is the transitivized direct limit of

(L3

2

)i < &), (w;li < j < A).
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It turns out that a” = (L%, F) is uniquely defined by the conditions:

e (L% F) is iterable in the above sense

e v is minimal for such (L%, F).

If a = () we write: 0%. 0% = (L, F) is then acceptable. By a Lowenheim—
Skolem type argument it follows that 0% is sound and g(l)# = w. (To see this

let M = 0%, 2 = hys(w). Let 0 : M <> X be the transitivization of X, where
M = (L,,F). Using the fact that o : M — M is %;-preserving and M is
iterable, it can be shown that M is iterable. Hence M = M, since 7 < v and
v is minimal.) But then 0% is countable and can be coded by a real number.
But this is real given complete information about the proper class L, since
we can recover the satisfaction relation for L by:

L = olf] & Ly, | ol7]

where 7 is chosen large enough that z1,...,2, € L.,. But from 0% we also
recover a nontrivial elementary embedding of L into itself, namely:

7: L —p L where 0% = (L,, F).

0% is our first example of a mouse. All of its iterates, however, are not
sound, since if i > 0, then rng(mp;) = has, (w), where Q}Wi = Q]l\/[O = w. But
Ko ¢ rng(mo;).

We can iterate the operation #, getting 0,07, (0%)#, ... etc. This notation

is not literally correct, however, since a is defined only when a € L[al.
Thus, setting:

n

—
0# (1) :0#---#7

we need to set: 0%+ = (¢m)# where " codes 0,...,0%™ . If we do this
in a uniform way, we can in fact define 0% for all £ < oco.

Definition 3.3.2. Define €, v;, 0%() = <L§Z, E,,)(i < o) as follows:

et {(x I/Z>| <iAwz€E,} (hence ¢’ =)
©) =: (9, 0) (hence vy = 0)

O#(z+1) — (e ) (hence v; 11 > 1)

For limit A we set:

v =:supy;, 0¥ = <Lﬁi
1<

,0), (hence ) = E,,).
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By induction on i < oo it can be shown that each 0#() is acceptable and
sound, although we skip the details here. Each 0#() is also iterable in a
sense which we have yet to explicate. As before, it will turn out that the
iterates are acceptable but not necessarily sound. Set:

E = U e'.

<00

Then L[E] is the smallest inner model which is closed under the # operation.
(For this reason it is also called L#.) We of course set: LF =: (L[E], €, E).

L¥ is a very L-like model, so much so in fact, that we can obtain the next
mouse after all the 0#()(; < c0) by repeating the construction of 0% with
L¥ in place of L: Suppose that 7 : L¥ < L¥ is a nontrivial elementary
embedding. Without loss of generality assume the critical point x of 7 to be
minimal for all such 7. Let 7 = x+=° and v = supn”7. Then # = w [ LE.
Set: ' = 7w [P(k). Then F is an extender with base L.[E] and extension
(L,|E],%). The new mouse is then (LZ F).

As before, we can recover full information about L from (LZ, F') and we can
recover a nontrivial embedding of L¥ by: 7 : L¥ —p LE. e = EU{(z,v)|x €
F} then codes all the mice up to and including (LZ, F), so the next mouse
iq o

18 e ... etc.

(Note that LE||lv = (LE.0) since, if k; = crit(E,,,,), then the sequence
(Kili < oo) of all critical points of previous mice is discrete, whereas x =
crit(F) is a fixed point of this sequence.)

This process can be continued indefinitely. At each stage it yields a set
which encodes full information about an inner model. We call these sets
mice. Each mouse will be an acceptable structure of the form M = (J¥ E,)
where F = {{x,v)|v < aAx € E,} codes the set of 'previous’ mice. For
v = a we have: Either E, = () or v is a limit ordinal and E, is a full extender
at a k < v with extension (J,[F],7) and base J,[E], where 7 = x*M.

For limit £ < o we set: M||§ =: <J€E,E§>. A class model LZ is called a
weasel iff B = {{z,v)|lv < co Az € E,} and L¥||a =: (JE E,) is a mouse
of all limit .

When dealing with such structures M satisfying, we shall often use the fol-
lowing notation: If E, # {), then s, = the critical point of E,, 7, = kT JF,
and )\, = the length of E, = 7(k,), where (JF ) is the extension of ny by
E,.

In the above examples, the extenders E, were so small that 7, eventually
got collapsed in L[F,]. Thus E, was no longer an extender in L[E,], since
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it was not defined on all subsets of k. However, if we push the construction
far enough, we will eventually reach an F, which does not have this defect.
L[E,] will then be the smallest inner model with a measurable cardinal.

In the above examples the extender E,, is always generated by {x, } Hence we
could just as wel have worked with ultrafilters as with extenders. Eventually,
however, we shall reach a point where genuine extenders are needed. In the
examples we also chose A\, = 7(k,) minimally — i.e. we imposed an initial
segment condition which says that F, |\ is not a full extender for any A\ < \,.
This condition can become unduly restrictive, however: It might happen that
we wish to add a new extender E, and that F,|) is an extender which we
added at an earlier stage. In that case we will have: E,|\ € JE. In order to
allow for this situation we modify the initial segment condition to read:

Definition 3.3.3. Let F' be a full extender at x with base S and extension
(S’, ). F satisfies the initial segment condition iff whenever A < (k) such
that F|\ is a full extender, then F|\ € S'.

As indicated above, we expect our mice to be #terable. The example of
an iteration given above is quite straightforward, but the general notion of
iterability which we shall use is quite complex. We shall, therefore, defer it
until later. We mention, however, that, since mice are fine structural etities,
we shall iterate by X*—extensions rather than the usual Yy—extensions. In the
above examples, the minimal choice we made in our construction guaranteed
that the mice we constructed were sound. However, in general we want the
iterates of mice to themselves be mice. Thus we cannot require all mice
to be sound: Suppose e.g. that M = (JE F) is a mouse and we form:
7 M —% M’'. Then M’ is no longer sound. (To see this, let p € Pi,. It
follows easily that m(p) € Pi,. But x ¢ rng(n); hence r is not $1(M’) in

(p).)

As we said, however, our initial construction is designed to produce sound
structures. Hence we can require that if M = (JF F) is a mouse and A < v,
then M|\ is sound, since this property will not be changed by iteration.

By a premouse we mean a structure which has the salient properties of a
mouse, but is not necessarily iterable. Putting our above remarks together,
we arrive at the following definition:

Definition 3.3.4. M = (J¥ F) is a premouse iff it is acceptable and:

(a) Either F = () or F is a full extender at a k < v with base J,[E], where
7 = kT and extension (J,[E], w). Moreover F is weakly amenable
and satisfies the initial segment condition.
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(b) Set E, = E"{~} for v < v. If ¥ < v is a limit ordinal, then M||y =:
<J7E, E,) is sound and satisfies (a).

(¢) E={(z,n)|x € E,Nn < vis a limit ordinal}.
We call a premouse M = (JF F) active iff F' ¢ (). If F is inactive we often

write JE for (JE, (). We classify active premice into three types:

Definition 3.3.5. Let F' be an extender on x with base S and extension
(S', 7). We set:

C=Cr=A{Nk <X<7(k)AF|\is full}
Fisof type 1if C =0

F is of type 2 iff C # () but is bounded in 7 (k)

F is of type 3 iff C' is unbounded in (k)

Let M = (JF F) be a premouse. The type of M is the type of F. We
also set: Cyy =: Cp.

It is evident that F satisfies the initial segment condition iff F|A € S when-
ever A € Cp.

Premice of differing type will very often require different treatment in our
proofs. In much of this book we will assume that there is no inner model
with a Woodin cardinal, which implies that all mice are of type 1. For now,
however, we continue to work in greater generality.

Lemma 3.3.1. Let F be an extender at k with base S and extension (S’, ).
Let k < X < mw(k). Then X\ € Cr iff 7(f)(a1,...,an) < X for all f € M
such that f: kK™ — Kk and all aq,...,qp < .

Proof: We first prove the direction (—). Let F* = F|X be full with ex-
tension (S*,7*). Let f,ai,...,a, be as above. Let 8 = 7*(f)(&). Set

—

e={(&1,...,&,0)|f(&) =6}. Then f < X and:

(@,8) € F*(e) = AL A Fe).
Hence 7(f)(a@) =5 < A QED (=)
We now prove («). Let f,aq,...,a, be as above. Then 7(f)(d) = 8 < A.

Hence
(@,B) € F(e) N A" = F*(e).

Hence 7*(f)(d) = B < A. But each v < 7*(k) has the form 7*(f)(&) for
some such f,a1,...,a, < A. Hence 7*(k) = A = length (F™*).
QED (Lemma 3.3.1)
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Corollary 3.3.2. Cr is closed in w(k).

Corollary 3.3.3. Let F,S,S’, 7 be as above and let F' be weakly amenable.
Then Cr is uniformly 1 ((S’, F)) in k.

Proof: S’ is admissible and the Godel function <, = is uniformly X over
admissible structures. By weak amenability we know that P(k?) NS =
P(k?) N S’. S’ is admissible and Godel’s pair function <, > is ¥1(S’) and
defined on (Ong:)2. Then ") is Gédel—closed" is A1(S’), since it is expressed
by AN&d <A <& =< A By Lemma 3.3.1, "\ € Cp" is equivalent in S’
to:

k<A Cm(k)AXis Godel-closed A

ANFn—=kENa<AVB<A<a,p>~€ F(ey)
where ey = {< 0,& >< k[f(§) = d}. The function f — ey is X;(5’) in £ and
defined on {f € S|f : kK — k}. Note that u = (k) is expressible over (S’, F')

by (u,k) € F and € = F(e) is expressible by (¢/,e) € F'. Thus A € CFp is
equivalent to the conjunction of ’X is Godel-closed’ and:

Ne e, f(((€,e) e FA(u,k) EFAf:k—KNe=eyp)
S (k< A<pANa<A\B<A<a,pB=c¢))

QED (Lemma 3.3.3)

We now turn to the task of analyzing the complexity of the property of being
a premouse and the circumstances under which this property is preserved by
an embedding o : M — M'. If M = (JF F) is an active premouse, the
answer to these question can vary with the type of F.

We shall be particularly interested in the case that, for some weakly amenable
extender G on M at a & < g%, M’ is the Z((]n) extension (M’ o) of M by G
(i.e.o: M —>(Gn) M"). In this case we shall prove:

e )M’ is a premouse

e If M is active, then M’ is active and of the same type

e If M is of type 2, then o(max Cys) = max Cyyr.
This will be the content of Theorem 3.3.22 below. Note that if G is close to
M in the sense of §3.2, and n is maximal with & < o7, then M’ is a fully

¥*—preserving ultrapower of M (i.e. o : M —¢ M’). In later sections we
shall consider mainly iterations of premice by X *—ultrapowers.
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(Note In later sections we shall mainly restrict ourselves to premice of type
1. For the sake of completeness, however, we here prove the above result in
full generality. The proof will be arduous.)

We first define:
Definition 3.3.6. M = (JF F) is a mouse precurseor (or precurseor for
short) at k iff the followin hold:

e M is acceptable

exkcEMandT =™ c M

e Fis a full extender at k on J¥ with extension (JF, ).

(Note F' then has base J.[E] and extension (J,[E],m).)
(Note F' is weakly amenable, since P(k) N M C J;[E] by acceptability.)

Lemma 3.3.4. M = (JF F) is a precurseor at k iff the following hold:

(a) M is acceptable
(b) F is a function defined on P(k) N M
(c) Flk=id, k < F(k) = X\, where X is the largest cardinal in M.
(d) Let ay,...,a, € P(k) N M. Let ¢ be a ¥y forumla. Then:
IJ [ eld] & J) = o[F(a))
(e) Let £ <wv. Thereis X € P(k) N M such that
F(X) ¢ JE.

Proof: We first note that JZ = ¢[ad] can be replaced by JZ = p[a] where
7 = kM by acceptability. The direction (—) then follows easily. We prove

(<)

We first note that F' injects P(x) N M into P(\) N M. F is injective by (d).
But if X C &, then F(z) C F(k) = X by (d).

(1) JE < JE.
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Proof: We first recall that by §2.4 each x € JF has the form f(a) for some
first a C &, where f is ¥1(JF). By §2.4 we can choose the ¥ definition of
f as being functionally absolute in J-models. Now let x1,...,z, € JE.

Let ¢ be a first order formula. We claim:

IV old] = JY | ol

Let z; = fi(a;), where a; C k is finite and f; has a functionally absolute
definition 'z = f;(a)’. Then JF | 'z; = fi(a;) for i = 1,...,n. Let ¥ be
the formula:

Vw1 an(\ wi = fila) Ap(F)).
i=1
Then:
T Eold < 7 E v
and:
Iy eld] o JY E vla).
But JE = ¥[d] is £1(M) in k,d@ and JE = ¥[d] is T1(M) in A\,@ by the

same definition. Moreover F'(a;) =a; (i =1,...,n) and F (k) = \.

Hence by (d):

—

JYEeld I E v
« JE = V[a
<« J{ [ old].

QED (1)

It follows easily, using acceptability, that JZ and J)’\E are ZFC™ models.
Godel’s pair function <, > then has a uniform definition on JF and Jf .
Hence (< o, = |a, B € JE) is £1(M) in k and (< o, B8 = |a, B € JF) is
Y1 (M) in A by the same definition.

For any X C k there is at most one function I' = I'x defined on k such
that I'(a) = {T'(B)] < B,a =€ X} for @« < k. For X € P(k) N M the
statement f = I'x is uniformly 31 (M) in X, f, k. Moreover the statement
V f f=Tx (Tx is defined’) is uniformly ¥;(M) in X, k. The same is true
at A: For Y C A the statement f = I'y is uniformly ¥; (M) in Y, f, A and the
statement \/ f f = Iy is uniformly 3{(M) in Y, A by the same definition.

We must define a 7 such that (J,[E], 7) is the extension of F'. The above
remarks suggest a way of doing so:

Definition 3.3.7. Let x € JZ,
f € JE map  onto u. Set:

X={<a,p~|f(a) € f(B)},

x € u, werhe u € JF is transitive. Let
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then f =Tx. Let f” =:Tp(x). Let = f(&) where { < k. Set:

() = mpe() = f(8).

We must first show that 7 is independent of the choice of f,£. Suppose that
x € v, where v € JF is transitive, and g € JX maps x onto v. Then, letting
Y ={<a,8>|9(a) € g(B)}, we have: Let x = ¢g({). Then by (d):

f) =Tx(&) =Ty(¢) = mre(x) = Tpx) (&) = Trr) () = mg ().

Similarly we get:
(2) T JE %0 ]VE

Proof: Let z1,...,2, € J¥. Let z1,...,2, € u, where u € JF is transitive.
Let f; € JE map k onto u(i = 1,...,n). Set: X; = {< o, B = |fi(a) €
fi(B)}. Let x; = fi(&). Let ¢ be ¥g. By (d) we conclude:

—

TP ld] © IF EelTg(©)
A ij—E = ‘P(FF()Z)(_'))
where F'(X;)(&) = 7(xi)- QED (2)

(3) F(X)=n(X) for X e P(k) N M.

Proof: Let X = f(u) where u < k, f € JE and f : k — u, where u
is transitive. Set: Y =: {< o, > |f(a) € f(B)}. Then f = I'y and
X =Ty (p). By (d) we conclude:

F(X) =Tpyy(p) = m(X).
QED (3)

It remains only to show:
(4) m: JE — JE cofinally.

Proof: Let y € JE. If y € JEE, ¢ < v, there is an X € P(k) N M such that
F(X) ¢ JE. Tet X € JJ, < 7. Then:

F(X)=n(X) € Jf,
Hence 7(p) > € and:

y € I,y =m(J)).

QED (Lemma 3.3.4)
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Corollary 3.3.5. Let M = (JE F). The statement ‘M is a precursor’ is
uniformly Ta(M).

Proof: The conjunction of (a) — (e) is uniformly II3(M) in the parameters
k, A. Let it have the form R(x, A), where R is IIs. It is evident that if R(x, \)
holds, then (k,\) is the unique pair of ordinals which is an element of F.
Hence the conjuncion of (a) — (e) is expressible by:

\ 5 Ak, A) € F A N\ K A((5,X) € F = R(k, N)).

QED (Corollary 3.3.5)

Definition 3.3.8. M = (JF  F) is a good precursor iff M is a precursor and
F satisfies the initial segment condition.

Corollary 3.3.6. Let M = (JF F). The statement M is a good precursor
at Kk’ is uniformly s (M).

Proof: Let M be a precursor. Then F satisfies the initial segment condition
iff in M we have:

AneC\ F'(F'is a function Adom(F) = P(x))
ANY, X((Y,X) € F— (Y N1, X) € F')
This is 13 since C' is Ils. QED (Lemma 3.3.6)

Lemma 3.3.7. Let M = (J,,F) be a precursor at k. Let 7 = k™ and
let (J¥ ) be the extension of JE by F. Then 7 and dom(r) are uniformly

Ay(M).

Proof: 7 is uniformly (M) in &, A since by the definition of 7 in the proof
of Lemma 3.3.4 we have:

y =m(x) < VfVuVXVEVY(uis transitive A

Jir™Sune=f)AX ={<a,B>|f(0)€ [(B)}
AY = F(X) Ay =Ty (9)).

Let ¢(k, A, y,x) be the uniform ¥; definition of 7 from &, A\. Then (k, \) is
the unique pair of ordinals such that (k,\) € F. Hence:

y=m(x) < \/5A((5,\) € FAM E glk, Ay, 2]).
Then 7 is uniformly 31 (M). But dom(w) = J¥; hence:

yedomm <\ k& A((K,\) € FAye (JE)R)
Ar (5, X) € F =y € (JE)IY),
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Thus dom(r) is uniformly A;(M). But then
y= w(x) <+ (y € dom(m)A
Ny € My #y —y #n(x))).
Thus 7 is Ay (M). QED (Lemma 3.3.7)
But then:

Corollary 3.3.8. Leto : M —x, M’ where M = (JF, F) and M’ = (JE'F')
are precursors. Let (JE w) be the extension of JE by F and (JE  x') be the

v v

extension of ng by F. Then:
on(z) ~7n'o(x) for x € M.
The satisfaction relation for an amenable structure (JE. B) is uniformly

A1(M) in the parameter (JF B) whenever M > (JF, B) is transitive and
rudimentarily closed.

(To see this note that, letting £ = E N JF, the structure (M, E, B) is rud
closed. Hence its Yo—satisfaction is A;((M, E, B)) or in other words A (M)
in E, B. But if ¢ is any formula in the language of (JF, B), we can convert
it to a Xo formula ¥ in the language of (M, E, B) simply by bounding all
quantifiers by a new variable v. Then:

(JE,B) & ¢ld] ¢ (M, E, B = 9lJ,[E], 4]
for all o1,...,2, € JF)
It is apparent from §2.5 that for each n there is a statement ¢, such that
(JE B) is n-sound « (JZ B) = ¢,.
Moreover the sequence (pp|n < w) is recursive. Thus

Lemma 3.3.9. "(J¥ B) is sound" is uniformly 1y (M) in (JE, B) for all
transitive rud closed M > (J,, B).

Using this we get:
Lemma 3.3.10. Let J¥ be acceptable. The statement (JF () is a premouse’
is uniformly 11 (JE).

Proof: (JF, () is a premouse iff the following hold in JZ:

e Nx € E\ v,z € TC(x)(z = (z,v) A\v € LmAz € JF)
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e Av(veLm— (JE E"{v}) is sound)
o ANv(E"{v} # 0 — (JE E"{v}) is a good precursor).
QED (Lemma 3.3.10)

An immediate corollary is:

Corollary 3.3.11. Let M, M be acceptable. Then:

o Ifm: M —x, M and M is a passive premouse, then so is M.

o Ifm: M —x, M and M is a passive premouse, then so is M.

The property of being an active premouse will be harder to preserve. (JF F)
is an active premouse iff (JF, () is a passive premouse and (JF, F) is a good
precursor. Hence:

Lemma 3.3.12. (JF F) is an active premouse’ is uniformly U3 ((JE, F)).

(Note This uses that being acceptable is uniformly II;((JF, F)) when v €
Lm*.) An immediate, but not overly useful, corollary is:

Corollary 3.3.13. Let M, M, be J-models.

o Ifm: M —yx, M and M is an active premouse, then so is M.
o Ifm: M —x, M and M is an active premouse, then so is M.
In order to get better preservation lemmas, we must think about the type of

Fin (JE,F). Fis of type 1 iff Cr = (). By Corollary 3.3.3 the condition
Cp =0 is s ((J,, F)) uniformly. Hence

Lemma 3.3.14. The statement ‘M is an active premouse of type 17 is uni-
formly Tlo(M) for M = (JE F).

Hence

Corollary 3.3.15. Let M, M be J-models.

o Ifm: M —yx, M and M is an active premouse of type 1, then so is M.

o Ifm: M —x, M and M is an active premouse of type 1, then so is M.

A more important theorem is this:
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Lemma 3.3.16. Let M be an active premouse of type 1. Let G be a weakly

amenable extender on M at R, where & < o};. Let (M' o) be the Z(n)
extension of M by G. Then M’ is an active premouse of type 1.

Proof: We consider two cases:

Case 1 n=0.
Claim 1 M' = (J¥

v

F’) is a precursor.

(1) F’is a function and dom(F’) C P(k), since these statements are
II; and o is ¥ preserving
For ¢ <7=nrT™ get: n(&) =7 [Jg,w’(f) = o(n(£)), then
(2) 7€) : T3ie) < Toney
since (&) : J5 =< Jf(g)
Set: ' = Jn'(€). Since sup 7’7 = v and supo”’v = v/, we have

(3) o: (M, ) =%, (M',7") cofinally.
(4) dom(r') = U r(JE) = JZ,

&<t
where 7/ = o (1) = KM and K = o(k). Hence
(5) ' JE —w, JE cofinally.
(6) F' =" |P(K)
by (1) and:

N X(X € JEo AP(R) = (7'(X),X) € F'),
since the corresponding II; statement holds of £ in M.

It follows easily that (J,,[E'],7’) is the extension of J& by F’.
QED (Claim 1)

Claim 2 F” is of type 1 (hence F’ satisfies the initial segment condition).

Proof: Let { < X = 7/(x). Using Lemma 3.3.1 we show:
Claim f §é CF/

Let ¢ € M be least such that o(()

f k™ — kin M such that =(f)(d) >

then o(aq),. .., (ay) < & and

' (0(/)(0(@)) = o(7(f))(@)) > o(C) = &
Hence & ¢ Cpr. QED (Claim 2)

Thus JVE,/ is a premouse by Corollary 3.3.11 and M’ is a good precursor
of type 1. Hence M’ is a premouse of type 1. QED (Case 1)

> (. Since ¢ ¢ Cp, there is
¢ for some aq,...,a, < (. But
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Case 2 n > 1.

Then o is Xo—preserving by Lemma 3.2.13. Hence M’ is a premouse
of type 1 by Corollary 3.3.15 QED (Corollary 3.3.16)

We now consider premice of type 2. M = (J¥ F) is a premouse of
type 2 iff JVE is a premouse, M is a precursor and F|n € J,,E where
n = maxCp. (It then follows that F|u = (F|n)|u € JF whenever
u € Cp.) The statement e = F|u is uniformly IIy (M) in e, u, u, since
it says:

e is a function A /\x eP(k)NMe(X) =F(X)Np.
But then the statement:
e=FinAn=maxCp

is TIx(M) in e, n, k uniformly, since it says: e = FInACp\n = 0, where
Cr is uniformly II5(M). It then follows easily that:

Lemma 3.3.17. Let M = (JF F), M = (Jﬁ,?).

e If 7: M —x, M and M is a premouse of type 2, then so is M.
Moreover, m(max Cg) = max CFp.

o Ifr: M —x, M, M isapremouse of type 2 and e = F|max(CFr) €
rng(7), then M is a premouse of type 2 and m(max C%) = max Cp.

We also get:

Lemma 3.3.18. Let M be a premouse of type 2. Let G be a weakly
amenable extender on M at &, where & < o}y;. Let (M’ o) be the Zén)
extension of M by G. Then M’ is a premouse of type 2. Moreover,

o(max Cyr) = max Cyy.

Proof: If n > 0, then o is Yo—preserving and the result follows by
Lemma 3.3.17. Now let n = 0. Let M = (J¥ F) where F is an exten-
der at s on J (where 7 = kM. Let M’ = (J5'| F'). Tt follows exactly
as in Lemma 3.3.16 that Jfl is a premouse and M’ is a precursor. We
must prove:

Claim F’ is of type 2. Moreover, 7(max Cr) = max Cpr.

Proof: Let n = maxCp, e = F|n. Then o(e) = F'|/, since this is
a II; condition. But then Cp \ ' = 0 follows exactly as in Lemma
3.3.16, since Cp \ n = 0 and o takes A = F'(k) cofinally to X = F'(x’).

QED (Lemma 3.3.18)

We now turn to premice of type 3. One very important property of these
structures is:
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Lemma 3.3.19. Let M = (JF F) be a premouse of type 3. Let A\ = F(k)
where F' is at k. Then Q}VI =\

Proof:

(1)

har(A) = M (hence o}, < ).

Proof: Note that if X € P(k) N M, then X € J¥ C hy (7). Hence
F(X) € hy(7). Now let (JE ) be the extension of JZ by F. Then
7’7 is cofinal in v. But ©”7 C hy(7), since if f € M, f : k + 1, and

X ={=6C = [f(E) < f(O)}, then F(X) = {=<&¢ = [n(f)(§) <
m(f)(C)}, where w(f) : A «> m(n). Hence m(n) = otp(F (X)) € har(7).

onto

But iff g = the JF least g : A 2% 7(n), then g € hy(7). Hence
w(n) = ¢" X\ C har(A) for all n < 7. Hence v C hps(N). QED (1)

Let D C A be ¥;(M). Then (JE, D) is amenable. (Hence g%, > \.)

Proof: By (1) D is ¥1(M) in a parameter o < A. Let n € Cr such
that n > a. Then E = F|n € M. Since J¥ is a ZFC™ model, we have:

<J;E,F> € JE, where 7: JF —5 JgE
We then observe that there is a unique o : JUE < JE defined by

a(@(f)(B)) = (f)(B) for
FeTE f i IE A<,
Moreover, o [ = id and o is cofinal.

(To see that this definition works, let B1,...,8, <1, fi,...,fn €T
such that f; : k — JE for i =1,...,n. Set:

X ={<&,....en = [JF Eelfi&), ..., ful&)]}-
Then:

JE £ ¢[7(f(B)] < < B~ F(X)=nnF(X)
< I E ol (£)(6)].)
But o((F(Z), Z)) = (F(Z), Z) for Z € P(x) N M. Hence:
o(FNU)=0¢"(FNU)=FNU.

By this we get:
o (JEF) =y, (JE F) cofinally.

Thus D = DNy is 3, ((JE, F)) in a by the same definition as D over
(JE,F). Hence D € JF, since (JE, F) € JE.  QED (Lemma 3.3.19)



194 CHAPTER 3. MICE

If M = (JF F) is a precursor, then "F is of type 3" is uniformly II3(M) in
K, since it is the conjunction of:

Né<A\/n<ArneCprAn\neCr\/eeJfe=Fln.

Hence:

Lemma 3.3.20. (a) Let m: M —: X3M where M is a premouse of type
3. Then so is M.

(b) Let m: M —: YoM where M is a premouse of type 3. Then so is M.

We also get:

Lemma 3.3.21. Let M = (JF F) be a premouse of type 3. Let G be a
weakly amenable extender at & on M. Let & < o}, and let (M', o) be the

Zén) extension of M by G. Then M' is a premouse of type 3.

Proof: Let M’ = (JE' F'). We consider three cases:

v

Case 1l n=0.

. . !,
Exactly as in the previous lemmas we get: Jf is a premouse and M’
is a precursor. We must show:

Claim F is of type 3.
We know that o takes A cofinally to . Let n < A\,n € Cp. Let
e = Flnp € M. Then o(n) € Cp and o(e) = F'lo(n), since these
statements are II;. Hence if u < X there is n € Cp such that u < o(n)
and

Flu = (Flo(m))lu € JE.

QED (Case 1)

Case 2 n=1.

Then o is Yo—preserving. Hence Jf/ is a premouse and M’ is a precur-
sor. Let (M, ) be the extension of J¥ by F and (M’, ') the extension
of JE by F', where 7 = kM 1/ = o(7) = KM
We know that:

ol JY I —a JY,

where A = 7(k) = o}, and ¢ = sup o~ = Q}w,. Since T is a successor
cardinal in J¥, we have 7 # crit(G). But then 7/ = sup o”’7 by Lemma
3.2.6 of §3.2. 7 takes 7 cofinally to v and 7 takes 7' cofinally to /.
Using this we see:

(1) v =supo’v.
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Proof: Let & < /. Let ¢ < 7 such that «'({) > & TLet n < 7 such
that o(n) > ¢. By Corollary 3.3.8 we have:
om(n) =7'o(n) > ¢
QED (1)
But then it suffices to show:
Claim o : M —qg M’,
since then we can argue as in Case 1.

Let x € M'. Let & = crit(m). We must show that = o(f)(¢) for an

f € M such that f : kK — M. Since M’ is the E(()l)fultrapower, we
know:

x=0(f)(&), where f:x — M is X;(M).

Choosing a functionally absolute definition for f we have:

V= f(w) — \/yA(y7U7w7p)

where A is ¥o(M) and p € M. By functional absoluteness we have:

v = O'(f)(w) & \/Z/A/(%U,w,(f(p))

where A’ is ¥o(M') by the same definition. Let A'(y,z,&,0(p)). Since
o takes M cofinally to M’ there is a € M such that y,x € o(a) and
Kk C a. Set:

( zifxean\y € aA(y,z, u,p)
g = 0 if no such z exists.

Then g€ M, g: k — M and = = o(g)(§). QED (Case 2)

Case 3 n > 1.

Then o}, = 7(0};) = N and o is Eél)fpreserving by Lemma 3.2.13.
But Cp is now Z(()l)(M) and e = F|n is E(()l)(M) for e,n € JE. The
statements:

ANe<A\/n<xg<neCp, AneCr(\ecJf e=Fln
are now Hgl)(M ). Hence the corresponding statements hold in M.

Hence Cpv is unbounded in N and F'|n € JE for n € Cps. Then M’
is of type 3. QED (Lemma 3.3.21)

Combining lemmas 3.3.11, 3.3.13, 3.3.18 and 3.3.21 we have:
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Theorem 3.3.22. Let M be a premouse. Lel G be an extender at k& on M
where o, > k. Let (M',0) be the Z(()n) extension of M by G. Then:

e M’ is a premouse
o If M is active then M’ is active and of the same type
o If M is of type 2, then
o(max Cy) = max Chy.
In order to show that premousehood is preserved under iteration we shall
also need:

Theorem 3.3.23. Let My be a premouse. Let m;j : M; —x, M; fori < j <
n, where:

o miit1: M, —>gli") M1, where G; is an extender at k; on G;(i <n)

o M; 1is transitive and the m;; commate

o If X <wnis alimit ordinal, then My, (m;|i < \) is the transitivized direct
limat Of <MZ|Z < >\>, <7TZJ|Z <7< >\>

Then:

e M, is a premouse
o If My is active, then M, is active and of the same type as My

o If My is of type 2, then mo,(Cr,) = C’M;].

Proof: We proceed by induction on 1. Thus the assertion holds at every
1 < n. The case n = 0 is trivial, as is n = g + 1 by Theorem 3.3.22. Hence
we assume that 7 is a limit ordinal. We make the following observation:

(1) Let ¢ be a II3 formula. Let ¢ < n,x1,...,2, € M; such that M; =
o[mi;(Z)] for i < j <n. Then M, = plmy,(Z)).

Proof: Let y € M,. Pick j such that i < j < n and y = 7, (y). Then
M; = ¥[y, mi;(Z)], where ¢ = AvW¥. Hence M; = x[Z,Z, m;;(Z)] for some Z,
where ¥ = \/ uy. Hence M, |= x[z,y, min(Z)] where z = m;,,(Z), since 7y, is
Y1 —preserving. QED (1)
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Each M; is a premouse for ¢ < 7. But this condition is uniformly II3(M;) by
Lemma 3.3.12. Hence M, is a premouse. If My is of type 1, then Cyy, =0
for i < n. But this condition is uniformly II>(A;); Hence M, is of type 1.

Now let My be of type 2 and let o = maxCpy. Then M; is of type 2
and p; = maxCyy, for i < n, where pu; = Ilp;j(po). Let eg = Fplpuo where
My = (JEo Fy). Then e; = Fy|u; for i < n, since e = F|u is a 1 condition.

vg )

Thus for ¢ < ¢ each M; satisfies the IIs condition in e;, u;:

eo = Filpi AN Cp, \ i = 0.

Hence M, satisfies the corresponding condition. Hence M, is of type 2
and p, = max(C,). Clearly Cy, = Cp, U {maxCyy,} for i < n. Hence
T (Cn;) = O

Now assume that M is of type 3. Then each M;(i < n) satisfies the II3
condition:
ANE< ANV < N(E < el

ACECy, Vee Jiie=FC.

But then M, satisfies the corresponding conditions. Hence M, is of type 3.
QED (Theorem 3.3.23)
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