Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal

Ronald B. Jensen

IATEXed by Martina Pfeifer

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing $\{x \mid \varphi(x)\}$ for the class of x such that $\varphi(x)$. We also write:

$$
\begin{aligned}
& \left\{t\left(x_{1}, \ldots, x_{n}\right) \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\}, \text { (where e.g. } \\
& \left.t\left(x_{1}, \ldots, x_{n}\right)=\left\{y \mid \psi\left(y, x_{1}, \ldots, x_{n}\right)\right\}\right)
\end{aligned}
$$

for:

$$
\left\{y \mid \bigvee x_{1}, \ldots, x_{n}\left(y=t\left(x_{1}, \ldots, x_{n}\right) \wedge \varphi\left(x_{1}, \ldots, x_{n}\right)\right)\right\}
$$

We also write

$$
\begin{aligned}
& \mathbb{P}(A)=\{z \mid z \subset A\}, A \cup B=\{z \mid z \in A \vee z \in B\} \\
& A \cap B=\{z \mid z \in A \wedge z \in B\}, \neg A=\{z \mid \notin A\}
\end{aligned}
$$

(2) Our notation for ordered n-tuples is $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. This can be defined in many ways and we don't specify a definition.
(3) An n-ary relation is a class of n-tuples. The following operations are defined for all classes, but are mainly relevant for binary relations:

$$
\begin{aligned}
& \operatorname{dom}(R)=:\{x \mid \bigvee y\langle y, x\rangle \in R\} \\
& \operatorname{rng}(R)=:\{y \mid \bigvee x\langle y, x\rangle \in R\} \\
& R \circ P=\{\langle y, x\rangle|\bigvee z|\langle y, z\rangle \in R \wedge\langle z, x\rangle \in P\} \\
& R \upharpoonright A=\{\langle y, x\rangle \mid\langle y, x\rangle \in R \wedge x \in A\} \\
& R^{-1}=\{\langle y, x\rangle \mid\langle x, y\rangle \in R\}
\end{aligned}
$$

We write $R\left(x_{1}, \ldots, x_{n}\right)$ for $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in R$.
(4) A function is identified with its extension or field - i.e. an n-ary function is an $n+1$-ary relation F such that

$$
\begin{gathered}
\wedge x_{1} \ldots x_{n} \wedge z \bigwedge w\left(\left(F\left(z, x_{1}, \ldots, x_{n}\right) \wedge F\left(w, x_{1}, \ldots, x_{n}\right)\right) \rightarrow\right. \\
\rightarrow z=w)
\end{gathered}
$$

$F\left(x_{1}, \ldots, x_{n}\right)$ then denotes the value of F at x_{1}, \ldots, x_{n}.
(5) "Functional abstraction" $\left\langle t_{x_{1}, \ldots, x_{n}} \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$ denotes the function which is defined and takes value $t_{x_{1}, \ldots, x_{n}}$ whenever $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $t_{x_{1}, \ldots, x_{n}}$ is a set:

$$
\begin{aligned}
& \left\langle t_{x_{1}, \ldots, x_{n}} \mid \varphi\left(x_{1}, \ldots, x_{n}\right)\right\rangle=: \\
& \left\{\left\langle y, x_{1}, \ldots, x_{n}\right\rangle \mid y=t_{x_{1}, \ldots, x_{n}} \wedge \varphi\left(x_{1}, \ldots, x_{n}\right)\right\},
\end{aligned}
$$

where e.g. $t_{x_{1}, \ldots, x_{n}}=\left\{z \mid \psi\left(z, x_{1}, \ldots, x_{n}\right)\right\}$.
(6) Ordinal numbers are defined in the usual way, each ordinal being identified with the set of its predecessors: $\alpha=\{\nu \mid \nu<\alpha\}$. The natural numbers are then the finite ordinals: $0=\emptyset, 1=\{0\}, \ldots, n=$ $\{0, \ldots, n-1\}$. On is the class of all ordinals. We shall often employ small greek letters as variables for ordinals. (Hence e.g. $\{\alpha \mid \varphi(\alpha)\}$ means $\{x \mid x \in \mathrm{On} \wedge \varphi(x)\}$.) We set:

$$
\begin{aligned}
& \sup A=: \bigcup(A \cap \mathrm{On}), \inf A=: \bigcap(A \wedge \mathrm{On}) \\
& \operatorname{lub} A=: \sup \{\alpha+1 \mid \alpha \in A\} .
\end{aligned}
$$

(7) A note on ordered n-tuples. A frequently used definition of ordered pairs is:

$$
\langle x, y\rangle=:\{\{x\},\{x, y\}\} .
$$

One can then define n-tuples by:

$$
\langle x\rangle=: x,\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=:\left\langle x_{1},\left\langle x_{1}, \ldots, x_{n}\right\rangle\right\rangle .
$$

However, this has the disadvantage that every $n+1$-tuple is also an n-tuple. If we want each tuple to have a fixed length, we could instead identify the n-tuples with vecton of length n - i.e. functions with domain n. This would be circular, of course, since we must have a notion of ordered pair in order to define the notion of "function". Thus, if we take this course, we must first make a "preliminary definition" of ordered pairs - for instance:

$$
(x, y)=:\{\{x\},\{x, y\}\}
$$

and then define:

$$
\left\langle x_{0}, \ldots, x_{n-1}\right\rangle=\left\{\left(x_{0}, 0\right), \ldots,\left(x_{n-1}, n-1\right)\right\}
$$

If we wanted to form n-tuples of proper classes, we could instead identify $\left\langle A_{0}, \ldots, A_{n-1}\right\rangle$ with:

$$
\left\{\langle x, i\rangle \mid\left(i=0 \wedge x \in A_{0}\right) \vee \ldots \vee\left(i=n-1 \wedge x \in A_{n-1}\right)\right\}
$$

(8) Overhead arrow notation. The symbol \vec{x} is often used to donate a vector $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. It is not surprising that this usage shades into what I shall call the informal mode of overhead arrow notation. In this mode \vec{x} simply stands for a string of symbols x_{1}, \ldots, x_{n}. Thus we write $f(\vec{x})$ for $f\left(x_{1}, \ldots, x_{n}\right)$, which is different from $f\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$. (In informal mode we would write the latter as $f(\langle\vec{x}\rangle)$.) Similarly, $\vec{x} \in A$ means that each of x_{1}, \ldots, x_{n} is an element of A, which is different from $\langle\vec{x}\rangle \in A$. We can, of course, combine several arrows in the same expression. For instance we can write $f(\vec{g}(\vec{x}))$ for $f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$. Similarly we can write $f(\overrightarrow{g(\vec{x})})$ or $f(\vec{g}(\vec{x}))$ for

$$
f\left(g_{1}\left(x_{1,1}, \ldots, x_{1, p_{1}}\right), \ldots, g_{m}\left(x_{m, 1}, \ldots, x_{m, p_{m}}\right)\right)
$$

The precise meaning must be taken from the context. We shall often have recourse to such abbreviations. To avoid confusion, therefore, we shall use overhead arrow notation only in the informal mode.
(9) A model or structure will for us normally mean an $n+1$-tuple $\left\langle D, A_{1}, \ldots, A_{n}\right\rangle$ consisting of a domain D of individuals, followed by relations on that domain. If φ is a first order formula, we call a sequence v_{1}, \ldots, v_{n} of distinct variables good for φ iff every free variable of φ occurs in the sequence. If M is a model, φ a formula, v_{1}, \ldots, v_{n} a good sequence for φ and $x_{1}, \ldots, x_{n} \in M$, we write: $M \models \varphi\left(v_{1}, \ldots, v_{n}\right)\left[x_{1}, \ldots, x_{n}\right]$ to mean that φ becomes true in M if v_{i} is interpreted by x_{i} for $i=1, \ldots, n$. This is the satisfaction relation. We assume that the reader knows how to define it. As usual, we often suppress the list of variables, writing only $M \models \varphi\left[x_{1}, \ldots, x_{n}\right]$. We may sometimes indicate the variables being used by writing e.g. $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$.
(10) \in-models. $M=\left\langle D, E, A_{1}, \ldots, A_{n}\right\rangle$ is an $\in-$ model iff E is the restriction of the $\in-$ relation to D^{2}. Most of the models we consider will be \in-models. We then write $\left\langle D, \in, A_{1}, \ldots, A_{n}\right\rangle$ or even $\left\langle D, A_{1}, \ldots, A_{n}\right\rangle$ for $\left\langle D, \in \cap D^{2}, A_{1}, \ldots, A_{n}\right\rangle . M$ is transitive iff it is an $\in-$ model and D is transitive.
(11) The Levy hierarchy. We often write $\bigwedge x \in y \varphi$ for $\bigwedge x(x \in y \rightarrow \varphi)$, and $\bigvee x \in y \varphi$ for $\bigvee x(x \in y \wedge \varphi)$. Azriel Levy defined a hierarchy of formulae as follows:

A formula is $\Sigma_{0}\left(\right.$ or $\left.\Pi_{0}\right)$ iff it is in the smallest class Σ of formulae such that every primitive formula is in Σ and $\bigwedge v \in u \varphi, \bigvee v \in u \varphi$ are in Σ whenever φ is in Σ and v, u are distinct variables.
(Alternatively we could introduce $\Lambda v \in u, \bigvee v \in u$ as part of the primitive notation. We could then define a formula as being Σ_{0} iff it contains no unbounded quantifiers.)

The Σ_{n+1} formulae are then the formulae of the form $\bigvee v \varphi$, where φ is Π_{n}. The Π_{n+1} formulae are the formulae of the form $\bigwedge v \varphi$ when φ is Σ_{n}.
If M is a transitive model, we let $\Sigma_{n}(M)$ denote the set of realations on M which are definable by a Σ_{n} formula. Similarly for $\Pi_{n}(M)$. We say that a relation R is $\Sigma_{n}(M)\left(\Pi_{n}(M)\right)$ in parameters p_{1}, \ldots, p_{m} iff

$$
R\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow R^{\prime}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{m}\right)
$$

and R^{\prime} is $\Sigma_{n}(M)\left(\Pi_{n}(M)\right) . \underline{\Sigma}_{1}(M)$ then denotes the set of relations which are $\Sigma_{1}(M)$ in some parameters. Similarly for $\underline{\Pi}_{1}(M)$.
(12) Kleene's equation sign. An equation ' $L \simeq R$ ' means: 'The left side is defined if and only if everything on the right side is defined, in which case the sides are equal'. This is of course not a strict definition and must be interpreted from case to case.
$F(\vec{x}) \simeq G\left(H_{1}(\vec{x}), \ldots, H_{n}(\vec{x})\right)$ obviously means that the function F is defined at $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ iff each of the H_{i} is defined at $\langle\vec{x}\rangle$ and G is defined at $\left\langle H_{1}(\vec{x}), \ldots, H_{n}(\vec{x})\right\rangle$, in which case equality holds.
The recursion schema of set theory says that, given a function G, there is a function F with:

$$
F(y, \vec{x}) \simeq G(y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle) .
$$

This says that F is defined at $\langle y, \vec{x}\rangle$ iff F is defined at $\langle z, \vec{x}\rangle$ for all $z \in y$ and G is defined at $\langle y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle\rangle$, in which case equality holds.
(13) By the recursion theorem we can define:

$$
T C(x)=x \cup \bigcup_{z \in x} T C(z)
$$

(the transitive closure of x)

$$
\operatorname{rn}(x)=\operatorname{lub}\{\operatorname{rn}(z) \mid z \in x\}
$$

(the rank of x).
(14) By a normal ultrafilter on κ we mean an ultrafilter U on $\mathbb{P}(\kappa)$ with the property that whenever $f: \kappa \rightarrow \kappa$ is regressive modulo U (i.e. $\{\nu \mid f(v)<\nu\} \in U)$, then there is $\alpha<\kappa$ such that $\{\nu \mid f(\nu)<\nu\} \in U$. Each normal ultrafilter determines an elementary embedding π of V into an inner model W. Letting

$$
D=\text { the class of functions } f \text { with domain } \kappa \text {, }
$$

we can characterize the pair $\langle W, \pi\rangle$ uniquely by the conditions:

- $\pi: V \prec W$ and write $(\pi)=\kappa$
- $W=\{\pi(f)(\nu) \mid \kappa \in D\}$
- $\pi(f)(\nu) \in \pi(g)(\kappa) \leftrightarrow\{\nu \mid f(\nu) \in g(\nu)\} \in U$.
U can then be recovered from π by:

$$
U=\{x \subset \kappa \mid \kappa \in \pi(x)\}
$$

We shall call $\langle W, \pi\rangle$ the extension of V by U. W can be defined from U by the well known ultrapower construction: We first define a "term model" $\mathbb{D}=\langle D, \cong, \tilde{\epsilon}\rangle$ by:

$$
\begin{aligned}
& f \cong g \leftrightarrow:\{\nu \mid f(\nu)=g(\nu)\} \in U \\
& f \tilde{\in} g \leftrightarrow:\{\nu \mid f(\nu)=g(\nu)\} \in U
\end{aligned}
$$

\mathbb{D} is an equality model in the sense that \cong is not the identity relation but rather a congruence relation for \mathbb{D}. We can then factor \mathbb{D} by \cong, getting an identity model $\mathbb{D} \backslash \cong$, whose are the equivalence classes:

$$
[x]=\{y \mid y \cong x\}
$$

$\mathbb{D} \backslash \cong$ turns out to be isomorphic to an inner model W. If σ is the isomorphism, we can define π by:

$$
\pi(x)=\sigma\left(\left[\operatorname{const}_{x}\right]\right)
$$

where const $_{x}$ is the constant function x defined on κ. W is then called the ultrapower of V by $U . \pi$ is called the canonical embedding.
(15) (Extenders) The normal ultrafilter is one way of coding an embedding of V into an inner model by a set. However, many embeddings cannot be so coded, since $\pi(\kappa) \leq 2^{\kappa}$ whenever $\langle W, \pi\rangle$ is the extension by U. If we wish to surmount this restriction, we can use extenders in place of ultrafilters. (The extenders we shall deal with are also known as "short extenders".)

An extender F at κ maps $\bigcup_{n<\omega} \mathbb{P}\left(u^{n}\right)$ into $\bigcup_{n<\omega} \mathbb{P}\left(\lambda^{n}\right)$ for $a \lambda>u$.
It engenders an embedding π of V into an inner model W characterized by:

- $\pi: V \prec W \operatorname{crit}(\pi=\kappa)$
- Every element of W has the form $\pi(f)(\vec{\alpha})$ where $\alpha_{1}, \ldots, \alpha_{n}<\lambda$ and f is a function with domain κ^{n}
- $\pi(f)(\vec{\alpha}) \in \pi(g)(\vec{\alpha}) \leftrightarrow\langle\vec{\alpha}\rangle \in \pi(\{\langle\vec{\xi}\rangle \mid f(\vec{\xi}) \in g(\vec{\xi})\})$
F is then recoverable from $\langle W, \pi\rangle$ by:

$$
F(X)=\pi(X) \cap \lambda^{n} \text { for } X \subset \kappa^{n}
$$

The concept " F is an extender" can be defined in ZFC, but we defer that to Chapter 3. If $\langle W, \pi\rangle$ is as above, we call it the extension of V by F. We also call W the ultrapower of V by F and π the canonical embedding. $\langle W, \pi\rangle$ can be obtained from F by a "term model" construction analogous to that described above.
(16) (Large Cardinals)

Definition 0.0.1. We call a cardinal κ strong iff for all $\beta>\kappa$ there is an extender F such that if $\langle W, \pi\rangle$ is the extension of V by F, then $V_{\beta} \subset W$.

Definition 0.0.2. Let A be any class. κ is A-strong iff for all $\beta>\kappa$ there is F such that letting $\langle W, \pi\rangle$ be the extension of V by F, we have:

$$
A \cap V_{\beta}=\pi(A) \cap V_{\beta}
$$

These concepts can of course be relativized to V_{τ} in place of V when τ is strongly inaccessible. We then say that κ is strong (or A-strong) up to τ.)

Definition 0.0.3. τ is Woodin iff τ is strongly inaccessible and for every $A \subset V_{\tau}$ there is $\kappa<\tau$ which is strong up to τ.
(17)

(Embeddings)

Definition 0.0.4. Let M, M^{\prime} be \in-structures and let π be a structure preserving embeddings of M into M^{\prime}. We say that π is Σ_{n}-preserving (in symbols: $\pi: M \rightarrow_{\Sigma_{n}} M^{\prime}$) iff for all Σ_{n} formulae we have:

$$
M \models \varphi\left[a_{1}, \ldots, a_{n}\right] \leftrightarrow M^{\prime} \models \varphi\left[\pi\left(a_{1}\right), \ldots,\left(a_{n}\right)\right]
$$

for $a_{1}, \ldots, a_{n} \in M$. It is elementary (in symbols: $\pi: M \prec M^{\prime}$ of $\pi: M \rightarrow \Sigma_{\omega} M^{\prime}$) iff the above holds for all formulae φ of the $M-$ sprache. It is easily seen that π is elementary iff it is Σ_{n}-preserving for all $n<\omega$.

We say that π is cofinal iff $M^{\prime}=\bigcup_{u \in M} \pi(u)$.
We note the following facts, which we shall occasionally use:
Fact 1 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally. Then π is Σ_{1}-preserving.
Fact 2 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally, where M is a ZFC^{-}model. Then M^{\prime} is a ZFC^{-}model and π is elementary.

Fact 3 Let $\pi: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally where M^{\prime} is a ZFC^{-}model. Then M is a ZFC^{-}model and π is elementary.

We call an ordinal κ the critical point of an embedding $\pi: M \rightarrow M^{\prime}$ (in symbols: $\kappa=\operatorname{crit}(\pi)$) iff $\pi \upharpoonright \kappa=\mathrm{id}$ and $\pi(\kappa)>\kappa$.

Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging generalization of recursion theory - which dealt with "effective" functions and relations on ω - to transfinite domains. This, in turn, gave the impetus for the development of fine structure theory, which became a basic tool of inner model theory. We therefore begin with a discussion of Kripke and Platek's work, in which ω is replaced by an arbitrary "admissible" structure.

1.1.1 Introduction

Ordinary recursion theory on ω can be developed in three different ways. We can take the notion of algorithm on basic, defining a recursive function on ω to be one given by an algorithm. Since, however, we have no definition for the general notion of algorithm, this approach involves defining a special class of algorithms and then convincing ourselves that "Church's thesis" holds i.e. that every function generated by an algorithm is, in fact, generated by one which lies in our class. Alternatively we can take the notion of calculus on basic, defining an n-ary relation R on ω to be recursively enumerable (r.e.) if for some calculus involving statements of the form " $R\left(i_{1}, \ldots, i_{n}\right)$ " $\left(i_{1}, \ldots, i_{n}<\omega\right), R$ is the set of tuples $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ such that " $R\left(i_{1}, \ldots, i_{n}\right)$ " is provable. R is then recursive if both it and its complement are r.e. A function defined on ω is recursive if it is recursive as a relation. But again, since we have no general definition of calculus, this involves specifying a special class of calculi and appealing to the appropriate form of Church's thesis.

A third alternative is to base the theory on definability, taking the r.e. relation as those which are definable in elementary number theory by one of a certain class of formulae. This approach has often been applied, but characterizing the class of defining formula tends to be a bit unnatural. The situation changes radically, however, if we replace ω by the set $H=H_{\omega}$ of heredetarily finite sets. We consider definability over the structure $\langle H, \in\rangle$, employing the familiar Levy hierarchy of set theoretic formulae:

$$
\begin{aligned}
& \Pi_{0}=\Sigma_{0}=: \text { formulae in which all quantifiers are bounded } \\
& \Sigma_{n+1}=: \text { formulae } \bigvee x \varphi \text { where } \varphi \text { in } \Pi_{n} \\
& \Pi_{n+1}=: \text { formulae } \bigwedge x \varphi \text { where } \varphi \text { in } \Sigma_{n} .
\end{aligned}
$$

We then call a relation on H r.e. (or H-r.e.) iff it is definable by a Σ_{1} formula. Recalling that $\omega \subset H$ it then turns out that a relation on ω is H-r.e. iff it is r.e. in the classical sense. Moreover, there is an H-recursive map $\pi: H \leftrightarrow \omega$ such that $A \subset H$ is H -r.e. iff $\pi^{\prime \prime} A$ is r.e. in the classical sense.

This suggests a very natural way of relativizing recursion theory to transfinite domains. Let $N=\langle | N\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ be any transitive structure. We first define:
Definition 1.1.1. A relation on N is $\Sigma_{n}(N)$ (in the parameters $p_{1}, \ldots, p_{n} \in$ N) iff it is N-definable (in \vec{p}) by a Σ_{n} formula. It is $\Delta_{n}(N)$ (in \vec{p}) if both it and its completement are $\Sigma_{n}(N)$ (in \vec{p}. It is $\underline{\Sigma}_{n}(N)$ iff it is $\Sigma_{n}(N)$ in some parameters. Similarly for $\underline{\Delta}_{n}(N)$.

Following our above example of $N=\langle H, \epsilon\rangle$, it is natural to define a relation on N as being N-r.e. iff it is $\underline{\Sigma}_{1}(N)$, and N-recursive iff it is $\Delta_{1}(N)$. A partial function F on N is $N-$ r.e. iff it is $N-$ r.e. as a relation. F is $N-$ recursive as a function iff it is N-r.e. and $\operatorname{dom}(F)$ in $\Delta_{1}(N)$.
(Note that $\underline{\Sigma}_{1}(\langle H, \in\rangle)=\Sigma_{1}(\langle H, \in\rangle)$, which will not hold for arbitrary N.)
However, this will only work for an N satisfying rather strict conditions since, when we move to transfinite structures N, we must relativize not only the concepts "recursive" and "r.e.", but also the concept "finite". In the theory of H the finite sets were simply the elements of H.

Correspondingly we define:

$$
u \text { is } N \text {-finite iff } u \in N \text {. }
$$

But there are certain basic properties which we expect any recursion theory to have. In particular:

- If A is recursive and u is finite, then $A \cap u$ is finite.
- If u is finite and $F: u \rightarrow N$ is recursive, then $F^{\prime \prime} u$ is finite.

Those transitive structures $N=\langle | N\left|, \in A_{1}, \ldots, A_{n}\right\rangle$ which yield a satisfactory recursion theory are called admissible. An ordinal α is then called admissible iff L_{α} is admissible. The admissible structures were characterized by Kripke and Platek as those transfinite structures which satisfy the following axioms:
(1) $\emptyset,\{x, y\}, \cup x$ are sets
(2) The Σ_{0} axiom of subsets:

$$
x \cap\{z \mid \varphi(z)\} \text { is a set }
$$

(where φ is any Σ_{0}-formula)
(3) The Σ_{0} axiom of collection:

$$
\bigwedge x \in u \bigvee y \varphi(x, y) \rightarrow \bigvee v \bigwedge x \in u \bigvee y \in v \varphi(x, y)
$$

(where φ is any Σ_{0}-formula).

Note Kripke-Platek set theory (KP) consists of the above axioms together with the axoim of extensionality and the full axiom of foundation (i.e. for all formulae, not just the Σ_{0} ones).

Note Although the definability approach is the one most often employed in transfinite recursion theory, the approaches via algorithms and calculi have also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above. In the following let $M=\langle | M\left|, \in A_{a}, \ldots, A_{n}\right\rangle$ be admissible.

Lemma 1.1.1. Let $u \in M$. Let A be $\underline{\Delta}_{1}(M)$. Then $A \cap u \in M$.

Proof: Let $A x \leftrightarrow \bigvee y A_{0} y x ; \neg A x \leftrightarrow \bigvee y A_{1} y x$, where A_{0}, A_{1} are $\underline{\Sigma}_{0}(M)$. Then $\bigwedge x \in u \bigvee y\left(A_{0} y x \vee A_{1} y x\right)$. Hence there is $v \in M$ such that $\bigwedge x \in u \bigvee y \in v\left(A_{0} y x \vee A_{1} y x\right)$.

QED
Before verifying the second criterion we prove:

Lemma 1.1.2. M satisfies:

$$
\bigwedge x \in u \bigvee y_{1} \ldots y_{n} \varphi(x, \vec{y}) \rightarrow \bigvee v \bigwedge x \in u \bigvee y_{1} \ldots y_{n} \in v \varphi(x, \vec{y})
$$

for Σ_{0}-formulae φ.
Proof. Assume $\bigwedge x \in u \bigvee y_{1} \ldots y_{n} \varphi(x, \vec{y})$. Then

$$
\bigwedge x \in u \bigvee w \underbrace{\bigvee y_{1} \ldots y_{n} \in w \varphi(x, \vec{y})}_{\Sigma_{0}}
$$

Hence there is $v^{\prime} \in M$ such that $\Lambda x \in u \bigvee w \in v^{\prime} \bigvee y_{1} \ldots y_{n} \in w \varphi(x, \vec{y})$. Take $v=\bigcup v^{\prime}$.

QED (Lemma 1.1.2)
We now verify the second criterion:
Lemma 1.1.3. Let $u \in M, u \subset \operatorname{dom}(F)$, where F is a $\underline{\Sigma}_{1}(M)$ function. Then $F^{\prime \prime} u \in M$.

Proof. Let $y=F(x) \leftrightarrow \bigvee z F^{\prime} z y x$, where F^{\prime} is a $\Sigma_{0}(M)$ relation. Then $\bigwedge x \in u \bigvee z, y F^{\prime} z y x$. Hence there is $v \in M$ such that
$\bigwedge x \in u \bigvee z, y \in v F^{\prime} z y x$. Hence $F^{\prime \prime} u=v \cap\left\{y \mid \bigvee x \in u \bigvee z \in v F^{\prime} z x y\right\}$.
QED (Lemma 1.1.3)
Assuming the admissibility of M, we immediately get from Lemma 1.1.2:
Lemma 1.1.4. Let $\varphi(y, \vec{x})$ be a Σ_{1}-formula. Then $\bigvee y \varphi(y, \vec{x})$ is uniformly Σ_{1} in M.

Note "Uniformly" is a word which recursion theorists like to use. Here it means that $M \models \bigvee y \varphi(y, \vec{x}) \leftrightarrow \Psi(\vec{x})$ for a Σ_{1} formula Ψ which depends only on φ and not on the choice of M.

Lemma 1.1.5. Let $\varphi(y, \vec{x})$ be Σ_{1}. Then $\bigwedge y \in u \varphi(y, \vec{x})$ is uniformly Σ_{1} in M.

Proof. Let $\varphi(y, \vec{x})=\bigvee z \varphi^{\prime}(z, y, x)$, where φ^{\prime} is Σ_{0}. Then

$$
\bigwedge y \in u \varphi(y, \vec{x}) \leftrightarrow \bigvee v \underbrace{\bigwedge y \in u \bigvee z \in v \varphi^{\prime}(z, y, x)}_{\Sigma_{0}}
$$

in M.
QED (Lemma 1.1.5)
Lemma 1.1.6. Let $\varphi_{0}(\vec{x}), \varphi_{1}(\vec{x})$ be Σ_{1}. Then $\left(\varphi_{0}(\vec{x}) \wedge \varphi_{1}(\vec{x})\right),\left(\varphi_{0}(\vec{x}) \vee \varphi_{1}(\vec{x})\right)$ are uniformly Σ_{1} in M.

Proof. Let $\varphi_{i}(\vec{x})=\bigvee y_{i} \varphi_{i}^{\prime}\left(y_{i}, \vec{x}\right)$ where without loss of generality $y_{0} \neq y_{1}$. Then

$$
\left(\varphi_{0}(\vec{x}) \wedge \varphi_{1}(\vec{x})\right) \leftrightarrow \bigvee y_{0} \bigvee y_{1}\left(\varphi_{0}^{\prime}\left(y_{0}, x\right) \wedge \varphi_{1}^{\prime}\left(y_{1}, x\right)\right) .
$$

Similarly for \vee.
QED (Lemma 1.1.6)
Putting this together:
Lemma 1.1.7. Let $\varphi_{1}, \ldots, \varphi_{n}$ be Σ_{1}-formulae. Let Ψ be formed from $\varphi_{1}, \ldots, \varphi_{n}$ using only conjunction, disjunction, existence quantification and bounded universal quantification. Then $\Psi\left(x_{1}, \ldots, x_{n}\right)$ in uniformly $\Sigma_{1}(M)$

An immediate consequence of Lemma 1.1.7 is:
Lemma 1.1.8. $R \subset M^{n}$ in $\Sigma_{1}(M)$ in the parameter \emptyset iff it is $\Sigma_{1}(M)$ in no parameter.

Proof. Let $R(\vec{x}) \leftrightarrow R^{\prime}(\emptyset, \vec{x})$. Then

$$
R(\vec{x}) \leftrightarrow \bigvee z\left(R^{\prime}(z, \vec{x}) \wedge \bigwedge y \in z y \neq y\right)
$$

QED (Lemma 1.1.8)
Note R is in fact uniformly $\Sigma_{1}(M)$ in the sense that its Σ_{1} definition depends only on the original Σ_{1} definition of R from \emptyset, and not on M.
Lemma 1.1.9. Let $R\left(y_{1}, \ldots, y_{n}\right)$ be a relation which is $\Sigma_{1}(M)$ in the the parameter p. For $i=1, \ldots, n$ let $f_{i}\left(x_{1}, \ldots, x_{m}\right)$ be a partial function on M which (as a relation) is $\Sigma_{1}(M)$ in p. Then the following relation is uniformly $\Sigma_{1}(M)$ in $p:$

$$
R\left(f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right) \leftrightarrow: \bigvee y_{1} \ldots y_{n}\left(\bigwedge_{i=1}^{n} y_{i}=f_{i}(\vec{x}) \wedge R(\vec{y})\right) .
$$

This follows by Lemma 1.1.7. ("Uniformly" again means that the Σ_{1} definition depends only on the Σ_{1} definition of R, f_{1}, \ldots, f_{n}.)

Similarly:
Lemma 1.1.10. Let $f\left(y_{1}, \ldots, y_{n}\right), g_{i}\left(x_{1}, \ldots, x_{m}\right)(i=1, \ldots, n)$ be partial functions which are $\Sigma_{1}(M)$ in p, then the function $h(\vec{x}) \simeq f(g(\vec{x}))$ is uniformly $\Sigma_{1}(M)$ in p.

Proof.

$$
z=h(\vec{x}) \leftrightarrow \bigvee y_{1} \ldots y_{n}\left(\bigwedge_{i=1}^{n} y_{i}=g_{i}(\vec{x}) \wedge z=f(\vec{y})\right)
$$

QED (Lemma 1.1.10)

Lemma 1.1.11. Let $f_{i}(\vec{x})$ be a function which is $\Sigma_{1}(M)$ in $p(i=1, \ldots, n)$. Let $R_{i}(\vec{x})(i=1, \ldots, n)$ be mutually exclusive relations which are $\Sigma_{1}(M)$ in p. Then the function

$$
f(\vec{x}) \simeq f_{i}(\vec{x}) \text { if } R_{i}(\vec{x})
$$

is uniformly $\Sigma_{1}(M)$ in p.

Proof.

$$
y=f(\vec{x}) \leftrightarrow \bigvee_{i=1}^{n}\left(y=f_{i}(\vec{x}) \wedge R_{i}(\vec{x})\right)
$$

QED (Lemma 1.1.11)
Using these facts, we see that the restrictions of many standard set theoretic functions to M are $\Sigma_{1}(M)$.

Lemma 1.1.12. The following functions are uniformly $\Sigma_{1}(M)$:
(a) $f(x)=x, f(x)=\cup x, f(x, y)=x \cup y, f(x, y)=x \cap y, f(x, y)=x \backslash y$ (set difference)
(b) $f(x)=C_{n}(x)$, where $C_{0}(x)=x, C_{n+1}(x)=C_{n}(x) \cup \bigcup C_{n}(x)$
(c) $f\left(x_{1}, \ldots, x_{n}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$
(d) $f(x)=i($ where $i<\omega)$
(e) $f\left(x_{1}, \ldots, x_{n}\right)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$
(f) $f(x)=\operatorname{dom}(x), f(x)=\operatorname{rng}(x), f(x, y)=x^{\prime \prime} y, f(x, y)=x \upharpoonright y$, $f(x)=x^{-1}$
(g) $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \times x_{2} \times \ldots \times x_{n}$
(h) $f(x)=(x)_{i}^{n}$ where $\left(\left\langle z_{0}, \ldots, z_{n-1}\right\rangle\right)_{i}^{n}=z_{i}$ and $(u)_{i}^{n}=\emptyset$ in all other cases
(i) $f(x, z)=x[z]=\left\{\begin{array}{l}x(z) \text { if } x \text { is a function } \\ \text { and } z \in \operatorname{dom}(x) \\ \emptyset \text { otherwise. }\end{array}\right.$

Proof. We display sample proofs. (a) is straightforward. (b) follows by induction on n. To see (c), $y=\left\{x_{1}, \ldots, x_{n}\right\}$ can be expressed by the $\Sigma_{0^{-}}$ statement

$$
x_{1}, \ldots, x_{n} \in y \wedge \bigwedge z \in y\left(z=x_{1} \vee \ldots \vee z=x_{n}\right)
$$

(d) follows by induction on i, since

$$
0=\emptyset, i+1=i \cup\{i\}
$$

The proof of (e) depends on the precise definition of $\left\langle x_{1}, \ldots x_{n}\right\rangle$. If we want each tuple to have a unique length, then the following definition recommends itself: First define a notion of ordered pair by: $(x, y)=:\{\{x\},\{x, y\}\}$ Then (x, y) is a Σ_{1} function. Then iff: $\left\langle x_{1}, \ldots, x_{n}\right\rangle=:\left\{\left(x_{1}, 0\right), \ldots,\left(x_{n}, n-1\right)\right\}$, the conclusion is immediate.

For (f) we display the proof that $\operatorname{dom}(x)$ is a Σ_{1} function. Note that $x, y \in C_{n}(\langle x, y\rangle)$ for a sufficient n. But since every element of $\operatorname{dom}(x)$ is a component of a pair lying in x, it follows that $\operatorname{dom}(x) \subset C_{n}(x)$ for a sufficient n. Hence $y=\operatorname{dom}(x)$ can be expressed as:

$$
\bigwedge z \in y \bigvee w\langle w, z\rangle \in x \wedge \bigwedge z, w \in C_{n}(x)(\langle w, z\rangle \in x \rightarrow z \in y)
$$

To see (g), note that $y=x_{1} \times \ldots \times x_{n}$ can be expressed by:

$$
\begin{aligned}
& \bigwedge z_{1} \in x_{1} \ldots \bigwedge z_{n} \in x_{n}\left\langle z_{1}, \ldots, z_{n}\right\rangle \in y \\
& \wedge \bigwedge w \in y \bigvee z_{1} \in x_{1} \ldots \bigvee z_{n} \in x_{n} w=\left\langle z_{1}, \ldots, z_{n}\right\rangle
\end{aligned}
$$

To see (h) note that, for sufficiently large $m, y=(x)_{i}^{n}$ can be expressed by:

$$
\begin{aligned}
& \bigvee z_{0} \ldots z_{n-1}\left(x=\left\langle z_{0}, \ldots, z_{n-1}\right\rangle \wedge y=z_{i}\right) \\
& \vee\left(y=\emptyset \wedge \bigwedge z_{0} \ldots z_{n-1} \in C_{m}(x) x \neq\left\langle z_{0}, \ldots, z_{n-1}\right\rangle\right)
\end{aligned}
$$

(i) is similarly straightforward.

QED (Lemma 1.1.12)
The recursion theorem of classical recursion theory says that if $g(n, m)$ is recursive on ω and $f: \omega \rightarrow \omega$ is defined by:

$$
f(0)=k, f(n+1)=g(n, f(n)),
$$

then f is recursive. The point is that the value of f at any n is determined by its values at smaller numbers. Working with H instead of ω we can express this in the elegant form:

Let $g: \omega \times H \rightarrow \omega$ be Σ_{1}.
Then $f: \omega \rightarrow \omega$ is Σ_{1}, where $f(n)=g(n, f \upharpoonright n)$.

If we take $g: H^{2} \rightarrow H$, then f will be Σ_{1} where $f(x)=g(x, f \upharpoonright x)$ for $x \in H$. We can even take g as being a partial function on H^{2}. Then f is Σ_{1} where:

$$
f(x) \simeq g(x,\langle f(z) \mid z \in x\rangle)
$$

(This means that $f(x)$ is defined if and only if $f(z)$ is defined for $z \in x$ and g is defined at $\langle x, f \upharpoonright x\rangle$, in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M. If f is a partial $\underline{\Sigma}_{1}$ function and $x \subset \operatorname{dom}(f)$, we know by Lemma 1.1.3 that $f^{\prime \prime} x \in M$. But then $f \upharpoonright x \in M$, since $f^{*}(z) \simeq\langle f(z), z\rangle$ is a $\underline{\Sigma}_{1}$ function with $x \subset \operatorname{dom}\left(f^{*}\right)$, and $f^{* \prime \prime} x=f \upharpoonright x$. The recursion theorem for admissibles $M=\langle | M \mid, \epsilon$, $\left.A_{1}, \ldots, A_{n}\right\rangle$ then reads:
Lemma 1.1.13. Let $G(y, \vec{x}, u)$ be a $\Sigma_{1}(M)$ function in the parameter p. Then there is exactly one function $F(y, \vec{x})$ such that

$$
F(y, \vec{x}) \simeq G(y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle) .
$$

Moreover, F is uniformly $\Sigma_{1}(M)$ in p (i.e. the Σ_{1} definition depends only on the Σ_{1} definition of G.)

Proof. We first show existence. Set:

$$
\begin{aligned}
\Gamma_{\vec{x}}=: & \{f \in M \mid f \text { is a function } \wedge \operatorname{dom}(f) \text { is } \\
& \text { transitive } \wedge \bigwedge y \in \operatorname{dom}(f) f(y)=G(y, \vec{x}, f \upharpoonright y)\}
\end{aligned}
$$

Set $F_{\vec{x}}=\bigcup \Gamma_{\vec{x}} ; F=\left\{\langle y, \vec{x}\rangle \mid y \in F_{\vec{x}}\right\}$. Then F is in $\Sigma_{1}(M)$ in p uniformly.
(1) F is a function.

Proof. Suppose not. Then for some \vec{x} there are $f, f^{\prime} \in \Gamma_{\vec{x}}, y \in$ $\operatorname{dom}(f) \cap \operatorname{dom}\left(f^{\prime}\right)$ such that $f(y) \neq f^{\prime}(y)$. Let y be \in-minimal with this property. Then $f \upharpoonright y=f^{\prime} \upharpoonright y$. But then $f(y)=G(y, \vec{x}, f \upharpoonright y)=$ $G\left(y, \vec{x}, f^{\prime},\lceil y)=f^{\prime}(y)\right.$. Contradiction!

QED (1)
Hence $F(y)=f(y)$ if $y \in \operatorname{dom}(f)$ and $f \in \Gamma_{\vec{x}}$.
(2) Let $\langle y, \vec{x}\rangle \in \operatorname{dom}(F)$. Then $y \subset \operatorname{dom}\left(F_{\vec{x}}\right),\langle y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle\rangle \in$ $\operatorname{dom}(G)$ and

$$
F(y, \vec{x})=G(y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle) .
$$

Proof. Let $y \in \operatorname{dom}(f), f \in \Gamma_{\vec{x}}$. Then

$$
\begin{aligned}
F(y, \vec{x})=f(y) & =G(y, \vec{x}, f \mid x) \\
& =G(y, \vec{x},\langle F(z, \vec{x}) \mid z \in y\rangle) .
\end{aligned}
$$

QED (2)
(3) Let $y \subset \operatorname{dom}\left(F_{\vec{x}}\right),\left\langle y, \vec{x}, F_{\vec{x}} \mid y\right\rangle \in \operatorname{dom}(G)$. Then $y \in \operatorname{dom}\left(F_{\vec{x}}\right)$.

Proof. By our assumption: $\bigwedge z \in y \bigvee f\left(f \in \Gamma_{\vec{x}} \wedge z \in \operatorname{dom}(f)\right)$. Hence there is $u \in M$ such that

$$
\bigwedge z \in y \bigvee f \in u\left(f \in \Gamma_{\vec{x}} \wedge z \in \operatorname{dom}(f)\right)
$$

Set: $f^{\prime}=\bigcup\left(u \cap \Gamma_{\vec{x}}\right)$. Then $f^{\prime} \in \Gamma_{\vec{x}}$ and $y \subset \operatorname{dom}\left(f^{\prime}\right)$. Moreover $f^{\prime} \upharpoonright y=F_{\vec{x}} \upharpoonright y$. Set $f^{\prime \prime}=f^{\prime} \cup\left\{\left\langle G\left(y, \vec{x}, f^{\prime} \upharpoonright y\right), y\right\rangle\right\}$. Then $f^{\prime \prime} \in \Gamma_{\vec{x}}$ and $y \in \operatorname{dom}\left(f^{\prime \prime}\right)$, where $f^{\prime \prime} \subset F_{\vec{x}}$.

QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof of (1): Let F^{*} satisfy the same condition. Set $F_{\vec{x}}^{*}(y) \simeq F^{*}(y, \vec{x})$. Suppose $F^{*} \neq F$. Then $F_{\vec{x}}^{*}(y) \not \not F_{\vec{x}}(y)$ for some \vec{x}, y. Let y be \in-minimal ect. $F_{\vec{x}}^{*}(y) \not 千 F_{\vec{x}}(y)$. Then $F_{\vec{x}}^{*} \upharpoonright y=F_{\vec{x}} \upharpoonright y$. Hence

$$
\begin{aligned}
F_{\vec{x}}^{*}(y) & \simeq G\left(y, \vec{x},\left\langle F_{\vec{x}}^{*}(z) \mid z \in y\right\rangle\right) \\
& \simeq G\left(y, \vec{x},\left\langle F_{\vec{x}}(z) \mid z \in y\right\rangle\right) \\
& \simeq F_{\vec{x}}(y) .
\end{aligned}
$$

Contradiction!
QED (Lemma 1.1.13)
We recall that the transitive closure $T C(x)$ of a set x is recursively definable by: $T C(x)=x \cup \bigcup_{z \in x} T C(z)$. Similarly, the rank $r n(x)$ of a set is definable by $r n(x)=\operatorname{lub}\{r n(z) \mid z \in x\}$. Hence:

Corollary 1.1.14. TC, rn are uniformly $\Sigma_{1}(M)$.

The successor function $s \alpha=\alpha+1$ on the ordinals is defined by:

$$
s x=\left\{\begin{array}{l}
x \cup\{x\} \text { if } x \in O n \\
\text { undefined if not }
\end{array}\right.
$$

which is Σ_{1}. The function $\alpha+\beta$ is defined by:

$$
\begin{aligned}
& \alpha+0=\alpha \\
& \alpha+s \nu=s(\alpha+\nu) \\
& \alpha+\lambda=\bigcup_{\nu<\lambda} \alpha+\nu \text { for limit } \lambda .
\end{aligned}
$$

This has the form:

$$
x+y \simeq G(y, x,\langle x+z \mid z \in y\rangle) .
$$

Similarly for the function $x \cdot y, x^{y}, \ldots$ etc. Hence:
Corollary 1.1.15. The ordinal functions $\alpha+1, \alpha+\beta, \alpha^{\beta}, \ldots$ etc. are uniformly $\Sigma_{1}(M)$.

We note that there is an even more useful form of Lemma 1.1.13:
Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let $h: M \rightarrow M$ be $\Sigma_{1}(M)$ in p such that $\{\langle x, y\rangle \mid x \in h(y)\}$ is well founded. There is a unique f such that

$$
F(y) \simeq G(y, \vec{x},\langle F(z, \vec{x}) \mid x \in h(y)\rangle) .
$$

Moreover, F is uniformly ${ }^{1} \Sigma_{1}(M)$ in p.
The proof is exactly like that of Lemma 1.1.13, using minimality in the relation $\{\langle x, y\rangle \mid x \in h(y)\}$ in place of \in-minimality. We now consider the structure of "really finite" sets in an admissible M.

Lemma 1.1.17. Let $u \in H_{\omega}$. The class u and the constant function $f(x)=u$ are uniformly $\Sigma_{1}(M)$.

Proof. By \in-induction on u : Let $u=\left\{z_{1}, \ldots, z_{n}\right\}$.

$$
\begin{aligned}
& x \in u \leftrightarrow \bigvee_{i=1}^{n} x=z_{i} \\
& x=u \leftrightarrow \bigwedge y \in x y \in u \wedge \bigwedge_{i=1}^{n} z_{i} \in x
\end{aligned}
$$

QED
$x \in \omega$ is clearly a Σ_{0} condition. But then:
Lemma 1.1.18. Let $\omega \in M$. Then the constant function $f(x)=\omega$ is uniformly $\Sigma_{1}(M)$.

Proof.

$$
x=\omega \leftrightarrow(\bigwedge z \in x z \in \omega \wedge \emptyset \in x \wedge \bigwedge z \in x z \cup\{z\} \in x)
$$

(where ' $z \in \omega$ ' is Σ_{0})
QED
Lemma 1.1.19. The class Fin and the function $f(x)=\mathbb{P}_{\omega}(x)$ are uniformly $\Sigma_{1}(M)$, where Fin $=\{x \in M \mid \overline{\bar{x}}<\omega\}, \mathbb{P}_{\omega}(x)=\mathbb{P}(x) \cap$ Fin.

Proof.

$$
\begin{aligned}
x \in \operatorname{Fin} & \leftrightarrow \bigvee n \in \omega \bigvee f f: n \leftrightarrow x \\
y=\mathbb{P}_{\omega}(x) & \leftrightarrow \bigwedge u \in y(u \subset x \wedge u \in \operatorname{Fin}) \wedge \emptyset \in y \wedge \\
& \wedge \bigwedge z \in x\{z\} \in y \wedge \bigwedge u, v \in y u \cup v \in y
\end{aligned}
$$

We must show that $\mathbb{P}_{\omega}(x) \in M$. If $\omega \notin M$, then $r n(x)<\omega$ for all $x \in M$, Hence $M=H_{\omega}$ is closed under \mathbb{P}_{ω}. If $\omega \in M$, there is $\underline{\Sigma}_{1}(M) f$ defined by

$$
f(0)=\{\{z\} \mid z \in x\}, f(n+1)=\left\{u \cup v \mid\langle u, v\rangle \in f(n)^{2}\right\} .
$$

Then $\mathbb{P}_{\omega}(x)=\bigcup f^{\prime \prime} \omega \in M$.
QED (Lemma 1.1.19)
But then:

[^0]Lemma 1.1.20. If $\omega \in M$, then $H_{\omega} \in M$ and the constant function $f(x)=$ H_{ω} is uniformly $\Sigma_{1}(M)$.

Proof. $H_{\omega} \in M$, since there is a $\Sigma_{1}(M)$ function g defined by $g(0)=$ $\emptyset, g(n+1)=\mathbb{P}_{\omega}(g(n))$. Then $H_{\omega}=\bigcup g^{\prime \prime} \omega \in M$ and $f(x)=H_{\omega}$ is $\Sigma_{1}(M)$ since g and the constant function ω are $\Sigma_{1}(M)$. QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Gödel's definition of the constructible hierarchy $\left\langle L_{r} \mid r \in \mathrm{On}\right\rangle$:

$$
\begin{aligned}
& L_{0}=\emptyset \\
& L_{\nu+1}=\operatorname{Def}\left(L_{\nu}\right) \\
& L_{\lambda}=\bigcup_{\nu<\lambda} L_{\nu} \text { for limit } \lambda,
\end{aligned}
$$

where $\operatorname{Def}(u)$ is the set of all $z \subset u$ which are $\langle u, \in\rangle$-definable in parameters from u (taking $\operatorname{Def}(\emptyset)=\{\emptyset\}$). (Note that if u is transitive, then $u \subset \operatorname{Def}(u)$ and $\operatorname{Def}(u)$ is transitive.) Gödel's constructible universe is then $L=: \bigcup_{\nu \in \mathrm{On}} L_{\nu}$.

By fairly standard methods one can show:
Lemma 1.1.21. Let $\omega \in M$. Then the function $f(u)=\operatorname{Def}(u)$ is uniformly $\Sigma_{1}(M)$.

We omit the proof, which is quite lengthy. It involves "arithmetizing" the language of first order set theory by identifying formulae with elements of ω or H_{ω}, and then showing that the relevant syntactic and semantic concepts are M-recursive.

By the recursion theorem we can of course conclude:
Corollary 1.1.22. Let $\omega \in M$. The function $f(\alpha)=L_{\alpha}$ is uniformly $\Sigma_{1}(M)$.

The constructible hierarchy over a set u is defined by:

$$
\begin{aligned}
& L_{0}(u)=T C(\{u\}) \\
& L_{\nu+1}(u)=\operatorname{Def}\left(L_{\nu}(u)\right) \\
& L_{\lambda}(u)=\bigcup_{\nu<\lambda} L_{\nu}(u) \text { for limit } \lambda .
\end{aligned}
$$

Oviously:

Corollary 1.1.23. Let $\omega \in M$. The function $f(u, \alpha)=L_{\alpha}(u)$ is uniformly $\Sigma_{1}(M)$.

The constructible hierarchy relative to classes A_{1}, \ldots, A_{n} is defined by:

$$
\begin{aligned}
& L_{0}[\vec{A}]=\emptyset \\
& \left.\left.L_{\nu+1}[\vec{A}]=\operatorname{Def}\left(L_{\nu}\right] \vec{A}\right], \vec{A}\right) \\
& L_{\lambda}[\vec{A}]=\bigcup_{\nu<\lambda} L_{\nu}[\vec{A}] \text { for limit } \lambda,
\end{aligned}
$$

where $\operatorname{Def}\left(U, A_{1}, \ldots, A_{n}\right)$ is the set of all $z \subset u$ which are $\left\langle u, \in, A_{1} \cap u, \ldots, A_{n} \cap u\right\rangle$-definable in parameters from u.

Much as before we have:
Lemma 1.1.24. Let $\omega \in M$. Let A_{1}, \ldots, A_{n} be $\Delta_{1}(M)$ in the parameter p. Then the function $f(u)=\operatorname{Def}\left(u, A_{1}, \ldots, A_{n}\right)$ is uniformly $\Sigma_{1}(M)$ in p.

Corollary 1.1.25. Let $\omega \in M$. Let A_{1}, \ldots, A_{n} be as above. Then the function $f(\alpha)=L_{\alpha}[\vec{A}]$ is uniformly $\Sigma_{1}(M)$ in p.
(In particular, if $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$. Then $f(\alpha)=L_{\alpha}[\vec{A}]$ is uniformly $\left.\Sigma_{1}(M).\right)$
(One could, of course, also define $L_{\alpha}(u)[\vec{A}]$ and prove the corresponding results.)

Any well ordering r of a set u induces a well ordering of $\operatorname{Def}(u)$, since each element of $\operatorname{Def}(u)$ is defined over $\langle u, \in\rangle$ by a tuple $\left\langle\varphi, x_{1}, \ldots, x_{n}\right\rangle$, where φ is a formula and x_{1}, \ldots, x_{n} are elements of u which interpret free variables of φ. If u is transitive (hence $u \subset \operatorname{Def}(u)$), we can also arrange that the well ordering, which we shall call $<(u, r)$, is an end extension of r. The function $<(u, r)$ is uniformly Σ_{1}. If we then set:

$$
\begin{aligned}
& <_{0}=\emptyset,<_{\nu+1}=<\left(L_{\nu},<_{\nu}\right) \\
& <_{\lambda}=\bigcup_{\nu<\lambda}<_{\nu} \text { for limit } \lambda,
\end{aligned}
$$

it follows that $<_{\nu}$ is a well ordering of L_{ν} for all ν. Moreover $<_{\alpha}$ is an end extension of $<_{\nu}$ for $\nu<\alpha$.

Similarly, if A is $\Sigma_{1}(M)$ in p, there is a hierarchy $<_{\nu}^{A}(\nu \in$ On $\cap M)$ such that $<_{\nu}^{A}$ well orders $L_{\nu}[A]$ and the function $f(\nu)=<_{\nu}^{A}$ is $\Sigma_{1}(M)$ in p (uniformly relative to the Σ_{1} definition of A).

By corollary 1.1.25 we easily get:

Lemma 1.1.26. Let $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ be admissible. Let $\alpha=$ On $\cap M$. Then $\left\langle L_{\alpha}[\vec{A}], \in \vec{A}\right\rangle$ is admissible.

Proof: Set: $L_{\nu}^{\vec{A}}=\left\langle L_{\nu}[\vec{A}], \in, \vec{A}\right\rangle$. Axiom (1) holds trivially in $L_{\nu}^{\vec{A}}$.
To verify the Σ_{0}-axiom of subsets, let B be $\underline{\Sigma}_{0}\left(L_{\alpha}^{\vec{A}}\right)$. Let $u \in L_{\alpha}^{\vec{A}}$.
Claim $u \cap B \in L_{\alpha}^{\vec{A}}$.
Proof: Pick $\nu<\alpha$ such that $u \in L_{\nu}^{\vec{A}}$ and B is $\underline{\Sigma}_{0}$ in parameters from $L_{\nu}^{\vec{A}}$. By $\underline{\Sigma}_{0}$-absoluteness we have:

$$
u \cap B \in \operatorname{Def}\left(L_{\nu}^{\vec{A}}\right)=L_{\nu+1}^{\vec{A}} \subset L_{\alpha}^{\vec{A}}
$$

QED (Claim)
We now prove Σ_{0}-collection. Let $R x y$ be a $\underline{\Sigma}_{0}$-relation. Let $u \in L_{\alpha}^{\vec{A}}$ such that $\bigwedge x \in u \bigvee y R x y$.

Claim $\bigvee v \in L_{\alpha}^{\vec{A}} \bigwedge x \in u \bigvee y \in v R x y$.
For each $x \in u$ let $g(x)$ be the least $\nu<\alpha$ such that $x \in L_{\nu}^{\vec{A}}$. Then g is in $\underline{\Sigma}_{1}(M)$ and $u \subset \operatorname{dom}(g)$. Hence $\delta=\sup g^{\prime \prime} u<\alpha$ and

$$
\bigwedge x \in u \bigvee y \in L_{\delta}^{\vec{A}} R x y
$$

QED (Lemma 1.1.26)
Definition 1.1.2. Let α be an ordinal.

- α is admissible iff L_{α} is admissible
- α is admissible in $A_{1}, \ldots, A_{n} \subset$ iff $L_{\alpha}^{\vec{A}}=:\left\langle L_{\alpha}[\vec{A}], \in \vec{A}\right\rangle$ is admissible
- $f: \alpha^{n} \rightarrow \alpha$ is α-recursive (in \vec{A}) iff f is $\underline{\Sigma}_{1}\left(L_{\alpha}\right)\left(\underline{\Sigma}_{1}\left(L_{\alpha}^{\vec{A}}\right)\right.$)
- $R \subset \alpha^{n}$ is r.e. (in $\left.\vec{A}\right)$ iff R is $\underline{\Sigma}_{1}\left(L_{\alpha}\left(\Sigma_{1}\left(L_{\alpha}^{\vec{A}}\right)\right)\right.$.
(Note The theory of α-recursive functions and relations on an admissible α has been built up without references to L_{α}, using a formalized notion of α-bounded calculus (Kripke) or α-bounded algorithm (Platek).

Similarly for α-recursiveness in A_{1}, \ldots, A_{n}, taking the A_{i} as "oracles")

A transitive structure $M=\langle | M|, \in \vec{A}\rangle$ is called strongly admissible iff, in addition to the Kripke-Platek axioms, it satisfies the Σ_{1} axiom of subsets:

$$
x \cap\{z \mid \varphi(z)\} \text { is a set (for } \Sigma_{1} \text { formulae } \varphi \text {). }
$$

Kripke defines the projectum δ_{α} of an admissible ordinal α to be the least δ such that $A \cap \delta \notin L_{\alpha}$ for some $\underline{\Sigma}_{1}(M)$ set A. He shows that $\delta_{\alpha}=\alpha$ iff α is strongly admissible. He calls α projectible iff $\delta_{\alpha}<\alpha$. There are many projectible admissibles - e.g. $\delta_{\alpha}=\omega$ if α is the least admissible greater than ω. He shows that for every admissible α there is a $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$ injection f_{α} of L_{α} into δ_{α}.

The definition of projectum of course makes sense for any $\alpha \geq \omega$. By refinements of Kripke's methods it can be shown that f_{α} exists for every $\alpha \geq \omega$ and that $\delta_{\alpha}<\alpha$ whenever $\alpha \geq \omega$ is not strongly admissible. We shall - essentially - prove these facts in chapter 2 (except that, for technical reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 $P R$ Functions

The primitive recursive set functions comprise a collection of functions

$$
f: V^{n} \rightarrow V
$$

which form a natural analogue of the primitive recursive number functions in ordinary recursion theory. As with admissibility theory, their discovery arose from the attempt to generalize ordinary recursion theory. These functions are ubiquitous in set theory and have very attractive absoluteness properties. In this section we give an account of these functions and their connection with admissibility theory, though - just as in $\S 1$ - we shall suppress some proofs.

Definition 1.2.1. $f: V^{n} \rightarrow V$ is a primitive recursive (pr) function iff it is generated by successive application of the following schemata:
(i) $f(\vec{x})=x_{i}$ (here \vec{x} is x_{1}, \ldots, x_{n})
(ii) $f(\vec{x})=\left\{x_{i}, x_{j}\right\}$
(iii) $f(\vec{x})=x_{i} \backslash x_{j}$
(iv) $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right)$
(v) $f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$
(vi) $f(y, \vec{x})=g(y, \vec{x},\langle f(z, \vec{x}) \mid z \in y\rangle)$

We also define:
Definition 1.2.2. $R \subset V^{n}$ is a primitive recursive relation iff there is a primitive recursive function r such that $R=\{\langle\vec{x}\rangle \mid r(\vec{x}) \neq \emptyset\}$.
(Note It is possible for a function on V to be primitive recursive as a relation but not as a function!)

We begin by developing some elementary consequences of these definitions:
Lemma 1.2.1. If $f: V^{n} \rightarrow V$ is primitive recursive and $k: n \rightarrow m$, then g is primitive recursive, where

$$
g\left(x_{0}, \ldots, x_{m-1}\right)=f\left(x_{k(0)}, \ldots, x_{k(n-1)}\right)
$$

proof by (i), (iv).
Lemma 1.2.2. The following functions are primitive recursive
(a) $f(\vec{x})=\bigcup x_{j}$
(b) $f(\vec{x})=x_{i} \cup x_{j}$
(c) $f(\vec{x})=\{\vec{x}\}$
(d) $f(\vec{x})=n$, where $n<\omega$
(e) $f(\vec{x})=\langle\vec{x}\rangle$

Proof.

(a) By (i), (v), Lemma 1.2.1, since $\bigcup x_{j}=\bigcup_{z \in x_{j}} z$
(b) $x_{i} \cup x_{j}=\bigcup\left\{x_{i}, x_{j}\right\}$
(c) $\{\vec{x}\}=\left\{x_{1}\right\} \cup \ldots \cup\left\{x_{m}\right\}$
(d) By in induction on n, since $0=x \backslash x, n+1=n \cup\{n\}$
(e) The proof depends on the precise definition of n-tuple. We could for instance define $\langle x, y\rangle=\{\{x\},\{x, y\}\}$ and $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle x_{1},\left\langle x_{2}, \ldots, x_{n}\right\rangle\right\rangle$ for $n>2$.

If, on the other hand, we wanted each tuple to have a unique length, we could call the above defined ordered pair (x, y) and define:

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\{\left(x_{1}, 0\right), \ldots,\left(x_{n}, n-1\right)\right\}
$$

QED (Lemma 1.2.2)

Lemma 1.2.3. (a) \notin is pr
(b) If $f: V^{n} \rightarrow V, R \subset V^{n}$ are primitive recursive, then so is

$$
g(\vec{x})=\left\{\begin{array}{l}
f(\vec{x}) \text { if } R \vec{x} \\
\emptyset \text { if not }
\end{array}\right.
$$

(c) $R \subset V^{n}$ is primitive recursive iff its characteristic functions X_{R} is a primitive recursive function
(d) If $R \subset V^{n}$ is primitive recursive so is $\neg R=$: $V^{n} \backslash R$
(e) Let $f_{i}: V^{n} \rightarrow V, R_{i} \subset V^{n}$ be $\operatorname{pr}(i=1, \ldots, m)$ where R_{1}, \ldots, R_{n} are mutually disjoint and $\bigcup_{i=1}^{n} R_{i}=V^{n}$. Then f is pr where:

$$
f(\vec{x})=f_{i}(x) \text { when } R_{i} \vec{x}
$$

(f) If $R z \vec{x}$ is primitive recursive, so is the function

$$
f(y, \vec{x})=y \cap\{z \mid R z \vec{x}\}
$$

(g) If $R z \vec{x}$ is primitive recursive so is $\bigvee z \in y R z \vec{x}$
(h) If $R_{i} \vec{x}$ is primitive recursive $(i=1, \ldots, m)$, then so is $\bigvee_{i=1}^{m} R_{i} \vec{x}$
(i) If R_{1}, \ldots, R_{n} are primitive recursive relations and φ is a Σ_{0} formula, then $\left\{\langle\vec{x}\rangle \mid\left\langle V, R_{1}, \ldots, R_{n}\right\rangle \models \varphi[\vec{x}]\right\}$ is primitive recursive.
(j) If $f(z, \vec{x})$ is primitive recursive, then so are:

$$
\begin{aligned}
& g(y, \vec{x})=\{f(z, \vec{x} \mid z \in y\} \\
& g^{\prime}(y, \vec{x})=\langle f(z, \vec{x}) \mid z \in y\rangle
\end{aligned}
$$

(k) If $R(z, \vec{x})$ is primitive recursive, then so is

$$
f(y, \vec{x})=\left\{\begin{array}{l}
\text { That } z \in y \text { such that } R z \vec{x} \text { if exactly } \\
\text { one such } z \in y \text { exists } \\
\emptyset \text { if not. }
\end{array}\right.
$$

Proof.

(a) $x \notin y \leftrightarrow\{x\} \backslash y \neq \emptyset$
(b) Let $R \vec{x} \leftrightarrow r(\vec{x}) \neq \emptyset$. Then $g(\vec{x})=\bigcup_{z \in r(\vec{x})} f(\vec{x})$.
(c) $X_{r}(\vec{x})=\left\{\begin{array}{l}1 \text { if } R \vec{x} \\ 0 \text { if not }\end{array}\right.$
(d) $X_{\neg R}(\vec{x})=1 \backslash X_{R}(\vec{x})$
(e) Let $f_{i}^{\prime}(\vec{x})=\left\{\begin{array}{l}f_{i}(\vec{x}) \text { if } R_{i} \vec{x} \\ \emptyset \text { if not }\end{array}\right.$

Then $f(\vec{x})=f_{i}^{\prime}(\vec{x}) \cup \ldots \cup f_{m}^{\prime}(\vec{x})$.
(f) $f(y, \vec{x})=\bigcup_{z \in y} h(z, \vec{x})$, where:

$$
h(z, \vec{x})=\left\{\begin{array}{l}
\{z\} \text { if } R z \vec{x} \\
\emptyset \text { if not }
\end{array}\right.
$$

(g) Let $P y \vec{x} \leftrightarrow: \bigvee z \in y R z \vec{x}$. Then $X_{P}(\vec{x})=\bigcup_{z \in y} X_{R}(z, \vec{x})$.
(h) Let $P \vec{x} \leftrightarrow \bigvee_{i=1}^{m} R_{i} \vec{x}$. Then

$$
X_{P}(\vec{x})=X_{R_{1}} \cup \ldots \cup X_{R_{n}}(\vec{x}) .
$$

(i) is immediate by (d), (g), (h)
(j) $g(y, \vec{x})=\bigcup_{z \in y}\{f(z, \vec{x})\}, g^{\prime}(y, \vec{x})=\bigcup_{z \in y}\{\langle f(z, \vec{x}), z\rangle\}$
(k) $R^{\prime} z u \vec{x} \leftrightarrow:\left(z \in u \wedge R z \vec{x} \wedge \wedge z^{\prime} \in u\left(z \neq z^{\prime} \rightarrow \neg R z^{\prime} \vec{x}\right)\right)$ is primitive recursive by (i). But then:

$$
f(y, \vec{x})=\bigcup\left(y \cap\left\{z \mid R^{\prime} z y \vec{x}\right\}\right)
$$

QED (Lemma 1.2.3)
Lemma 1.2.4. Each of the functions listed in §1 Lemma 1.1.12 is primitive recursive.

The proof is left to the reader.
Note Up until now we have only made use of the schemata (i) - (v). This will be important later. The functions and relations obtainable from (i) - (v) alone are called rudimentary and will play a significant role in fine structure theory. We shall use the fact that Lemmas 1.2.1-1.2.3 hold with "rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:
Lemma 1.2.5. The functions $T C(x), r n(x)$ are primitive recursive.

The proof is the same as before ($\S 1$ Corollary 1.1.14).
Definition 1.2.3. $f: \mathrm{On}^{n} \times V^{m} \rightarrow V$ is primitive recursive iff f^{\prime} is primitive recursive, where

$$
f^{\prime}(\vec{y}, \vec{x})=\left\{\begin{array}{l}
f(\vec{y}, \vec{x}) \text { if } y_{1}, \ldots, y_{n} \in \text { On } \\
\emptyset \text { if not }
\end{array}\right.
$$

As before:
Lemma 1.2.6. The ordinal function $\alpha+1, \alpha+\beta, \alpha \cdot \beta, \alpha^{\beta}, \ldots$ are primitive recursive.

Definition 1.2.4. Let $f: V^{n+1} \rightarrow V$.
$f^{\alpha}(\alpha \in \mathrm{On})$ is defined by:

$$
\begin{aligned}
& f^{0}(y, \vec{x})=y \\
& f^{\alpha+1}(y, \vec{x})=f\left(f^{\alpha}(y, \vec{x}), \vec{x}\right) \\
& f^{\lambda}(y, \vec{x})=\bigcup_{r<\lambda} f^{r}(y, \vec{x}) \text { for limit } \lambda .
\end{aligned}
$$

Then:
Lemma 1.2.7. If f is primitive recursive, so is $g(\alpha, y, \vec{x})=f^{\alpha}(y, \vec{x})$.
There is a strengthening of the recursion schema (vi) which is analogous to §1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let $h: V \rightarrow V$ be primitive recursive. h is manageable iff there is a primitive recursive $\sigma: V \rightarrow$ On such that

$$
x \in h(y) \rightarrow \sigma(x)<\sigma(y) .
$$

(Hence the relation $x \in h(y)$ is well founded.)
Lemma 1.2.8. Let h be manageable. Let $g: V^{n+2} \rightarrow V$ be primitive recursive. Then $f: V^{n+1} \rightarrow V$ is primitive recursive, where:

$$
f(y, \vec{x})=g(y, \vec{x},\langle f(z, \vec{x}) \mid z \in h(y)\rangle) .
$$

Proof. Let σ be as in the above definition. Let $|x|=\operatorname{lub}\{|y| \mid y \in h(x)\}$ be the rank of x in the relation $y \in h(x)$. Then $|x| \leq \sigma(x)$. Set:

$$
\Theta(z, \vec{x}, u)=\bigcup\{\langle g(y, \vec{x}, z \upharpoonright h(y)), y\rangle \mid y \in u \wedge h(y) \subset \operatorname{dom}(z)\} .
$$

By induction on α, if u is h-closed (i.e. $x \in u \rightarrow h(x) \subset u$), then:

$$
\left.\Theta^{\alpha}(\emptyset, \vec{x}, u)=\langle f(y, \vec{x})| y \in u \wedge|y|<\alpha\right\rangle
$$

Set $\tilde{h}(v)=v \cup \bigcup_{z \in v} h(z)$. Then $\tilde{h}^{\alpha}(\{y\})$ is h-closed for $\alpha \geq|y|$. Hence:

$$
f(y, \vec{x})=\Theta^{\sigma(y)+1}\left(\emptyset, \vec{x}, \tilde{h}^{\sigma(y)}(\{y\})\right)(y)
$$

QED (Lemma 1.2.8)
Corresponding to $\S 1$ Lemma 1.1.17 we have:
Lemma 1.2.9. Let $u \in H_{\omega}$. The constant function $f(x)=u$ is primitive recursive.

Proof: By \in-induction on u.
As we shall see, the constant function $f(x)=\omega$ is not primitive recursive, so the analogue of $\S 1$ Lemma 1.1.18 fails. We say that f is primitive recursive in the parameters $p_{1}, \ldots, p_{m} H$:

$$
f(\vec{x})=g(\vec{x}, \vec{p}), \text { where } g \text { is primitive recursive. }
$$

In place of $\S 1$ Lemma 1.1.19 we get:
Lemma 1.2.10. The class Fin and the function $f(x)=\mathbb{P}_{\omega}(x)$ are primitive recursive in the parameter ω.

Proof: Let f be primitive recursive such that $f(0, x)=\{\emptyset\} \cup\{\{z\} \mid z \in x\}$, $f(n+1, x)=\left\{u \cup v \mid\langle u, v\rangle \in f(n, x)^{2}\right\}$. Then $\mathbb{P}_{\omega}(x)=\bigcup_{n \in \omega} f(n, x)$. But then:

$$
x \in \operatorname{Fin} \leftrightarrow \bigvee n \in \omega \bigvee g \in \bigcup_{n<\omega} \mathbb{P}_{\omega}^{n}(x \times \omega) g: n \leftrightarrow x
$$

QED
Corollary 1.2.11. The constant function $f(x)=H_{\omega}$ is primitive recursive in the parameter ω.

Proof: $H_{\omega}=\bigcup_{n<\omega} \mathbb{P}_{\omega}^{n}(\emptyset)$.
QED

Corresponding to Lemma 1.1.21 of $\S 1$ we have:
Lemma 1.2.12. The function $\operatorname{Def}(u)$ is primitive recursive in the parameter ω.

The proof involves carrying out the proof of $\S 1$ Lemma 1.1.21 (which we also omitted) while ensuring that the relevant classes and functions are primitive recursive. We give not further details here (though filling in the details can be an arduous task). A fuller account can be found in $[P R]$ or $[\mathrm{AS}]$.

Hence:
Corollary 1.2.13. The function $f(\alpha)=L_{\alpha}$ is primitive recursive in ω.

Similarly:
Lemma 1.2.14. The function $f(\alpha, x)=L_{\alpha}(x)$ is primitive recursive in ω.
Lemma 1.2.15. Let $A \subset V$ be primitive recursive in the parameter p. Then $f(\alpha)=L_{\alpha}^{A}$ is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in the class $A \subset V$ (or in the classes $A_{1}, \ldots, A_{n} \subset V$).

We define:
Definition 1.2.6. Let $A_{1}, \ldots, A_{n} \subset V$. The function $f: V^{n} \rightarrow V$ is primitive recursive in A_{1}, \ldots, A_{n} iff it is obtained by successive applications of the schemata (i) - (vi) together with the schemata:

$$
f(x)=X_{A_{i}}(x)(i=1, \ldots, n)
$$

A relation R is primitive recursive in A_{1}, \ldots, A_{n} iff

$$
R=\{\langle\vec{x}\rangle \mid f(\vec{x}) \neq 0\}
$$

for a function f which is primitive recursive in A_{1}, \ldots, A_{n}.
It is obvious that all of the previous results hold with "primitive recursive in A_{1}, \ldots, A_{n} " in place of "primitive recursive".

By induction on the defining schemata of f we can show:
Lemma 1.2.16. Let f be primitive recursive in A_{1}, \ldots, A_{n}, where each A_{i} is primitive recursive in B_{1}, \ldots, B_{m}. Then f is primitive recursive in B_{1}, \ldots, B_{m}.

The proof is by induction on the defining schemata leading from A_{1}, \ldots, A_{n} to f. The details are left to the reader. It is clear, however, that this proof is uniform in the sense that the schemata which give in f from B_{1}, \ldots, B_{m} are not dependent on B_{1}, \ldots, B_{m} or A_{1}, \ldots, A_{n}, but only on the schemata which lead from A_{1}, \ldots, A_{n} to f and the schemata which led from B_{1}, \ldots, B_{m} to $A_{i}(i=1, \ldots, n)$.

This will be made more precise in $\S 1.2 .2$

1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discussion must ostensibly be carried out in second order set theory. However, we can translate it into ZF by talking about primitive recursive definitions. By a primitive recursive definition we mean a finite sequence of equations of the form (i) - (vi) such that:

- The function variable on the left side does not occur in a previous equation in the sequence
- every function variable on the right side occurs previously on the left side with the same number of argument places.

We assume that the language in which we write these equation has been arithmetized - i.e. formulae, terms, variables etc. have been identified in a natural way with elements of ω (or at least H_{ω}).

Every primitive recursive definition s defines a function F_{s}. If $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$, then $F_{s}=F_{s}^{n-1}$, where F_{s}^{i} interprets the leftmost function variable of s_{i}. This is defined in a straightforward way. If e.g. s_{i} is $" f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$ " and g was leftmost in s_{j}, then we get

$$
F^{i}(y, \vec{x})=\bigcup_{z \in y} F^{j}(z, \vec{x}) .
$$

Let PD be the class of primitive recursive definitions. In order to define $\left\{\langle x, s\rangle \mid s \in P D \wedge x \in F_{s}\right\}$ in ZF we proceed as follows:

Let $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in P D$. Let M be any admissible structure. By induction we can then define $\left\langle F_{s}^{i, M} \mid i<n\right\rangle$ where F_{s}^{i} a function on $M^{n_{i}}\left(n_{i}\right.$ being the number of argument places). By admissibility we know that F_{s}^{i} exists and is defined on all of $M^{n_{i}}$. We then set: $F_{s}^{M}=F_{s}^{n-1, M}$. This defines the set $\left\langle F_{i}^{M} \mid s \in P D\right\rangle$. If $M \subseteq M^{\prime}$ and M^{\prime} is also admissible, it follows by an emy induction on $i<n$ that $F^{i, M}=F^{i, M^{\prime}} \mid M$. Hence $F_{s}^{M} \subset F_{s}^{M^{\prime}}$. We can then set:

$$
F_{s}=\bigcup\left\{F_{s}^{M} \mid M \text { is admissible }\right\}
$$

Note that by $\S 1$, each F_{s}^{M} has a uniform Σ_{1} definition φ_{s} which defines F_{s}^{M} over every admissible M. It follows that φ_{s} defines F_{s} in V. Thus we have won an important absoluteness result: Every primitive recursive function has a Σ_{1} definition which is absolute in all inner models, in all generic extensions of V, and indeed, in all admissible structures $M=\langle | M|, \in\rangle$. This absoluteness phenomenon is perhaps the main reason
for using the theory of primitive recursive functions in set theory. Carol Karp was the first to notice the phenomenon - and to plumb its depths. She proved results going well beyond what I have stated here, showing for instance that the canonical Σ_{1} definition can be so chosen, that $F_{s} \upharpoonright M$ is the function defined over M by φ_{s} whenever M is transitive and closed under primitive recursive function. She also improved the characterization of such M : Call an ordinal α nice if it is closed under each of the function:

$$
f_{0}(\alpha, \beta)=\alpha+\beta ; f_{1}(\alpha, \beta)=\alpha \cdot \beta, f_{2}(\alpha, \beta)=\alpha^{\beta} \ldots \text { etc. }
$$

(More precisely: $f_{i+1}(\alpha, \beta)=\tilde{f}_{i}^{\beta}(\alpha)$ for $i \geq 1$, where $\tilde{f}_{i}(\alpha)=f_{i}(\alpha, \alpha), g^{\beta}(\alpha)$ is defined by: $g^{0}(\alpha)=\alpha, g^{\beta+1}(\alpha)=g\left(g^{\beta}(\alpha)\right), g^{\lambda}(\alpha)=\sup _{v<\lambda} g^{v}(\alpha)$ for limit λ.) She showed that L_{α} is primitive recursively closed iff α is nice. Moreover, $L_{\alpha}\left[A_{1}, \ldots, A_{n}\right]$ is closed under functions primitive recursive in A_{1}, \ldots, A_{n} iff α is nice.

Primitive recursiveness in classes A_{1}, \ldots, A_{n} can also be discussed in terms of primitive recursive definitions. To this end we appoint new designated function variable $\dot{a}_{i}(i=1, \ldots, n)$, which will be interpreted by $X_{A_{i}}(i=1, \ldots, n)$. By a primitive recursive definition in $\dot{a}_{1}, \ldots, \dot{a}_{n}$ we mean a sequence of equation having either the form (i) - (vi), in which $\dot{a}_{1}, \ldots, \dot{a}_{n}$ do not appear, or the form
$\left(^{*}\right) f\left(x_{1}, \ldots, x_{p}\right)=\dot{a}_{i}\left(x_{j}\right)(i=1, \ldots, n, j=1, \ldots, p)$

We impose our previous two requirements on all equations not of the form (*).

If $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$ is a pr definition in $\dot{a}_{1}, \ldots, \dot{a}_{n}$, we successively define $F_{s}^{i, A_{1}, \ldots, A_{n}}(i<n)$ as before, setting $F_{s}^{i, \vec{A}}\left(x_{1}, \ldots, x_{p}\right)=X_{A_{i}}\left(x_{j}\right)$ if s_{i} has the form $\left(^{*}\right)$. We again set $F_{s}^{\vec{A}}=F_{s}^{n-1, \vec{A}}$. The fact that $\left\{\langle x, s\rangle \mid x \in F_{s}^{\vec{A}}\right\}$ is uniformly $\left\langle V, \in, A_{1}, \ldots, A_{n}\right\rangle$ definable is shown essentially as before:

Given an admissible $M=\langle | M\left|, \in, a_{1}, \ldots, a_{n}\right\rangle$ we define $F_{s}^{i, M}, F_{s}^{M}=F_{s}^{n-1, M}$ as before, restricting to M. The existence of the total function $F_{s}^{i, M}$ follows as before by admissibility. Admissibility also gives a canonical Σ_{1} definition φ_{s} such that

$$
y=F_{s}^{M}(\vec{x}) \leftrightarrow M \models \varphi_{s}[y, \vec{x}] .
$$

(Thus F_{s}^{M} is uniformly Σ_{1} regardless of M.) If M, M^{\prime} are admissibles of the same type and $M \subseteq M^{\prime}$ (i.e. M is structurally included in M^{\prime}), then $F_{s}^{M}=F_{s}^{M^{\prime}} \upharpoonright M$. Thus we can let $F^{A_{1}, \ldots, A_{n}} s$ be the union of all F_{s}^{M} such that $M=\langle | M\left|, \in, A_{1} \cap\right| M\left|, \ldots, A_{n} \cap\right| M| \rangle$ is admissible. φ_{s} then defines $F_{s}^{\vec{A}}$ over $\langle V, \vec{A}\rangle$. (Here, Karp refined the construction so as to show that
$F_{s}^{\vec{A}} \upharpoonright M=F_{s}^{M}$ whenever $M=\langle | M\left|, \in, A_{1} \wedge\right| M\left|, \ldots, A_{n} \cap\right| M| \rangle$ is transitive and closed under function primitive recursive in A_{1}, \ldots, A_{n}. It can also be shown that $M=\langle | M\left|, \in, a_{1}, \ldots, a_{n}\right\rangle$ is closed under functions primitive recursive in a_{1}, \ldots, a_{n} iff $|M|$ is primitive recursive closed and M is amenable, (i.e. $x \cap A_{i} \in M$ for all $x \in M, v=1, \ldots, n$).

A full account of these results can be found in [PR] or [AS].
We can now state the uniformity involved in Lemma 2.2.19: Let $A_{i} \subset$ V be primitive recursive in B_{1}, \ldots, B_{n} with primitive recursive def s_{i} in $b_{1}, \ldots, b_{m}(i=1, \ldots, m)$. Let f be primitive recursive in A_{1}, \ldots, A_{n} with primitive recursive definition s in $\dot{a}_{1}, \ldots, \dot{a}_{n}$. Then f is primitive recursive in B_{1}, \ldots, B_{n} by a primitive recursive definition s^{\prime} in $\dot{b}_{1}, \ldots, \dot{b}_{m} . s^{\prime}$ is uniform in the sense that it depends only on s_{1}, \ldots, s_{n} and s, not on B_{1}, \ldots, B_{m}. In fact, the induction on the schemata in s implicitly describes an algorithm for a function

$$
s_{1}, \ldots, s_{m}, s \mapsto s^{\prime}
$$

with the following property: Let B_{1}, \ldots, B_{m} be any classes. Let s_{i} define g_{i} from $\vec{B}(i=1, \ldots, n)$. Set: $A_{i}=\left\{x \mid g_{i}(x) \neq 0\right\}$ in $i=1, \ldots, n$. Let f be the function defined by s from \vec{A}. Then s^{\prime} defines f from \vec{B}.

Note $\left\langle H_{\omega}, \epsilon\right\rangle$ is an admissible structure; hence $F_{s} \upharpoonright H_{\omega}=f_{s}^{H_{\omega}}$. This shows that the constant function ω is not primitive recursive, since $\omega \notin H_{\omega}$. It can be shown that $f: \omega \rightarrow \omega$ is primitive recursive in the sense of ordinary recursion theory iff

$$
f^{*}(x)=\left\{\begin{array}{l}
f(x) \text { if } x \in \omega \\
0 \text { if not }
\end{array}\right.
$$

is primitive recursive over H_{ω}. Conversely, there is a primitive recursive map $\sigma: H_{\omega} \leftrightarrow \omega$ such that $f: H_{\omega} \rightarrow H_{\omega}$ is primitive recursive over H_{ω} iff $\sigma f \sigma^{-1}$ is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded $Z F^{-}$models

We now prove a lemma about arbitrary (possibly ill founded) models of $Z F^{-}$(where the language of $Z F^{-}$may contain predicates other than \in). Let $\mathbb{A}=\left\langle a, \in, B_{1}, \ldots, B_{n}\right\rangle$ be such a model. For $X \subset A$ we of course write $\mathbb{A} \mid X=\left\langle X, \in \cap X^{2}, \ldots\right\rangle$. By the well founded core of \mathbb{A} we mean the set of all $v \in \mathbb{A}$ such that $\in \cap C(x)^{2}$ is well founded, where $C(x)$ is the closure of $\{x\}$ under $\in_{\mathbb{A}}$. Let $\operatorname{wfc}(\mathbb{A})$ be the restriction $\mathbb{A} \mid C$ of \mathbb{A} to its well founded core C. Then $\operatorname{wfc}(\mathbb{A})$ is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive structure. Hence \mathbb{A} is isomorphic to a structure \mathbb{A}^{\prime} such that $\operatorname{wfc}\left(\mathbb{A}^{\prime}\right)$ is transitive (i.e. $\operatorname{wfc}\left(\mathbb{A}^{\prime}\right)=\left\langle\mathbb{A}^{\prime}, \in, m\right\rangle$ where \mathbb{A}^{\prime} is transitive). We call such \mathbb{A}^{\prime} grounded, defining:

Definition 1.3.1. $\mathbb{A}=\left\langle A, \in^{\mathbb{A}}, \ldots\right\rangle$ is grounded iff $w f c(\mathbb{A})$ is transitive.
(Note Elsewhere we have called these models "solid" instead of "grounded". We avoid that usage here, however, since solidity - in quite another sense - is an important concept in inner model theory.)

By the argument just given, every consistent set of sentences in $Z F^{-}$has a grounded model. Clearly
(1) $\omega \subset \operatorname{wfc}(\mathbb{A})$ if \mathbb{A} is grounded.

For any $Z F^{-}$model \mathbb{A} we have:
(2) If $x \in \mathbb{A}$ and $\left\{z \mid z \in^{\mathbb{A}} x\right\} \subset \operatorname{wfc}(\mathbb{A})$, then $x \in \operatorname{wfc}(\mathbb{A})$.

Proof: $C(x)=\{x\} \cup \bigcup\left\{C(z) \mid z \in^{\mathbb{A}} x\right\}$.
QED

By Σ_{0}-absoluteness we have:
(3) Let \mathbb{A} be grounded. Let φ be Σ_{0} and let $x_{1}, \ldots, x_{n} \in \operatorname{wfc}(\mathbb{A})$. Then

$$
\operatorname{wfc}(\mathbb{A}) \models \varphi[\vec{x}] \leftrightarrow \mathbb{A}=\varphi[\vec{x}] .
$$

By \in-induction on $x \in \operatorname{wfc}(\mathbb{A})$ it follows that the rank function is absolute:
(4) $\operatorname{rn}(x)=\operatorname{rn}^{\mathbb{A}}(x)$ for $x \in \operatorname{wfc}(\mathbb{A})$ if \mathbb{A} is grounded.

The converse also holds:
(5) Let $\operatorname{rn}^{\mathbb{A}}(x) \in \operatorname{wfc}(\mathbb{A})$. Then $x \in \operatorname{wfc}(\mathbb{A})$.

Proof: Let $r=\operatorname{rn}^{\mathbb{A}}(x)$. Then r is an ordinal by (3). Assume that r is the least counterexample. Then $\operatorname{rn}^{\mathbb{A}}(z)<r$ for $z \in^{\mathbb{A}} x$. Hence $\left\{z \mid z \in^{\mathbb{A}} x\right\} \subset$ $\operatorname{wfc}(\mathbb{A})$ and $x \in \operatorname{wfc}(\mathbb{A})$ by (2).

Contradiction!
QED

We now prove:

Lemma 1.3.1. Let \mathbb{A} be grounded. Then $\operatorname{wfc}(\mathbb{A})$ is admissible.

Proof: Axiom (1) and axiom (2) (Σ_{0}-subsets) follow trivially from (3). We verify the axiom of Σ_{0} collection. Let $R(x, y)$ e $\underline{\Sigma}_{0}(\operatorname{wfc}(\mathbb{A}))$. Let $u \in \operatorname{wfc}(\mathbb{A})$ such that $\bigwedge x \in u \bigvee y R(x, y)$. It suffices to show:

Claim: $\bigvee v \bigwedge x \in u \bigvee y \in v R(x, y)$.
Let R^{\prime} be $\underline{\Sigma}_{0}(\mathbb{A})$ by the same definition in the same parameters as R. Then $R=R^{\prime} \cap \operatorname{wfc}(\mathbb{A})^{2}$ by (3). If $\mathbb{A}=\operatorname{wfc}(\mathbb{A})$, there is nothing to prove, so suppose not. Then there is $r \in \mathrm{On}^{\mathbb{A}}$ such that $r \notin \mathrm{wfc}(\mathbb{A})$. Hence

$$
\mathbb{A} \vDash r n(y)<r \text { for all } y \in \operatorname{wfc}(\mathbb{A})
$$

by (4). Hence there is an $r \in \mathrm{On}^{\mathbb{A}}$ such that
(6) $\bigwedge x \in u \bigvee y\left(R^{\prime}(x, y) \wedge \mathbb{A} \models r n(y)<r\right)$

Since \mathbb{A} models $Z F^{-}$, there must be a least such r. But then:
(7) $r \in \operatorname{wfc}(\mathbb{A})$.

Since by (2) there would otherwise be an r^{\prime} such that $\mathbb{A} \vDash r^{\prime}<r$ and $r^{\prime} \notin \operatorname{wfc}(\mathbb{A})$. Hence (6) holds for r^{\prime}, contradicting the minimality of r.

QED (7)
But there is w such that
(8) $\bigwedge x \in u \bigvee y \in w\left(R^{\prime}(x, y) \wedge r n(y)<r\right)$.

Let $\mathbb{A} \vDash v=\{y \in w \mid \wedge r n(y)<r\}$. Then $r n^{\mathbb{A}}(v) \leq r$. Hence $r n^{\mathbb{A}}(v) \in$ $\operatorname{wfc}(\mathbb{A})$ and $v \in \operatorname{wfc}(\mathbb{A})$ by (5). But:

$$
\bigwedge x \in u \bigvee y \in v R x y
$$

QED (Lemma 1.3.1)
As immediate corollaries we have:
Corollary 1.3.2. Let $\delta=\operatorname{On} \cap \operatorname{wfc}(\mathbb{A})$. Then $L_{\delta}(u)$ is admissible whenever $u \in \operatorname{wfc}(\mathbb{A})$.

Corollary 1.3.3. $L_{\delta}^{A}=\left\langle L_{\delta}[A], A \cap L_{\delta}[A]\right\rangle$ is admissible whenever $A \in$ $\underline{\Sigma}_{\omega}(\mathbb{A})$ (since $\langle\mathbb{A}, A\rangle$ is a $Z F^{-}$model.

Note It is clear from the proof of lemma 1.3 .1 that we can replace $Z F^{-}$by KP (Kripke-Platek set theory). In this form lemma 1.3.1 is known as Ville's Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary (but M-finite) languages in countable admissible structures M. In so doing, he created a powerful and flexible tool for set theory, which we shall utilize later in this book. In this chapter we give an introduction to Barwise's work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which arbitrary M-finite conjunction and disjunction are allowed. The predicates, however, have only a (genuinely) finite number of argument places and there are no infinite strings of quantifiers. In order that the notion " M-finite" have a meaning for the symbols in our language, we must "arithmetize" the language - i.e. identify its symbols with objects in M. There are many ways of doing this. For the sake of definitness we adopt a specific arithmetization of M-finitary first order logic:

Predicates: For each $x \in M$ and each n such that $1 \leq n<\omega$ we appoint an n-ary predicate $P_{x}^{n}=:\langle 0,\langle n, x\rangle\rangle$.

Constants: For each $x \in M$ we appoint a constant $c_{x}=:\langle 1, x\rangle$.

Variables: For each $x \in M$ we appoint a variable $v_{x}=:\langle 2, x\rangle$.

Note The set of variables must be M-infinite, since otherwise a single formula might exhaust all the variables.

We let P_{0}^{2} be the identity predicate \doteq and also reserve P_{1}^{2} as the \in-predicate ($\dot{\in}$).

By a primitive formula we mean $P t_{1} \ldots t_{n}=:\left\langle 3,\left\langle P, t_{1}, \ldots, t_{n}\right\rangle\right\rangle$ where P is an n-ary predicate and t_{1}, \ldots, t_{n} are variables or constants.

We then define:

$$
\begin{aligned}
& \neg \varphi=:\langle 4, \varphi\rangle,(\varphi \vee \psi)=:\langle 5,\langle\varphi, \psi\rangle\rangle \\
& (\varphi \wedge \psi)=:\langle 6,\langle\varphi, \psi\rangle\rangle,(\varphi \rightarrow \psi)=:\langle 7,\langle\varphi, \psi\rangle\rangle \\
& (\varphi \leftrightarrow \psi)=:\langle 8,\langle\varphi, \psi\rangle\rangle, \bigwedge v \varphi=\langle 9,\langle v, \varphi\rangle\rangle \\
& \bigvee v \varphi=\langle 10,\langle v, \varphi\rangle\rangle
\end{aligned}
$$

The infinitary conjunctions and disjunctions are

$$
M \backslash f=:\langle 11, f\rangle, \bigvee \mathfrak{W}=:\langle 12, f\rangle .
$$

The set $F m l$ of first order M-formulae is then the smallest set X which contains all primitive formulae, is closed under $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$, and such that

- If v is a variable and $\varphi \in X$, then $\bigwedge v \varphi \in X$ and $\bigvee v \varphi \in X$.
- If $f=\left\langle\varphi_{i} \mid i \in I\right\rangle \in M$ and $\varphi_{i} \in X$ for $i \in I$, then $M \in \in X$ and $W \in \in X$.
(In this case we also write:

$$
\bigwedge_{i \in I} \varphi_{i}=: M \nmid, X_{i \in I} \varphi_{i}=: M \nmid f
$$

If B is a set of formulae we may also write: $\mathbb{X} B$ for $\bigwedge_{\varphi \in B} _{\varphi}$.)
It turns out that the usual syntactical notions are $\Delta_{1}(M)$, including: $F m l$, Const (set of constants), Vbl (set of variables), Sent (set of all sentences), as are the functions:
$\operatorname{Fr}(\varphi)=$ The set of free variables in φ
$\varphi(v / t) \simeq$ the result of replacing occurences of the variable v by t (where $t \in V b l \cup C o n s t)$, as long as this can be done without a new occurence of t being bound by a quantifier in φ (if t is a variable).

That $V b l$, Const are Δ_{1} (in fact Σ_{0}) is immediate. The characteristic function X of Fml is definable by a recursion of the form:

$$
X(x)=G(x,\langle X(z)| z \in T C(x))
$$

where $G: M^{2} \rightarrow M$ is Δ_{1}. (This is an instance of the recursion schema in $\S 1$ Lemma 1.1.16. We are of course using the fact that any proper subformula of φ lies in $T C(\varphi)$.)

Now let $h(\varphi)$ be the set of immediate subformulae of φ (e.g. $h(\neg \varphi)=\{\varphi\}$, $h\left(\not \underset{i \in I}{ } \varphi_{i}\right)=\left\{\varphi_{i} \mid i \in I\right\}, h(\bigwedge v \varphi)=\{\varphi\}$ etc.) Then h satisfies the condition in $\S 1$ Lemma 1.1.16. It is fairly easy to see that

$$
F r(\varphi)=G(\varphi,\langle F(x) \mid x \in h(\varphi)\rangle)
$$

where G is a Σ_{1} function defined on $F m l$. Then $\operatorname{Sent}=\{\varphi \mid \operatorname{Fr}(\varphi)=\emptyset\}$.
To define $\varphi(v / t)$ we first define it on primitive formulae, which is straightforward. We then set:

$$
\begin{aligned}
& \left.(\varphi \wedge \psi)(v / t) \simeq\left(\varphi\left({ }^{v} / t\right) \wedge \psi(v / t)\right) \text { (similarly for } \wedge, \rightarrow, \leftrightarrow\right) \\
& \neg \varphi(v / t) \simeq \neg(\varphi(v / t)) \\
& \left(\bigwedge_{i \in I} \varphi_{i}\right)(v / t) \simeq \bigwedge_{i \in I}\left(\varphi_{i}(v / t)\right) \text { similarly for } \mathbb{W} . \\
& (\bigwedge u \varphi)(v / t) \simeq\left\{\begin{array}{l}
\bigwedge u \varphi \text { if } u=v \\
\bigwedge u(\varphi(v / t)) \text { if } u \neq v, t \quad(\text { similarly for } \bigvee) \\
\text { otherwise undefined }
\end{array}\right.
\end{aligned}
$$

This has the form:

$$
\varphi\left(^{v} / t\right) \simeq G\left(\varphi, v, t\left\langle X\left(^{v} / t\right) \mid X \in h(\varphi)\right\rangle\right),
$$

where G is $\Sigma_{1}(M)$. The domain of the function $f(\varphi, v, t)=\varphi(v / t)$ is $\Delta_{1}(M)$, however, so f is M-recursive.
(We can then define:

$$
\varphi\left({ }^{v_{1}, \ldots, v_{n}} / t_{1}, \ldots, t_{n}\right)=\varphi\left({ }^{v_{1}} / w_{1}\right) \ldots\left({ }^{v_{n}} / w_{n}\right)\left({ }^{w_{1}} / t_{1}\right) \ldots\left({ }^{w_{n}} / t_{n}\right)
$$

where v_{1}, \ldots, v_{n} is a sequence of distinct variables and w_{1}, \ldots, w_{n} is any sequence of distinct variables which are different from $v_{1}, \ldots, v_{n}, t_{1}, \ldots, t_{n}$ and do not occur bound or free in φ. We of cours follow the usual conventions, writing $\varphi\left(t_{1}, \ldots, t_{n}\right)$ for $v p\left({ }^{v_{1}, \ldots, v_{n}} / t_{1}, \ldots, t_{n}\right)$, taking v_{1}, \ldots, v_{n} as known.)

M-finite predicate logic has the axioms:

- all instances of the usual propositional logic axiom schemata (enough to derive all tautologies with the help of modus ponens).
- $\bigwedge_{i \in U} \varphi_{i} \rightarrow \varphi_{j}, \varphi_{j} \rightarrow \underset{i \in U}{W} \varphi_{i}(j \in U \in M)$
- $\bigwedge x \varphi \rightarrow \varphi(x / t), \varphi(x / t) \rightarrow \bigvee x \varphi$
- $x \doteq y \rightarrow(\varphi(x) \leftrightarrow \varphi(y))$

The rules of inference are:

- $\frac{\varphi, \varphi \rightarrow \psi}{\psi}$ (modus ponens)
- $\frac{\varphi \rightarrow \psi}{\varphi \rightarrow \Lambda x \psi}$ if $x \notin \operatorname{Fr}(\varphi)$
- $\frac{\psi \rightarrow \varphi}{\nabla x \psi \rightarrow \varphi}$ if $x \notin \operatorname{Fr}(\varphi)$
- $\frac{\varphi \rightarrow \psi_{i}(i \in u)}{\varphi \rightarrow X_{i}}(u \in M)$
- $\frac{\psi_{i} \rightarrow \varphi(i \in u)}{W \psi_{i} \rightarrow \varphi}(u \in M)$

We say that φ is provable from a set of sentences A iff φ is in the smallest set which contains A and the axioms and is closed under the rules of inference. We write $A \vdash \varphi$ to mean that φ is provable from A. $\vdash \varphi$ means the same as $\emptyset \vdash \varphi$.

However, this definition of provability cannot be stated in the 1st order language of M and rather misses the point which is that a provable formula should have an M-finite proof. This, as it turns out, will be the case whenever A is $\underline{\Sigma}_{1}(M)$. In order to state and prove this, we must first formalize the notion of proof. Because we have not assumed the axiom of choice to hold in our admissible structure M, we adopt a somewhat unorthodox concept of proof:

Definition 1.4.1. By a proof from A we mean a sequence $\left\langle p_{i} \mid i<\alpha\right\rangle$ such that $\alpha \in \mathrm{On}$ and for each $i<\alpha, p_{i} \subset F m l$ and whenever $\psi \in p_{i}$, then either $\psi \in A$ or ψ is an axiom or ψ follows from $\bigcup_{h<i} p_{n}$ by a single application of one of the rules.

Definition 1.4.2. $p=\left\langle p_{i}\right| i\langle\alpha\rangle$ is a proof of φ from A iff p is a proof from A and $\varphi \in \bigcup_{i<\alpha} p_{i}$.
(Note that this definition does not require a proof to be M-finite.)
It is straightforward to show that φ is provable iff it has a proof. However, we are more interested in M-finite proofs. If A is $\Sigma_{1}(M)$ in a parameter q, it follows easily that $\{p \in M \mid p$ is a proof from $A\}$ is $\Sigma_{1}(M)$ in the same parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be $\underline{\Sigma}_{1}(M)$. Then $A \vdash \varphi$ iff there is an M-finite proof of φ from A.

Proof: (\leftarrow) trivial. We prove (\rightarrow)
Let $X=$ the set of φ such that there is $p \in M$ which proves φ from A.
Claim: $\{\varphi \mid A \vdash \varphi\} \subset X$.
Proof: We know that $A \subset X$ and all axioms lie in X. Hence it suffices to show that X is closed under the rules of proof. This must be demonstrated rule by rule. As an example we show:

Claim: Let $\varphi \rightarrow \psi_{i}$ be in X for $i \in u$. Then $\varphi \rightarrow \bigwedge_{i \in U} \backslash \in X$.
Proof: Let $P(p, \varphi)$ mean: p is a proof of φ from A. Then P is $\underline{\Sigma}_{1}(M)$. We have assumed:
(1) $\bigwedge i \in u \bigvee_{p} P\left(p, \varphi \rightarrow \psi_{i}\right)$.

Now let $P(p, x) \leftrightarrow \bigvee z P^{\prime}(z, p, x)$ where P^{\prime} is Σ_{0}. We then have:
(2) $\bigwedge i \in u \bigvee p \bigvee z P^{\prime}\left(z, p, \varphi \rightarrow \psi_{i}\right)$.

Hence there is $v \in M$ with:
(3) $\bigwedge i \in u \bigvee p, z \in v P^{\prime}\left(z, p, \varphi \rightarrow \psi_{i}\right)$.

Set: $w=\left\{p \in v \mid \bigvee i \in u \bigvee z \in v P^{\prime}\left(z, p, \varphi \rightarrow \psi_{i}\right)\right\}$
Set: $\alpha=\bigcup_{p \in w} \operatorname{dom}(p)$. For $i<\alpha$ set:

$$
q_{i}=\bigcup\left\{p_{i} \mid p \in w \wedge i \in \operatorname{dom}(p)\right\}
$$

Then $q=\left\langle q_{i} \mid i<\alpha\right\rangle \in M$ is a proof.

But then $q^{\cap}\left\{\bigwedge_{i \in U} \psi_{i}\right\}$ is a proof of $\underset{i \in U}{ } \bigwedge_{i \in U} \psi_{i}$. Hence $\mathbb{X}_{i \in U} \psi_{i} \in X$.
QED (Lemma 1.4.1)
From this we get the M-finiteness lemma:
Lemma 1.4.2. Let A be $\underline{\Sigma}_{1}(M)$. Then $A \vdash \varphi$ iff there is $a \subset A$ such that $a \in M$ and $a \vdash \varphi$.

Proof: (\leftarrow) is trivial. We prove (\rightarrow). Let $p \in M$ be a proof of φ from A. Set:
$a=$ the set of ψ such that for some $i \in \operatorname{dom}(p), \psi \in p_{i}$ and ψ is neither an axiom nor follows from $\bigcup_{I<i} p_{i}$ by an application of a single rule.

Then $a \subset A, a \in M$, and p is a proof of φ from a. \quad QED (Lemma 1.4.2)
Another consequence of Lemma 1.4.1 is:
Lemma 1.4.3. Let A be $\Sigma_{1}(M)$ in q. Then $\{\varphi \mid A \vdash \varphi\}$ is $\Sigma_{1}(M)$ in the same parameter (uniformly in the Σ_{1} definition of A).

Proof: $\{\varphi \mid A \vdash \varphi\}=\{\varphi \mid \bigvee p \in M p$ proves φ from $A\}$.
Corollary 1.4.4. Let A be $\Sigma_{1}(M)$ in q. Then " A is consistent" is $\Pi_{1}(M)$ in the same parameter (uniformly in the Σ_{1} definition of A).
" p proves φ from u " is uniformly $\Sigma_{i}(M)$. Hence:
Lemma 1.4.5. $\{\langle u, \varphi\rangle \mid u \in M \wedge u \vdash \varphi\}$ is uniformly $\Sigma_{1}(M)$.
Corollary 1.4.6. $\{\langle u \in M| u$ is consistent $\}$ is uniformly $\Pi_{1}(M)$.
Note. Call a proof p strict $\operatorname{iff} \overline{\bar{P}}_{i}=1$ for $i \in \operatorname{dom}(p)$. This corresponds to the more usual notion of proof. If M satisfies the axiom of choice in the form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with "strict proof" in place of "proof". We leave this to the reader.

1.4.2 Models

We will not normally employ all of the predicates and constants in our $M-$ finitary first order logic, but cut down to a smaller set of symbols which we intend to interpret in a model. Thus we define a language to be a set \mathbb{L} of predicates and constants. By a model of \mathbb{L} we mean a structure:

$$
\mathbb{A}=\langle | \mathbb{A}\left|,\left\langle t^{\mathbb{A}} \mid t \in \mathbb{L}\right\rangle\right\rangle
$$

such that $|\mathbb{A}| \neq \emptyset, P^{\mathbb{A}} \subset|\mathbb{A}|^{n}$ whenever P is an n-ary predicate, and $c^{\mathbb{A}} \in|\mathbb{A}|$ whenever c is a constant. By a variable assignment we mean a map of f of the variables into \mathbb{A}. The satisfaction relation $\mathbb{A} \models \varphi[f]$ is defined in the usual way, where $\mathbb{A} \vDash[f]$ means that the formula φ becomes true in \mathbb{A} if the free variables of φ are interpreted by the assignment f. We leave the definition to the reader, remarking only that:

$$
\begin{aligned}
& \mathbb{A}=\underset{i \in u}{M} \varphi_{i}[f] \leftrightarrow \bigwedge i \in u \mathbb{A} \models \varphi_{i}[f] \\
& \mathbb{A} \models \bigvee_{i \in u} \varphi_{i}[f] \leftrightarrow \bigvee i \in u \mathbb{A} \models \varphi_{i}[f]
\end{aligned}
$$

We adopt the usual conventions of model theory, writing $\mathbb{A}=\langle | \mathbb{A}\left|, t_{1}^{\mathbb{A}}, \ldots\right\rangle$ if we think of the predicates and constants of \mathbb{L} as being arranged in a fixed
sequence t_{1}, t_{2}, \ldots Similarly, if $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$ is a formula in which at most the variables v_{1}, \ldots, v_{n} occur free, we write $\mathbb{A} \vDash \varphi\left[a_{1}, \ldots, a_{n}\right]$ for:

$$
\mathbb{A} \models \varphi[f] \text { where } f\left(v_{i}\right)=a_{i} \text { for } i=1, \ldots, n
$$

If φ is a sentence we write: $\mathbb{A} \models \varphi$. If A is a set of sentences, we write $\mathbb{A} \vdash A$ to mean: $\mathbb{A} \models \varphi$ for all $\varphi \in A$.

Proof: The correctness theorem says that if A is a set of \mathbb{L} sentences and $\mathbb{A} \vDash A$, then A is consistent. (We leave this to the reader.)
Barwise's Completeness Theorem says that the converse holds whenever our admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let \mathbb{L} be an M-language and let A be a set of statements in \mathbb{L}. If A is consistent in M-finite predicate logic, then \mathbb{L} has a model \mathbb{A} such that $\mathbb{A} \models A$.

Proof: (Sketch)
We make use of the following theorem of Rasiowa and Sikorski: Let \mathbb{B} be a Boolean algebra. Let $X_{i} \subset \mathbb{B}(i<\omega)$ be such that the Boolean union $\bigcup X_{i}=b_{i}$ exists in the sense of \mathbb{B}. Then \mathbb{B} has an ultrafilter U such that

$$
b_{i} \in U \leftrightarrow X_{i} \cap U \neq \emptyset \text { for } i<\omega
$$

(Proof. Successively choose $c_{i}\left(i<\omega\right.$) by: $c_{0}=1, c_{i+1}=c_{i} \cap b \neq 0$, where $b \in X_{i} \cup\left\{\neg b_{i}\right\}$. Let $\bar{U}=\left\{a \in \mathbb{B} \mid \bigvee i c_{i} \subset a\right\}$. Then \bar{U} is a filter and extends to an ultrafilter on \mathbb{B}.)

Extend the language \mathbb{L} by adding an M-infinite set C of new constants. Call the extended language \mathbb{L}^{*}. Set:

$$
[\varphi]=:\{\psi \mid A \vdash(\psi \leftrightarrow \varphi)\}
$$

for \mathbb{L}^{*}-sentences φ. Then

$$
\mathbb{B}=:\left\{[\varphi] \mid \varphi \in \operatorname{Sent}_{\mathbb{L}^{*}}\right\}
$$

is the Lindenbaum algebra of \mathbb{L}^{*} with the defining equations:

$$
\begin{aligned}
& {[\varphi] \cup[\psi]=[\varphi \vee \psi],[\varphi] \cap[\psi]=[\varphi \wedge \psi], \neg[\varphi]=[\neg \varphi]} \\
& \bigcup_{i \in U}\left[\varphi_{i}\right]=\left[\not \mathbb{M}_{i \in U} \varphi_{i}\right](i \in u), \bigcap_{i \in U}\left[\varphi_{i}\right]=\left[\nless \nmid \bigwedge_{i \in U} \varphi_{i}\right](i \in u) \\
& \bigcup_{c \in C}[\varphi(c)]=[\bigvee v \varphi(v)], \bigcap_{c \in C}[\varphi(c)]=[\bigwedge v \varphi(v)] .
\end{aligned}
$$

The last two equations hold because the constants in C, which do not occur in the axiom A, behave like free variables. By Rasiowa and Sikorski there is then
an ultrafilter U on \mathbb{B} which respects the above operations. We define a model $\mathbb{A}=\langle | \mathbb{A}\left|,\left\langle t^{\mathbb{A}} \mid t \in \mathbb{L}\right\rangle\right\rangle$ as follows: For $c \in C$ set $[c]=:\left\{c^{\prime} \in C \mid\left[c=c^{\prime}\right] \in U\right\}$. If $p \in \mathbb{L}$ is an n-place predicate, set:

$$
P^{\mathbb{A}}\left(\left[c_{1}\right], \ldots,\left[c_{n}\right]\right) \leftrightarrow:\left[P c_{1}, \ldots, c_{n}\right] \in U .
$$

If $t \in \mathbb{L}$ is a constant, set:

$$
t^{\mathbb{A}}=[c] \text { where } c \in C,[t=c] \in U .
$$

A straightforward induction then shows:

$$
\mathbb{A} \models \varphi\left[\left[c_{1}\right], \ldots,\left[c_{n}\right] \leftrightarrow\left[\varphi\left(c_{1}, \ldots, c_{n}\right)\right] \in U\right.
$$

for formulae $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$ with at most the free variables v_{1}, \ldots, v_{n}. In particular, $\mathbb{A} \models \varphi \leftrightarrow[\varphi] \in U$ for \mathbb{L}^{*}-statements φ. Hence $\mathbb{A} \models A$.

QED (Theorem 1.4.7)
Combining the completeness theorem with the M-finiteness lemma, we get the well known Barwise compactness theorem:

Corollary 1.4.8. Let M be countable. Let \mathbb{L} be a language. Let A be a $\underline{\Sigma}_{1}(M)$ set of sentences in \mathbb{L}. If every M-finite subset of \mathbb{A} has a model, then so does A.

1.4.3 Applications

Definition 1.4.3. By a theory or axiomatized language we mean a pair $\mathbb{L}=\left\langle\mathbb{L}_{0}, A\right\rangle$ such that \mathbb{L}_{0} is a language and A is a set of \mathbb{L}_{0}-sentences. We say that \mathbb{A} models \mathbb{L} iff \mathbb{A} is a model of \mathbb{L}_{0} and $\mathbb{A} \models A$. We also write $\mathbb{L} \vdash \varphi$ for: $\left(\varphi \in F m l_{\mathbb{L}_{0}}\right.$ and $\left.A \vdash \varphi\right)$. We say that $\mathbb{L}=\left\langle\mathbb{L}_{0}, A\right\rangle$ is $\Sigma_{1}(M)$ (in $\left.p\right)$ iff \mathbb{L}_{0} is $\Delta_{1}(M)$ (in p) and A is $\Sigma_{1}(M)$ (in p). Similarly for: \mathbb{L} is $\Delta(M)$ (in p).

We now consider the class of axiomazized languages containing a fixed predicate $\dot{\epsilon}$, the special constants $\underline{x}(x \in M$) (we can set e.g. $\underline{x}=\langle 1,\langle 0, x\rangle\rangle$), and the basic axioms:

- Extensionality
- $\bigwedge v(v \dot{\in} \underline{x} \leftrightarrow \underset{z \in x}{W} v \doteq \underline{z})$ for $x \in M$.
(Further predicates, constants, and axioms are allowed of course.) We call any such theory an " \in-theory". Then:

Lemma 1.4.9. Let \mathbb{A} be a grounded model of an $\in-$ theory \mathbb{L}. Then $\underline{x}^{\mathbb{A}}=$ $x \in \operatorname{wfc}(\mathbb{A})$ for $x \in M$.

In an \in-theory \mathbb{L} we often adopt the set of axioms ZFC^{-}(or more precisely $\mathrm{ZFC}_{\mathbb{L}}^{-}$). This is the collection of all \mathbb{L}-sentences φ such that φ is the universal quantifier closure of an instance of the ZFC^{-}axiom schemata - but does not contain infinite conjunctions or disjunctions. (Hence the collection of all subformulae is finite.) (Similarly for $Z F^{-}, \mathrm{ZFC}, Z F$.)
(Note If we omit the sentences containing constants, we get a subset $B \subset$ ZFC^{-}which is equivalent to ZFC^{-}in \mathbb{L}. Since each element of B contain at most finitely many variables, we can restrict further to the subset B^{\prime} of sentences containing only the variables $v_{i}(i<\omega)$. If $\omega \in M$ and the set of predicates in \mathbb{L} is M-finite, then B^{\prime} will be M-finite. Hence ZFC^{-}is equivalent in \mathbb{L} to the statement $M B^{\prime}$.)

We now bring some typical applications of $\in-$ theories. We say that an ordinal α is admissible in $a \subset \alpha$ iff $\left\langle L_{\alpha}[a], \in, a\right\rangle$ is admissible.

Lemma 1.4.10. Let $\alpha>\omega$ be a countable admissible ordinal. Then there is $a \subset \omega$ such that α is the least ordinal admissible in a.

This follows straightforwardly from:
Lemma 1.4.11. Let M be a countable admissible structure. Let \mathbb{L} be a consistent $\underline{\Sigma}_{1}(M) \in-$ theory such that $\mathbb{L} \vdash Z F^{-}$. Then \mathbb{L} has a grounded model \mathbb{A} such that $\mathbb{A} \neq \operatorname{wfc}(\mathbb{A})$ and $\operatorname{On} \cap \operatorname{wfc}(\mathbb{A})=\operatorname{On} \cap M$.

We first show that lemma 1.4.11 implies lemma 1.4.10. Take $M=L_{\alpha}$. Let \mathbb{L} be the M-theory with:

Predicate: $\dot{\in}$

Constants: $\underline{x}(x \in M), \dot{a}$
Axioms: Basic axioms $+\mathrm{ZFC}^{-}+\underline{\beta}$ is not admissible in $\dot{a}(\beta \in M)$

Then \mathbb{L} is consistent, since $\left\langle H_{\omega_{1}}, \in, a\right\rangle$ is a model, where a is any $a \subset \omega$ which codes a well ordering of type $\geq \alpha$. Let \mathbb{L} be a grounded model of \mathbb{L} such that $\operatorname{wfc}(\mathbb{A}) \neq \mathbb{A}$ and $\operatorname{On} \cap \operatorname{wfc}(\mathbb{A})=\alpha$. Then $\operatorname{wfc}(\mathbb{A})$ is admissible by $\S 3$. Hence so is $L_{\alpha}[a]$ where $a=\dot{a}^{\mathbb{A}}$.

QED
Note This is a very typical application in that Barwise theory hands us an ill founded model, but our interest is entirely concentrated on its well founded part.

Note Pursuing this method a bit further we can use lemma 1.4.11 to prove: Let $\omega<\alpha_{0}<\ldots<\alpha_{n-1}$ be a sequence of countable admissible ordinals. There is $a \subset \omega$ such that $\alpha_{i}=$ the $i-$ th $\alpha<\omega$ which is admissible in $a(1=0, \ldots, n-1)$.

We now prove lemma 1.4 .11 by modifying the proof of the completeness theorem. Let $\Gamma(v)$ be the set of formulae: $v \in \mathrm{On}, v>\underline{\beta}(\beta \in \mathrm{On} \wedge M)$. Add an M-infinite (but $\underline{\Delta}_{1}(M)$) set E of new constants to $\overline{\mathbb{L}}$. Let \mathbb{L}^{\prime} be \mathbb{L} with the new constants and new axioms: $\Gamma(e)(e \in E)$. Then \mathbb{L}^{\prime} is consistent, since any M-finite subset of the axioms can be modeled in an arbitrary grounded model \mathbb{A} of \mathbb{L} by interpreting the new constants as sufficiently large elements of α. As in the proof of completeness we then add a new class C of constants which is not M-finite. We assume, however, that C is $\Delta_{1}(M)$. We add no further axioms, so the elements of C behave like free variables. The so-extended language $\mathbb{L}^{\prime \prime}$ is clearly $\underline{\Sigma}_{1}(M)$.

Now set:

$$
\Delta(v)=:\{v \notin \mathrm{On}\} \cup \bigcup_{\beta \in M}\{v \leq \underline{\beta}\} \cup \bigcup_{e \in E}\{e<v\}
$$

Claim Let $c \in C$. Then $\bigcup\{[\varphi] \mid \varphi \in \Delta(c)\}=1$ in the Lindenbaum algebra of $\mathbb{L}^{\prime \prime}$.

Proof: Suppose not. Then there is ψ such that $A \vdash \varphi \rightarrow \psi$ for all $\varphi \in \Delta(c)$ and $A \cup\{\neg \psi\}$ is consistent, where $\mathbb{L}^{\prime \prime}=\left\langle\mathbb{L}_{0}^{\prime \prime}, A\right\rangle$. Pick an $e \in E$ which does not occur in ψ. Let A^{*} be the result of omitting the axioms $\Gamma(e)$ from A. Then $A^{*} \cup\{\neg \psi\} \cup \Gamma(e) \vdash c \leq e$. By the finiteness lemma there is $\beta \in M$ such that $A^{*} \cup\{\neg \psi\} \cup\{\underline{\beta} \leq e\} \vdash c \leq e$. But e behaves here like a free variable, so $A^{*} \cup\{\neg \psi\} \vdash \bar{c} \leq \underline{\beta}$. But $A \supset A^{*}$ and $A \cup\{\neg \psi\} \vdash \underline{\beta}<c$. Hence $A \cup\{\neg \psi\} \vdash \underline{\beta}<\underline{\beta}$ and $A \cup\{\neg \psi\}$ is inconsistent.
Contradiction!
QED (Claim)
Now let U be an ultrafilter on the Lindenbaum algebra of $\mathbb{L}^{\prime \prime}$ which respects both two operations listed in the proof of the completeness theorem and the unions $\bigcup\{[\varphi] \mid \varphi \in \Delta(c)\}$ for $c \in C$. Let $X=\{\varphi \mid[\varphi] \in U\}$. Then as before, $\mathbb{L}^{\prime \prime}$ has a grounded model \mathbb{A}, all of whose elementes have the form $c^{\mathbb{A}}$ for $c \in C$ and such that:

$$
\mathbb{A} \models \varphi \operatorname{iff} \varphi \in X
$$

for $\mathbb{L}^{\prime \prime}$-statements φ. But then for each $x \in A$ we have either $x \notin \mathrm{On}_{\mathbb{A}}$ or $x<\beta$ for a $\beta \in \mathrm{On} \cap M$ or $e^{\mathbb{A}}<v$ for all $e \in E$. In particular, if $x \in \mathrm{On}_{\mathbb{A}}$ and $x>\beta$ for all $\beta \in \mathrm{On} \cap M$, then there is $e^{\mathbb{A}}<x$ in \mathbb{A}. But $\beta<e^{\mathbb{A}}$ for all $\beta \in \mathrm{On} \cap M$. Hence $\mathrm{On}_{\mathbb{A}} \backslash \mathrm{On}_{M}$ has no minimal element in \mathbb{A}.

QED (Lemma 1.4.11)
Another typical application is:

Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W, U is a normal measure on κ. Let $\tau>\kappa$ be regular in W. Set: $M=\left\langle H_{\tau}^{W}, U\right\rangle$. Assume that M is countable in V. Then for any $\alpha \leq \kappa$ there is $\bar{M}=\langle\bar{H}, \bar{U}\rangle$ such that

- $\bar{M} \models \bar{U}$ is a normal measure on $\bar{\kappa}$ for $a \bar{\kappa} \in \bar{M}$
- \bar{M} iterates to M in α many steps.
(Hence \bar{M} is iterable, since M is.)

Proof: The case $\alpha=0$ is trivial, so assume $\alpha>0$. Let δ be least such that $L_{\delta}(M)$ is admissible. Let \mathbb{L} be the \in-theory on $L_{\delta}(M)$ with:

Predicate: $\dot{\epsilon}$
Constants: $\underline{x}\left(x \in L_{\delta}(M)\right), \dot{M}$
Axiom: - Basic axioms $+\mathrm{ZFC}^{-}$

- $\dot{M}=\langle\dot{H}, \dot{U}\rangle \models\left(\mathrm{ZFC}^{-}+\dot{U}\right.$ is a normal measure on a $\left.\kappa<\dot{H}\right)$
- \dot{M} iterates to \underline{M} in $\underline{\alpha}$ many steps.

It will suffice to show:
Claim \mathbb{L} is consistent.
We first show that the claim implies the theorem. Let \mathbb{A} be a grounded model of \mathbb{L}. Then $\mathbb{L}_{\delta}(M) \subset \operatorname{wfc}(\mathbb{A})$. Hence $M, \bar{M} \in \operatorname{wfc}(\mathbb{A})$, where $\bar{M}=\dot{M}^{\mathbb{A}}$. But then in \mathbb{A} there is an iteration $\left\langle\bar{M}_{i} \mid i \leq \alpha\right\rangle$ of \bar{M} to M. By absoluteness $\left\langle\bar{M}_{i} \mid i \leq \alpha\right\rangle$ really is such an iteration.

QED
We now prove the claim.
Case $1 \alpha<\kappa$
Iterate $\langle W, U\rangle \alpha$ many times, getting $\left\langle W_{i}, U_{i}\right\rangle(i \leq \alpha)$ with iteraton maps $\pi_{i, j}$. Then $\pi_{0, \alpha}(\alpha)=\alpha$. Set $M_{i}=\pi_{0, i}(M)$. Then $\left\langle M_{i} \mid i \leq \alpha\right\rangle$ is an iteration of M with iteration maps $\pi_{i, j} \upharpoonright M_{i}$. But $M_{\alpha}=\pi_{0, \alpha}(M)$. Hence $\left\langle H_{\kappa^{+}}, M\right\rangle$ models $\pi_{0, \alpha}(\mathbb{L})$. But then $\pi_{0, \alpha}(\mathbb{L})$ is consistent. Hence so is \mathbb{L}.

QED
Case $2 \alpha=\kappa$
Iterate $\langle W, U\rangle \beta$ many times, where $\pi_{0, \beta}(\kappa)=\beta$. Then $\left\langle M_{i} \mid i \leq \beta\right\rangle$ iterates M to M_{β} in β many steps. Hence $\left\langle H_{\kappa^{+}}, M\right\rangle$ models $\pi_{0, \beta}(\mathbb{L})$. Hence $\pi_{0, \beta}(\mathbb{L})$ is consistent and so is \mathbb{L}.

QED (Lemma 1.4.12)

Barwise theory is useful in situations where one is given a transitive structure Q and wishes to find a transitive structure \bar{Q} with similar properties inside an inner model. Another tool, which is often used in such situations, is Schoenfield's lemma, which, however, requires coding Q by a real. Unsurprizingly, Schoenfield's lemma can itself be derived from Barwise theory. We first note the well known fact that every Σ_{2}^{1} condition on a real is equivalent to a $\Sigma_{1}\left(H_{\omega_{1}}\right)$ condition, and conversely. Thus it suffices to show:
Lemma 1.4.13. Let $H_{\omega_{1}} \models \varphi[a], a \subset \omega$, where φ is Σ_{1}. Then:

$$
H_{\omega_{1}} \models \varphi[a] \text { in } L(a) .
$$

Proof: Let $\varphi=\bigvee z \psi$, where ψ is Σ_{0}. Let $H_{\omega_{1}} \models \psi[z, a]$ where $\operatorname{rn}(z)=\delta<\alpha<\omega_{1}$ and α is admissible in a. Let \mathbb{L} be the language on $L_{\alpha}(a)$ with:

Predicate: $\dot{\epsilon}$
Constants: $\underline{x}\left(x \in L_{\alpha}(a)\right)$
Axioms: Basic axioms $+\mathrm{ZFC}^{-}+\bigvee z(\psi(z, \underline{a}) \wedge \operatorname{rn}(z)=\underline{\delta})$.
Then \mathbb{L} is consistent, since $\left\langle H_{\omega_{1}}, a\right\rangle$ is a model. We cannot necessarily chose α such that it is countable in $L(a)$, however. Hence, working in $L(a)$, we apply a Skolem-Löwenheim argument to $L_{\alpha}(a)$, getting countable $\bar{\alpha}, \bar{\delta}, \pi$ such that $\pi: L_{\bar{\alpha}}(a) \prec L_{\alpha}(a)$ and $\pi(\bar{\delta})=\delta$. Let $\overline{\mathbb{L}}$ be defined from $\bar{\delta}$ over $L_{\bar{\alpha}}(a)$ as \mathbb{L} was defined from δ over $L_{\alpha}(a)$. Then $\overline{\mathbb{L}}$ is consistent by corollary 1.4.4. Since $L_{\bar{\alpha}}(a)$ is countable in $L(a), \overline{\mathbb{L}}$ has a grounded model $\mathbb{A} \in L(a)$. But then there is $z \in \mathbb{A}$ such that $\mathbb{A} \models \psi[z, a]$ and $r n^{\mathbb{A}}(z)=\bar{\delta}$. Thus $\operatorname{rn}(z)=\bar{\beta} \in \operatorname{wfc}(\mathbb{A})$ and $z \in \operatorname{wfc}(\mathbb{A})$. Thus $\operatorname{wfc}(\mathbb{A}) \models \psi[z, a]$, where $\operatorname{wfc}(\mathbb{A}) \subset H_{\omega_{1}}$ in $L(a)$. Hence $H_{\omega_{1}} \models \varphi[a]$ in $L(a)$.

QED

Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the way the constructable hierarchy grows. There are many natural questions. We know for instance by Gödel's condensation lemma that there are countable γ such that L_{γ} models ZFC $^{-}+\omega_{1}$ exists. This means that some $\beta<\gamma$ is a cardinal in L_{γ} but not in L. Hence there is a subset $b \subset \beta$ lying in L but not in L_{γ}. Hence there must be a least $\alpha>\gamma$ such that such a subset lies in $L_{\alpha+1}=\operatorname{Def}\left(L_{\alpha}\right)$. What happens there, and what do such α look like? It turns out that there is then a $\Sigma_{\omega}\left(L_{\alpha}\right)$ injection of L_{α} into β, and that α can be anything - even a successor ordinal. The body of methods used to solve such questions is called fine structure theory.

In chapter 1 we developed an elaborate body of methods for dealing with admissible structures. In order to deal with questions like the above ones, we must try to adapt these methods to an arbitrary L_{α}. A key concept in this endeavor is that of amenability:

Definition 2.1.1. A transitive structure $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ is amenable iff $A_{i} \cap x \in M$ for all $x \in M, i=1, \ldots, n$.

Omitting almost all proofs, we now sketch the fine structural demonstration that if $\beta<\alpha$ and $b<\beta$ is a $\underline{\Sigma}_{\omega}\left(L_{\alpha}\right)$ set with $b \notin L_{\alpha}$, then there is a $\underline{\Sigma}_{\omega}\left(L_{\alpha}\right)$ injection of L_{α} into β. Given any structure of the form $M=\left\langle L_{\alpha}, B_{1}, \ldots, B_{n}\right\rangle$ ω define its projectum to be the least ϱ such that there is $A \subset L_{\varrho}$ such that A is $\underline{\Sigma}_{1}(M)$ and $A \notin M$. (Thus $\left\langle L_{\varrho}, A\right\rangle$ is amenable whenever $A \subset L_{\varrho}$ is $\underline{\Sigma}_{1}(M)$.) It turns out that, whenever ϱ is the projectum of L_{α}, then there is a $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$ injection of L_{α} into ϱ. Now suppose that b is $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$, where α, β, b
are as above. Let ϱ^{0} be the projectum of L_{α} and let f^{0} be a $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$ injection of L_{α} into ϱ^{0}. Clearly $\varrho^{0} \leq \beta$, so f^{0} injects L_{α} into β. Now suppose that b is $\underline{\Sigma}_{2}\left(L_{\alpha}\right)$ but not $\underline{\Sigma}_{1}\left(L_{\alpha}\right)$.

If $p^{0} \leq \beta$ the result follows as before, so suppose $\beta<\varrho^{0}$. By the existence of f^{0} there is an $A^{0} \subset \varrho^{0}$ which completely codes L_{α}. (For instance we could take:

$$
A^{0}=\left\{\left\langle f^{0}(x), f^{0}(y)\right\rangle \mid x \in y \text { in } L_{\alpha}\right\} .
$$

The structure $N^{0}=\left\langle L_{\varrho^{0}}, A^{0}\right\rangle$ then called a reduct of L_{α}. It then follows that any set $a \subset L_{\varrho^{0}}$ is $\Sigma_{n}\left(N^{0}\right)$ if and only if it is $\Sigma_{n+1}\left(L_{\alpha}\right)$. In particular b is $\Sigma_{1}\left(N^{0}\right)$ and $b \notin N^{0}$. Hence $\varrho^{1} \leq \beta$, where ϱ^{1} is the projectum of N^{0}. It turns out, however, that in very many respects N^{0} behave exactly like an L_{α}. In particular there is a $\underline{\Sigma}_{1}\left(N^{0}\right)$ injection f^{1} of N^{0} into ϱ^{1}. Thus $f^{1} \circ f^{0}$ is a $\underline{\Sigma}_{\omega}\left(L_{\alpha}\right)$ injection of L_{α} into β.

Now suppose that b is $\underline{\Sigma}_{3}\left(L_{\alpha}\right)$ but not $\underline{\Sigma}_{2}\left(L_{\alpha}\right)$ and that $\beta<\varrho^{1}$. Then b is $\underline{\Sigma}_{2}\left(N^{0}\right)$ and we can repeat the above proof, using N^{0} in place of L_{α}. This gives us a reduct N^{1} of N^{0} and a $\underline{\Sigma}_{1}\left(N^{1}\right)$ injection f^{2} of N^{1} into the projectum ϱ^{2} of N^{1}. But b is $\underline{\Sigma}_{1}\left(N^{1}\right)$ and $b \notin N^{1}$. Hence $\varrho^{2} \leq \beta . f^{2} \circ f^{1} \circ f^{0}$ is then a $\Sigma_{\omega}\left(L_{\alpha}\right)$ injection of L_{α} into β. Proceeding in this way, we see that if b is $\underline{\Sigma}_{n+1}\left(L_{\alpha}\right)$, then there is a $\underline{\Sigma}_{\omega}\left(L_{\alpha}\right)$ map $f=f^{n} \circ \ldots \circ f^{0}$ injecting L_{α} into β. But b is $\underline{\Sigma}_{n+1}$ for some n.

The first proof of the above result was due to Hilary Putnam and did not use the full fine structure analysis we have just outlined. However, our analysis yielded many new insights; giving for instance the first proof that L_{α} is $\underline{\Sigma}_{n}$ uniformizable for all $n \geq 1$. (I.e. every $\underline{\Sigma}_{n}$ relation is uniformizable by a $\underline{\Sigma}_{n}$ function.)

Not long afterwards fine structure theory was used to prove some deep global properties of L, such as:

$$
L \models \square_{\beta} \text { for all infinite cardinals } \beta \text {. }
$$

It was also used to prove the covering lemma for L. That, in turn, led to extended versions of fine structure theory which could be used to analyze larger inner models, in which some large cardinals could be realized. (Here, however, the fine structure theory was needed not only to analyze the inner model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability over an arbitrary L_{α}. In order to achieve this, however, one must overcome some formidable technical obstacles which arise from Gödel's definition of the constructible hierarchy: At successors α, L_{α} is not even closed under ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an auxiliary role. These functions, which were discovered by Gandy and Jensen, are exactly the functions which are generated by the schemata for primitive recursive functions when the recursion schema is omitted. (Cf. the remark following chapter $1, \S 2$, Lemma 1.1.4). If $\operatorname{rn}\left(x_{i}\right)<\gamma$ for $i=1, \ldots, n$ and f is rudimentary, then $\operatorname{rn}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)<\gamma+\omega$. All reasonable "elementary" set theoretic functions are rudimentary. If α is a limit ordinal, then L_{α} is closed under rudimentary functions. If α is a successor, then closing L_{α} under rudimentary functions yields a transitive structure L_{α}^{*} of rank $\alpha+\omega$. It then turns out that every $\underline{\Sigma}_{\omega}\left(L_{\alpha}^{*}\right)$ definable subset of L_{α} is already $\underline{\Sigma}_{\omega}\left(L_{\alpha}^{*}\right)$, and conversely. Hence we can, in effect, replace the rather weak definability theory of L_{α} by the rather nice definability theory of L_{α}^{*}. (This method was used in $[\mathrm{JH}]$, except that L_{α}^{*} was given a different but equivalent definition, since the rudimentary functions were not yet known.) It turns out that if N is transitive and rudimentarily closed, and $\operatorname{Rud}(N)$ is defined to be the closure of $N \cup\{N\}$ under rudimentary functions, then $\mathbb{P}(N) \cap \operatorname{Rud}(N)=\operatorname{Def}(N)$. This suggests an alternative version of the constructible hierarchy in which every level is rudimentarily closed. We shall index this hierarchy by the class Lm of limit ordinals, setting:

$$
\begin{aligned}
& J_{\omega}=H_{\omega}=\operatorname{Rud}(\emptyset) \\
& J_{\alpha+\omega}=\operatorname{Rud}\left(J_{\alpha}\right) \text { for } \alpha \in \operatorname{Lm} \\
& J_{\lambda}=\bigcup_{\nu<\lambda} J_{\nu} \text { for } \lambda \text { a limit p.t. of Lm. }
\end{aligned}
$$

(Note Setting $J=\bigcup_{\alpha} J_{\alpha}$, we have: $J=L$ in fact $J_{\alpha}=L_{\alpha}$ whenever α is pr closed.)
(Note This indexing was introduced by Sy Friedman. In [FSC] we indexed by all ordinals, so that our $J_{\omega \alpha}$ corresponds to the J_{α} of [FSC]. The usage in [FSC] has been followed by most authors. Nonetheless we here adopt Friedman's usage, which seems to us more natural, since we then have: $\alpha=$ $\operatorname{rn}\left(J_{\alpha}\right)=\mathrm{On} \cap J_{\alpha}$.)

In the following section we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. $f: V^{n} \rightarrow V$ is a rudimentary (rud) function iff it is generated by successive applications of schemata (i) - (v) in the definition of primitive recursive in chapter $1, \S 2$.

A relation $R \subset V^{n}$ is rud iff there is a rud function f such that: $R \vec{x} \leftrightarrow$ $f(\vec{x})=1$. In chapter $1, \S 1.2$ we established that:
Lemma 2.2.1. Lemmas 1.2.1-1.2.4 of chapter 1, §1.2 hold with 'rud' in place of 'pr'.
(Note Our definition of 'rud function', like the definition of 'pr function' is ostensibly in second order set theory, but just as in chapter $1, \S 1.2$ we can work in ZFC by talking about rud definitions. The notion of rud definition is defined like that of pr definition, except that instances of schema (vi) are not allowed. As before, we can assign to each rud definition s a rud function $F_{s}: V^{n} \rightarrow V$ with the property that $F_{s}^{M}=F_{s} \upharpoonright M$ whenever M is admissible and $F_{s}^{M}: M^{n} \rightarrow M$ is the function on M defined by s. But then if M is transitive and closed under rud functions, it follows by induction on the length of s that there is a unique $F_{s}^{M}=F_{s} \upharpoonright M$.)

A rudimentary function can raise the rank of its arguments by at most a finite amount:

Lemma 2.2.2. Let $f: V^{n} \rightarrow V$ be rud. Then there is $p<\omega$ such that

$$
f(\vec{x}) \subset \mathbb{P}^{p}\left(T C\left(x_{1} \cup \ldots \cup x_{n}\right)\right) \text { for all } x_{1}, \ldots, x_{n}
$$

(Hence $\operatorname{rn}(f \vec{x}) \leq \max \left\{\operatorname{rn}\left(x_{1}\right), \ldots, \operatorname{rn}\left(x_{n}\right)\right\}+p$ and $\bigcup^{p} f(\vec{x}) \subset T C\left(x_{1} \cup \ldots \cup\right.$ $\left.x_{n}\right)$.)

Proof: Call any such p sufficient for f. Then if p is sufficient, so is every $q \geq p$. By induction on the defining schemata for f, we prove that f has a sufficient p. If f is given by an initial schema, this is trivial. Now let $f(\vec{x})=h\left(g_{1}(\vec{x}), \ldots, g_{m}(\vec{x})\right)$. Let p be sufficient for h and q be sufficient for $g_{i}(i=1, \ldots, m)$. It follows easily that $p+q$ is sufficient for f. Now let $f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$, where p is sufficient for g. It follows easily that p is sufficient for f.

QED
By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every Σ_{0} relation is rud. We now prove the converse. In fact we shall prove a stronger result. We first define:

Definition 2.2.2. $f: V^{n} \rightarrow V$ is simple iff whenever $R(z, \vec{y})$ is a Σ_{0} relation, then so is $R(f(\vec{x}), \vec{y})$.

The simple functions are obviously closed under composition. The simplicity of a function f is equivalent to the conjunction of the two conditions:
(i) $x \in f(\vec{y})$ is Σ_{0}
(ii) If $A(z, \vec{u})$ is Σ_{0}, then $\bigwedge z \in f(\vec{x}) A(z, \vec{u})$ is Σ_{0},
for given these we can verify by induction on the Σ_{0} definition of R that $R(f(\vec{x}), \vec{y})$ is Σ_{0}.
But then:
Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata of f that f is simple. The proof is left to the reader.

QED
In particular:
Corollary 2.2.4. Every rud function f is Σ_{0} as a relation. Moreover $f \upharpoonright U$ is uniformly $\Sigma_{0}(U)$ whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Σ_{0}.

In chapter $1, \S 2$ we relativized the concept 'pr' to 'pr in A_{1}, \ldots, A_{n} '. We can do the same thing with 'rud'.

Definition 2.2.3. Let $A_{i} \subset V(i=1, \ldots, m) . f: V^{n} \rightarrow V$ is rudimentary in A_{1}, \ldots, A_{n} (rud in A_{1}, \ldots, A_{n}) iff it is obtained by successive applications of the schemata (i) - (v) and:

$$
f(x)=\chi_{A}(x)(i=1, \ldots, n)
$$

where χ_{A} is the characteristic function of A.

Lemma 1.1.1 and 1.1.2 obviously hold with 'rud in A_{1}, \ldots, A_{n} ' in place of 'rud'. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the relation $\{x\} \in A$ is not Σ_{0} in A.

However, we do get:
Lemma 2.2.6. If f is rud in A_{1}, \ldots, A_{n}, then

$$
f(\vec{x})=f_{0}\left(\vec{x}, A_{1} \cap f_{1}(\vec{x}), \ldots, A_{n} \cap f_{n}(\vec{x})\right)
$$

where $f_{0}, f_{1}, \ldots, f_{n}$ are rud functions.

Proof: We display the proof for the case $n=1$. Let f be rud in A. By induction on the defining schemata for f we show:

$$
f(\vec{x})=f_{0}\left(\vec{x}, A \cap f_{1}(\vec{x})\right) \text { where } f_{0}, f_{1} \text { are rud. }
$$

Case $1 f$ is given by schemata (i) - (iii). This is trivial.
Case $2 f(x)=X_{A}(x)$. Then

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } A \cap\{x\} \neq \emptyset \\
0 \text { if not }
\end{array}\right\}=f^{\prime}(x, A \cap\{x\})
$$

where f^{\prime} is rud.
QED (Case 2)
Case $3 f(\vec{x})=g\left(h^{1}(\vec{x}), \ldots, h^{m}(\vec{x})\right)$. Let

$$
\begin{aligned}
& g(\vec{z})=g_{0}\left(\vec{z}, A \cap g_{1}(\vec{z})\right) \\
& h^{i}(\vec{x})=h_{0}^{i}\left(\vec{x}, A \cap h_{1}^{i}(\vec{x})\right)(i=1, \ldots, m)
\end{aligned}
$$

where $g_{0}, g_{1}, h_{0}^{i}, h_{1}^{i}$ are rud. Set:

$$
\begin{aligned}
& \tilde{g}(\vec{z}, u)=g_{0}\left(\vec{z}, u \cap g_{1}(\vec{z})\right) \\
& \tilde{h^{i}}(\vec{x}, u)=h_{0}^{i}\left(\vec{x}, u \cap h_{1}^{i}(\vec{x})\right) \\
& \tilde{f}(\vec{x}, u)=\tilde{g}\left(\tilde{h}^{1}(\vec{x}, u), \ldots, \tilde{h}^{m}(\vec{x}, u), u\right) \\
& k(\vec{x})=g_{1}\left(\vec{h}_{1}(\vec{x})\right) \cup \bigcup_{i=1}^{m} h_{1}^{i}(\vec{x}) .
\end{aligned}
$$

Then $f(\vec{x})=\tilde{f}(\vec{x}, A \cap k(\vec{x}))$, where \tilde{f}, k are rud. This follows from the facts:

$$
\begin{aligned}
& \tilde{h}^{i}(\vec{x}, A \cap v)=h_{0}^{i}\left(\vec{x}, A \cap h_{1}^{i}(\vec{x})\right)=h^{i}(\vec{x}) \text { if } h_{1}^{i}(\vec{x}) \subset v \\
& \tilde{g}^{i}(\vec{z}, A \cap v)=g_{0}(\vec{z}, A \cap z) \text { if } g_{1}(\vec{z}) \subset v .
\end{aligned}
$$

QED (Case 3)
Case $4 f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$. Let $g(z, \vec{x})=g_{0}\left(z, \vec{x}, A \cap g_{1}(z, \vec{x})\right)$. Set

$$
\begin{aligned}
& \tilde{g}(z, \vec{x}, u)=g_{0}\left(z, \vec{x}, u \cap g_{1}(z, \vec{x})\right) \\
& \tilde{f}(y, \vec{x}, u)=\bigcup_{z \in y} \tilde{g}(z, \vec{x}, u) \\
& k(y, \vec{x})=\bigcup_{z \in y} g_{1}(z, \vec{x})
\end{aligned}
$$

Then $f(y, \vec{x})=\tilde{f}(y, \vec{x}, A \cap k(y, \vec{z}))$ where \tilde{f}, k are rud.
QED (Lemma 2.2.6)
Definition 2.2.4. X is rudimentarily closed (rud closed) iff it is closed under rudimentary functions. $\left\langle M, A_{1}, \ldots, A_{n}\right\rangle$ is rud closed iff M is closed in functions rudimentary in A_{1}, \ldots, A_{n}.

If $M=\langle | M\left|, A_{1}, \ldots, A_{n}\right\rangle$ is transitive and rud closed, then it is amenable, since it is closed under $f(x)=x \cap A$. By lemma 2.2.6 we then have:

Corollary 2.2.7. Let $M=\langle | M\left|A_{1}, \ldots, A_{n}\right\rangle$ be transitive. M is rud closed iff it is amenable and $|M|$ is rud closed.

Corresponding to corollary 2.2 .4 we have:
Corollary 2.2.8. Every function f which is rud in A is Σ_{1} in A as a relation. Moreover $f \upharpoonright U$ is $\Sigma_{1}(\langle U, A \cap U\rangle)$ by the same Σ_{1} definition whenever $\langle U, A \cap U\rangle$ is transitive and rud closed. (Similarly for "rud in $A_{1}, \ldots, A_{n}{ }^{\prime \prime}$.)

Proof: Let $f(\vec{x})=f_{0}\left(\vec{x}, A \cap f_{1}(\vec{x})\right)$ where f_{0}, f_{1} are rud. Then:

$$
y=f(\vec{x}) \leftrightarrow \bigvee u \bigvee z\left(y=f_{0}(\vec{x}, z) \wedge u=f_{1}(\vec{x}) \wedge z=A \cap u\right)
$$

QED (Corollary 2.2.8)
In chapter $1 \S 2.2$ we extended the notion of "pr definition" so as to deal with functions pr in classes A_{1}, \ldots, A_{n}. We can do the same for rudimentary functions:

We appoint new designated function variables $\dot{a}_{1}, \ldots, \dot{a}_{n}$ and define the set of rud definition in a_{1}, \ldots, a_{n} exactly as before, except that we omit the schema (vi). Given A_{1}, \ldots, A_{n} we can, exactly as before, assign to each rud definition s in $\dot{a}_{1}, \ldots, \dot{a}_{n}$ a function $F_{s}^{A_{1}, \ldots, A_{n}}$ are then exatly the functions rud in A_{1}, \ldots, A_{n}. Since lemma 2.2.6 (and with it corollary 2.2 .8) is proven by induction on the defining schemata, its proof implicitly defines an algorithm which assigns to each s as Σ_{1} formula φ_{s} which defines $F_{s}^{\vec{A}}$.

Corresponding to chapter $1 \S 1$ Lemma 1.1 .13 we have:
Lemma 2.2.9. Let f be rud in A_{1}, \ldots, A_{n}, where each A_{i} is rud in B_{1}, \ldots, B_{m}. Then f is rud in B_{1}, \ldots, B_{m}.

The proof is again by induction on the defining schemata. It shows, in fact that f is uniformly rud in \vec{B} in the sense that its rud definition from \vec{B} depends only on its rud definition from \vec{A} and the rud definition of A_{i} from $\vec{B}(i=1, \ldots, n)$.

We also note:
Lemma 2.2.10. Let $\pi: \bar{M} \rightarrow_{\Sigma_{0}} M$, where \bar{M}, M are rud closed. Then π preserves rudimentarily in the following sense: Let \bar{f} be defined from the predicates of \bar{M} by the rud definition s. Let f be defined from the predicates of M by s. Then $\pi(\bar{f}(\vec{x}))=f(\pi(\vec{x}))$ for $x_{1}, \ldots, x_{n} \in \bar{M}$.

Proof: Let φ_{s} be the canonical Σ_{1} definition. Then $\bar{M} \models \varphi_{s}[y, \vec{x}] \rightarrow M \models$ $\varphi_{s}[\pi(y), \pi(\vec{x})]$ by Σ_{0}-preservation.

QED (Lemma 2.2.10)
We now define:

Definition 2.2.5.

$\operatorname{rud}(U)=$: The closure of U under rud functions
$\operatorname{rud}_{A_{1}, \ldots, A_{n}}(U)=$: The closure of U under functions rud in A_{1}, \ldots, A_{n}
$\left(\right.$ Hence $\operatorname{rud}(U)=\operatorname{rud}_{\emptyset}(U)$.)
Lemma 2.2.11. If U is transitive, then so is $\operatorname{rud}(U)$.

Proof: Let $W=\operatorname{rud}(U)$. Let $Q(x)$ mean: $T C(\{x\}) \subset W$. By induction on the defining schemata of f we show:

$$
\left(Q\left(x_{1}\right) \wedge \ldots \wedge Q\left(x_{n}\right)\right) \rightarrow Q\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

for $x_{1}, \ldots, x_{n} \in W$. The details are left to the reader. But $x \in U \rightarrow Q(x)$ and each $z \in W$ has the form $f(\vec{x})$ where f is rud and $x_{1}, \ldots, x_{n} \in U$. Hence $T C(\{z\}) \subset W$ for $z \in W$.

The same proof shows:
Corollary 2.2.12. If U is transitive, then so is $\operatorname{rud}_{\vec{A}}(U)$.
Using Corollary 2.2 .12 and Lemma 2.2 .3 we get:
Lemma 2.2.13. Let U be transitive and $W=\operatorname{rud}(U)$. Then the restriction of any $\underline{\Sigma}_{0}(W)$ relation to U is $\underline{\Sigma}_{0}(U)$.

Proof: Let R be $\underline{\Sigma}_{0}(W)$. Let $R(\vec{x}) \leftrightarrow R^{\prime}(\vec{x}, \vec{p})$ where R^{\prime} is $\Sigma_{0}(W)$ and $p_{1}, \ldots, p_{n} \in W$. Let $p_{i}=f_{i}(\vec{z})$, where f_{i} is rud and $z_{1}, \ldots, z_{n} \in U$. Then for $x_{1}, \ldots, x_{m} \in U$:

$$
\begin{aligned}
R(\vec{x}) & \leftrightarrow R^{\prime}(\vec{x}, \vec{f}(\vec{z})) \\
& \leftrightarrow R^{\prime \prime}(\vec{x}, \vec{z})
\end{aligned}
$$

where $R^{\prime \prime}$ is $\Sigma_{0}(U)$, by lemma 2.2.3.
QED (Lemma 2.2.13)
We now define:
Definition 2.2.6. Let U be transitive.

$$
\begin{aligned}
& \operatorname{Rud}(U)=: \operatorname{rud}(U \cup\{U\}) \\
& \operatorname{Rud}_{\vec{A}}(U)=\operatorname{rud}_{\vec{A}}(U \cup\{U\})
\end{aligned}
$$

Then $\operatorname{Rud}(U)$ is a proper transitive extension of U. By Lemma 2.2.13:

Corollary 2.2.14. $\operatorname{Def}(U)=\mathbb{P}(U) \cap \operatorname{Rud}(U)$ if $U \neq \emptyset$ is transitive.

Proof: If $A \in \operatorname{Def}(U)$, then A is $\underline{\Sigma}_{0}(U \cup\{U\})$. Hence $A \in \operatorname{Rud}(U)$. Conversely, if $A \in \operatorname{Rud}(U)$, then A is $\underline{\Sigma}_{0}(U \cup\{U\})$ by lemma 1.1.7. It follows easily that $A \in \operatorname{Def}(U)$.

QED (Corollary 2.2.14)
[Note To see that $A \in \operatorname{Def}(U)$, consider the \in-language augmented by a new constant \dot{U} which is interpreted by U. We assign to every Σ_{0} formula φ in this language a first order formula φ^{\prime} not containing \dot{U} such that for all $x_{1}, \ldots, x_{n} \in U:$

$$
U \cup\{U\} \models \varphi[\vec{x}] \leftrightarrow U \models \varphi^{\prime}[\vec{x}] .
$$

(Here x_{i} is taken to interpret v_{i} where v_{1}, \ldots, v_{n} is an arbitrarily chosen sequence of distinct variables, including all variables which occur free in φ.) We define φ^{\prime} by induction on φ. For primitive formulae we set first:

$$
\begin{aligned}
& (v \in w)^{\prime}=v \in w,(v \in \dot{U})^{\prime}=v=v \\
& (\dot{U} \in v)^{\prime}=v \neq v,(\dot{U} \in \dot{U})=\bigvee v v \neq v
\end{aligned}
$$

For sentential combinations we do the obvious thing:

$$
(\varphi \wedge \psi)^{\prime}=\left(\varphi^{\prime} \wedge \psi^{\prime}\right),(\neg \varphi)^{\prime}=\neg \varphi^{\prime}
$$

etc. Quantifiers are treated as follows:

$$
\begin{aligned}
& (\bigwedge v \in w \varphi)^{\prime}=\bigwedge v \in w \varphi^{\prime} \\
& \left.(\bigwedge v \in \dot{U} \varphi)^{\prime}=\bigwedge v \varphi^{\prime} .\right]
\end{aligned}
$$

Given finitely many rud functions s_{1}, \ldots, s_{p} we say that they constitute a basis for the rud function iff every rud function is obtainable by successive application of the schemata:

- $f\left(x_{1}, \ldots, x_{n}\right)=x_{j}(j=1, \ldots, n)$
- $f(\vec{x})=s_{i}\left(g_{1}(\vec{x}), \ldots, g_{m}(\vec{x})\right)(i=1 \ldots, p)$

Note that if s_{1}, \ldots, s_{n} is a basis, then $\operatorname{rud}(U)$ is simply the closure of U under the finitely many functions s_{1}, \ldots, s_{p}. We shall now prove the Basis Theorem, which says that the rud functions possess a finite basis. We first define:

Definition 2.2.7. $(x, y)=:\{\{x\},\{x, y\}\} ;(x)=x$, $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1},\left(x_{2}, \ldots, x_{n}\right)\right)$ for $n \geq 2$.
(Note: Our "official" notation for n-tuples is $\left\langle x_{1}, \ldots, x_{n}\right\rangle$. However, we have refrained from specifying its definition. Thus we do not know whether $(\vec{x})=\langle\vec{x}\rangle$.)

We also set:

Definition 2.2.8.

$$
\begin{aligned}
& x \otimes y=\{(z, w) \mid z \in x \wedge w \in y\} \\
& \operatorname{dom}^{*}(x)=\{z \mid \bigvee y(y, z) \in x\} \\
& x^{*} z=\{y \mid(y, z) \in x\}
\end{aligned}
$$

Theorem 2.2.15. The following functions form a basis for the rud function:

$$
\begin{aligned}
& F_{0}(x, y)=\{x, y\} \\
& F_{1}(x, y)=x \backslash y \\
& F_{2}(x, y)=x \otimes y \\
& F_{3}(x, y)=\{(u, z, v) \mid z \in x \wedge(u, v) \in y\} \\
& F_{4}(x, y)=\{(u, v, z) \mid z \in x \wedge(u, v) \in y\} \\
& F_{5}(x, y)=\bigcup x \\
& F_{6}(x, y)=\operatorname{dom}^{*}(x) \\
& F_{7}(x, y)=\{(z, w) \mid z, w \in x \wedge z \in w\} \\
& F_{8}(x, y)=\left\{x^{*} z \mid z \in y\right\}
\end{aligned}
$$

Proof: The proof stretches over several subclaims. Call a function f good iff it is obtainable from F_{0}, \ldots, F_{8} by successive applications of the above schemata. Then every good function is rud. We must prove the converse. We first note:

Claim 1 The good functions are closed under composition - i.e. if g, h_{1}, \ldots, h_{n} are good, then so is $f(\vec{x})=g(\vec{h}(\vec{x}))$.

Proof: Set $G=$ the set of good function $g\left(y_{1}, \ldots, y_{v}\right)$ such that whenever $h_{i}(\vec{x})$ is good for $i=1, \ldots, r$, then so is $f(\vec{x})=g(\vec{h}(\vec{x}))$. By a straightforward induction on the defining schemata it is easily shown that all good functions are in G.

QED (Claim 1)
Claim 2 The following functions are good:

$$
\begin{aligned}
& \{x, y\}, x \backslash y, x \otimes y, x \cup y=\bigcup\{x, y\}, \\
& x \cap y=x \backslash(x \backslash y),\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{1}\right\} \cup \ldots \cup\left\{x_{n}\right\}, \\
& C_{n}(u)=u \cup \bigcup u \cup \ldots \cup \overbrace{\bigcup \ldots \bigcup}^{n} u,\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

(since $\left(x_{1}, \ldots, x_{n}\right)$ is obtained by iteration of F_{0}.) By an \in-formula we mean a first order formula containing only $\dot{\in}$ as a non logical predicate. If
$\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$ is any \in-formula in which at most the distinct variables $\left(v_{1}, \ldots, v_{n}\right)$ occur free, set:

$$
t_{\varphi}(u)=:\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \vec{x} \in u \wedge\langle u, \in\rangle \models \varphi[\vec{x}]\right\} .
$$

(Note We follow the usual convention of suppressing the list of variables. We should, of course, write: $t_{\varphi, v_{1}, \ldots, v_{n}}(u)$.)
(Note Recall our convention that $\vec{x} \in u$ means that $x_{i} \in u$ for $i=1, \ldots, n$.) Then t_{φ} is rud. We claim:

Claim $3 t_{\varphi}$ is good for every \in-formula φ.

Proof:

(1) It holds for $\varphi=v_{i} \in v_{j}(1 \leq i<j \leq n)$

Proof: For $i=2,3$ set:

$$
F_{i}^{0}(u, w)=w, F_{i}^{m+1}(u, w)=F_{i}\left(u, F_{i}^{m}(u, w)\right)
$$

then F_{i}^{m} is good for all m. For $m \geq 1$ we have:

$$
\begin{aligned}
& F_{2}^{m}(u, w)=\left\{\left(x_{1}, \ldots, x_{m}, z\right) \mid \vec{x} \in u \wedge z \in w\right\} \\
& F_{3}^{m}(u, w)=\left\{\left(y, x_{1}, \ldots, x_{m}, z\right) \mid \vec{x} \in u \wedge(y, z) \in w\right\}
\end{aligned}
$$

We also set

$$
\begin{aligned}
u^{(m)} & =\left\{\left(x_{1}, \ldots, x_{m}\right) \mid \vec{x} \in u\right\} \\
& =F_{2}^{m-1}(u, u)
\end{aligned}
$$

If $j=n$, then

$$
\begin{aligned}
t_{\varphi}(u) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \vec{x} \in u \wedge x_{i} \in x_{j}\right\} \\
& =F_{2}^{i-1}\left(u, F_{3}^{n-i-1}\left(u, F_{7}(u, u)\right)\right) .
\end{aligned}
$$

Now let $n>j$. Noting that:

$$
F_{4}\left(u^{(m)}, w\right)=\left\{\left(y, z, x_{1}, \ldots, x_{m}\right) \mid \vec{x} \in u \wedge(y, z) \in w\right\}
$$

we have:

$$
t_{\varphi}(u)=F_{2}^{i-1}\left(u, F_{3}^{j-n-1}\left(u, F_{4}\left(u^{(n-j)}, F_{7}(u, u)\right)\right)\right) .
$$

QED (1)
(2) It holds for $\varphi=v_{i} \in v_{i}$.

Proof: $t_{\varphi}(w)=\emptyset=w \backslash w$.
(3) If it holds for $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$, then for $\neg \varphi$.

Proof:

$$
t_{\neg \varphi}(w)=\left(w^{(n)} \backslash t_{\varphi}(w)\right) .
$$

QED (3)
(4) If it holds for φ, ψ, then for $\varphi \wedge \psi, \varphi \vee \psi$. (Hence for $\varphi \rightarrow \psi, \varphi \leftrightarrow \psi$ by (3).)

Proof:

$$
\begin{aligned}
& t_{\varphi \vee \psi}(w)=t_{\varphi}(w) \cup t_{\psi}(w)=\bigcup\left\{t_{\varphi}(w), t_{\psi}(w)\right\} \\
& t_{\varphi \wedge \psi}(w)=t_{\varphi}(w) \cap t_{\psi}(w) \text {, where } x \wedge y=(x \backslash(x \backslash y)) .
\end{aligned}
$$

QED (4)
(5) If it holds for $\varphi=\varphi\left(u, v_{1}, \ldots, v_{n}\right)$, then for $\bigwedge u \varphi, \bigvee_{u} \varphi$.

Proof:

$$
\begin{aligned}
& t_{\bigvee u \varphi}(w)=F_{6}\left(t_{\varphi}(\omega), t_{\varphi}(\omega)\right) \text { hence } \\
& t_{\wedge u \varphi}(w)=t_{\neg \bigvee u\urcorner \varphi}(w) \text { by }(3)
\end{aligned}
$$

QED (5)
(6) It holds for $\varphi=v_{i}=v_{j}(i, j \leq n)$.

Proof: Let $\psi\left(v_{1}, \ldots, v_{n}\right)=\bigwedge z\left(z \in v_{i} \leftrightarrow z \in v_{j}\right)$. Then for $(\vec{x}) \in U^{(n)}$ we have:

$$
(\vec{x}) \in t_{\psi}(u \cup \bigcup u) \leftrightarrow x_{i}=x_{j},
$$

since $x_{i}, x_{j} \subset(u \cup \bigcup u)$. Hence

$$
t_{\varphi}(u)=u^{(n)} \cap t_{\psi}(u \cup \bigcup u) .
$$

QED (6)
(7) It holds for $\varphi=v_{j} \in v_{i}(i<j)$

Proof:

$$
v_{j} \in v_{i} \leftrightarrow \bigvee u\left(u=v_{j} \wedge u \in v_{i}\right)
$$

We apply (6), (5) and (4).
QED (7)

But then if $\varphi\left(v_{1}, \ldots, v_{n}\right)=Q u_{1}, \ldots Q u_{n} \psi(\vec{u}, \vec{v})$ is any formula in prenex normal form, we apply (1), (2), (6), (7) and (3), (4) to see that t_{ψ} is good. But then t_{φ} is good by iterated applications of (5).

QED (Claim 3)
In our application we shall use the function t_{φ} only for Σ_{0} formulae φ. We shall make strong use of the following well known fact, which can be proven by induction on n.

Fact Let $\varphi=\varphi\left(v_{1}, \ldots, v_{m}\right)$ be a Σ_{0} formula in which at most n quantifiers occur. Let u be any set and let $x_{1}, \ldots, x_{m} \in u$. Then $V \models \varphi[\vec{x}] \leftrightarrow C_{n}(u) \models$ $\varphi[\vec{x}]$.
Definition 2.2.9. Let $f: V^{n} \rightarrow V$ be rud. f is verified iff there is a good $f^{*}: V \rightarrow V$ such that $f^{\prime \prime} U^{n} \subset f^{*}(U)$ for all sets u. We then say that f^{*} verifies f.

Claim 4 Every verified function is good.
Proof: Let f be verified by f^{*}. Let φ be the Σ_{0} formula: $y=f\left(x_{1}, \ldots, x_{n}\right)$. For sufficient m we know that for any set u we have:

$$
\begin{aligned}
& y=f(\vec{x}) \leftrightarrow(y, \vec{x}) \in t_{\varphi}\left(C_{m}\left(u \cup f^{*}(u)\right)\right) \\
& \text { for } y, \vec{x} \in u \cup f^{*}(u) .
\end{aligned}
$$

Define a good function F by:

$$
F(u)=:\left(f^{*}(u) \otimes u^{(n)}\right) \cap t_{\varphi}\left(C_{m}\left(u \cup f^{*}(u)\right)\right)
$$

Then $F(u)$ is the set of $(f(\vec{x}), \vec{x})$ such that $\vec{x} \in u$. In particular, if $u=$ $\left\{x_{1}, \ldots, x_{n}\right\}$, then:

$$
F_{8}(F(\{\vec{x}\}),\{(\vec{x})\})=\{f(\vec{x})\}
$$

and $f(\vec{x})=\bigcup F_{8}(F(\{\vec{x}\}),\{(\vec{x})\})$.
QED (Claim 4)
Thus it remains only to prove:
Claim 5 Every rud function is verified.
Proof: We proceed by induction on the defining schemata of f.

Case $1 f(\vec{x})=x_{i}$
Take $f^{*}(u)=u=u \backslash(u \backslash u)$.
Case $2 f(\vec{x})=x_{i} \backslash x_{j}$
Let φ be the formula $z \in x \backslash y$. Then for $z, x, y \in v$ we have

$$
\begin{aligned}
z \in x \backslash y & \leftrightarrow v \models \varphi[z, x, y] \\
& \leftrightarrow(z, x, y) \in t_{\varphi}(v)
\end{aligned}
$$

But $x, y \in u \rightarrow x \backslash y \subset \bigcup u$. Hence for all x, y, u and all z we have:

$$
z \in x \backslash y \leftrightarrow(z, x, y) \in t_{\varphi}(u \cup \bigcup u)
$$

Hence:

$$
f^{\prime \prime} u^{n} \subset\{x \backslash y \mid x, y \in u\}=F_{8}\left(t_{\varphi}(u \cup \bigcup u), u^{(2)}\right)
$$

QED (Case 2)

Case $3 f(\vec{x})=\left\{x_{i}, x_{j}\right\}$
Then $f^{\prime \prime} u^{n}=\{\{x, y\} \mid x, y \in u\}=\bigcup u^{(2)} . \quad$ QED (Case 3)
Case $4 f(\vec{x})=g(\vec{h}(\vec{x}))$
Let h_{i}^{*} verify h_{i} and g^{*} verify g. Then $f^{*}(u)=g^{*}\left(\bigcup_{i} h_{i}^{*}(u)\right)$ verifies f. QED (Case 4)

Case $5 f(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})$. Let g^{*} verify g. Let $\varphi=\varphi(u, y, \vec{x})$ be the Σ_{0} formula: $\bigvee z \in y w \in g(z, \vec{x})$. For sufficient m we have:

$$
\bigvee z \in y w \in g(z, \vec{x}) \leftrightarrow(w, y, \vec{x}) \in t_{\varphi}\left(C_{m}\left(u \cup \bigcup g^{*}(u)\right)\right)
$$

for all $w, y, \vec{x} \in u \cup \bigcup g^{*}(u)$.
Set $F(u)=t_{\varphi}\left(C_{m}\left(u \cup \bigcup g^{*}(u)\right)\right)$. Then $g(z, \vec{x}) \subset \bigcup g^{*}(u)$ whenever $y, \vec{x} \in u$ and $z \in y$. Hence

$$
F(u)^{*}(y, \vec{x})=\bigcup_{z \in y} g(z, \vec{x})
$$

for $y, \vec{x} \in U$. Hence

$$
f^{\prime \prime} u^{n+1} \subset F_{8}\left(F(u), u^{(n+1)}\right)
$$

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2 .6 we get:
Corollary 2.2.16. Let $A_{1}, \ldots, A_{n} \subset V$. Then F_{0}, \ldots, F_{8} together with the functions $a_{i}(x)=x \cap A_{i}(i=1, \ldots, n)$ form a basis for the functions which are rudimentary in A_{1}, \ldots, A_{n}.

Let $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle .{ }^{\prime} F_{M}$ ' denotes the satisfaction relation for M and ' ${ }^{\prime}=_{M}^{\Sigma_{n}}$, denotes its restriction to Σ_{n} formulae. We can make good use of the basis theorem in proving:
Lemma 2.2.17. $\models_{M}^{\Sigma_{0}}$ is uniformly $\Sigma_{1}(M)$ over transitive rud closed $M=$ $\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$.

Proof: We shall prove it for the case $n=1$, since the extension of our proof to the general case is then obvious. We are then given: $M=\langle | M|, \in, A\rangle$. By a variable evaluation we mean a function e which maps a finite set of variables of the M-language into $|M|$. Let E be the set of such evaluations. If $e \in E$, we can extend it to an evaluation e^{*} of all variables by setting:

$$
e^{*}(v)=\left\{\begin{array}{l}
e(v) \text { if } v \in \operatorname{dom}(e) \\
\emptyset \text { if not }
\end{array}\right.
$$

$\models_{M} \varphi[e]$ then means that φ becomes true in M if each free variable v in φ is interpreted by $e^{*}(v)$.

We assume, of course, that the first order language of M has been "arithmetized" in a reasonable way - i.e. the syntactic objects such as formulae and variables have been identified with elements of H_{ω} in such a way that the basic syntactic relations and operations become recursive. (Without this the assertion we are proving would not make sense.) In particular the set $V b l$ of variables, the set $F m l$ of formulae, and the set $F m l_{0}$ of Σ_{0}-formulae are all recursive (i.e. $\Delta_{1}\left(H_{\omega}\right)$). We first note that every $\Sigma_{0}(M)$ relation is rud, or equivalently:
(1) Let φ be Σ_{0}. Let v_{1}, \ldots, v_{n} be a sequence of distinct variables containing all variables occuring free in φ. There is a function f uniformly rud in A such that

$$
\models_{M} \varphi[e] \leftrightarrow f\left(e^{*}\left(v_{1}\right), \ldots e^{*}\left(v_{n}\right)\right)=1
$$

for all $e \in E$.
Proof: By induction on φ. We leave the details to the reader.
QED (1)
The notion A-good is defined like "good" except that we now add the function $F_{9}(x, y)=x \cap A$ to our basis. By Corollary 2.2.16 we know that every function rud in A is A-good. We now define in H_{ω} an auxiliary term language whose terms represent the A-good function. We first set: $\dot{F}_{i}(x, y)=:\langle i,\langle x, y\rangle\rangle$ for $i=0, \ldots, 9: \dot{x}=\langle 10, x\rangle$. The set Tm of Terms is then the smallest set such that

- \dot{v} is a term whenever $v \in V b l$
- If t, t^{\prime} are terms, then so is $\dot{F}_{i}\left(t, t^{\prime}\right)$ for $i=0, \ldots, 9$.

Applying the methods of Chapter 1 to the admissible set H_{ω} it follows easily that the set $T m$ is recursive (i.e. $\Delta_{1}\left(H_{\omega}\right)$). Set
$C(t) \simeq$: The smallest set C such that the term $t \in C$ and C is closed under subterms (i.e. $\dot{F}_{i}\left(s, s^{\prime}\right) \in C \rightarrow s, s^{\prime} \in C$).

Then $C(t) \in H_{\omega}$ for $t \in T m$, and the function $C(t)$ is recursive (hence $\left.\Delta_{1}\left(H_{\omega}\right)\right)$. Since $V b l$ is recursive, the function $V b l(t) \simeq:\{v \in V b l \mid \dot{v} \in C(t)\}$ is recursive.

We note that:
(2) Every recursive relation on H_{ω} is uniformly $\Sigma_{1}(M)$.

Proof: It suffices to note that: H_{ω} is uniformly $\Sigma_{1}(M)$, since

$$
x \in H_{\omega} \leftrightarrow \bigvee f \bigvee u \bigvee n \varphi(f, u, n, x)
$$

where φ is the Σ_{0} formula: f is a function $\wedge u$ is transitive $\wedge n \in \omega \wedge f: n \leftrightarrow u \wedge x \in u$.

QED (2)
Given $e \in E$ we recursively define an evaluation $\langle\bar{e}(t) \mid t \in T m\rangle$ by:

$$
\begin{aligned}
& \bar{e}(\dot{v})=e^{*}(v) \text { for } v \in V b l \\
& \bar{e}\left(\dot{F}_{i}(t, s)\right)=F_{i}(\bar{e}(t), \bar{e}(s)) .
\end{aligned}
$$

Then:
(3) $\{\langle y, e, t\rangle \mid e \in E \wedge t \in T m \wedge y=\bar{e}(t)\}$ is uniformly $\Sigma_{1}(M)$.

Proof: Let $e \in E, t \in T m$. Then $y=\bar{e}(t)$ can be expressed in M by:

$$
\bigvee g \bigvee u \bigvee v(u=C(t) \wedge v=\operatorname{Vbl}(t) \wedge \varphi(y, e, u, v, y, t))
$$

where φ is the Σ_{0} formula:
$(g$ is a function $\wedge \operatorname{dom}(g)=u \wedge \bigwedge x \in v x \in u$

$$
\begin{gathered}
\wedge \wedge x \in v((x \in \operatorname{dom}(e) \wedge g(\dot{x})=e(x)) \vee \\
\vee(x \notin \operatorname{dom}(e) \wedge g(\dot{x})=\emptyset)) \\
\wedge \bigwedge_{i=0}^{9} \wedge t, s, i \in u\left(t=\dot{F}_{i}\left(s, s^{\prime}\right) \rightarrow\right. \\
\rightarrow g(t)=F_{i}\left(g(s), y\left(s^{\prime \prime}\right)\right. \\
\wedge y=g(t))
\end{gathered}
$$

QED (3)
(4) Let $f\left(x_{1}, \ldots, x_{n}\right)$ be A-good. Let $v_{1}, \ldots, v_{n}^{\prime}$ be any sequence of distinct variables. There is $t \in T m$ such that

$$
f\left(e^{*}\left(v_{1}\right), \ldots, e^{*}\left(v_{n}\right)\right)=\bar{e}(t)
$$

for all $e \in E$.
Proof: By induction on the defining schemata of f. If $f(\vec{x})=x_{i}$, we take $t=\dot{v}_{i}$. If $\left.e^{*}(\vec{v})\right)=\bar{e}\left(s_{i}\right)$ for $e \in \mathbb{E}(i=0,1)$, and $f(\vec{x})=$ $F_{i}\left(g_{0}(\vec{x}), g_{1}(\vec{x})\right)$, we set $t=\dot{F}_{i}\left(s_{0}, s_{1}\right)$. Then

$$
\bar{e}(t)=F_{i}\left(\bar{e}\left(s_{0}\right), \bar{e}\left(s_{1}\right)\right)=F_{i}\left(g_{0}(\vec{x}), g_{1}(\vec{x})\right)=f(\vec{x})
$$

QED (4)
But then:
(5) Let φ be a Σ_{0} formula. There is $t \in T m$ such that $M \models \varphi[e] \leftrightarrow \bar{e}(t)=1$ for all $e \in E$.

Proof: Let v_{1}, \ldots, v_{n} be a sequence of distinct variables containing all variables which occur free in φ. Then

$$
M \models \varphi[e] \leftrightarrow M \models \varphi\left[e^{*}\left(v_{1}\right), \ldots, e^{*}\left(v_{n}\right)\right]
$$

for all $e \in E$. Set

$$
(*) f(\vec{x})=\left\{\begin{array}{l}
1 \text { if } M \models \varphi[\vec{x}] \\
0 \text { if not. }
\end{array}\right.
$$

Then f is rudimentary, hence A-good. Let $t \in T m$ such that

$$
(* *) f\left(e^{*}\left(v_{1}\right), \ldots, e^{*}\left(v_{n}\right)\right)=\bar{e}(t)
$$

Then: $M \models \varphi[e] \leftrightarrow \bar{e}(t)=1$.
QED (6)
(5) is, however, much more than an existence statement, since our proofs are effective: Clearly we can effectively assign to each Σ_{0} formula φ a sequence $v(\varphi)=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ of distinct variables containing all variables which occur free in φ. But the proof that the f defined by $(*)$ is rud in fact implicity defines a rud definition D_{φ} such that D_{φ} defines such an $f=f_{D_{\varphi}}$ over any rud closed $M=\langle M, \in, A\rangle$. The proof that f is A-good is by induction on the defining schemata and implicitly defines a term $t=T_{\varphi}$ which satisfies $(* *)$ over any rud closed M. Thus our proofs implicitly describe an algorithm for the function $\varphi \mapsto T_{\varphi}$. Hence this function is recursive, hence uniformly $\Sigma_{1}(M)$. But then Σ_{0} satisfaction can be defined over M by:

$$
M \models \varphi[e] \leftrightarrow: \bar{e}\left(T_{\varphi}\right)=1
$$

QED (Lemma 2.2.17)
Corollary 2.2.18. Let $n \geq 1$. $\models_{M}^{\Sigma_{n}}$ is uniformly $\Sigma_{n}(M)$ for transitive rud closed structures $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$.
(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets $U=\langle U, \in\rangle$ reads:
Lemma 2.2.19. Let $U=\langle U, \in\rangle$ be transitive and rud closed. Let $X \prec_{\Sigma_{1}} U$. Then there is an isomorphism $\pi: \bar{U} \stackrel{\sim}{\longleftrightarrow} X$, where \bar{U} is transitive and rud closed. Moreover, $\pi(f(\vec{x}))=f(\pi(\vec{x}))$ for all rud functions f.

Proof: X satisfies the extensionality axiom. Hence by Moztowski's isomorphism theorem there is $\pi: \bar{U} \stackrel{\sim}{\longleftrightarrow} X$, where \bar{U} is transitive. Now let f be rud and $x_{1}, \ldots, x_{n} \in \bar{U}$. Then there is $y^{\prime} \in X$ such that $y^{\prime}=f(\pi(\vec{x}))$, since $X \prec_{\Sigma_{1}} U$. Let $\pi(y)=y^{\prime}$. Then $y=f(\vec{x})$, since the condition ' $y=f(\vec{x})$ ' is Σ_{0} and π is Σ_{1}-preserving.

QED (Lemma 2.2.19)
The condensation lemma for rud closed $M=\langle | M\left|, \in, A_{1}, \ldots, A_{n}\right\rangle$ is much weaker, however. We state it for the case $n=1$.
Lemma 2.2.20. Let $M=\langle | M|, \in, A\rangle$ be transitive and rud closed. Let $X \prec_{\Sigma_{0}}$ M. There is an isomorphism $\pi: \bar{M} \stackrel{\sim}{\longleftrightarrow} X$, where $\bar{M}=\langle | \bar{M}|, \in, \bar{A}\rangle$ is transitive and rud closed. Moreover:
(a) $\pi(\bar{A} \cap x)=A \cap \pi(x)$
(b) Let f be rud in A. Let f be characterized by: $f(\vec{x})=f_{0}\left(\vec{x}, A \cap f_{1}(\vec{x})\right)$, where f_{0}, f_{1} are rud. Set: $\bar{f}(\vec{x})=: f_{0}\left(\vec{x}, \bar{A} \cap f_{1}(\vec{x})\right)$. Then:

$$
\pi(\bar{f}(\vec{x}))=f(\pi(\vec{x})) .
$$

The proof is left to the reader.

2.3 The J_{α} hierarchy

We are now ready to introduce the alternative to Gödel's constructible hierarchy which we had promised in $\S 1$. We index it by ordinals from the class Lm of limit ordinals.

Definition 2.3.1.

$$
\begin{aligned}
& J_{\omega}=\operatorname{Rud}(\emptyset) \\
& J_{\beta+\omega}=\operatorname{Rud}\left(J_{\beta}\right) \text { for } \beta \in \operatorname{Lm} \\
& J_{\lambda}=\bigcup_{\gamma<\lambda} J_{\gamma} \text { for } \lambda \text { a limit point of Lm }
\end{aligned}
$$

It can be shown that $L=\bigcup_{\alpha} J_{\alpha}$ and, indeed, that $L_{\alpha}=J_{\alpha}$ for a great many α (fr. ins. pr closed α). Note that $J_{\omega}=L_{\omega}=H_{\omega}$.

By $\S 2$ Corollary 2.2.14 we have:

$$
\mathbb{P}\left(J_{\alpha}\right) \cap J_{\alpha+\omega}=\operatorname{Def}\left(J_{\alpha}\right),
$$

which pinpoints the resemblance of the two hierarchies. However, we shall not dwell further on the relationship of the two hierarchies, since we intend to consequently employ the J-hierarchy in the rest of this book. As usual, we shall often abuse notation by not distinguishing between J_{α} and $\left\langle J_{\alpha}, \in\right\rangle$.

Lemma 2.3.1. $\operatorname{rn}\left(J_{\alpha}\right)=\operatorname{On} \cap J_{\alpha}=\alpha$.

Proof: By induction on $\alpha \in \mathrm{Lm}$. For $\alpha=\omega$ it is trivial. Now let $\alpha=\beta+\omega$, where $\beta \in \mathrm{Lm}$. Then $\beta=\operatorname{On} \cap J_{\beta} \in \operatorname{Def}\left(J_{\beta}\right) \subset J_{\alpha}$. Hence $\beta+n \in J_{\alpha}$ for $n<\omega$ by rud closure. But $\operatorname{rn}\left(J_{\alpha}\right) \leq \beta+\omega=\alpha$ since J_{α} is the rud closure of $J_{\alpha} \cup\left\{J_{\alpha}\right\}$. Hence $\mathrm{On} \cap J_{\alpha}=\alpha=\operatorname{rn}\left(J_{\alpha}\right)$.

If α is a limit point of Lm the conclusion is trivial. \quad QED (Lemma 2.3.1)
To make our notation simpler, define
Definition 2.3.2. $\mathrm{Lm}^{*}=$ the limit points of Lm .

It is sometimes useful to break the passage from J_{α} to $J_{\alpha+\omega}$ into ω many steps. Any way of doing this will be rather arbitrary, but we can at least do it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem 2.2.15) to prove:

Lemma 2.3.2. There is a rud function $s: V \rightarrow V$ such that for all U :
(a) $U \subset s(U)$
(b) $\operatorname{rud}(U)=\bigcup_{n<\omega} s^{n}(U)$
(c) If U is transitive, so is $s(U)$.

Proof: Define rud functions $G_{i}(i=0,1,2,3)$ by:

$$
\begin{aligned}
& G_{0}(x, y, z)=(x, y) \\
& G_{1}(x, y, z)=(x, y, z) \\
& G_{2}(x, y, z)=\{x,(y, z)\} \\
& G_{3}(x, y, z)=x^{*} y
\end{aligned}
$$

Set:

$$
s(U)=: U \cup \bigcup_{i=0}^{9} F_{i}^{U} U^{2} \cup \bigcup_{i=0}^{3} G_{i}^{U} U^{3}
$$

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let $a \in s(U)$. We claim: $a \subset s(U)$. There are 14 cases: $a \in U, a=F_{i}(x, y)$ for an $i=0, \ldots, 8$, where $x, y \in U$, and $a=G_{i}(x, y, z)$ where $x, y, z \in U$ and $i=0, \ldots, 3$. Each of the cases is quite straightforward. We give some example cases:

- $a=F(x, y)=x \otimes y$. If $z \in a$, then $z=\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime} \in x, y^{\prime} \in y$. But then $x^{\prime}, y^{\prime} \in U$ by transitivity and $z=G_{0}\left(x^{\prime}, y^{\prime}, x^{\prime}\right) \in s(U)$.
- $a=F_{3}(x, y)=\{(w, z, v) \mid z \in x \wedge(u, v) \in y\}$. If $a^{\prime}=(w, z, v) \in a$, then $w, z, v \in U$ by transitivity and $a^{\prime}=G_{1}(w, z, v) \in s(U)$.
- $a=F_{8}(x, y)$. If $a^{\prime} \in a$, then $a^{\prime}=x^{*} z$ where $z \in y$. Hence $z \in U$ by transitivity and $a^{\prime}=G_{3}(x, z, z) \in s(U)$.
- $a=G_{0}(x, y, z)=\{\{x\},\{x, y\}\}$. Then $a \subset F_{0}^{\prime \prime} U^{2} \subset s(U)$.
- $a=G_{1}(x, y, z)=(x, y, z)=\{\{x\},\{x,(y, z)\}\}$. Then $\{x\}=F_{0}(x, x) \in$ $s(U)$ and $\{x,(y, z)\}=G_{2}(x, y, z) \in s(U)$.

QED (Lemma 2.3.2)

If we then set:
Definition 2.3.3. $S(U)=s(U \cup\{U\})$ we get:
Corollary 2.3.3. S is a rud function such that
(a) $U \cup\{U\} \subset S(U)$
(b) $\bigcup_{n<\omega} S^{n}(U)=\operatorname{Rud}(U)$
(c) If U is transitive, so is $S(U)$.

We can then define:

Definition 2.3.4.

$$
\begin{aligned}
& S_{0}=\emptyset \\
& S_{\nu+1}=S\left(S_{\nu}\right) \\
& S_{\lambda}=\bigcup_{\nu<\lambda} S_{\nu} \text { for limit } \lambda .
\end{aligned}
$$

Obviously then: $J_{\gamma}=S_{\gamma}$ for $\gamma \in \operatorname{Lm}$. (It would be tempting to simply define $J_{\nu}=S_{\nu}$ for all $\nu \in$ On. We avoid this, however, since it could lead to confusion: At successors ν the models S_{ν} do not have very nice properties. Hence we retain the convention that whenever we write J_{α} we mean α to be a limit ordinal.)

Each J_{α} has Σ_{1} knowledge of its own genesis:
Lemma 2.3.4. $\left\langle S_{\nu}\right| \nu\langle\alpha\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$.

Proof: $y=S_{\nu} \leftrightarrow \bigvee f(\varphi(f) \wedge y=f(\nu))$, where $\varphi(f)$ is the Σ_{0} formula:
f is a function $\wedge \operatorname{dom}(f) \in \operatorname{On} \wedge f(0)=\emptyset$
$\wedge \wedge \xi \in \operatorname{dom}(f)(\xi+1 \in \operatorname{dom}(f) \rightarrow f(\xi+1)=S(f(\xi)))$
$\wedge \wedge \lambda \in \operatorname{dom}\left(f \mid\left(\lambda\right.\right.$ is a limit $\left.\rightarrow f(\lambda)=\bigcup f^{\prime \prime} \lambda\right)$.

Thus it suffices to show that the existence quantifier can be restricted to J_{α} — i.e.

Claim $\left\langle S_{\nu} \mid \nu<\tau\right\rangle \in J_{\alpha}$ for $\tau<\alpha$.

Case $1 \alpha=\omega$ is trivial.
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lm}$.
Then $\left\langle S_{\nu} \mid \nu<\beta\right\rangle \in \operatorname{Def}\left(J_{\beta}\right) \subset J_{\alpha}$. Hence $S_{\beta}=\bigcup_{\nu<\beta} S_{\nu} \in J_{\alpha}$. By rud closure it follows that $S_{\beta+n} \in J_{\alpha}$ for $n \subset w$. Hence $S \upharpoonright \nu \in J_{\alpha}$ for $\nu<\alpha$.

QED (Case 2)
Case $3 \alpha \in \mathrm{Lm}^{*}$.
This case is trivial since if $\nu<\beta \in \alpha \cap \mathrm{Lm}$. Then $S \upharpoonright \nu \in J_{\beta} \subset J_{\alpha}$.
QED (Lemma 2.3.4)

We now use our methods to show that each J_{α} has a uniformly $\Sigma_{1}\left(J_{\alpha}\right)$ well ordering. We first prove:

Lemma 2.3.5. There is a rud function $w: V \rightarrow V$ such that whenever r is a well ordering of u, then $w(u, r)$ is a well ordering of $s(u)$ which end extends r.

Proof: Let r_{2} be the r-lexicographic ordering of u^{2} :

$$
\langle x, y\rangle r_{2}\langle z, w\rangle \leftrightarrow(x r z \vee(x=z \wedge y r w)) .
$$

Let r_{3} be the r-lexicographic ordering of u^{3}. Set:

$$
u_{0}=u, u_{1+i}=F_{i}^{\prime \prime} u^{2} \text { for } i=0, \ldots, 8, u_{10+i}=G_{i}^{\prime \prime} u^{3} \text { for } i=0, \ldots, 3
$$

Define a well ordering w_{i} of u_{i} as follows: $w_{0}=r$, For $i=0, \ldots, 9$ set

$$
\begin{aligned}
& x w_{1+i} y \leftrightarrow \bigvee a, b \in u^{2}\left(x=F_{i}(a) \wedge y=F_{i}(b) \wedge\right. \\
& \wedge a r_{2} b \wedge \wedge a^{\prime} \in u^{2}\left(a^{\prime} r_{2} a \rightarrow x \neq F_{i}\left(a^{\prime}\right)\right) \wedge \\
& \left.\wedge \wedge b^{\prime} \in u^{2}\left(b^{\prime} r_{2} b \rightarrow y \neq F_{i}\left(b^{\prime}\right)\right)\right)
\end{aligned}
$$

For $i=0, \ldots, 3$ let w_{10+i} have the same definitions with G_{i} in place of F_{i} and u^{3}, r_{3} in place of u^{2}, r_{2}.

We then set:

$$
\begin{aligned}
w=w(u)=\left\{\langle x, y\rangle \in s(u)^{2} \mid\right. & \bigvee_{i=0}^{13} \\
& \left(\left(x w_{i} y \wedge x, y \notin \bigcup_{h<i} u_{n}\right) \vee\right. \\
& \left.\left.\vee\left(x \in \bigcup_{h<i} u_{n} \wedge y \notin \bigcup_{n<i} u_{n}\right)\right)\right\}
\end{aligned}
$$

(where $\bigcup_{h<0} u_{n}=\emptyset$).
QED (Lemma 2.3.5)

If r is a well ordering of u, then

$$
r_{u}=\{\langle x, y\rangle \mid\langle x, y\rangle \in r \vee(x \in u \wedge y=u)\}
$$

is a well ordering of $u \cup\{u\}$ which end extends r. Hence if we set:
Definition 2.3.5. $W(u, r)=: w\left(u \cup\{u\}, r_{u}\right)$.

We have:
Corollary 2.3.6. W is a rud function such that whenever r is a well ordering of u, then $W(u, r)$ is a well ordering of $S(u)$ which end extends r.

If we then set:

Definition 2.3.6.

$$
\begin{aligned}
& <_{S_{0}}=\emptyset \\
& <_{S_{\nu+1}}=W\left(S_{\nu},<_{S_{\nu}}\right) \\
& <_{S_{\lambda}}=\bigcup_{\nu<\lambda}<_{S_{\nu}} \text { for limit } \lambda
\end{aligned}
$$

it follows that $<_{S_{\alpha}}$ is a well ordering of S_{α} which end extends $<_{S_{\nu}}$ for all $\nu<\alpha$.

Definition 2.3.7. $<_{\alpha}=<_{J_{\alpha}}=:<_{S_{\alpha}}$ for $\alpha \in \mathrm{Lm}$.

Then $<_{\alpha}$ is a well ordering of J_{α} for $\alpha \in \mathrm{Lm}$.
By a close imitation of the proof of Lemma 2.3.4 we get:
Lemma 2.3.7. $\left\langle<_{S_{\nu}} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$.

Proof:

$$
y=<_{S_{\nu}} \leftrightarrow \bigvee f \bigvee g(\varphi(f) \wedge \psi(f, g) \wedge y=g(\nu))
$$

where φ is as in the proof of Lemma 2.3.4 and ψ is the Σ_{0} formula:

$$
\begin{aligned}
& g \text { is a function } \wedge \operatorname{dom}(g)=\operatorname{dom}(f) \\
& \wedge g(0=\emptyset \wedge \wedge \xi \in \operatorname{dom}(g) \mid \xi+1 \in \operatorname{dom}(g) \rightarrow \\
& \rightarrow g(\xi+1)=W(f(\xi), g(\xi))) \\
& \wedge \wedge \lambda \in \operatorname{dom}(g)\left(\lambda \text { is a limit } \rightarrow g(\lambda)=\bigcup g^{\prime \prime} \lambda\right) .
\end{aligned}
$$

Just as before, we show that the existence quantifiers can be restricted to J_{α}.

QED (Lemma 2.3.7)
But then:
Corollary 2.3.8. $<_{\alpha}=\bigcup_{\nu<\alpha}<_{S_{\nu}}$ is a well ordering of J_{α} which is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$. Moreover $<_{\alpha}$ end extends $<_{\nu}$ for $\nu \in \operatorname{Lm}, \nu<\alpha$.

Corollary 2.3.9. u_{α} is uniformly $\Sigma_{1}\left(J_{\alpha}\right)$, where $u_{\alpha}(x) \simeq\left\{z \mid z<_{\alpha} x\right\}$.

Proof:

$$
y=u_{\alpha}(x) \leftrightarrow \bigvee \nu\left(x \in S_{\nu} \wedge y=\left\{z \in S_{\nu} \mid z<_{S_{\nu}} x\right\}\right)
$$

QED (Corollary 2.3.9)
Note We shall often write $<_{J_{\alpha}}$ for $<_{\alpha}$. We also write $<_{\infty}$ or $<_{J}$ or $<_{L}$ for $\bigcup_{\alpha \in \text { On }}<_{\alpha}$. Then $<_{L}$ well orders L and is an end extension of $<_{\alpha}$.

We obtain a particularly strong form of Gödel's condensation lemma:
Lemma 2.3.10. Let $X \prec_{\Sigma_{1}} J_{\alpha}$. Then there are $\bar{\alpha}, \pi$ such that $\pi: J_{\bar{\alpha}} \stackrel{\sim}{\longleftrightarrow} X$.

Proof: By $\S 2$ Lemma 2.2 .19 there is rud closed U such that U is transitive and $\pi: \stackrel{\sim}{\longleftrightarrow} X$. Note that the condition

$$
S(f, \nu) \leftrightarrow: f=\left\langle S_{\xi} \mid \nu<\xi\right\rangle
$$

is Σ_{0}, since:

$$
\begin{aligned}
S(f, \nu) \leftrightarrow & \leftrightarrow f \text { is a function } \wedge \\
& \wedge \operatorname{dom}(f)=\nu \wedge f(0)=\emptyset \text { if } 0<\nu \wedge \\
& \wedge \xi \in \operatorname{dom}(f)(\xi+1 \in \operatorname{dom}(f) \rightarrow \\
& \rightarrow f(\xi+1)=S(f(\xi)))) .
\end{aligned}
$$

Let $\bar{\alpha}=\mathrm{On} \cap U$ and let $\bar{\nu}<\bar{\alpha}$. Let $\pi(\bar{\nu})=\nu$. Then $f=\left\langle S_{\xi} \mid \xi<\nu\right\rangle \in X$ since $X \prec_{\Sigma_{1}} J_{\alpha}$. Let $\pi(\bar{f})=f$. Then $\bar{f}=\left\langle S_{\xi} \mid \xi<\bar{\nu}\right\rangle$, since $S(\bar{f}, \bar{\nu})$. But then $J_{\bar{\alpha}}=\bigcup_{\xi<\bar{\alpha}} S_{\xi} \subset U$. But since π is Σ_{1} preserving we know that

$$
\begin{aligned}
x \in U & \rightarrow \bigvee f, \nu \in U\left(S(f, \nu) \wedge x \in U f^{\prime \prime} \nu\right) \\
& \rightarrow x \in J_{\bar{\alpha}} .
\end{aligned}
$$

Corollary 2.3.11. Let $\pi: J_{\bar{\alpha}}: J_{\bar{\alpha}} \rightarrow_{\Sigma_{1}} J_{\alpha}$. Then:
(a) $\nu<\tau \leftrightarrow \pi(\nu)<\pi(\tau)$ for $\nu, \tau<\bar{\alpha}$.
(b) $x<_{L} y \leftrightarrow \pi(x)<_{L} \pi(y)$ for $x, y \in J_{\bar{\alpha}}$. Hence:
(c) $\nu \leq \pi(\nu)$ for $\nu<\bar{\alpha}$.
(d) $x \leq_{L} \pi(x)$ for $x \in J_{\bar{\alpha}}$.

Proof: (a), (b) follow by the fact that $<\cap J_{\alpha}^{2}$ and $<_{L} \cap J_{\alpha}^{2}=<_{\alpha}$ are uniformly $\Sigma_{1}\left(J_{\alpha}\right)$. But if $\pi(\nu)<\nu$, then $\nu, \pi(\nu), \pi^{2}(\nu), \ldots$ would form an infinite decreasing sequence by (a). Hence (c) holds. Similarly for (d).

QED (Corollary 2.3.11)

2.3.1 The J_{α}^{A}-hierarchy

Given classes A_{1}, \ldots, A_{n} on can generalize the previous construction by forming the constructible hierarchy $\left\langle J_{\alpha}^{A_{1}, \ldots, A_{n}} \mid \alpha \in \Gamma\right\rangle$ relativized to A_{1}, \ldots, A_{n}. We have this far dealt only with the case $n=0$. We now develop the case $n=1$, since the generalization to $n>1$ is then entirely straightforward. (Moreover the case $n=1$ is sufficient for most applications.)

Definition 2.3.8. Let $A \subset V .\left\langle J_{\alpha}^{A} \mid \alpha \in \mathrm{Lm}\right\rangle$ is defined by:

$$
\begin{aligned}
& J_{\alpha}^{A}=\left\langle J_{\alpha}[A], \in, A \cap J_{\alpha}[A]\right\rangle \\
& J_{\omega}[A]=\operatorname{Rud}_{A}(\emptyset)=H_{\omega} \\
& J_{\beta+\omega}[A]=\operatorname{Rud}_{A}\left(J_{\beta}\right) \text { for } \beta \in \mathrm{Lm} \\
& J_{\lambda}[A]=\bigcup_{\nu<\lambda} J_{\nu}[A] \text { for } \lambda \in \mathrm{Lm}^{*}
\end{aligned}
$$

Note $A \cap J_{\alpha}[A]$ is treated as an unary predicate.
Thus every J_{α}^{A} is rud closed. We set

Definition 2.3.9.

$$
\begin{aligned}
& L[A]=J[A]=\bigcup_{\alpha \in \mathrm{On}} J_{\alpha}[A] \\
& L^{A}=J^{A}=\langle L[A], \in, A \cap L[A]\rangle
\end{aligned}
$$

Note that $J_{\alpha}[\emptyset]=J_{\alpha}$ for all $\alpha \in \operatorname{Lm}$.
Repeating the proof of Lemma 1.1.1 we get:

Lemma 2.3.12. $\operatorname{rn}\left(J_{\alpha}^{A}\right)=\mathrm{On} \cap J_{\alpha}^{A}=\alpha$.

We wish to break $J_{\alpha+\omega}^{A}$ into ω smaller steps, as we did with $J_{\alpha+\omega}$. To this end we define:

Definition 2.3.10. $S^{A}(u)=S(u) \cup\{A \cap u\}$.

Corresponding to Corollary 2.3.3 we get:
Lemma 2.3.13. S^{A} is a function rud in A such that whenever u is transitive, then:
(a) $u \cup\{u\} \cup\{A \cap u\} \subset S(u)$
(b) $\bigcup_{n<\omega}\left(S^{A}\right)^{n}(u)=\operatorname{Rud}_{A}(u)$
(c) $S(u)$ is transitive.

Proof: (a) is immediate. (c) holds, since $S(u)$ is transitive, $a \subset S(u)$ and $A \cap u \subset u$. (b) holds since $S(u) \supset u$ is transitive and $A \cap u \subset u$. But if we set: $U=\underset{n<\omega}{\omega}\left(S^{A}\right)^{n}(u)$, then U is rud closed and $\langle U, A \cap U\rangle$ is amenable. QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.

$$
\begin{aligned}
& S_{0}^{A}=\emptyset \\
& S_{\alpha+1}^{A}=S^{A}\left(S_{\alpha}^{A}\right) \\
& S_{\lambda}^{A}=\bigcup_{\nu<\lambda} S_{\nu}^{A} \text { for limit } \lambda
\end{aligned}
$$

We again have: $J_{\alpha}[A]=S_{\alpha}^{A}$ for $\alpha \in$ Lm. A close imitation of the proof of Lemma 2.3.4 gives:

Lemma 2.3.14. $\left\langle S_{\nu}^{A} \mid r<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

Proof: This is exactly as before except that in the formula $\varphi(f)$ we replace $S(f(\nu))$ by $S^{A}(f(\nu))$. But this is $\Sigma_{0}\left(J_{\alpha}^{A}\right)$, since:

$$
x \in S^{A}(u) \leftrightarrow(x \in S(u) \vee x=A \cap u)
$$

hence:

$$
\begin{aligned}
y= & S^{A}(u) \leftrightarrow \bigwedge z \in y z \in S^{A}(u) \\
& \wedge \bigwedge z \in S(u) z \in y \wedge \bigvee z \in y z=A \cap u
\end{aligned}
$$

QED (Lemma 2.3.14)
We now show that J_{α}^{A} has a uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ well ordering, which we call $<_{\alpha}^{A}$ or $<_{J_{\alpha}^{A}}$.

Set:

Definition 2.3.12.

$$
\begin{aligned}
W^{A}(u, r)= & \{\langle x, y\rangle \mid\langle x, y\rangle \in W(u, r) \vee \\
& (x \in S(u) \wedge y=A \cap u \notin S(u)\}
\end{aligned}
$$

If u is transitive and r well orders u, then $W^{A}(u, r)$ is a well ordering of $S^{A}(u)$ which end extends r.

We set:

Definition 2.3.13.

$$
\begin{aligned}
& <_{0}^{A}=\emptyset \\
& <_{\nu+1}^{A}=W^{A}\left(S_{\nu}^{A},<_{\nu}^{A}\right) \\
& <_{\lambda}^{A}=\bigcup_{\nu<\lambda}<{ }_{\nu}^{A} \text { for limit }<.
\end{aligned}
$$

Then $<_{\nu}^{A}$ is a well ordering of S_{ν}^{A} which end extends $<_{\xi}^{A}$ for $\xi<\nu$. In particular $<_{\alpha}^{A}$ well orders J_{α}^{A} for $\alpha \in \Gamma$. We also write: $<_{J_{\alpha}^{A}}=:<_{\alpha}^{A}$. We set: $<_{L^{A}}=<_{J^{A}}=<_{\infty}^{A}=: \bigcup_{\nu<\infty}<_{\nu}^{A}$.

Just as before we get:
Lemma 2.3.15. $\left\langle<_{\nu}^{A} \mid \nu<\alpha\right\rangle$ is uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

The proof is left to the reader. Just as before we get:
Lemma 2.3.16. $<_{\alpha}^{A}$ and $f(u)=\left\{z \mid z<_{\alpha}^{A} u\right\}$ are uniformly $\Sigma_{1}\left(J_{\alpha}^{A}\right)$.

Up until now almost everything we proved for the J_{α} hierarchy could be shown to hold for the J_{α}^{A} hierarchy. The condensation lemma, however, is available only in a much weaker form:

Lemma 2.3.17. Let $X \prec \Sigma_{1} J_{\alpha}^{A}$. Then there are $\bar{\alpha}, \pi, \bar{A}$ such that $\pi: J_{\bar{\alpha}}^{\bar{A}} \stackrel{\sim}{\longleftrightarrow} X$.

Proof: By Lemma 2.2 .19 there is $\langle\bar{U}, \bar{A}\rangle$ such that $\pi:\langle\bar{U}, \bar{A}\rangle \stackrel{\sim}{\longleftrightarrow} X$ and $\langle\bar{U}, \bar{A}\rangle$ is rud closed. As before, the condition

$$
S^{A}(f, \nu) \leftrightarrow f=\left\langle S_{\xi}^{A} \mid \nu<\xi\right\rangle
$$

si Σ_{0} in A. Now let $\bar{\nu}<\bar{\alpha}, \pi(\bar{\nu})=\nu$. As before $f=\left\langle S_{\xi} \mid \xi<\nu\right\rangle \in X$. Let $\pi\left(\bar{f}=f\right.$. Then $\bar{f}=\left\langle S_{\xi}^{A} \mid \xi<\bar{\nu}\right\rangle$, since $S^{\bar{A}}(\bar{f}, \bar{\nu})$. Then $J_{\bar{\alpha}}^{\bar{A}} \subset \bigcup_{\xi<\bar{\alpha}} S_{\xi}^{\bar{A}} \subset \bar{U}$. $U \subset J_{\bar{\alpha}}^{\bar{A}}$ then follows as before.

QED (Lemma 2.3.17)
A sometimes useful feature of the J_{α}^{A} hierarchy is:
Lemma 2.3.18. $x \in J_{\alpha}^{A} \rightarrow T C(x) \in J_{\alpha}^{A}$.
(Hence $\left\langle T C(c) \mid x \in J_{\alpha}^{A}\right\rangle$ is $\Pi_{1}\left(J_{\alpha}^{A}\right)$ since $u=T C(x)$ is defined by: u is transitive $\wedge x \subset u \wedge \bigwedge v((v$ is transitive $\wedge x \subset v) \rightarrow u \subset v)$

Proof: By induction on α.

Case $1 \alpha=\omega$ (trivial)
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lim}$.
Then every $x \in J_{\alpha}^{A}$ has the form $f(\vec{z})$ where $z_{1}, \ldots, z_{n} \in J_{\beta}[A] \cup$ $\left\{J_{\beta}[A]\right\}$ and f is rud in A. By Lemma 2.2.2 we have

$$
\bigcup^{p} X \subset \bigcup_{i=1}^{n} T C\left(z_{i}\right) \subset J_{\beta}[A]
$$

Hence $T C(x)=C_{p}(x) \cup T C\left(\bigcup_{i=1}^{n} T C\left(z_{i}\right)\right.$, where $\left\langle T C(z) \mid z \in J_{\beta}[A]\right\rangle$ is J_{β}^{A}-definable, hence an element of J_{α}^{A}.

Case $3 \alpha \in \operatorname{Lm}^{*}$ (trivial).
QED (Lemma 2.3.18)
Corollary 2.3.19. If $\alpha \in \mathrm{Lm}^{*}$, then $\left\langle T C(x) \mid x \in J_{\alpha}^{A}\right\rangle$ is uniformly $\Delta_{1}\left(J_{\alpha}^{A}\right)$.

Proof: We have seen that it is $\Pi_{1}\left(J_{\alpha}^{A}\right)$. But $T C \upharpoonright J_{\alpha}^{A} \in J_{\alpha}^{A}$ for all $\beta \in \operatorname{Lm} \cap \alpha$. Hence $u=T C(x)$ is definable in J_{α}^{A} by:
$\bigvee f(f$ is a function $\wedge \operatorname{dom}(f)$ is transitive $\wedge u=f(x)$

$$
\left.\wedge \bigwedge x \in \operatorname{dom}(f) f(x)=x \cup \bigcup f^{n} x\right)
$$

QED (Corollary 2.3.19)

$2.4 J$-models

We can add further unary predicates to the structure $J_{\alpha}^{\vec{A}}$. We call the structure:

$$
M=\left\langle J_{\alpha}^{A_{1}, \ldots, A_{n}}, B_{1}, \ldots, B_{m}\right\rangle
$$

a J-model if it is amenable in the sense that $x \cap B_{i} \in J_{\alpha}^{\vec{A}}$ whenever $x \in J_{\alpha}^{\vec{A}}$ and $i=1, \ldots, m$. The B_{i} are again taken as unary predicates. The type of M is $\langle n, m\rangle$. (Thus e.g. J_{α} has type $\langle 0,0\rangle, J_{\alpha}^{A}$ has type $\langle 1,0\rangle$, and $\left\langle J_{\alpha}, B\right\rangle$ has type $\langle 0,1\rangle$.) By an abuse of notation we shall often fail to distinguish between M and the associated structure:

$$
\hat{M}=\left\langle J_{\alpha}[\vec{A}], A_{1}^{\prime}, \ldots, A_{n}^{\prime}, B_{1}, \ldots, B_{m}\right\rangle
$$

where $A_{i}^{\prime}=A_{i} \cap J_{\alpha}[\vec{A}](i=1, \ldots, n)$.
We may for instance write $\Sigma_{1}(M)$ for $\Sigma_{1}(\hat{M})$ or $\pi: N \rightarrow_{\Sigma_{n}} M$ for $\pi: \hat{N} \rightarrow_{\Sigma_{n}}$ \hat{M}. (However, we cannot unambignously identify M with \hat{M}, since e.g. for $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ we might have: $\hat{M}=J_{\alpha}^{A, B}$.)

In practice we shall usually deal with J models of type $\langle 1,1\rangle,\langle 1,0\rangle$, or $\langle 0,0\rangle$. In any case, following the precedent in earlier section, when we prove general theorem about J-models, we shall often display only the proof for type $\langle 1,1\rangle$ or $\langle 1,0\rangle$, since the general case is then straightforward.

Definition 2.4.1. If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$ is a J-model and $\beta \leq \alpha$ in Lm, we set:

$$
M \mid \beta=:\left\langle J_{\beta}^{\vec{A}}, B_{1} \cap J_{\alpha}^{\vec{A}}, \ldots, B_{n} \cap J_{\alpha}^{\vec{A}}\right\rangle .
$$

In this section we consider $\Sigma_{1}(M)$ definability over an arbitrary $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$. If the context permits, we write simply Σ_{1} instead of $\Sigma_{1}(M)$. We first list some properties which follow by rud closure alone:

- $=_{M}^{\Sigma_{1}}$ is uniformly Σ_{1}, by corollary 2.2.18 (Note 'Uniformly' here means that the Σ_{1} definition is the same for any two M having the same type.)
- If $R\left(y, x_{1}, \ldots, x_{n}\right)$ is a Σ_{1} relation, then so is $\bigvee y R\left(y, x_{1}, \ldots, x_{n}\right)$ (since $\bigvee y \bigvee z P(y z, \vec{x}) \leftrightarrow \bigvee u \bigvee y, z \in u P(y, z, \vec{x})$ where $R(y, \vec{x}) \leftrightarrow \bigvee z P(y, z, \vec{x})$ and P is Σ_{0}).
By an n-ary $\Sigma_{1}(M)$ function we mean a partial function on M^{n} which is $\Sigma_{1}(M)$ as an $n+1$-ary relation.
- If R, R^{\prime} are n-ary Σ_{1} relations, then so are $R \cap R^{\prime}, R \cup R^{\prime}$. (Since e.g.

$$
\begin{aligned}
& \left(\bigvee y P(y, \vec{x}) \wedge \bigvee P^{\prime}(y, \vec{x})\right) \leftrightarrow \\
& \left.\bigvee y y^{\prime}\left(P(y, \vec{x}) \wedge P^{\prime}\left(y^{\prime}, \vec{x}\right)\right) .\right)
\end{aligned}
$$

- If $R\left(y_{1}, \ldots, y_{m}\right)$ is an n-ary Σ_{1} relation and $f_{i}(\vec{x})$ is an n-ary Σ_{1} function for $i=1, \ldots, m$, then so is the n-ary relation

$$
R(\vec{f}(\vec{x})) \leftrightarrow: \bigvee y_{1}, \ldots, y_{m}\left(\bigwedge_{i=1}^{m} y_{i}=f_{i}(\vec{x}) \wedge R(\vec{y})\right)
$$

- If $g\left(y_{1}, \ldots, y_{m}\right)$ is an m-ary Σ_{1} function and $f_{i}(\vec{x})$ is an n-ary Σ_{1} function for then $h(\vec{x}) \simeq g(\vec{f}(\vec{x}))$ is an n-ary Σ_{1} function. (Since $\left.z=h(\vec{x}) \leftrightarrow \bigvee_{y_{1}, \ldots, y_{m}}\left(\bigwedge_{i=1}^{m} y_{i}=f_{i}(\vec{x}) \wedge z=g(\vec{y})\right).\right)$
Since $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is Σ_{1} function, we have:
- If $R\left(x_{1}, \ldots, x_{n}\right)$ is Σ_{1} and $\sigma: n \rightarrow m$, then

$$
P\left(z_{1}, \ldots, z_{m}\right) \leftrightarrow: R\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)
$$

is Σ_{1}.

- If $f\left(x_{1}, \ldots, x_{n}\right)$ is a Σ_{1} function and $\sigma: n \rightarrow m$, then the function:

$$
g\left(z_{1}, \ldots, z_{m}\right) \simeq: f\left(z_{\sigma(1)}, \ldots, z_{\sigma n}\right)
$$

in Σ_{1}.
J-models have the further property that every binary Σ_{1} relation is uniformizable by a Σ_{1} function. We define

Definition 2.4.2. A relation $R(y, \vec{x})$ is uniformized by the function $F(\vec{x})$ iff the following hold:

- $\bigvee y R(y, \vec{x}) \rightarrow F(\vec{x})$ is defined
- If $F(\vec{x})$ is defined, then $R(F(\vec{x}), \vec{x})$

We shall, in fact, prove that M has a uniformly Σ_{1} definable Skolem function. We define:

Definition 2.4.3. $h(i, x)$ is a Σ_{1}-Solem function for M iff h is a $\Sigma_{1}(M)$ partial map from $\omega \times M$ to M and, whenever $R(y, x)$ is a $\Sigma_{1}(M)$ relation, there is $i<\omega$ such that h_{i} uniformizes R, where $h_{i}(x) \simeq h(i, x)$.

Lemma 2.4.1. M has a Σ_{1}-Skolem function which is uniformly $\Sigma_{1}(M)$.

Proof: $\models_{M}^{\Sigma_{1}}$ is uniformly Σ_{1}. Let $\left\langle\varphi_{i} \mid i<\omega\right\rangle$ be a recursive enumeration of the Σ_{1} formulae in which at most the two variables v_{0}, v_{1} occur free. Then the relation:

$$
T(i, y, x) \leftrightarrow: \mid==_{M}^{\Sigma_{1}} \varphi_{i}[y, x]
$$

is uniformly Σ_{1}. But then for any Σ_{1} relation R there is $i<\omega$ such that

$$
R(y, x) \leftrightarrow T(i, y, x) .
$$

Since T is Σ_{1}, it has the form:

$$
\bigvee z T^{\prime}(z, i, y, x)
$$

where T^{\prime} is Σ_{0}. Writing $<_{M}$ for $<_{\alpha}^{\vec{A}}$, we define:

$$
\begin{aligned}
& y=h(i, x) \leftrightarrow \bigvee z\left(\langle z, y\rangle \text { is the }<_{M}\right. \text {-least } \\
& \text { pair }\left\langle z^{\prime}, y^{\prime}\right\rangle \text { such that } T^{\prime}\left(z^{\prime}, i, y^{\prime}, x\right) .
\end{aligned}
$$

Recalling that the function $f(x)=\left\{z \mid z<_{M} x\right\}$ is Σ_{1}, we have:

$$
\begin{aligned}
y= & h(i, x) \leftrightarrow \bigvee z \bigvee u\left(T^{\prime}(z, i, y, x) \wedge\right. \\
& \wedge u=\left\{w \mid w<_{n}\langle z, y\rangle\right\} \wedge \\
& \left.\wedge \wedge\left\langle z^{\prime}, y^{\prime}\right\rangle \in u \neg T^{\prime}(z, i, y, x)\right)
\end{aligned}
$$

QED 2.4.1
We call the function h defined above the canonical Σ_{1} Skolem function for M and denote it by h_{M}. The existency of h implies that every $\Sigma_{1}(M)$ relation is uniformizable by a $\Sigma_{1}(M)$ function:

Corollary 2.4.2. Let $R\left(y, x_{1}, \ldots, x_{n}\right)$ be Σ_{1}. R is uniformizable by a Σ_{1} function.

Proof: Let h_{i} uniformize the binary relation

$$
\left\{\langle y, z\rangle \mid \bigvee x_{1} \ldots x_{n}\left(R(y, \vec{x}) \wedge z=\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)\right\} .
$$

Then $f(\vec{x}) \simeq: h_{i}(\langle\vec{x}\rangle)$ uniformizes R.
We say that a $\Sigma_{1}(M)$ function has a functionally absolute definition if it has a Σ_{1} definition which defines a function over every J-model of the same type.

Corollary 2.4.3. Every $\Sigma_{1}(M)$ function g has functionally absolute definition.

Proof: Apply the construction in Corollary 2.4.2 to $R(y, \vec{x}) \leftrightarrow y=g(\vec{x})$. Then $f(x) \simeq: h_{i}(\langle\vec{x}\rangle)$ is functionally absolute since h_{i} is.

QED (Corollary 2.4.2)
Lemma 2.4.4. Every $x \in M$ is $\Sigma_{1}(M)$ in parameters from $\mathrm{On} \cap M$.

Proof: We must show: $x=f\left(\xi_{1}, \ldots, \xi_{n}\right)$ where f is $\Sigma_{1}(M)$. If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$, it obviously suffices to show it for the model $M^{\prime}=J_{\alpha}^{\vec{A}}$. For the sake of simplicity we display the proof for J_{α}^{A}. (i.e. M has type $\langle 1,0\rangle$). We proceed by induction on $\alpha \in \Gamma$.

Case $1 \alpha=\omega$.
Then $J_{\alpha}^{A}=\operatorname{Rud}(\emptyset)$ and $x=f(\{0\})$ where f is rudimentary.
Case $2 \alpha=\beta+\omega, \beta \in \mathrm{Lm}$.
Then $x=f\left(z_{1}, \ldots, z_{n}, J_{\beta}^{A}\right)$ where $z_{1}, \ldots, z_{n} \in J_{\beta}^{A}$ and f is rud in A. (This is meant to include the case: $n=0$ and $x=f\left(J_{\beta}^{A}\right)$.) By the induction hypothesis there are $\vec{\xi} \in \beta$ such that $z_{i}=g_{i}(\vec{\xi})(i=1, \ldots, n)$ and g_{i} is $\Sigma_{1}\left(J_{\beta}^{A}\right)$. For each i pick a functionally absolute Σ_{1} definition for g_{i} and let g_{i}^{\prime} be $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ by the same definition. Then $z_{i}=g_{i}^{\prime}(\vec{\xi})$ since the condition is Σ_{1}. Hence $x=f^{\prime}(\vec{\xi}, \beta)=f\left(\vec{g}^{\prime}\left(\xi, J_{\beta}^{A}\right)\right.$ where f^{\prime} is Σ_{1}.

QED (Case 2)
Case $3 \alpha \in \mathrm{Lm}^{*}$.
Then $x \in J_{\beta}^{A}$ for a $\beta<\alpha$. Hence $x=f(\vec{\xi})$ where f is $\Sigma_{1}\left(J_{\beta}^{A}\right)$. Pick a functionally absolute Σ_{1} definition of f and let f^{\prime} be $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ by the same definition. Then $x=f^{\prime}(\vec{\xi})$.

QED (Lemma 2.4.4)

But being Σ_{1} in parameters from $O n \cap M$ is the same as being Σ_{1} in a finite subset of $\mathrm{On} \cap M$:

Lemma 2.4.5. Let $x=f(\vec{\xi})$ where f is $\Sigma_{1}(M)$. Let $a \subset \mathrm{On} \cap M$ be finite such that $\xi_{1}, \ldots, \xi_{n} \in a$. Then $x=g(a)$ for $a \Sigma_{1}(M)$ function g.

Proof: Set:

$$
k_{i}(a)=\left\{\begin{array}{l}
\text { the } i-\text { th element of } a \text { in order } \\
\text { of size if } a \subset \text { On is finite } \\
\text { and } \operatorname{card}(a)>i \\
\text { undefined if not. }
\end{array}\right.
$$

Then k_{i} is $\Sigma_{1}(M)$ since:

$$
\begin{gathered}
y=k_{i}(a) \leftrightarrow \bigvee f \bigvee n<\omega(f: n \leftrightarrow a \wedge \bigwedge i, j<n(f(i)<f(j) \leftrightarrow i<j) \\
\wedge a \subset \operatorname{On} \wedge y=f(i))
\end{gathered}
$$

Thus $x=f\left(k_{i_{1}}(a), \ldots, k_{i_{n}}(a)\right)$ where $\xi_{l}=k_{i_{l}}(a)$ for $l=1, \ldots, n$.
QED (Lemma 2.4.5)
We now show that for every J-model M there is a $\underline{\Sigma}_{1}(M)$ partial map of On $\cap M$ onto M. As a preliminary we prove:
Lemma 2.4.6. There is a partial $\underline{\Sigma}_{1}(M)$ map of $\mathrm{On} \cap M$ onto $(\mathrm{On} \cap M)^{2}$.
Proof: Order the class of pairs On^{2} by setting: $\langle\alpha, \beta\rangle<{ }^{*}\langle\gamma, \delta\rangle$ iff $\langle\max (\alpha, \beta), \alpha, \beta\rangle$ is lexicographically less than $\langle\max (\gamma, \delta), \gamma, \delta\rangle$. This ordering has the property that the collection of predecessors of any pair form a set. Hence there is a function $p: \mathrm{On} \rightarrow \mathrm{On}^{2}$ which enumerates the pairs in order $<$ *.

Claim $1 p \upharpoonright \mathrm{On}_{M}$ is $\Sigma_{1}(M)$.
Proof: If $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$, it suffices to prove it for $J_{\alpha}^{\vec{A}}$. To simplify notation, we assume: $M=J_{\alpha}^{A}$ for an $A \subset M$ (i.e. M is of type $\langle 1,0\rangle$.) We know:

$$
y=p(\nu) \leftrightarrow \bigvee f(\varphi(f) \wedge y=f(\nu))
$$

where φ is the Σ_{0} formula:

$$
\begin{aligned}
& f \text { is a function } \wedge \operatorname{dom}(f) \in \operatorname{On} \wedge \\
& \wedge \bigwedge u \in \operatorname{rng}(f) \bigvee \beta, \gamma \in C_{n}(u) u=\langle\beta, \gamma\rangle \wedge \\
& \wedge \bigwedge \nu, \tau \in \operatorname{dom}(f)\left(\nu<\tau \leftrightarrow f(\nu)<^{*} f(\tau)\right) \\
& \wedge \bigwedge u \in \operatorname{rng}(f) \bigwedge \mu, \xi \leq \max (u)\left(\langle\mu, \xi\rangle<^{*} u \rightarrow\langle\mu, \xi\rangle \in \operatorname{rng}(f)\right) .
\end{aligned}
$$

Thus it suffices to show that the existence quantifier can be restricted to J_{α}^{A} - i.e. that $p \upharpoonright \xi \in J_{\alpha}^{A}$ for $\xi<\alpha$. This follows by induction on α in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on $\alpha=\mathrm{On}_{M}$, considering three cases:
Case $1 p(\alpha)=\langle 0, \alpha\rangle$.
Then $p \upharpoonright \alpha$ maps α onto

$$
\left\{u \mid u<_{*}\langle 0, \alpha\rangle\right\}=\alpha^{2}
$$

and we are done, since $p \upharpoonright \alpha$ is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$. (Note that ω satisfies Case 1.)
Case $2 \alpha=\beta+\omega, \beta \in \operatorname{Lm}$ and Case 1 fails.
There is a $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ bijection of β onto α defined by:

$$
\begin{aligned}
& f(2 n)=\beta+n \text { for } n<\omega \\
& f(2 n+1)=n \text { for } n<\omega \\
& f(\nu)=\nu \text { for } \omega \leq \nu<\beta
\end{aligned}
$$

Let g be a $\underline{\Sigma}_{1}\left(J_{\beta}^{A}\right)$ partial map of β onto β^{2}. Set $\left(\left\langle\gamma_{0}, \gamma_{1}\right\rangle\right)_{i}=\gamma_{i}$ for $i=0,1$.

$$
g_{i}(\nu) \simeq(g(\nu))_{i}(i=0,1)
$$

Then $f(\nu) \simeq\left\langle f g_{0}\left(\nu, f g_{1}(\nu)\right\rangle\right.$ maps β onto α^{2}.
QED (Case 2)
Case 3 The above cases fail.
Then $p(\alpha)=\langle\nu, \tau\rangle$, where $\nu, \tau<\alpha$. Let $\gamma \in \operatorname{Lm}$ such that $\max (\nu, \tau)<$ $\gamma<\alpha$. Let g be a partial $\underline{\Sigma}_{1}\left(J_{\alpha}^{A}\right)$ map of γ onto γ^{2}. Then $g \in M, p^{-1}$ is a partial map of γ^{2} onto α; hence $f=p^{-1} \circ g$ is a partial map of γ onto α. Set: $\tilde{f}(\langle\xi, \delta\rangle) \simeq\langle f(\xi), f(\delta)\rangle$ for ξ, δ, γ. Then $\tilde{f} g$ is a partial map of γ onto α^{2}.

QED (Lemma 2.4.6)

We can now prove:
Lemma 2.4.7. There is a partial $\underline{\Sigma}_{1}(M)$ map of On_{M} onto M.

Proof: We again simplify things by taking $M=J_{\alpha}^{A}$. Let g be a partial map of α onto α^{2} which is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in the parameters $p \in J_{\alpha}^{A}$. Define "ordered pairs" of ordinals $<\alpha$ by:

$$
(\nu, \tau)=: g^{-1}(\langle\nu, \tau\rangle)
$$

We can then, for each $n \geq 1$, define "ordered n-tuples" by:

$$
(\nu)=: \nu,\left(\nu_{1}, \ldots, \nu_{n}\right)=\left(\nu_{1},\left(\nu_{2}, \ldots, \nu_{n}\right)\right)(n \geq 2)
$$

We know by Lemma 2.4 .4 that every $y \in J_{\alpha}^{A}$ has the form: $y=f\left(\nu_{1}, \ldots, \nu_{n}\right)$ where $\nu_{1}, \ldots, \nu_{n}<\alpha$ and f is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$. Define a function f^{*} by:

$$
\begin{aligned}
y=f^{*}(\tau) & \leftrightarrow \bigvee \nu_{1}, \ldots, \nu_{n}\left(\tau=\left(\nu_{1}, \ldots, \nu_{n}\right) \wedge\right. \\
& \left.\wedge y=f\left(\nu_{1}, \ldots, \nu_{n}\right)\right)
\end{aligned}
$$

Then f^{*} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p and $y \in f^{* \prime \prime} \alpha$. If we set: $h^{*}(i, x) \simeq h(i,\langle x, p\rangle)$, then each binary relation which is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p is uniformized by one of the functions $h_{i}^{*}(x) \simeq h^{*}(i, x)$. Hence $y=h^{*}(i, \gamma)$ for some $\gamma<\alpha$. Hence $J_{\alpha}^{A}=h^{* \prime \prime}(\omega \times \alpha)$. But, setting:

$$
y=\hat{h}(\mu) \leftrightarrow \bigvee i, \nu\left(\mu=(i, \nu) \wedge y=h^{*}(i, \nu)\right)
$$

we see that \hat{h} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p and $y \in \hat{h}^{\prime \prime} \alpha$. Hence $J_{\alpha}^{A}=\hat{h}^{\prime \prime} \alpha$, where \hat{h} is $\Sigma_{1}\left(J_{\alpha}^{A}\right)$ in p.

QED (Lemma 2.4.7)
Corollary 2.4.8. Let $x \in M$. There are $f, \gamma \in J_{\alpha}^{A}$ such that f maps γ onto x.

Proof: We again prove it for $M=J_{\alpha}^{A}$. If $\alpha=\omega$ it is trivial since $J_{\alpha}^{A}=H_{\omega}$. If $\alpha \in \mathrm{Lm}^{*}$ then $x \in J_{\beta}^{A}$ for a $\beta<\alpha$ and there is $f \in J_{\alpha}^{A}$ mapping β onto J_{β}^{A} by Lemma 2.4.7. There remains only the case $\alpha=\beta+\omega$ where β is a limit ordinal. By induction on $n<\omega$ we prove:

Claim There is $f \in J_{\alpha}^{A}$ mapping β onto $S_{\beta+n}^{A}$. If $n=0$ this follows by Lemma 2.4.7.

Now let $n=m+1$.
Let $f: \beta \xrightarrow{\text { onto }} S_{\beta+m}^{A}$ and define f^{\prime} by $f^{\prime}(0)=S_{\beta+m}^{A}, f^{\prime}(n+1)=f(n)$ for $n<\omega, f^{\prime}(\xi)=f(\xi)$ for $\xi \geq \omega$. Then f^{\prime} maps β onto $U=S_{\beta+m}^{A} \cup\left\{S_{\beta+m}^{A}\right\}$ and $S_{\beta+m}^{A}=\bigcup_{\delta=\beta}^{8} F_{i}^{\prime \prime} U^{2} \cup \bigcup_{i=0}^{3} G_{i}^{\prime \prime} U^{3} \cup\left\{A \cap S_{\beta+m}^{A}\right\}$.

Set:

```
\(g_{i}=\left\{\left\langle F_{i}\left(f^{\prime}(\xi), f^{\prime}(\zeta)\right),\langle i,\langle\xi, \zeta\rangle\rangle\right\rangle \mid \xi, \zeta<\beta\right\}\)
for \(i=0, \ldots, 8\)
\(\left.g_{8+i+1}=\left\{\left\langle G_{i}\right| f^{\prime}(\xi), f^{\prime}(\zeta), f^{\prime}(\mu)\right),\langle 8+i+1,\langle\xi, \zeta, \mu\rangle\rangle \mid \xi, \zeta, \mu<\beta\right\}\)
for \(i=0, \ldots, 3\)
\(g_{13}=\left\{\left\langle A \cap S_{\beta+m}^{A}\langle 13, \emptyset\rangle\right\rangle\right\}\)
```

Then $g=\bigcup_{i=0}^{13} g_{i} \in J_{\alpha}^{A}$ is a partial map of J_{β}^{A} onto $S_{\beta+n}^{A}$ and $g h \in J_{\alpha}^{A}$ is a partial map of β onto S_{β}^{A}. \quad QED (Corollary 2.4.8)

Define the cardinal of x in M by:
Definition 2.4.4. $\overline{\bar{x}}=\bar{x}^{M}=$: the least γ such that some $f \in M$ maps γ onto x.
(Note this is a non standard definition of cardinal numbers. If M is e.g. $p r$ closed, we get that there is $f \in M$ bijecting $\overline{\bar{x}}$ onto x.)

Definition 2.4.5. Let $X \subset M . h(X)=h_{M}(X)=$: The set of all $y \in M$ such that $y=f\left(x_{1}, \ldots, x_{n}\right)$, where $x_{1}, \ldots, x_{n} \in X$ and f is a $\Sigma_{1}(M)$ function

Since $\Sigma_{1}(M)$ functions are closed under composition, it follows easily that $Y=h(X)$ is closed under $\Sigma_{1}(M)$ functions.

By Corollary 2.4.2 we then have:
Lemma 2.4.9. Let $Y=h(X)$. Then $M \mid Y \prec \Sigma_{1} M$ where

$$
M \mid Y=:\left\langle Y, A_{1} \cap Y, \ldots, A_{n} \cap Y, B_{1} \cap Y, \ldots, B_{m} \cap Y\right\rangle .
$$

(Note We shall often ignore the distinction between Y and $M \mid Y$, writing simply: $Y \prec_{\Sigma_{1}}$ M.)

If f is a $\Sigma_{1}(M)$ function, there is $i<\omega$ such that $h(i,\langle\vec{x}\rangle) \simeq f(\vec{x})$. Hence:
Corollary 2.4.10. $h(X)=\bigcup_{n<\omega} h^{\prime \prime}\left(\omega \times X^{n}\right)$.

There are many cases in which $h(X)=h^{\prime \prime}(\omega \times X)$, for instance:
Corollary 2.4.11. $h(\{x\})=h^{\prime \prime}(\omega \times\{x\})$.

Gödels pair function on ordinals is defined by:
Definition 2.4.6. $\prec \gamma, \delta \succ=: p^{-1}(\prec \gamma, \delta \succ)$, where p is the function defined in the proof of Lemma 2.4.6.

We can then define Gödel n-tuples by iterating the pair function:
Definition 2.4.7. $\prec \gamma \succ=: \gamma ; \prec \gamma_{1}, \ldots, \gamma_{n} \succ=: \prec \gamma_{1}, \prec \gamma_{2}, \ldots, \gamma_{n} \succ \succ(n \geq$ 2).

Hence any X which is closed under Gödel pairs is closed under the tuplefunction. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. If $Y \subset \mathrm{On}_{M}$ is closed under Gödel pairs, then:
(a) $h(Y)=h^{\prime \prime}(\omega \times Y)$
(b) $h(Y \cup\{p\})=h^{\prime \prime}(\omega \times(Y \times\{p\}))$ for $p \in M$.

Proof: We display the proof of (b). Let $y \in h(Y \cup\{p\})$. Then $y=$ $f\left(\gamma_{1}, \ldots, \gamma_{n}, p\right)$, where $\gamma_{1}, \ldots, \gamma_{n} \in Y$ and f is $\Sigma_{1}(M)$.

Hence $y=f^{*}(\langle\delta, p\rangle)$ where $\delta=\prec \gamma_{1}, \ldots, \gamma_{n} \succ$ and

$$
\begin{gathered}
y=f^{*}(z) \leftrightarrow \bigvee \gamma_{1}, \ldots, \gamma_{n} \bigvee p\left(z=\left\langle\prec \gamma_{1}, \ldots, \gamma_{n} \succ, p\right\rangle \wedge\right. \\
\wedge y=f(\vec{\gamma}, p)) .
\end{gathered}
$$

Hence $y=h(i,\langle\delta, p\rangle)$ for some i.
QED (Corollary 2.4.12)
Similarly we of course get:
Corollary 2.4.13. If $Y \subset M$ is closed under ordered pairs, then:
(a) $h(Y)=h^{\prime \prime}(\omega \times Y)$
(b) $h(Y \cup\{p\})=h^{\prime \prime}(\omega \times(Y \times\{p\})$ for $p \in M$.

By Lemma 2.4.5 we easily get:
Corollary 2.4.14. Let $Y \subset \mathrm{On}_{M}$. Then $h(Y)=h^{\prime \prime}\left(\omega \times \mathbb{P}_{\omega}(Y)\right)$.
In fact:
Corollary 2.4.15. Let $A \subset \mathbb{P}_{\omega}\left(\mathrm{On}_{M}\right)$ be directed (i.e. $a, b \in A \rightarrow \bigvee c \in$ $A a, b \subset c)$. Let $Y=\bigcup A$. Then $h(Y)=h^{\prime \prime}(\omega \times A)$.

By the condensation lemma we get:
Lemma 2.4.16. Let $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M$ where M is a J-model and \bar{M} is transitive. Then \bar{M} is a J-model.

Proof: \bar{M} is amenable by Σ_{1} preservation. But then it is a J-model by the condensation lemma.

QED (Lemma 2.4.16)
We can get a theorem in the other direction as well. We first define:
Definition 2.4.8. Let \bar{M}, M be transitive structures. $\sigma: \bar{M} \rightarrow M$ cofinally iff σ is a structural embedding of \bar{M} into M and $M=\bigcup \sigma^{\prime \prime} \bar{M}$.

Then:
Lemma 2.4.17. If $\sigma: \bar{M} \rightarrow \Sigma_{0} M$ cofinally. Then σ is Σ_{1} preserving.
Proof: Let $R(y, \vec{x})$ be $\Sigma_{0}(M)$ and let $\bar{R}(y, \vec{x})$ be $\Sigma_{0}(\bar{M})$ by the same definition. We claim:

$$
\bigvee y R(y, \sigma(\vec{x})) \rightarrow \bigvee y \bar{R}(y, \vec{x})
$$

for $x_{1}, \ldots, x_{n} \in \bar{M}$. To see this, let $R(y, \sigma(\vec{x}))$. Then $y \in \sigma(u)$ for a $u \in \bar{M}$. Hence $\bigvee y \in \sigma(u) R(y, \sigma(\vec{x}))$, which is a Σ_{0} statement about $\sigma(u), \sigma(\vec{x})$. Hence $\bigvee y \in u \bar{R}(y, \vec{x})$.

QED (Lemma 2.4.17)
Lemma 2.4.18. Let $\sigma: \bar{M} \rightarrow_{\Sigma_{0}} M$ cofinally, where \bar{M} is a J-model. Then M is a J-model.

Proof: Let e.g. $\bar{M}=\langle J \overline{\bar{\alpha}}\rangle, M=\langle U, A, \bar{B}\rangle$.
Claim $1 U=J_{\alpha}^{A}$ where $\alpha=\mathrm{On}_{M}$.
Proof: $y=S^{\bar{A}} \upharpoonright \nu$ is a Σ_{0} condition, so $\sigma\left(S^{\bar{A}} \upharpoonright \nu\right)=S^{A} \upharpoonright \sigma(\nu)$. But σ takes $\bar{\alpha}$ cofinally to α, so if $\xi<\alpha, \xi<\sigma(\nu)$, then $S_{\xi}^{A}\left(S^{A} \upharpoonright \sigma(\nu)\right)(\xi) \in U$. Hence $J_{\alpha}^{A} \subset U$. To see $U \subset J_{\alpha}^{A}$, let $x \in U$. Then $x \in \sigma(u)$ where $u \in J_{\bar{\alpha}}^{\bar{A}}$. Hence $u \subset S_{\nu}^{\bar{A}}$ and $x \in \sigma\left(S_{\nu}^{\bar{A}}\right)=S_{\sigma(\nu)}^{A} \subset J_{\alpha}^{A}$. QED (Claim 1)

Claim $2 M$ is amenable.

Let $x \in S_{\sigma(\nu)}^{A}$. Then $\sigma\left(\bar{B} \cap S_{\nu}^{\bar{A}}\right)=B \cap S_{\sigma(\nu)}^{A}$ and $x \cap B=\left(B \cap S_{\nu}^{A}\right) \cap x \in$ U, since S_{ν}^{A} is transitive.

QED (Lemma 2.4.18)
Lemma 2.4.19. Let \bar{M}, M be J-models. Then $\sigma: \bar{M} \rightarrow_{\Sigma_{0}} M$ cofinally iff $\sigma: \bar{M} \rightarrow_{\Sigma_{0}} M$ and σ takes $\mathrm{On}_{\bar{M}}$ to On_{M} cofinally.

Proof: (\rightarrow) is obvious. We prove (\leftarrow). The proof of $\sigma\left(S_{\nu}^{\bar{A}}\right)=S_{\sigma(\nu)}^{A}$ goes through as before. Thus if $x \in M$, we have $x \in S_{\xi}^{A}$ for some ξ. Let $\xi \leq \sigma(\nu)$. Then $x \in S_{\sigma(\nu)}^{A}=\sigma\left(S_{\nu}^{\bar{A}}\right)$.

QED (Lemma 2.4.19)

2.5 The Σ_{1} projectum

2.5.1 Acceptability

We begin by defining a class of J-models which we call acceptable. Every J_{α} is acceptable, and we shall see later that there are many other naturally occurring acceptable structures. Accepability says essentially that if something dramatic happens to β at some later stage ν of the construction, then ν is, in fact, collapsed to β at that stage:

Definition 2.5.1. $J_{\alpha}^{\vec{A}}$ is acceptable iff for all $\beta \leq \nu<\alpha$ in Lm we have:
(a) If $a \subset \beta$ and $a \in J_{\nu+\omega}^{\vec{A}} \backslash J_{\nu}^{\vec{A}}$, then $\overline{\bar{\nu}} \leq \beta$ in $J_{\nu+\omega}^{\vec{A}}$.
(b) If $x \in J_{\beta}^{\vec{A}}$ and ψ is a Σ_{1} condition such that $J_{\nu+\omega}^{\vec{A}} \models \psi[\beta, x]$ but $J_{\nu}^{\vec{A}} \not \models \psi[\beta, x]$, then $\overline{\bar{\nu}} \leq \beta$ in $J_{\nu+\omega}^{\vec{A}}$.
A J-model $\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$ is acceptable iff $J_{\alpha}^{\vec{A}}$ is acceptable.

Note 'Acceptability' referred originally only to property (a). Property (b) was discovered later and was called ' Σ_{1} acceptability'.

In the following we shall always suppose M to be acceptable unless otherwise stated. We recall that by Corollary 2.4.8 every $x \in M$ has a cardinal $\overline{\bar{x}}=\overline{\bar{x}}^{M}$. We call γ a cardinal in M iff $\gamma=\overline{\bar{\gamma}}$ (i.e. no smaller ordinal is mappable onto γ in M).

Lemma 2.5.1. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable. Let $\gamma>\omega$ be a cardinal in M. Then:
(a) $\gamma \in \mathrm{Lm}^{*}$
(b) $J_{\gamma}^{A} \prec \Sigma_{1} J_{\alpha}^{A}$
(c) $x \in J_{\gamma}^{A} \rightarrow M \cap \mathbb{P}(x) \subset J_{\gamma}^{A}$.

Proof: We first prove (a). Suppose not. Then $\gamma=\beta+\omega$, where $\beta \in \operatorname{Lm}, \beta \geq$ ω. Then $f \in M$ maps β onto γ where: $f(2 i)=i, f(2 i+1)=\beta+i, f(\xi)=\xi$ for $\xi \geq \omega$.

Contradiction!

If (b) were false, there would be ν such that $\gamma \leq \nu<\alpha$, and for some $x \in J_{\gamma}^{A}$ and some Σ_{1} formula ψ we have:

$$
J_{\nu+\omega}^{A} \models \psi[x], J_{\nu}^{A} \models \neg \psi[x] .
$$

But then $x \in J_{\beta}^{A}$ for some $\beta<\gamma$ in Lm. Hence $\overline{\bar{\gamma}} \leq \overline{\bar{\nu}} \leq \beta$. Contradiction!

To prove (c) suppose not. Then x is not finite. Let $\beta=\overline{\bar{x}}$ in J_{γ}^{A}. Then $\beta \geq \omega, \beta \in \operatorname{Lm}$ by (a). Let $f \in J_{\gamma}^{A}$ map β onto x. Let $u \subset x$ such that $u \notin J_{\gamma}^{A}$. Then $v=f^{-1 \prime \prime} u \notin J_{\gamma}^{A}$. Let $\nu \geq \gamma$ such that $v \in J_{\nu+\omega}^{A} \backslash J_{\nu}^{A}$. Then $\gamma \leq \overline{\bar{\nu}} \leq \beta$.
Contradiction!
QED (Lemma 2.5.1)
Remark We have stated and proven this lemma for M of type $\langle 1,1\rangle$, since the extension to M of arbitrary type is self evident.

The most general form of $G C H$ says that if $\mathbb{P}(x)$ exists and $\overline{\bar{x}} \geq \omega$, then $\overline{\overline{\mathbb{P}}(x)}=\bar{x}^{+}$(where α^{+}is the least cardinal $>\alpha$).

As a corollary of Lemma 2.5.1 we have:
Corollary 2.5.2. Let M, γ be as above. Let $a \in M, a \subset J_{\gamma}^{A}$. Then:
(a) $\left\langle J_{\gamma}^{A}, a\right\rangle$ models the axiom of subsets and $G C H$.
(b) If γ is a successor cardinal in M, then $\left\langle J_{\gamma}^{A}, a\right\rangle$ models ZFC^{-}.
(c) If γ is a limit cardinal in M, then $\left\langle J_{\gamma}^{A}, a\right\rangle$ models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (c). (c) follows from (a) and rud closure of J_{γ}^{A}. We prove (b). We know that J_{γ}^{A} is rud closed and that the axiom of choice holds in the strong form: $\lfloor x \bigvee \nu \bigvee f f$ maps ν onto x. We must prove the axiom of collection. Let $R(x, y)$ be $\underline{\Sigma}_{\omega}\left(J_{\gamma}^{A}\right)$ and let $u \in J_{\gamma}^{A}$ such that $\bigwedge x \in u \bigvee y R(x, y)$.

Claim $\bigvee \nu<\gamma \wedge x \in u \bigvee y \in J_{\nu}^{A} R(x, y)$. Suppose not.

Let $\gamma=\beta^{+}$in M. For each $\nu<\gamma$ there is a partial map $f \in M$ of β onto ν. But then $f \in J_{\gamma}^{A}$ since $f \subset \nu \times \beta \in J_{\gamma}^{A}$. Set f_{ν} - the $<_{J_{\gamma}^{A}}$ - least such f. For $x \in u$ set:

$$
h(x)=\text { the least } \mu \text { such that } \bigvee y \in J_{\mu}^{A} R(y, x) .
$$

Then $\sup h^{\prime \prime} u=\gamma$ by our assumption. Define a partial map k on $u \times \beta$ by: $k(x, \xi) \simeq f_{h(x)}(\xi)$. Then k is onto γ. But $k \in M$, since k is $\underline{\Sigma}_{1}\left(J_{\gamma}^{A}\right)$. Clearly $\overline{\overline{u \times \beta}}=\beta$ in M, so $\overline{\bar{\gamma}} \leq \beta<\gamma$ in M.
Contradiction!
QED (Corollary 2.5.2)
Corollary 2.5.3. Let M, γ be as above. Then

$$
J_{\gamma}^{A}=H_{\gamma}^{M}=: \bigcup\{u \in M \mid u \text { is transitive } \cap \overline{\bar{u}}<\gamma \text { in } M\} .
$$

Proof: Let $u \in M$ be transitive and $\overline{\bar{u}}<\gamma$ in M. It suffices to show that $u \in J_{\gamma}^{A}$. Let $\nu=\overline{\bar{u}}<\gamma$ in M. Let $f \in M$ map ν onto u. Set:

$$
r=\left\{\langle\xi, \delta\rangle \in \nu^{2} \mid f(\xi) \in f(\delta)\right\} .
$$

Then $r \in J_{\gamma}^{A}$ by Lemma 2.5.1 (c), since $\nu^{2} \in J_{\gamma}^{A}$. Let $\beta=\overline{\bar{\nu}}^{+}=$the least cardinal $>\nu$ in M. then J_{β}^{A} models ZFC^{-}and $r, \nu \in J_{\beta}^{A}$. But then $f \in J_{\beta}^{A} \subset J_{\gamma}^{A}$, since f is defined by recursion on $r: f(x)=f^{\prime \prime} r^{\prime \prime}\{x\}$ for $x \in \nu$. Hence $u=\operatorname{rng}(f) \in J_{\gamma}^{A}$.

QED (Corollary 2.5.3)
Lemma 2.5.4. If $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M$ and M is acceptable, then so is \bar{M}.

Proof: \bar{M} is a J-model by $\S 4$. Let e.g. $M=J_{\alpha}^{A}, \bar{M}=J_{\bar{\alpha}}^{\bar{A}}$. Then \bar{M} has a counterexample - i.e. there are $\bar{\nu}<\bar{\alpha}, \bar{\beta}<\bar{\nu}, \bar{a}$ such that $\operatorname{card}(\bar{\nu})>\bar{\beta}$ in $J_{\bar{\nu}+\omega}$ and either $\bar{a} \subset \bar{\beta}$ and $\bar{a} \in J_{\bar{\nu}+\omega}^{\overline{\mathbb{A}}} \backslash J_{\bar{\nu}}^{A}$ or else $\bar{a} \in J_{\beta}^{\bar{A}}, J_{\bar{\nu}+1}^{\bar{A}} \models \psi[\bar{a}, \bar{\beta}]$ and $J_{\bar{\nu}}^{\bar{A}} \models \neg \psi[\bar{a}, \bar{\beta}]$, where ψ is Σ_{1}. But then letting $\pi(\bar{\beta}, \bar{\nu}, \bar{a})=\beta, \nu, a$ it follows easily that β, ν, a is a counterexample in M.
Contradiction!
QED (Lemma 2.5.4)
Lemma 2.5.5. If $\pi: \bar{M} \rightarrow_{\Sigma_{0}} M$ cofinally and \bar{M} is acceptable, then so is M.

Proof: M is a J-model by $\S 4$. Let $M=J_{\alpha}^{A}, \bar{M}=J_{\alpha}^{A}$.

Case $1 \bar{\alpha}=\omega$.
Then $\bar{M}=M=J_{\omega}^{A}, \pi=\mathrm{id}$.

Case $2 \bar{\alpha} \in \mathrm{Lm}^{*}$.
Then ' M is acceptable' is a $\Pi_{1}(\bar{M})$ condition. But then $\alpha \in \mathrm{Lm}^{*}$ and M must satisfy the same Π_{1} condition.

Case $3 \bar{a}=\bar{\beta}+\omega, \bar{\beta} \in \mathrm{Lm}$.
Then $\alpha=\beta+\omega, \beta \in \operatorname{Lm}$ and $\beta=\pi(\bar{\beta})$. Then $J_{\beta}^{A}=\pi\left(J_{\bar{\beta}}^{\bar{A}}\right)$ is acceptable, so there can be no counterexample $\langle\delta, \nu, a\rangle \in J_{\beta}^{A}$.

We show that there can be no counterexample of the form $\langle\delta, \beta, a\rangle$. Let $\bar{\gamma}=\operatorname{card}(\bar{\beta})$ in \bar{M}. The statement $\operatorname{card}(\bar{\beta}) \leq \bar{\gamma}$ is $\Sigma_{1}(M)$. Hence $\operatorname{card}(\beta) \leq$ $\gamma=\pi(\bar{\gamma})$ in M. Hence there is no counterexample $\langle\delta, \beta, a\rangle$ with $\delta \geq \gamma$. But since \bar{M} is acceptable and $\bar{\gamma} \leq \bar{\beta}$ is a cardinal in \bar{M}, the following Π_{1} statements hold in \bar{M} by Lemma 2.5 . 1

$$
\begin{aligned}
& \bigwedge \delta<\bar{\gamma} \bigwedge a \subset \delta a \in J_{\bar{\gamma}}^{\bar{A}} \\
& \bigwedge \delta<\bar{\gamma} \bigwedge x \in J_{\delta}^{\bar{A}}\left(\bigvee y R(x, \delta) \rightarrow \bigvee y \in J_{\bar{\gamma}}^{\bar{A}}\right) \\
& \text { where } R \text { is } \Sigma_{0}(\bar{M}) .
\end{aligned}
$$

But then the corresponding statements hold in M. Hence $\langle\delta, \beta, a\rangle$ cannot be a counterexample for $\delta<\gamma$.

QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.
Definition 2.5.2. Let M be acceptable. The Σ_{1}-projectum of M (in symbols ϱ_{M}) is the least $\varrho \leq \operatorname{On}_{M}$, such that there is a $\underline{\Sigma}_{1}(M)$ set $a \subset \varrho$ with $a \notin M$.

Lemma 2.5.6. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle, \varrho=\varrho_{M}$. Then
(a) If $\varrho \in M$, then ϱ is cardinal in M.
(b) If D is $\underline{\Sigma}_{1}(M)$ and $D \subset J_{\varrho}^{A}$, then $\left\langle J_{\varrho}^{A}, D\right\rangle$ is amenable.
(c) If $u \in J_{\varrho}^{A}$, there is no $\underline{\Sigma}_{1}(M)$ partial map of u onto J_{ϱ}^{A}.
(d) $\varrho \in \operatorname{Lim}^{*}$

Proof:

(a) Suppose not. Then there are $f \in M, \gamma<\varrho$ such that f maps γ onto ϱ. Let $a \subset \varrho$ be $\underline{\Sigma}_{1}(M)$ such that $a \notin M$. Set $\tilde{a}=f^{-1 \prime \prime} a$. Then \tilde{a} is $\Sigma_{1}(M)$
and $\tilde{a} \subset \gamma$. Hence $\tilde{a} \in M$. But then $a=f^{\prime \prime} \tilde{a} \in M$ by rud closure.
Contradiction!
QED (a)
(b) Suppose not. Let $u \in J_{\varrho}^{A}$ such that $D \cap u \notin J_{\varrho}^{A}$. We first note:

Claim $D \cap u \notin M$.
If $\varrho=\alpha$ this is trivial, so let $\varrho<\alpha$. Then ϱ is a cardinal by (a) and by Lemma 2.5 .1 we know that $\mathbb{P}(u) \cap M \subset J_{\varrho}^{A}$.

QED (Claim)

By Corollary 2.5.2 there is $f \in J_{\varrho}^{A}$ mapping a $\nu<\varrho$ onto u. Then $d=$ $f^{-1 u}(D \cap u)$ is $\underline{\Sigma}_{1}(M)$ and $d \subset \nu<\varrho$. Hence $d \in M$. Hence $D \cap u=f^{\prime \prime} d \in M$ by rud closure.

QED (b)
(c) Suppose not. Let f ba a counterexample. Set $a=\{x \in u \mid x \in \operatorname{dom}(f) \wedge$ $x \notin f(x)\}$. Then a is $\underline{\Sigma}_{1}(M), a \subset u \in M$. Hence $a \in J_{\varrho}^{A}$ by (b). Let $a=f(x)$. Then $x \in f(x) \leftrightarrow x \notin f(x)$.
Contradiction!
QED (c)
(d) If not, then $\varrho=\beta+\omega$ where $\beta \in \operatorname{Lim}$. But then there is a $\underline{\Sigma}_{1}(M)$ partial map of β onto ϱ, violating (c).

QED (Lemma 2.5.6)
Remark We have again stated and proven the theorem for the special case $M=\left\langle J_{\alpha}^{A}, B\right\rangle$, since the general case is then obvious. We shall continue this practice for the rest of the book. A good parameter is a $p \in M$ which witnesses that $\varrho=\varrho_{M}$ is the projectum - i.e. there is $B \subset M$ which is $\Sigma_{1}(M)$ in p with $B \cap H_{\varrho}^{M} \notin M$. But by $\S 3$ any $p \in M$ has the form $p=f(a)$ where f is a $\Sigma_{1}(M)$ function and a is a finite set of ordinals. Hence a is good if p is. For technical reasons we shall restrict ourselves to good parameters which ar finite sets of ordinals:

Definition 2.5.3. $P=P_{M}=$: The set of $p \in\left[\mathrm{On}_{M}\right]^{<\omega}$ which are good parameters.

Lemma 2.5.7. If $p \in P$, then $p \backslash \varrho_{M} \in P$.

Proof: It suffices to show that if $\nu=\min (p)$ and $\nu<\varrho$, then $p^{\prime}=p \backslash(\nu+1) \in$ P. Let B be $\Sigma_{1}(M)$ in p such that $B \cap H_{\varrho}^{M} \notin M$. Let $B(x) \leftrightarrow B^{\prime}(x, p)$ where B^{\prime} is $\Sigma_{1}(M)$.

Set:

$$
B^{*}(x) \leftrightarrow: \bigvee z \bigvee \nu\left(x=\langle z, \nu\rangle \wedge B^{\prime}\left(z, p^{\prime} \cup\{\nu\}\right)\right)
$$

Then $B^{*} \cap H_{\varrho} \notin M$, since otherwise

$$
B \cap H_{\varrho}=\left\{x \mid\langle x, \nu\rangle \in B^{*} \cap H_{\varrho}\right\} \in M .
$$

For any $p \in\left[\mathrm{On}_{M}\right]^{<\omega}$ we define the standard code T^{p} determined by p as:

Definition 2.5.4.

$$
\left.T^{p}=T_{M}^{p}=:\left\{\langle i, x\rangle \mid \models_{M} \varphi_{i}[x, p]\right\} \cap H_{\varrho_{M}}^{M}\right\}
$$

where $\left\langle\varphi_{i} \mid i<\omega\right\rangle$ is a fixed recursive enumeration of the Σ_{1}-fomulae.
Lemma 2.5.8. $p \in P \leftrightarrow T^{p} \notin M$.

Proof:

$(\leftarrow) T^{p}=T \cap H_{p}^{M}$ for a T which is $\Sigma_{1}(M)$ in p.
(\rightarrow) Let B be $\Sigma_{1}(M)$ in p such that $B \cap H_{p}^{M} \notin M$. Then for some i :

$$
B(x) \leftrightarrow\langle i, x\rangle \in T^{p}
$$

$$
\text { for } x \in H_{p}^{M} . \text { Hence } T^{p} \notin M
$$

QED (Lemma 2.5.8)

A parameter p is very good if every element of M is Σ_{1} definable from parameters in $\varrho_{M} \cup\{p\} . \quad R$ is the set of very good parameters lying in $\left[\mathrm{On}_{M}\right]^{<\omega}$.

Definition 2.5.5. $R=R_{M}=$: the set of $r \in\left[\mathrm{On}_{M}\right]^{<\omega}$ such that $M=$ $h_{M}\left(\varrho_{M} \cup\{r\}\right)$.

Note This is the same as saying $M=h_{M}\left(\varrho_{M} \cup r\right)$, since

$$
h(\varrho \cup r)=h^{\prime \prime}\left(\omega \times[\varrho \cup r]^{\omega}\right)
$$

But $\varrho \cup r=\varrho \cup(r \backslash \varrho)$. Hence:
Lemma 2.5.9. If $r \in R$, then $r \backslash \varrho \in R$. We also note:
Lemma 2.5.10. $R \subset P$.

Proof: Let $r \in R$. We must find $B \subset M$ such that B is $\Sigma_{1}(M)$ in r and $B \cap H_{\varrho}^{M} \notin M$. Set:

$$
B=\{\langle i, x\rangle \mid \bigvee y y=h(i,\langle x, r\rangle) \wedge\langle i, x\rangle \notin y\}
$$

If $b=B \cap H_{\varrho}^{M} \in M$, then $b=h(i,\langle x, r\rangle)$ for some i. Then $\langle i, x\rangle \in b \leftrightarrow$ $\langle i, x\rangle \notin b$.
Contradiction!
QED (Lemma 2.5.10)
However, R can be empty.

Lemma 2.5.11. There is a function h^{r} uniformly $\Sigma_{1}(M)$ in r such that whenever $r \in R_{M}$, then $M=h^{r \prime \prime} \varrho_{M}$.

Proof: Let $x \in M$. Since $x \in h(\varrho \cup\{r\})$ there is an f which is $\Sigma_{1}(M)$ in r such that $x=f\left(\xi_{1}, \ldots, \xi_{n}\right)$. But ϱ is closed under Gödel pairs, so $x=f^{\prime}\left(\prec \xi_{1}, \ldots, \xi_{n} \succ\right)$, where

$$
x=f^{\prime}(\xi) \leftrightarrow \bigvee \xi_{1}, \ldots, \xi_{n}(\xi=\prec \vec{\xi} \succ \wedge x=f(\vec{\xi}))
$$

f^{\prime} is $\Sigma_{1}(M)$ in r. Hence $x=h(i,\langle\langle\vec{\xi}\rangle, r\rangle)$ for some $i<\omega$. Set

$$
x=h^{r}(\delta) \leftrightarrow \bigvee \xi \bigvee i<\omega(\delta=\langle i, \xi\rangle \wedge x=h(i,\langle\xi, r\rangle))
$$

Then $x=h^{r}(\langle i,\langle\vec{\xi}\rangle\rangle)$.
QED (Lemma 2.5.11)
Lemma 2.5.11 explains why we called T^{p} a code: If $r \in R$, then T^{r} gives complete information about M. Thus the relation $\epsilon^{\prime}=\left\{\langle x, \tau\rangle \mid h^{r}(\nu) \in h^{r}(\tau)\right\}$ is rud in T^{r}, since $\nu \in^{\prime} \tau \leftrightarrow\langle i,\langle\nu, \tau\rangle\rangle \in T^{r}$ for some $i<\omega$. Similarly, if $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$, then $A_{i}^{\prime}=\left\{\nu \mid h^{r}(\nu) \in A_{i}\right\}$ and $B_{j}^{\prime}=\left\{\nu \mid h^{r}(\nu) \in B_{i}\right\}$ are similary rud in T^{r} (as is, indeed, R^{\prime} whenever R is a relation which is $\Sigma_{1}(M)$ in p). Note, too, that if $B \subset H_{\varrho}^{M}$ is $\underline{\Sigma}(M)$, then B is rud in T^{r}. However, if $p \in P^{1} \backslash R^{1}$, then T^{p} does not completely code M.

Definition 2.5.6. Let $p \in\left[\mathrm{On}_{M}\right]^{<\omega}$. Let $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$.

The reduct of M by p is defined to be

$$
M^{p}=:\left\langle J_{\varrho_{M}}^{\vec{A}}, T_{M}^{p}\right\rangle .
$$

Thus M^{p} is an acceptable model which — if $p \in R_{M}$ — incorporates complete information about M.

The downward extension of embeddings lemma says:
Lemma 2.5.12. Let $\pi: N \rightarrow_{\Sigma_{0}} M^{p}$ where N is a J-model and $p \in$ $\left[\mathrm{On}_{M}\right]^{<\omega}$.
(a) There are unique \bar{M}, \bar{p} such that \bar{M} is acceptable, $\bar{p} \in R_{\bar{M}}, N=\bar{M}^{\bar{p}}$.
(b) There is a unique $\tilde{\pi} \supset \pi$ such that $\tilde{\pi}: \bar{M} \rightarrow \Sigma_{0} M$ and $\pi(\bar{p})=p$.
(c) $\tilde{\pi}: \bar{M} \rightarrow \Sigma_{1} M$.

Proof: We first prove the existence claim. We then prove the uniqueness claimed in (a) and (b).

Let e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle, M^{p}=\left\langle J_{\varrho}^{A}, T\right\rangle, N=\left\langle J_{\bar{\varrho}}^{\bar{A}}, \bar{T}\right\rangle$. Set: $\tilde{\varrho}=\sup \pi^{\prime \prime} \bar{\varrho}, \tilde{M}=$ $M^{p} \mid \tilde{\varrho}=\left\langle J_{\tilde{Q}}^{A}, \tilde{T}\right\rangle$ where $\tilde{T}=T \cap J_{\tilde{\varrho}}^{A}$. Set $X=\operatorname{rng}(\pi), Y=h_{M}(X \cup\{p\})$. Then $\tilde{\pi}: N \rightarrow_{\Sigma_{0}} \tilde{M}$ cofinally by $\S 4$.
(1) $Y \cap \tilde{M}=X$

Proof: Let $y \in Y \cap \tilde{M}$. Since X is closed under ordered pairs, we have $y=f(x, p)$ where $x \in X$ and f is $\Sigma_{1}(M)$. Then

$$
\begin{aligned}
y=f(x, p) & \leftrightarrow \models_{M} \varphi_{i}[\langle y, x\rangle, p] \\
& \leftrightarrow\langle i,\langle y, x\rangle\rangle \in \tilde{T} .
\end{aligned}
$$

Since $X \prec_{\Sigma_{1}} \tilde{M}$, there is $y \in X$ such that $\langle i,\langle y, x\rangle\rangle \in \tilde{T}$. Hence $y=f(x, \varrho) \in X$.

QED (1)
Now let $\tilde{\pi}: \bar{M} \AA Y$, where \bar{M} is transitive. Clearly $p \in Y$, so let $\tilde{\pi}(\bar{p})=p$. Then:
(2) $\tilde{\pi}: \bar{M} \rightarrow \Sigma_{1} M, \tilde{\pi} \upharpoonright N=\pi, \tilde{\pi}(\bar{p})=p$.

But then:
(3) $\bar{M}=h_{\bar{M}}(N \cup\{\bar{p}\})$.

Proof: Let $y \in \bar{M}$. Then $\tilde{\pi}(y) \in Y=h_{M}{ }^{\prime \prime}(\omega x(X x\{p\}))$, since X is closed under ordered pairs. Hence $\tilde{\pi}(y)=h_{M}(i,\langle\pi(x), p\rangle)$ for an $x \in \bar{M}$. Hence $y=h_{\bar{M}}(i,\langle x, \bar{p})$.

QED (3)
(4) $\bar{\varrho} \geq \varrho_{\bar{M}}$.

Proof: It suffices to find a $\Sigma_{1}(\bar{M})$ set b such that $b \subset N$ and $b \notin \bar{M}$. Set

$$
\begin{aligned}
b=\{\langle i, x\rangle \in \omega \times N \mid \bigvee y & \left(y=h_{\bar{M}}(i,\langle x, \bar{p}\rangle)\right. \\
& \wedge\langle i, x\rangle \notin y)\}
\end{aligned}
$$

If $b \in \bar{M}$, then $b=h_{\bar{M}}(i,\langle x, \bar{p}\rangle)$ for some $x \in N$. Hence

$$
\langle i, x\rangle \in b \leftrightarrow\langle i, x\rangle \notin b .
$$

Contradiction!
QED (4)
(5) $\bar{T}=\left\{\langle i, x\rangle \in \omega \times N \mid \models_{\bar{M}} \varphi_{i}[i,\langle x, p\rangle]\right\}$.

Proof: $\bar{T} \subset \omega \times N$, since $\tilde{T} \subset \omega \times \tilde{M}$. But for $\langle i, x\rangle \in \omega \times N$ we have:

$$
\begin{aligned}
\langle i, x\rangle \in \bar{T} & \leftrightarrow\langle i, \pi(x)\rangle \in \tilde{T} \\
& \leftrightarrow M \models \varphi_{i}[\langle(x), p\rangle] \\
& \leftrightarrow \bar{M} \models \varphi_{i}[\langle x, p\rangle] \text { by }(2)
\end{aligned}
$$

(6) $\bar{\varrho}=\varrho_{\bar{M}}$.

Proof: By (4) we need only prove $\bar{\varrho} \leq \varrho_{\bar{M}}$. It suffices to show that if $b \subset N$ is $\underline{\Sigma}_{1}(\bar{M})$, then $\left\langle J_{\bar{\varrho}}^{\bar{A}}, b\right\rangle$ is amenable. By $(3) b$ is $\Sigma_{1}(\bar{M})$ in x, \bar{p} where $x \in \bar{N}$.
Hence

$$
\begin{aligned}
& b=\left\{z \mid \bar{M} \models \varphi_{i}[\langle z, x\rangle, \bar{p}]\right\}= \\
& =\{z \mid\langle i, z, x\rangle \in \bar{T}\}
\end{aligned}
$$

Hence b is rud in \bar{T} where $N=\langle J \bar{\varrho}, \bar{T}\rangle$ is amenable.
QED (6)
But then $\bar{M}=h_{\bar{M}}(\bar{\varrho} \cup\{\bar{p}\})$ by (3) and the fact that $h_{J_{\bar{\varrho}}^{\bar{A}}}(\bar{\varrho})=J_{\bar{\varrho}}^{\bar{A}}$. Hence
(7) $\bar{p} \in R_{\bar{M}}$.

By (6) we then conclude:
(8) $N=\bar{M}^{\bar{p}}$.

This proves the existence assertions. We now prove the uniqueness assertion of (a). Let $\hat{M}^{\hat{p}}=N$ where $\hat{p} \in R_{\hat{M}}$.
We claim: $\hat{M}=\bar{M}, \hat{p}=\bar{p}$.
Since the Skolem function is uniformly Σ_{1} there is a $j<\omega$ such that

$$
\begin{aligned}
& h_{\hat{M}}(i,\langle x, \hat{p}\rangle) \in h_{\hat{M}}(i,\langle y, \hat{p}) \leftrightarrow \\
& \quad \leftrightarrow \hat{M} \models \varphi_{j}[\langle x, y\rangle, p] \leftrightarrow\langle j,\langle x, y\rangle\rangle \in \bar{T} \\
& \quad \leftrightarrow h_{\bar{M}}(i,\langle x, \bar{p}\rangle) \in h_{\bar{M}}(i,\langle y, \bar{p}\rangle)
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& h_{\hat{M}}(i,\langle x, \hat{p}\rangle) \in \hat{A} \leftrightarrow h_{\bar{M}}(i,\langle x, \bar{p}\rangle) \in \bar{A} \\
& h_{\hat{M}}(i,\langle x, \hat{p}\rangle) \in \hat{B} \leftrightarrow h_{\bar{M}}(i,\langle x, \bar{p}\rangle) \in \bar{B}
\end{aligned}
$$

where $\hat{M}=\left\langle J_{\hat{\alpha}}^{\hat{A}}, \hat{B}\right\rangle, \bar{M}=\left\langle J_{\bar{\alpha}}^{\bar{A}}, \bar{B}\right\rangle$. Then there is an isomorphism σ : $\hat{M} \underset{\leftrightarrow}{\leftrightarrow} \bar{M}$ defined by $\sigma\left(h_{\hat{M}}(i,\langle x, \hat{p}\rangle) \simeq h_{\bar{M}}(i,\langle x, \bar{p}\rangle)\right.$ for $x \in N$. Clearly $\sigma(\hat{p})=\bar{p}$. Hence $\sigma=\mathrm{id}, \hat{M}, \bar{M}, \hat{p}=\bar{p}$, since \bar{M}, \hat{M} are transitive.
We now prove (b). Let $\hat{\pi} \supset \pi$ such that $\hat{\pi}: \bar{M} \rightarrow_{\Sigma_{0}} M$ and $\hat{\pi}(\bar{p})=p$. If $x \in N$ and $h_{\bar{M}}(i,\langle x, \bar{p}\rangle)$ is defined, it follows that:

$$
\hat{\pi}\left(h_{\bar{M}}(i,\langle x, \bar{p}))=h_{M}(i,\langle\pi(x), p\rangle)=\tilde{\pi}\left(h_{M}(i,\langle x, \bar{p}\rangle)\right)\right.
$$

Hence $\hat{\pi}=\pi$.
QED (Lemma 2.5.12)

If we make the further assumption that $p \in R_{M}$ we get a stronger result:
Lemma 2.5.13. Let $M, N, \bar{M}, \pi, \bar{\pi}, p, \bar{p}$ be as above where $p \in R_{M}$ and π : $N \rightarrow \Sigma_{l} M^{p}$ for an $l<\omega$. Then $\tilde{\pi}: \bar{M} \rightarrow \Sigma_{l+1} M$.

Proof: For $l=0$ it is proven, so let $l \geq 1$ and let it hold at l. Let R be $\Sigma_{l+1}(M)$ if l is even and $\Pi_{l+1}(M)$ if l is odd. Let \bar{R} have the same definition over \bar{M}. It suffices to show:

$$
\bar{R}(\vec{x}) \leftrightarrow R(\tilde{\pi}(\vec{x})) \text { for } x_{1}, \ldots, x_{n} \in \bar{M}
$$

But:

$$
R(\vec{x}) \leftrightarrow Q_{1} y_{1} \in M \ldots Q_{l} y_{l} \in M R^{\prime}(\vec{y}, \vec{x})
$$

and

$$
\bar{R}(\vec{x}) \leftrightarrow Q_{1} y_{1} \in \bar{M} \ldots Q_{l} y_{l} \in \overline{M R}^{\prime}(\vec{y}, \vec{x})
$$

where $Q_{1} \ldots Q_{l}$ is a string of alternating quantifiers, R^{\prime} is $\Sigma_{1}(M)$, and \bar{R}^{\prime} is $\Sigma_{1}(\bar{M})$ by the same definition. Set

$$
\begin{aligned}
& D=:\left\{\langle i, x\rangle \in \omega \times J_{\varrho}^{A} \mid h_{M}(i,\langle x, p\rangle) \text { is defined }\right\} \\
& \bar{D}=:\left\{\langle i, x\rangle \in \omega \times J_{\bar{\varrho}}^{\bar{A}} \mid h_{\bar{M}}(i,\langle x, \bar{p}\rangle) \text { is defined }\right\} .
\end{aligned}
$$

Then D is $\Sigma_{1}(M)$ in p and \bar{D} is $\Sigma_{1}(\bar{M})$ in \bar{p} by the same definition. Then D is rud in T_{M}^{p} and \bar{D} is rud in $T_{\bar{M}}^{\bar{p}}$ by the same definition, since for some $j<\omega$ we have:

$$
\langle i, x\rangle \in D \leftrightarrow\langle j, x\rangle \in T_{M}^{p}, x \in \bar{D} \leftrightarrow\langle j, x\rangle \in T_{\bar{M}}^{\bar{p}} .
$$

Define k on D

$$
k(\langle i, x\rangle)=h_{M}(i,\langle x, p\rangle) ; \bar{k}(\langle i, x\rangle)=h_{\bar{M}}(i,\langle x, \bar{p}\rangle)
$$

Set:

$$
\begin{aligned}
& P(\vec{w}, \vec{z}) \leftrightarrow\left(\vec{w}, \vec{z} \in D \wedge R^{\prime}(k(\vec{w}), k(\vec{z}))\right. \\
& \bar{P}(\vec{w}, \vec{z}) \leftrightarrow\left(\vec{w}, \vec{z} \in \bar{D} \wedge \bar{R}^{\prime}(\bar{k}(\vec{w}), \bar{k}(\vec{z}))\right.
\end{aligned}
$$

Then: as before, P is rud in T_{M}^{p} and \bar{D} is rud in $T_{\bar{M}}^{\bar{p}}$ by the same definition. Now let $x_{i}=k\left(z_{i}\right)$ for $i=1, \ldots, n$. Then $\tilde{\pi}\left(x_{i}\right)=k\left(\pi\left(z_{i}\right)\right)$. But since π is Σ_{l}-preserving, we have:

$$
\begin{aligned}
\bar{R}(\vec{x}) & \leftrightarrow Q_{1} w_{1} \in \bar{D} \ldots Q_{l} w_{l} \in \bar{D} \bar{P}(\vec{w}, \vec{z}) \\
& \leftrightarrow Q_{1} w_{1} \in D \ldots Q_{l} w_{l} \in D P(\vec{w}, \pi(\vec{z})) \\
& \leftrightarrow R(\tilde{\pi}(\vec{x}))
\end{aligned}
$$

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take its reduct etc., yielding a sequence of reducts and nonincreasing projecta $\left\langle\varrho_{M}^{n} \mid n<\omega\right\rangle$. this is the classical method of doing fine structure theory, which was used to analyse the constructible hierarchy, yielding such results as the \square principles and the covering lemma. In this section we expound the basic elements of this classical theory. As we shall see, however, it only works well when our acceptable structures have a property called soundness. In this book we shall often have to deal with unsound structures, and will, therefore, take recourse to a further elaboration of fine structure theory, which is developed in $\S 2.6$.

It is easily seen that:
Lemma 2.5.14. Let $p \in R_{M}$. Let B be $\underline{\Sigma}_{1}(M)$. Then $B \cap J_{\varrho}^{A}$ is rud in parameters over M^{p}.

Proof: Let B be Σ_{1} in r, where $r=h_{M}(i,\langle v, p\rangle)$ and $\nu<\varrho$. Then B is Σ_{1} in ν, p. Let:

$$
B(x) \leftrightarrow M \models \varphi_{i}[\langle x, \nu\rangle, p]
$$

where $\left\langle\varphi_{i} \mid i<\omega\right\rangle$ is our canonical enumeration of Σ_{1} formulae. Then:

$$
x \in B \leftrightarrow\langle i,\langle x, \nu\rangle\rangle \in T^{P}
$$

It follows easily that:
Corollary 2.5.15. Let $p, q \in R_{M}$. Let $D \subset J_{\varrho}^{A}$. Then D is $\underline{\Sigma}_{1}\left(M^{p}\right)$ iff it is $\underline{\Sigma}_{1}\left(M^{q}\right)$.

Assuming that $R_{M} \neq \emptyset$, there is then a uniquely defined second projectum defined by:

Definition 2.5.7. $\varrho_{M}^{2} \simeq: \varrho_{M^{p}}$ for $p \in R_{M}$.

We can then define:

$$
\begin{aligned}
R_{M}^{2}=: & \text { The set of } a \in\left[\mathrm{On}_{M}\right]^{<w} \text { such that } \\
& a \in R_{M} \text { and } a \cap \varrho \in R_{M^{(a \varrho \varrho)}} .
\end{aligned}
$$

If $R_{M}^{2} \neq \emptyset$ we can define the second reduct:

$$
M^{2, a}=:\left(M^{a}\right)^{a \cap \varrho} \text { for } a \in R_{M}^{2} .
$$

But then we can define the third projectum:

$$
\varrho^{3}=\varrho_{M^{2, a}} \text { for } a \in R_{M}^{2}
$$

Carrying this on, we get $R_{M}^{n}, M^{n, a}$ for $a \in R_{M}^{n}$ and ϱ^{n+1}, as long as $R_{M}^{n} \neq \emptyset$.
We shall call M weakly n-sound if $R_{M}^{n} \neq \emptyset$.
The formal definitions are as follows:
Definition 2.5.8. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable.

By induction on n we define:

- The set R_{M}^{n} of very good n-parameters.
- If $R_{M}^{n} \neq \emptyset$, we define the $n+1$ st projectum ϱ_{M}^{n+1}.
- For all $a \in R_{M}^{n}$ the n-th reduct $M^{n, a}$.

We inductively verify:

* If $D \subset J_{\varrho^{n}}^{A}$ and $a, b \in R^{n}$, then D is $\underline{\Sigma}_{1}\left(M^{n, a}\right)$ iff it is $\underline{\Sigma}_{1}\left(M^{n, b}\right)$.

Case $1 n=0$. Then $R^{0}=:\left[\mathrm{On}_{M}\right]^{<\omega}, \varrho^{0}=\mathrm{On}_{M}, M^{0, a}=M$.
Case $2 n=m+1$. If $R^{m}=\emptyset$, then $R^{n}=\emptyset$ and ϱ^{n} is undefined. Now let $R^{m} \neq \emptyset$. Since $\left(^{*}\right)$ holds at m, we can define

- $\varrho^{n}=: \varrho_{M^{m, a}}$ whenever $a \in R^{m}$.
- $R^{n}=$: the set of $a \in[\alpha]^{<\omega}$ such that $a \in R^{m}$ and $a \cap \varrho^{m} \in R_{M^{m, a}}$.
- $M^{n, a}=:\left(M^{m, a}\right)^{a \cap \varrho^{m}}$ for $a \in R^{n}$.
(Note It follows inductively that $a \backslash \varrho^{n} \in R^{n}$ whenever $a \in R^{n}$.)
We now verify $(*)$. It suffices to prove the direction (\rightarrow). We first note that $M^{n, a}$ has the form $\left\langle J_{\varrho n}^{A}, T\right\rangle$, where T is the restriction of a $\underline{\Sigma}_{1}\left(M^{m, a}\right)$ set T^{\prime} to $J_{\varrho n}^{A}$. But then T^{\prime} is $\underline{\Sigma}_{1}\left(M^{m, b}\right)$ by the induction hypothesis. Hence T is rudimentary in parameters over $M^{n, b}=\left(M^{m, b}\right)^{b \cap \varrho^{n}}$ by Lemma 2.5.14.

Hence, if $D \subset J_{\varrho n}^{A}$ is $\underline{\Sigma}_{1}\left(M^{n, a}\right)$, it is also $\underline{\Sigma}_{1}\left(M^{n, b}\right)$.
QED

This concludes the definition and the verification of $\left({ }^{*}\right)$. Note that $R_{M}^{1}=$ $R_{M}, \varrho^{1}=\varrho_{M}^{1}$, and $M^{1, a}=M^{a}$ for $a \in R_{M}$.

We say that M is weakly n-sound iff $R_{M}^{n} \neq \emptyset$. It is weakly sound iff it is weakly n-sound for $n<\omega$. A stronger notion is that of full soundness:

Definition 2.5.9. M is n-sound (or fully n-sound) iff it is weakly n-sound and for all $i<n$ we have: If $a \in R^{i}$, then $P_{M^{i, a}}=R_{M^{i}, a}$.

Thus $R_{M}=P_{M}, R_{M^{1, a}}=P_{M^{1, a}}$ for $a \in P_{M}$ etc. If M is n-sound we write P_{M}^{i} for $R_{M}^{i}(i \leq n)$, since then: $a \in P^{i+1} \leftrightarrow\left(a \not \subset \varrho^{i} \in P^{i} \wedge a \cap \varrho^{i} \in R_{M^{i}, a \cap \varrho^{i}}\right.$ for $i<n$).

There is an alternative, but equivalent, definition of soundness in terms of standard parameters. in order to formulate this we first define:

Definition 2.5.10. Let $a, b \in[\mathrm{On}]^{<\omega}$.

$$
a<_{*} b \leftrightarrow=\bigvee \mu(a \backslash \mu=b \backslash \mu \wedge \mu \in b \backslash a) .
$$

Lemma 2.5.16. $<_{*}$ is a well ordering of $[\mathrm{On}]^{<\omega}$.

Proof: It suffices to show that ever non empty $A \subset[\mathrm{On}]^{<\omega}$ has a unique $<_{*}$-minimal element. Suppose not. We derive a contradiction by defining an infinite descending chain of ordinals $\left\langle\mu_{i} \mid i<\omega\right\rangle$ with the properties:

- $\left\{\mu_{0}, \ldots, \mu_{n}\right\} \leq_{*} b$ for all $b \in A$.
- There is $b \in A$ such that $b \backslash \mu_{n}=\left\{\mu_{0}, \ldots, \mu_{n}\right\}$.
$\emptyset \notin A$, since otherwise \emptyset would be the unique minimal element, so set: $\mu_{0}=\min \{\max (b) \mid b \in A\}$. Given μ_{n} we know that $\left\{\mu_{0}, \ldots, \mu_{n}\right\} \notin A$, since it would otherwise be the $<_{*}$-minimal element. Set:

$$
\mu_{n+1}=\min \left\{\max \left(b \cap \mu_{n}\right) \mid b \in A \cap b \backslash \mu_{n}=\left\{\mu_{0}, \ldots, \mu_{n}\right\}\right\} .
$$

QED (Lemma 2.5.16)
Definition 2.5.11. The first standard parameter p_{M} is defined by:

$$
p_{M}=: \text { The }<_{*} \text {-least element of } P_{M} \text {. }
$$

Lemma 2.5.17. $P_{M}=P_{M}$ iff $p_{M} \in R_{M}$.
Proof: (\rightarrow) is trivial. We prove (\leftarrow). Suppose not. Then there is $r \in P \backslash R$. Hence $p<_{*} r$, where $p=p_{M}$. Hence in M the statement:
(1) $V q<_{*} r r=h(i,\langle\nu, q\rangle)$
holds for some $i<\omega, \nu<p_{M}$. Form M^{r} and let \bar{M}, \bar{r}, π be sucht that $\bar{M}^{\bar{r}}=M^{r}, \bar{\pi} \in R_{\bar{M}}, \pi: \bar{M} \rightarrow_{\Sigma_{1}} M$, and $\pi(\bar{r})=r$. The statement (1) then holds of \bar{r} in \bar{M}.

Let $\bar{q} \in \bar{M}, \bar{r}=h_{\bar{M}}(i, \bar{q})$ where $\bar{q}<_{*} \bar{r}$. Set $q=\pi(\bar{q})$. Then $r=h(i, q)$ in M, where $q<_{*} r$. Hence $q \in P_{M}$. But then $q \in R_{M}$ by the minimality of r. This impossible however, since

$$
q \in \pi^{\prime \prime} \bar{M}=h_{M}\left(\varrho_{M} \cup r\right) \neq M .
$$

Contradiction!
QED (Lemma 2.5.17)
Definition 2.5.12. The n-th standard parameter p_{M}^{n} is defined by induction on n as follows:

Case $1 n=0 . p^{0}=\emptyset$.
Case $2 n=m+1$. If $p^{m} \in R^{m}$

$$
p^{n}=p^{m} \cup p_{M^{m, p^{m}}}
$$

(Note that we always have: $p^{n} \cap p^{n+1}=\emptyset$ by $<_{*}$-minimality.)
If $p^{m} \notin R^{m}$, then p^{n} is undefined. By Lemma 2.5.17 it follows easily that:
Corollary 2.5.18. M is n-sound iff p_{M}^{n} is defined and $p_{M}^{n} \in R_{M}^{n}$.

This is the definition of soundness usually found in the literature.
Note that the sequences of projecta ϱ^{n} will stabilize at some n, since it is monotonly non increasing. If it stabilizes at n, we have $R^{n+h}=R^{n}$ and $P^{n+h}=P^{n}$ for $h<\omega$.

By iterated application of Lemma 2.5.13 we get:
Lemma 2.5.19. Let $a \in R_{M}^{n}$ and let $\bar{\pi}: N \rightarrow_{\Sigma_{l}} M^{n a}$. Then there are \bar{M}, \bar{a} and $\pi \supset \bar{\pi}$ such that $\bar{M}^{n \bar{a}}=M^{n a}, \bar{a} \in R_{\bar{M}}^{n}, \pi: \bar{M} \rightarrow_{\Sigma_{n+l+1}} M$ and $\pi(\bar{a})=a$.

We also have:
Lemma 2.5.20. Let $a \in R_{M}^{n}$. There is an M-definable partial map of ϱ^{n} onto M which is M-definable in the parameter a.

Proof: By induction on n. The case $n=0$ is trivial. Now let $n=m+1$. Let f be a partial map of ϱ^{m} onto M which is definable in $a \backslash \varrho^{m}$. Let $N=M^{m, a \backslash \varrho^{n}}, b=a \cap \varrho^{m}$. Then $N=h_{N}\left(\varrho^{n} \cup\{b\}\right)=h_{N}{ }^{\prime \prime}\left(w \times\left(\varrho^{n} \times\{b\}\right)\right)$. Set:

$$
g(\prec i, \nu \succ) \simeq: h_{N}(i,\langle\nu, b\rangle) \text { for } \nu<\varrho^{n} .
$$

Then $N=g^{\prime \prime} \varrho^{n}$. Hence $M=f g^{\prime \prime} \varrho^{n}$, where $f g$ is M-definable in a. QED
We have now developend the "classical" fine structure theory which was used to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every J_{α} is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable structures which are not sound and can even fail to be weakly 1 -sound. This means that the structure is not coded by any of its reducts. How can we deal with it? It can be claimed that the totality of reducts contains full information about the structure, but this totality is a very unwieldy object. In $\S 2.6$ we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:
We first show:
(A) If J_{α} is acceptable, then it is sound.

Proof: By induction on n we show that J_{α} is n-sound. The case $n=0$ is trivial. Now let $n=m+1$. Let $p=p_{M}^{m}$. Let $q=p_{M^{m, p}}=$ The $<_{*}$-least $q \in P_{M^{m, p}}$.

Claim $q \in R_{M^{m, p}}$.
Suppose not. Let $X=h_{M^{m, p}}\left(\varrho^{n} \cup q\right)$. Let $\bar{\pi}: N \stackrel{\sim}{\longleftrightarrow} X$, where N is transitive. Then $\bar{\pi}: N \rightarrow_{\Sigma_{1}} M^{n p}$ and there are $\bar{M}, \bar{p}, \pi \supset \bar{\pi}$ such that $\bar{M}^{m \bar{p}}=M^{m p}, \bar{p} \in R_{\bar{m}}^{m}, \pi: \bar{M} \rightarrow_{\Sigma_{n}} M$, and $\pi(\bar{p})=p$. Then $\bar{M}=J_{\bar{\alpha}}$ for some $\bar{\alpha} \leq \alpha$ by the condensation lemma for L.
Let A be $\Sigma_{1}\left(M^{m p}\right)$ in q such that $A \cap \varrho_{M}^{n} \notin M^{m, p}$ Then $A \cap \varrho_{M}^{n} \notin M$. Let \bar{A} be $\Sigma_{1}(N)$ in $\bar{q}=\pi^{-1}(q)$ by the same definition. Then $A \cap \varrho^{n}=$ $\bar{A} \cap \varrho^{n}$ is $J_{\bar{\alpha}}$ definable in \bar{q}. Hence $\bar{\alpha}=\alpha, \bar{M}=M$, since otherwise $A \cap \varrho^{n} \in M$. But then $\pi=i d$ and $N=\bar{M}^{m \bar{p}}=M^{m}$. But by definition: $N=h_{M^{m, p}}\left(\varrho^{n} \cup q\right)$. Hence $q \in R_{M^{n p}}$.

QED
By induction on α we then prove:
(B) J_{α} is acceptable.

Proof: The case $\alpha=\omega$ is trivial. The case $\alpha \in \operatorname{Lim}^{*}$ is also trivial. There remains the case $\alpha=\beta+\omega$, where β is a limit ordinal. By the induction hypothesis J_{β} is acceptable, hence sound.
We first verify (a) in the definition of acceptability. Since J_{β} is acceptable, it suffices to show that if $\gamma \leq \beta$ and $a \in J_{\alpha} \backslash J_{\beta}$ with $a \subset \gamma$, then:

Claim $\overline{\bar{\beta}} \leq \gamma$ in J_{α}.
Suppose not. Since $\mathbb{P}\left(J_{\beta}\right) \cap J_{\alpha}=\operatorname{Def}\left(J_{\beta}\right)$, we show that a is $J_{\beta^{-}}$ definable in a parameter r. We may assume w.l.o.g. that $r \in[\beta]^{<\omega}$. We may also assume that a is $\Sigma_{n}\left(J_{\beta}\right)$ in r for sufficiently large n. There is then, no partial map $f \in \operatorname{Def}\left(J_{\beta}\right)$ mapping γ onto β. Hence, by Lemma 2.5 .20 we have $\gamma<\varrho^{n}=\varrho_{J_{\beta}}^{n}$ for all $n<\omega$.
Pick n big enough that a is $\Sigma_{n}\left(J_{\beta}\right)$ in r. Set: $p=p^{n} \cup r$ (where $\left.p^{n}=p_{J_{\beta}}^{n}\right)$. Then $p \in R^{n}$. Let $M=J_{\beta}, N=M^{n p}$. Let $X=$ $h_{N}(\gamma \cup q)$ where $q=p \cap \varrho^{n}$. Let $\bar{\pi}: \bar{N} \stackrel{\sim}{\longleftrightarrow} X$, where \bar{N} is transitive. Then $\bar{\pi}: \bar{N} \rightarrow_{\Sigma_{1}} N$ and hence there are $\bar{M}, \bar{p}, \pi \supset \bar{\pi}$ such that $\bar{M}^{n, \bar{p}}=\bar{N}, \bar{p} \in R_{\bar{M}}^{n}, \pi: \bar{M} \rightarrow_{\Sigma_{n+1}} M, \pi(\bar{p})=p^{n}$. Hence $\bar{M}=J_{\bar{\beta}}$ for $\bar{\beta} \leq \beta$. Moreover, a is $\Sigma_{n}(\bar{M})$ in \bar{p}. Hence $\bar{\beta}=\beta$, since otherwise $a \in \operatorname{Def}\left(J_{\bar{\beta}}\right) \subset J_{\beta}$. But then $\pi=i d, \bar{N}=N=h_{N}(\gamma \cup q)$. Hence $\gamma \geq \varrho_{N}=\varrho_{M}^{n+1}$.
Contradiction!
QED (Claim)

This proves (a). We now prove (b) in the definition of "acceptable". Most of the proof will be a straightforward imitation of the proof of (a). Assume $J_{\alpha} \models \psi[x, \gamma]$, but $J_{\beta} \not \vDash \psi[x, \gamma]$, where $x \in J_{\gamma}, \gamma \leq \beta$ and ψ is Σ_{1}. As before we claim:

Claim $\overline{\bar{\beta}} \leq \gamma$ in J_{α}.

Suppose not. Then $\gamma<\beta$. Let $\psi=\bigvee y \varphi$ where φ is Σ_{0}. Let $J_{\alpha} \models$ $\varphi(y, x, \gamma)$. Then $y=f\left(z, x, \gamma, J_{\beta}\right)$ where f is rud and $z \in J_{\beta}$. But

$$
J_{\alpha} \models \varphi\left[f\left(z, x, \gamma, J_{\beta}\right), x, \beta\right]
$$

reduces to:

$$
J_{\alpha} \models \varphi^{\prime}\left[z, x, \gamma, J_{\beta}\right]
$$

where φ^{\prime} is Σ_{0}. But then

$$
J_{\beta} \cup\left\{J_{\beta}\right\} \models \varphi^{\prime}\left[z, x, \gamma, J_{\beta}\right)
$$

As we have seen in $\S 2.3$, this reduces to:

$$
J_{\beta} \vDash \chi[z, x, \gamma]
$$

where χ is a first order formula. Note that this reduction is uniform. Hence if $\gamma<\nu \leq \beta, z \in J_{\nu}$ and $J_{\nu} \vDash \chi[z, x, \gamma]$, it follows that $J_{\nu+\omega} \models \psi[x, \gamma]$. This means that $J_{\nu} \models \neg \chi^{\prime}[x, \gamma]$ for $\gamma<\nu<\beta$, where $\chi=\chi\left(v_{0}, v_{1}, v_{n}\right)$ and $\chi^{\prime}=\bigvee v_{0} \chi$. We know that $\gamma<\varrho_{J_{\beta}}^{n}$ for all n. Choose n such that χ^{\prime} is Σ_{n}. Let $M=J_{\beta}, N: M^{n, p}$ when $p=p_{N}$. Let $X=h_{N}(\gamma+1 \cup\{x\})$ and let $\bar{\pi}: \bar{N} \stackrel{\sim}{\longleftrightarrow} X$, where \bar{N} is transitive. As before, there are $\bar{M}, \bar{p}, \pi \supset \bar{\pi}$ such that $\bar{M}^{n} \bar{p}=N, \pi: \bar{M} \rightarrow_{\Sigma_{1}} M$, and $\pi(\bar{p})=p$. Let $\bar{M}=J_{\bar{\beta}}$. Then $J_{\bar{\beta}} \models \chi^{\prime}(x, \gamma)$. Hence $\bar{\beta}=\beta$ and $\pi=$ id. Hence $N=h_{N}(\gamma+1 \cup\{x\})$. Hence $\gamma \geq \varrho^{n+1}=\varrho_{N}$.
Contradiction!
QED (Lemma 2.5.21)

$2.6 \Sigma^{*}$-theory

There is an alternative to the Levy hierarchy of relations on an acceptable structure $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ which - at first sight - seems more natural. Σ_{0}, we recall, consists of the relation on M which are Σ_{0} definable in the predicats of $M . \Sigma_{1}$ then consists of relations of the form $\bigvee y R(y, \vec{x})$ where R is Σ_{0}. Call these levels $\Sigma_{0}^{(0)}$ and $\Sigma_{1}^{(0)}$. Our next level in the new hierarchy, call it $\Sigma_{0}^{(1)}$, consists of relations which are " Σ_{0} in $\Sigma_{1}^{(0)}$ " — i.e. $\Sigma_{0}(\langle M, \vec{A}\rangle)$ where A_{1}, \ldots, A_{n} are $\Sigma_{1}^{(0)}$. $\Sigma_{1}^{(1)}$ then consists of relations of the form $\bigvee y R(y, \vec{x})$ where R is $\Sigma_{0}^{(1)}$. $\Sigma_{0}^{(2)}$ then consists of relations which are Σ_{0} in $\Sigma_{1}^{(1)} \ldots$ etc. By a $\underline{\Sigma}_{i}^{(n)}$ relation we of course mean a relation of the form

$$
R(\vec{x}) \leftrightarrow R^{\prime}(\vec{x}, \vec{p})
$$

where $p_{1}, \ldots, p_{m} \in M$ and R^{\prime} is $\Sigma_{i}^{(n)}(m)$. It is clear that there is natural class of $\Sigma_{i}^{(n)}$-formulae such that R is a $\Sigma_{i}^{(n)}$-relation iff it is defined by a $\Sigma_{0}^{(n)}$-formula. Thus e.g. we can define the $\Sigma_{0}^{(1)}$ formula to be the smallest set Σ of formulae such that

- All primitive formulae are in Σ.
- All $\Sigma_{1}^{(0)}$ formulae are in Σ.
- Σ is closed under the sentential operations $\vee, \rightarrow, \leftrightarrow, \neg$.
- If φ is in Σ, then so are $\bigwedge v \in u \varphi, \bigvee v \in u \varphi$ (where $v \neq u$).

By a $\Sigma_{1}^{(1)}$ formula we then mean a formula of the form $\bigvee v \varphi$, where φ is $\Sigma_{0}^{(1)}$.

How does this hierarchy compare with the Levy hierarchy? If no projectum drops, it turns out to be a useful refinement of the Levy hierarchy:
If $\varrho_{M}^{n}=\alpha$, then $\Sigma_{0}^{(n)} \subset \Delta_{n+1}$ and $\Sigma_{1}^{(n)}=\Sigma_{n+1}$. If, however, a projectum drops, it trivializes and becomes useless. Suppose e.g. that $M=J_{\alpha}$ and $\varrho=\varrho_{M}^{1}<\alpha$. Then every M-definable relation becomes $\underline{\Sigma}_{0}^{(1)}(M)$. To see this let $R(\vec{x})$ be defined by the formula $\varphi(\vec{v})$, which we may suppose to be in prenex normal form:

$$
\varphi(\vec{v})=Q_{1} u_{1} \ldots Q_{m} u_{m} \varphi^{\prime}(\vec{v}, \vec{u}),
$$

where φ^{\prime} is quantifier free (hence Σ_{0}). Then:

$$
R(\vec{x}) \leftrightarrow Q_{1} y_{1} \in M \ldots Q_{m} y_{m} \in M R^{\prime}(\vec{x}, \vec{y})
$$

where R^{\prime} is Σ_{0}. By soundness we know that there is a $\underline{\Sigma}_{1}(M)$ partial map f of ϱ onto M. But then:

$$
R(\vec{x}) \leftrightarrow Q_{1} \xi_{\xi} \in \operatorname{dom}(f) \ldots Q_{m} \xi_{m} \in \operatorname{dom}(f) R^{\prime}(\vec{x}, f(\vec{\xi})) .
$$

Since f is $\underline{\Sigma}_{1}$, the relation $R^{\prime}(\vec{x}, f(\vec{\xi}))$ is $\underline{\Sigma}_{1}$. But $\operatorname{dom}(f)$ is $\underline{\Sigma}_{1}$ and $\operatorname{dom}(f) \subset$ ϱ, hence by induction on m :

$$
R(\vec{x}) \leftrightarrow Q_{1} \xi_{1} \in \varrho \ldots Q_{m} \xi_{m} \in \varrho R^{\prime \prime}(\vec{x}, \vec{\xi}),
$$

where $R^{\prime \prime}$ is a sentential combination of $\underline{\Sigma}_{1}$ relations. Hence $R^{\prime \prime}$ is $\underline{\Sigma}_{0}^{(1)}(M)$ and so is R.

The problem is that, in passing from $\Sigma_{1}^{(0)}$ to $\Sigma_{0}^{(1)}$ our variables continued to range over the whole of M, despite the fact that M had grown "soft" with respect to $\underline{\Sigma}_{1}$ sets. Thus we were able to reduce unbounded quantification over M to quantification bounded by ϱ, which lies in the "soft" part of M. in section 2.5 we acknowledged softness by reducing to the part $H=H_{\varrho}^{M}$ which remained "hard" wrt $\underline{\Sigma}_{1}$ sets. We then formed a reduct M^{p} containing just the sets in H. If M is sound, we can choose p such that M^{p} contains complete information about M. In the general case, however, this may not be possible. It can happen that every reduct entails a loss of information. Thus we want to hold on to the original structure M. In passing to $\Sigma_{0}^{(1)}$, however, we want to restrict our variables to H. We resolve this conundrum by introducing new varibles which range only over H. We call these variables of Type 1 , the old ones being of Type 0 . Using $u^{h}, v^{h}(h=0,1)$ as metavariables for variables of Type h, we can then reformulate the definition of $\Sigma_{0}^{(1)}$ formula, replacing the last clause by:

- If φ is in Σ, then so are $\bigwedge v^{i} \in u^{1} \varphi, \bigvee v^{i} \in u^{1} \varphi$ where $i=v, 1$ and $v^{i} \neq u^{1}$.

A $\Sigma_{1}^{(1)}$ formula is then a formula of the form $\bigvee v^{1} \varphi$, where φ is $\Sigma_{0}^{(1)}$. We call $A \subset M$ a $\Sigma_{1}^{(1)}$ set if it is definable in parameters by a $\Sigma_{1}^{(1)}$ formula. The second projectum ϱ^{2} is then the least ϱ such that $\varrho \cap B \notin M$ for some $\underline{\Sigma}_{1}^{(1)}$ set B. We then introduce type 2 variables v^{2}, u^{2}, \ldots ranging over $\left|J_{\varrho^{2}}^{A}\right|\left(\left|J_{\gamma}^{A}\right|\right.$ being the set of elements of the structure J_{γ}^{A}, where e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle$.) Proceeding in this way, we arrive at a many sorted language with variables of type n for each $n<\omega$. The resulting hierarchy of $\Sigma_{h}^{(n)}$ formulae $(h=0,1)$ offers a much finer analysis of M-definabilty than was possible with the Levy hierarchy alone. This analysis is known as Σ^{*} theory. In this section we shall develop Σ^{*} theory systematically and $a b$ ovo.

Before beginning, however, we address a remark to the reader: Most people react negatively on their first encounter with Σ^{*} theory. The introduction of a many sorted language seems awkward and cumbersome. It is especially annoying that the variable domains diminish as the types increase. The author confesses to having felt these doubts himself. After developing $\Sigma^{*}-$ theory and making its first applications, we spent a couple of months trying vainly to redo the proofs without it. The result was messier proofs and a pronounced loss of perspicuity. It has, in fact, been our consistent experience that Σ^{*} theory facilitates the fine structural analysis which lies at the heart of inner model theory. We therefore urge the reader to bear with us.
Definition 2.6.1. Let $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$ be acceptable.

The $\Sigma^{*} M$-language $\mathbb{L}^{*}=\mathbb{L}_{M}^{*}$ has

- a binary predicate $\dot{\epsilon}$
- unary predicates $\dot{A}_{1}, \ldots, \dot{A}_{n}, \dot{B}_{1}, \ldots, \dot{B}_{m}$
- variables $v_{i}^{j}(i, j<\omega)$

Definition 2.6.2. By induction on $n<\omega$ we define sets $\Sigma_{h}^{(n)}(h=0,1)$ of formulae
$\Sigma_{0}^{(n)}=$ the smallest set of formulae such that

- all primitive formulae are in Σ.
- $\Sigma_{0}^{(m)} \cup \Sigma_{1}^{(m)} \subset \Sigma$ for $m<n$.
- Σ is closed under sentential operations $\wedge, \vee, \rightarrow, \leftrightarrow, \neg$.
- If φ is in $\Sigma, j \leq n$, and $v^{j} \neq u^{n}$, then $\bigwedge v^{j} \in u^{n} \varphi, \bigvee v^{j} \in u^{n} \varphi$ are in Σ.

We then set:

$$
\Sigma_{1}^{(n)}=: \text { The set of formulae } \bigvee v^{n} \varphi \text {, where } \varphi \in \Sigma_{0}^{(n)}
$$

We also generalize the last part of this definition by setting:
Definition 2.6.3. Let $n<\omega, 1 \leq h<\omega$. $\Sigma_{h}^{(n)}$ is the set of formulae

$$
\bigvee v_{1}^{n} \bigwedge v_{2}^{n} \ldots Q v_{h}^{n} \varphi
$$

where φ is $\Sigma_{0}^{(n)}$ (and Q is \bigvee if h is odd and \bigwedge if h is even).

We now turn to the interpretation of the formualae in M.
Definition 2.6.4. Let Fml^{n} be the set of formulae in which only variables of type $\leq n$ occur.

By recursion on n we define:

- The n-th projectum $\varrho^{n}=\varrho_{M}^{n}$.
- The n-th variable domain $H^{n}=H_{M}^{n}$.
- The satisfaction relation \models^{n} for formulae in Fml^{n}.
$\neq{ }^{n}$ is defined by interpreting variables of type i as ranging over H^{i} for $i \leq n$. We set: $\varrho^{0}=\alpha, H^{0}=|M|=\left|J_{\alpha}^{\vec{A}}\right|$, when $M=\left\langle J_{\alpha}^{\vec{A}}, \vec{B}\right\rangle$.

Now let ϱ^{n}, H^{n} be given (hence \models^{n} is given). Call a set $D \in H^{n}$ a $\underline{\Sigma}_{1}^{(n)}$ set. if it is definable from parameters by a $\Sigma_{1}^{(n)}$ formula φ :

$$
D x \leftrightarrow M \models^{n} \varphi\left[x, a_{1}, \ldots, a_{p}\right]
$$

where $\varphi=\varphi\left(v^{n}, u^{i_{1}}, \ldots, u^{i_{m}}\right)$ is $\Sigma_{1}^{(n)} . \varrho^{n+1}$ is then the least ϱ such that there is a $\underline{\Sigma}_{1}^{(n)}$ set $D \subset \varrho$ with $D \notin M$. We then set:

$$
H^{n+1}=\left|J_{\varrho}^{\vec{A}}\right|
$$

This then defines \models^{n+1}.
It is obvious that \models^{i} is contained in \models^{j} for $i \leq j$, so we can define the full Σ^{*} satisfaction relation for M by:

$$
\models=\bigcup_{n<\omega} \models^{n} .
$$

Satisfaction is defined in the usual way. We employ v^{i}, u^{i}, ω^{i} etc. as metavariables for variables of type i. We also employ x^{i}, y^{i}, z^{i} etc. as metavariables for elements of H^{i}. We call $v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}}$ a good sequence for the formula φ iff it is a sequence of distinct variables containing all the variables which occur free in φ. If $v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}}$ is good we write:

$$
\models_{M} \varphi\left[v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}} / x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right]
$$

to mean that φ becomes true if $v_{h}^{i_{n}}$ is interpreted by $x_{h}^{i_{n}}(h=1, \ldots, n)$. We shall follow normal usage in suppressing the sequence $v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}}$ writing only:

$$
\models_{M} \varphi\left[x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right] .
$$

(However, it is often important for our understanding to retain the upper indices i_{1}, \ldots, i_{n}.) We often write $\left.\varphi=\varphi\left(v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}}\right)\right)$ to indicate that these are the suppressed variables. φ (together with $\left(v_{1}^{i_{1}}, \ldots, v_{n}^{i_{n}}\right)$ defines a relation:

$$
R\left(x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right) \leftrightarrow \models_{M} \varphi\left[x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right] .
$$

Since we are using a many sorted language, however, we must also employ many sorted relations.

The number of argument places of an ordinary one sorted relation is often called its "arity". In the case of a many sorted relation, however, we must know not only the number of argument places, but also the type of each argument place. We refer to this information as its "arity". Thus the arity of the above relation is not n but $\left\langle i_{1}, \ldots, i_{n}\right\rangle$. An ordinary 1 -sorted relation is usually identified with its field. We shall identify a many sorted relation with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair $\langle | R|, r\rangle$ such that for some n :
(a) $|R| \subset M^{n}$
(b) $r=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ where $r_{i}<\omega$
(c) $R\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \subset H^{\nu_{i}}$ for $i=1, \ldots, n$.
$|R|$ is called the field of R and r is called the arity of R.
In practice we adopt a rough and ready notation, writing $R\left(x_{1}^{i_{1}}, \ldots, x_{n}^{i_{n}}\right)$ to indicate that R is a many sorted relation of arity $\left\langle i_{1}, \ldots, i_{n}\right\rangle$.
(Note Let $\mathbb{L}=\mathbb{L}_{M}$ be the ordinary first order language of M (i.e. it has only variables of type 0). Since $H^{n} \in M$ or $H^{n}=M$ for all $n<\omega$, it follows
that every \mathbb{L}^{*}-definable many sorted relation has a field which is \mathbb{L}-definable in parameters from M.)
(Note If R is a relation of arity $\left\langle i_{1}, \ldots, i_{n}\right\rangle$, then its complement is $\Gamma \backslash R$, where:

$$
\Gamma=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{h} \in H^{i_{n}} \text { for } h=1, \ldots, n\right\}
$$

the arity remaining unchanged.)
Definition 2.6.6. $R\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ is a $\Sigma_{h}^{(n)}(M)$ relation iff it is defined by a $\Sigma_{h}^{(n)}$ formula. R is $\Sigma_{h}^{(n)}(M)$ in the parameters p_{1}, \ldots, p_{r} iff $R(\vec{x}) \leftrightarrow R^{\prime}(\vec{x}, \vec{p})$, where R^{\prime} is $\Sigma_{h}^{(n)}(M) . \quad R$ is a $\underline{\Sigma}_{h}^{(n)}(M)$ relation iff it is $\Sigma_{h}^{(n)}(M)$ in some parameters.

It is easily checked that:

Lemma 2.6.1.

- If $R\left(y^{n}, \vec{x}\right)$ is $\Sigma_{1}^{(n)}$, so is $\bigvee y^{n} R\left(y^{n}, \vec{x}\right)$
- If $R(\vec{x}), P(\vec{x})$ are $\Sigma_{1}^{(n)}$, then so are $R(\vec{x}) \vee P(\vec{x}), R(\vec{x}) \wedge P(\vec{x})$.

Moreover, if $R\left(x_{0}^{i_{0}}, \ldots, x_{m-1}^{i_{m-1}}\right)$ is $\Sigma_{1}^{(n)}$, so is any relation $R^{\prime}\left(y_{0}^{j_{0}}, \ldots, y_{r-1}^{j_{r-1}}\right)$ obtained from R by permutation of arguments, insertion of dummy arguments and fusion of arguments having the same type - i.e.

$$
R^{\prime}\left(y_{0}^{j_{0}}, \ldots, y_{r-1}^{j_{r-1}}\right) \leftrightarrow R\left(y_{\sigma(0)}^{j_{\sigma(0)}}, \ldots y_{\sigma(m-1)}^{j_{\sigma(m-1)}}\right)
$$

where $\sigma: m \rightarrow r$ such that $j_{\sigma(l)}=i_{l}$ for $l<m$.
Using this we get the analogue of Lemma 2.5.6
Lemma 2.6.2. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable. Let $\varrho=\varrho^{n}, H=H^{n}$. Then
(a) If $\varrho \in M$, then ϱ is a cardinal in M. (Hence $H=H_{\varrho}^{M}$)
(b) If D is $\underline{\Sigma}_{1}^{(n)}(M)$ and $D \subset H$, then $\langle H, D\rangle$ is amenable.
(c) If $u \in H$, there is no $\Sigma_{1}^{(n)}(M)$ partial map of u onto H.
(d) $\varrho \in \mathrm{Lm}^{*}$ if $n>0$.

Proof: By induction on n. The induction step is a virtual repetition of the proof of Lemma 2.5.6.

QED (Lemma 2.6.2)

Definition 2.6.7. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ be a many sorted relation. By an n-specialization of R we mean a relation $R^{\prime}\left(x_{1}^{j_{1}}, \ldots, x_{m}^{j_{m}}\right)$ such that

- $j_{l} \geq i_{l}$ for $l=1, \ldots, m$
- $j_{l}=i_{l}$ if $l<n$
- If z_{1}, \ldots, z_{m} are such that $z_{l} \in H^{j_{l}}$ for $l=1, \ldots, m$, then: $R(\vec{z}) \leftrightarrow R^{\prime}(\vec{z})$.

Given a formula φ in which all bound quantifiers are of type $\leq n$, we can easily devise a formula φ^{\prime} which defines a specialization of the relation defined by φ :

Fact Let $\varphi=\varphi\left(v_{1}^{i_{1}}, \ldots, v_{m}^{i_{m}}\right)$ be a formula in which all bound variables are of type $\leq n$. Let $u_{1}^{j_{1}}, \ldots, u_{m}^{j_{m}}$ be a sequence of distinct variables such that $j_{l} \geq i_{l}$ and $j_{l}=i_{l}$ if $i_{l}<n(l=1, \ldots, m)$. Suppose that $\varphi^{\prime}=\varphi^{\prime}(\vec{u})$ is obtained by replacing each free occurence of $v_{l}^{i_{l}}$ by a free occurence of $u_{l}^{j_{l}}$ for $l=1, \ldots, m$. Then for all x_{1}, \ldots, x_{m} such that $x_{l} \in H^{j_{l}}$ for $l=1, \ldots, m$ we have:

$$
\models_{M} \varphi(\vec{v})[\vec{x}] \leftrightarrow \not \models_{M} \varphi^{\prime}(\vec{u})[\vec{x}] .
$$

The proof is by induction on φ. We leave it to the reader. Using this, we get:

Lemma 2.6.3. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ be $\Sigma_{l}^{(n)}$. Then every n-specialization of R is $\Sigma_{l}^{(n)}$.

Proof: $R^{\prime}\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ be an n-spezialization. Let R be defined by $\varphi\left(v_{1}^{i_{1}}, \ldots, v_{m}^{i_{m}}\right)$. Suppose ($u_{1}^{j_{1}}, \ldots, v_{m}^{j_{m}}$) is a sequence of distinct variables which are new i.e. none of them occur free or bound in φ. Let φ^{\prime} be obtained by replacing every free occurence of $v_{l}^{i_{l}}$ by $u_{l}^{j_{l}}(l=1, \ldots, m)$. Then $\varphi^{\prime}\left(u_{1}^{j_{1}}, \ldots, v_{m}^{j_{m}}\right)$ defines R^{\prime} by the above fact.

QED (Lemma 2.6.3)

Corollary 2.6.4. Let R be $\Sigma_{1}^{(n)}$ in the parameter p. Then every n-spezialization of R is $\Sigma_{1}^{(n)}$ in p.

Lemma 2.6.5. Let $R^{\prime}\left(x_{1}^{j_{1}}, \ldots, x_{m}^{j_{m}}\right)$ be $\Sigma_{1}^{(n)}$. Then R^{\prime} is an n-specialization of $a \Sigma_{1}^{(n)}$ relation $R\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ such that $i_{l} \leq n$ for $l=1, \ldots, m$.

Proof: Let R^{\prime} be defined by $\varphi^{\prime}\left(u_{1}^{j_{1}}, \ldots, v_{m}^{j_{m}}\right)$, when φ^{\prime} is $\Sigma_{1}^{(n)}$. Let $v_{1}^{i_{n}}, \ldots, v_{m}^{i_{m}}$ be a sequence of distinct new variables, where $i_{l}=\min \left(n, j_{l}\right)$ for $l=$
$1, \ldots, m$. Replace each free occurence of $u_{l}^{j_{l}}$ by $v_{l}^{i_{l}}$ for $l=1, \ldots, m$ to get $\varphi\left(u_{1}^{i_{1}}, \ldots, v_{m}^{i_{m}}\right)$. Let R be defined by φ. Then R^{\prime} is a specialization of R by the above fact.

QED (Lemma 2.6.5)
Corollary 2.6.6. Let $R^{\prime}\left(x_{1}^{j_{1}}, \ldots, x_{m}^{j_{m}}\right)$ be $\Sigma_{1}^{(n)}$ in p. Then R^{\prime} is a specialization of a relation $R\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}\right)$ which is $\Sigma_{1}^{(n)}$ in p with $i_{l} \leq n$ for $l=1, \ldots, m$.

Every $\Sigma_{1}^{(m)}$ formula can appear as a "primitive" component of a $\Sigma_{0}^{(m+1)}$ formula. We utilize this fact in proving:
Lemma 2.6.7. Let $n=m+1$. $\operatorname{Let} Q_{j}\left(z_{j, 1}^{n}, \ldots, z_{j, p_{j}}^{n}, x_{1}^{i_{1}}, \ldots, x^{i_{p}}\right)$ be $\Sigma_{1}^{(m)}(j=$ $1, \ldots, r)$.
Set: $Q_{j, \vec{x}}=:\left\{\left\langle\vec{z}_{j}^{n}\right\rangle \mid Q_{j}\left(\vec{z}_{j}^{n}, \vec{x}\right)\right\}$.
Set: $H_{\vec{x}}=:\left\langle H^{n}, Q_{1, \vec{x}}, \ldots, Q_{r, \vec{x}}\right\rangle$.
Let $\varphi=\varphi\left(v_{1}, \ldots, v_{q}\right)$ be Σ_{l} in the language of $H_{\vec{x}}$. Then

$$
\left\{\left\langle\vec{x}^{n}, \vec{x}\right\rangle \mid H_{\vec{x}}=\varphi\left[\vec{x}^{n}\right]\right\} \text { is } \Sigma_{l}^{(n)} .
$$

Proof: We first prove it for $l=0$, showing by induction on φ that the conclusion holds for any sequence v_{1}, \ldots, v_{l} of variables which is good for φ.

We describe some typical cases of the induction.

Case 1φ is primitive.
Let e.g. $\varphi=\dot{Q}_{j}\left(v_{h_{1}}, \ldots, v_{h_{p_{i}}}\right)$, where \dot{Q}_{j} is the predicate for $Q_{j \vec{x}}$. Then $H_{\vec{x}} \models \varphi\left[\vec{x}^{n}\right]$ is equivalent to: $Q_{j}\left(x_{h_{1}}^{n}, \ldots, x_{h_{p_{j}}}^{n}, \vec{x}\right)$, which is $\Sigma_{1}^{(m)}$ (hence $\left.\Sigma_{0}^{(n)}\right)$.

QED (Case 1)
Case 2φ arises from a sentential operation.
Let e.g. $\varphi=\left(\varphi_{0} \wedge \varphi_{1}\right)$. Then $H_{\vec{x}} \models \varphi\left[\vec{x}^{n}\right]$ is equivalent to:

$$
H_{\vec{x}} \models \varphi_{0}\left[\vec{x}^{n}\right] \wedge H_{\vec{x}} \models \varphi_{1}\left[\vec{x}^{n}\right]
$$

which, by the induction hypothesis is $\Sigma_{0}^{(n)}$.
Case 3φ arises from a quantification.
Let e.g. $\varphi=\bigwedge w \in v_{i} \Psi$. By bound relettering we can assume w.l.o.g. that w is not among v_{1}, \ldots, v_{p}. We apply the induction hypothesis to $\Psi\left(w, v_{1}, \ldots, v_{p}\right)$. Then $H_{\vec{x}} \models \varphi\left[\vec{x}^{n}\right]$ is equivalent to:

$$
\bigwedge z \in x_{i}^{n} H_{\vec{x}} \models \Psi\left[w, \vec{x}^{n}\right]
$$

which is $\Sigma_{0}^{(n)}$ by the induction hypothesis.
QED (Case 3)

This proves the case $l=0$. We then prove it for $l>0$ by induction on l, essentially repeating the proof in case 3 .

QED (Lemma 2.6.7)
Note It is clear from the proof that the set $\left\{\left\langle\vec{x}^{n}, \vec{x}\right\rangle \mid H_{\vec{x}}=\varphi\left[\vec{x}^{n}\right]\right\}$ is uniformly $\Sigma_{l}^{(n)}$ - i.e. its defining formula χ depends only on φ and the defining formula Ψ_{i} for $Q_{i}(i=1, \ldots, p)$. In fact, the proof implicitly describes an algorithm for the function $\varphi, \Psi_{1}, \ldots, \Psi_{p} \mapsto \chi$.

We can invert the argument of Lemma 2.6.7 to get a weak converse:
Lemma 2.6.8. Let $n=m+1$. Let $R\left(\vec{x}^{n}, x_{1}^{i_{1}}, \ldots, x_{g}^{i_{g}}\right)$ be $\Sigma_{l}^{(n)}$ where $i_{l} \leq m$ for $l=1, \ldots, g$. Then there are $\Sigma_{1}^{(n)}$ relations $Q_{i}\left(\vec{z}_{i}^{n}, \vec{x}\right)(i=1, \ldots, p)$ and a Σ_{l} formula φ such that

$$
R\left(\vec{x}^{n}, \vec{x}\right) \leftrightarrow H_{\vec{x}}=\varphi\left[\vec{x}^{n}\right],
$$

where $H_{\vec{x}}$ is defined as above.
(Note This is weaker, since we now require $i_{l} \leq m$.)
Proof: We first prove it for $l=0$. By induction on χ we prove:
Claim Let χ be $\Sigma_{0}^{(n)}$. Let $\vec{v}^{n}, v_{1}^{i_{1}}, \ldots, v_{q}^{i_{q}}$ be good for χ, where $i_{1}, \ldots, i_{q} \leq m$. Let $\chi\left(\vec{v}^{n}, \vec{v}\right)$ define the relation $R\left(\vec{x}^{n}, \vec{x}\right)$. Then the conclusion of Lemma 2.6.8 holds for this R (with $l=0$).

Case 1χ is $\Sigma_{1}^{(m)}$.
Let $\chi\left(\vec{x}^{n}, \vec{x}\right)$ define $Q\left(\vec{x}^{n}, \vec{x}\right)$. Then $R\left(\vec{x}^{n}, \vec{x}\right) \leftrightarrow H_{\vec{x}} \models \dot{Q} \vec{v}^{n}\left[\vec{x}^{n}\right]$.
QED (Case 1)
Case 2χ arises from a sentential operation.
Let e.g. $\chi=\left(\Psi \wedge \Psi^{\prime}\right)$. Appliyng the induction hypothesis we get $Q_{i}\left(\vec{x}_{i}^{n}, \vec{x}\right)(i=1, \ldots, p)$ and φ such that

$$
M \models \Psi\left[\vec{x}^{n}, \vec{x}\right] \leftrightarrow H_{\vec{x}} \models \varphi\left[\vec{x}^{n}\right]
$$

where $H_{\vec{x}}=\left\langle H^{n}, Q_{1 \vec{x}}, \ldots, Q_{p \vec{x}}\right\rangle$. Similarly we get $Q_{i}^{\prime}\left(\vec{y}_{i}^{n}, \vec{x}\right)\left(i=1, \ldots, q^{\prime}\right)$ and φ^{\prime}

$$
M \models \Psi^{\prime}\left[\vec{x}^{n}, \vec{x}\right] \leftrightarrow H_{\vec{x}}^{\prime} \models \varphi^{\prime}\left[\vec{x}^{n}\right] .
$$

Let \dot{Q}_{i} be the predicate for $Q_{i \vec{x}}$ in the language of $H_{\vec{x}}$. Let \dot{Q}_{i}^{\prime} be the predicate for $Q_{i \vec{x}}^{\prime}$ in the language of $H_{\vec{x}}^{\prime}$. Assume w.l.o.q. that $\dot{Q}_{i} \neq \dot{Q}_{j}^{\prime}$ for all i, j. Putting the two languages together we get a language for

$$
H_{\vec{x}}^{*}=\left\langle H^{n}, \vec{Q}_{\vec{x}}, \vec{Q}_{\vec{x}}^{\prime}\right\rangle .
$$

Clearly:

$$
M \models\left(\chi \wedge \chi^{\prime}\right)\left[\vec{x}^{n}, \vec{x}\right] \leftrightarrow H_{\vec{x}}^{*} \models\left(\varphi \wedge \varphi^{\prime}\right)\left[\vec{x}^{n}\right] .
$$

QED (Case 2)
Case 3χ arises from the application of a bounded quantifier.
Let e.g. $\chi=\bigwedge w^{n} \in v_{j}^{n} \chi^{\prime}$. By bound relettering we can assume w.l.o.g. that w^{n} is not among \vec{v}^{n}. Then $w^{n} \vec{v}^{n}, \vec{v}$ is a good sequence for χ^{\prime} and by the induction hypothesis we have for $\chi^{\prime}=\chi^{\prime}\left(w^{n}, \vec{v}^{n}, \vec{v}\right)$:

$$
M \models \chi^{\prime}\left[z^{n}, \vec{x}^{n}, x\right] \leftrightarrow H_{\vec{x}} \models \varphi\left[z^{n}, \vec{x}^{n}, \vec{x}\right] .
$$

But then:

$$
\begin{aligned}
M \models \chi\left[\vec{x}^{n}, \vec{x}\right] & \leftrightarrow \bigwedge z^{n} \in x_{j}^{n} M \models \chi^{\prime}\left[z^{n}, \vec{x}^{n}, \vec{x}\right] \\
& \leftrightarrow \bigwedge z^{n} \in x_{j}^{n} H_{\vec{x}} \models \varphi\left[z^{n}, \vec{x}^{n}\right] \\
& \leftrightarrow H_{\vec{x}} \models \bigwedge w \in v_{j} \varphi\left[\vec{x}^{n}\right] .
\end{aligned}
$$

QED (Lemma 2.6.8)

Note Our proof again establishes uniformity. In fact, if χ is the $\Sigma_{l}^{(n)}$ definition of R, the proof implicitely describes an algorithm for the function

$$
\chi \mapsto \varphi, \Psi_{1}, \ldots, \Psi_{p}
$$

where Ψ_{i} is a $\Sigma_{1}^{(m)}$ definition of Q_{i}.
Remark Lemma 2.6.7 and 2.6.8 taken together give an inductive definition of " $\Sigma_{l}^{(n)}$ relation" which avoids the many sorted language. It would, however, be difficult to work directly from this definition.

By a function of arity $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ to H^{j} we mean a relation $F\left(y^{j}, x^{i_{1}}, \ldots, x^{i_{n}}\right)$ such that for all $x^{i_{1}}, \ldots, x^{i_{n}}$ there is at most one such y^{j}. If this y exists, we denote it by $F\left(x^{i_{1}}, \ldots, x^{i_{n}}\right)$. Of particular interest are the $\Sigma_{1}^{(i)}$ functions to H^{i}.

Lemma 2.6.9. $R\left(y^{n}, \vec{x}\right)$ be a $\Sigma_{1}^{(n)}$ relation. Then R has a $\Sigma_{1}^{(n)}$ uniformizing function $F(\vec{x})$.

Proof: We can assume w.l.o.g that the arguments of R are all of type $\leq n$. (Otherwise let R be a specialization of R^{\prime}, where the arguments of R^{\prime} are of type $\leq n$. Let F^{\prime} uniformize R^{\prime}. Then the appropriate specialization F of F^{\prime} uniformizes R.)

Case $1 n=0$.
Set:

$$
F(\vec{x}) \simeq: y \text { where }\langle z, y\rangle \text { is }<_{M} \text {-least such that } R^{\prime}(z, y, \vec{x})
$$

By section 2.3 we know that $u_{M}(x)$ is Σ_{1}, where $u_{M}(x)=\left\{y \mid y<_{M} x\right\}$. Thus for sufficient r we have:

$$
\begin{gathered}
y=F(\vec{x}) \leftrightarrow \bigvee z\left(R^{\prime}(z, y, \vec{x}) \wedge\right. \\
\wedge w \in u_{M}(\langle z, y\rangle) \wedge z^{\prime}, y^{\prime} \in C_{r}(w) \\
\left(w=\left\langle z^{\prime}, y^{\prime}\right\rangle \rightarrow \neg R\left(z^{\prime}, y^{\prime}, \vec{x}\right)\right)
\end{gathered}
$$

which is uniformly $\Sigma_{1}(M)$.
Case $2 n>0$. Let $n=m+1$.
Rearranging the arguments of R if necessary, we can assume that R has the form $R\left(y^{n}, \vec{x}^{n}, \vec{x}\right)$, where the \vec{x} are of type $\leq m$. Then there are $Q_{i}\left(\vec{z}_{i}^{n}, \vec{x}^{n}, \vec{x}\right)(i=1, \ldots, p)$ such that Q_{i} is $\Sigma_{1}^{(m)}$ and

$$
R\left(y^{n}, \vec{x}^{n}, \vec{x}\right) \leftrightarrow H_{\vec{x}} \models \varphi\left[y^{n}, \vec{x}^{n}\right],
$$

where φ is Σ_{1} and

$$
H_{\vec{x}}=\left\langle H^{n}, Q_{1 \vec{x}}, \ldots, Q_{n \vec{x}}\right\rangle .
$$

If e.g. $M=\left\langle J^{A}, B\right\rangle$, we can assume w.l.o.g. that $Q_{1}\left(z^{n}, \vec{x}\right) \leftrightarrow A\left(z^{n}\right)$. Then $<_{H \vec{x}}, u_{H \vec{x}}$ are uniformly $\Sigma_{1}\left(H_{\vec{x}}\right)$ and by the argument of Case 1 there is a Σ_{1} formula φ^{\prime} such that F uniformies R where

$$
\begin{equation*}
y=F\left(\vec{x}^{n}, \vec{x}\right) \leftrightarrow H_{\vec{x}} \models \varphi^{\prime}\left[\vec{x}^{n}, \vec{x}\right] . \tag{2.6.9}
\end{equation*}
$$

Note The proof shows that $F(\vec{x})$ is uniformly $\Sigma_{1}^{(n)}$ - i.e. its $\Sigma_{1}^{(n)}$ definition depends only on the $\Sigma_{1}^{(n)}$ definition of $R\left(y^{n}, \vec{x}\right)$, regardless of M.

Note It is clear from the proof that the $\Sigma_{1}^{(n)}$ definition of F is functionally absolute - i.e. it defines a function over every acceptable M of the same type. Thus:
Corollary 2.6.10. Every $\Sigma_{1}^{(n)}$ function $F(\vec{x})$ to H^{n} has a functionally absolute $\Sigma_{1}^{(n)}$ definition.

Note The $\Sigma_{1}^{(n)}$ functions are closed under permutation of arguments, insertion of dummy arguments, and fusion of arguments of same type. Thus if $F\left(x_{1}^{i_{1}}, \ldots x_{n}^{i_{n}}\right)$ is $\Sigma_{1}^{(n)}$, so is $F^{\prime}\left(y_{1}^{j_{1}}, \ldots, y_{m}^{j_{m}}\right)$ where

$$
F^{\prime}\left(y_{1}^{j_{1}}, \ldots, y_{m}^{j_{m}}\right) \simeq F\left(y_{\sigma(1)}^{j_{\sigma(1)}}, \ldots, y_{\sigma(n)}^{j_{\sigma(n)}}\right)
$$

and $\sigma: n \rightarrow m$ such that $j_{\sigma(l)}=i_{l}$ for $l<n$.
If $R\left(x_{1}^{j_{1}}, \ldots, x_{p}^{j_{p}}\right)$ is a relation and $F_{i}(\vec{z})$ is a function to $H^{j_{i}}$ for $i=1, \ldots, n$, we sometimes use the abbreviation:

$$
R(\vec{F}(\vec{z})) \leftrightarrow: \bigvee x_{1}^{j_{1}}, \ldots x_{p}^{j_{p}}\left(\bigwedge_{i=1}^{p} x_{i}^{j_{i}}=F_{i}(\vec{z}) \wedge R(\vec{x})\right)
$$

Note that $R(\vec{F}(\vec{z}))$ is then false if some $F_{i}(\vec{z})$ does not exist. $\Sigma_{1}^{(n)}$ relations are not, in general, closed under substitution of $\Sigma_{1}^{(n)}$ functions, but we do get:

Lemma 2.6.11. Let $R\left(x_{1}^{j_{1}}, \ldots, x_{p}^{j_{p}}\right)$ be $\Sigma_{1}^{(n)}$ such that $j_{i} \leq n$ for $i=1, \ldots, p$. Let $F_{i}(\vec{z})$ be a $\Sigma_{1}^{\left(j_{i}\right)}$ map to $H^{j_{i}}$ for $i=1, \ldots, p$. Then $R(\vec{F}(\vec{z}))$ is $\Sigma_{1}^{(n)}$ (uniformly in the $\Sigma_{1}^{(n)}$ definitions of R, F_{1}, \ldots, F_{p})

Before proving Lemma 2.6 .11 we show that it has the following corollary:
Corollary 2.6.12. Let $R\left(\vec{x}, y_{1}^{j_{1}}, \ldots, y_{p}^{j_{p}}\right)$ be $\Sigma_{1}^{(n)}$ where $j_{i} \leq n$ for $i=$ $1, \ldots, p$. Let $F_{i}(\vec{z})$ be a $\Sigma_{1}^{\left(j_{i}\right)}$ map to $H^{j_{i}}$ for $i=1, \ldots, p$. Then $R(\vec{x}, \vec{F}(\vec{z}))$ is (uniformly) $\Sigma_{1}^{(n)}$.

Proof: We can assume w.l.o.g. that each of \vec{x} has type $\leq n$, since otherwise R is a specialization of an R^{\prime} with this property. But then $R(\vec{x}, \vec{F}(z))$ is a specialization of $R^{\prime}(\vec{x}, \vec{F}(z))$. Let $\vec{x}=x_{1}^{h_{1}}, \ldots, x_{q}^{h_{q}}$ with $h_{i} \leq n$ for $i=$ $1, \ldots, q$. For $i=1, \ldots, p$ set:

$$
F^{\prime}(\vec{x}, \vec{z}) \simeq F(\vec{z}) .
$$

For $i=1, \ldots, q$ set:

$$
G_{h}(\vec{x}, \vec{z}) \simeq x_{i}^{h_{i}} .
$$

By Lemma 2.6.11, $R\left(\vec{G}(\vec{x}, \vec{z}), F^{\prime}(\vec{x}, \vec{z})\right)$ is $\Sigma_{1}^{(n)}$. But

$$
R\left(\vec{G}(\vec{x}, \vec{z}), F^{\prime}(\vec{x}, \vec{z})\right) \leftrightarrow R(\vec{x}, \vec{F}(\vec{z}))
$$

QED (Corollary 2.6.12)
We now prove Lemma 2.6 .11 by induction on n.

Case $1 n=0$.
The conclusion is immediate by the definition of $R(\vec{F}(\vec{z}))$:

$$
R(\vec{F}(\vec{z})) \leftrightarrow \bigvee x_{1}^{0} \ldots x_{p}^{0}\left(\bigwedge_{i=1}^{p} x_{1}^{0}=F_{i}(\vec{z}) \wedge R(\vec{x})\right) .
$$

Case $2 n=m+1$.
Then Lemma 2.6.11 holds at m and it is clear from the above proof that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:

$$
R\left(\vec{x}^{n}, x_{1}^{l_{1}}, \ldots, x_{q}^{l_{q}}\right) \text { where } l_{i} \leq m \text { for } i=1, \ldots, q
$$

We first show:

Claim $R\left(\vec{x}^{n}, \vec{F}(\vec{z})\right)$ is $\Sigma_{1}^{(n)}$.
Proof: Let $Q_{i}\left(\vec{z}_{i}^{n}, \vec{x}\right)$ be $\Sigma_{1}^{(m)}(i=1, \ldots, r)$ such that

$$
R\left(x^{n}, \vec{x}\right) \leftrightarrow H_{\vec{x}} \models \varphi\left[\vec{x}^{n}\right]
$$

where φ is Σ_{1} and:

$$
H_{\vec{x}}=\left\langle H^{n}, Q_{1, \vec{x}}, \ldots, Q_{r, \vec{x}}\right\rangle
$$

Set:

$$
\begin{aligned}
\bar{Q}_{i}\left(\vec{z}_{i}^{n}, \vec{z}\right) & \leftrightarrow: Q_{i}\left(z_{i}^{n}, F(\vec{z})\right) \\
& \leftrightarrow \bigvee \vec{x}\left(\bigwedge_{i=1}^{q} x_{i}^{l_{i}}=F_{i}(\vec{z}) \wedge R(\vec{x})\right) \\
& \bar{H}_{\vec{z}}=:\left\langle H^{n}, \bar{Q}_{1, \vec{z}}, \ldots, \bar{Q}_{r, \vec{z}}\right\rangle
\end{aligned}
$$

If $x_{i}^{l_{i}}=F_{i}(\vec{z})$ for $i=1, \ldots, q$, then $\bar{Q}_{i}\left(\vec{z}_{i}^{n}, \vec{z}\right) \leftrightarrow Q_{i}\left(\vec{z}^{n}, \vec{x}\right)$ and $\bar{H}_{\vec{z}}=$ $H_{\vec{x}}$. Hence:

$$
\begin{aligned}
\bar{H}_{\vec{z}}=\varphi\left[\vec{x}^{n}\right] & \leftrightarrow H_{\vec{x}}=\varphi\left[\vec{x}^{n}\right] \\
& \leftrightarrow R\left(\vec{x}^{n}, \vec{x}\right) \\
& \leftrightarrow R\left(\vec{x}^{n}, \vec{F}(\vec{z})\right)
\end{aligned}
$$

If, on the other hand, $F_{i}(\vec{z})$ does not exist for some i, then $R\left(\vec{x}^{n}, \vec{F}(\vec{z})\right)$ is false. Hence:

$$
\begin{aligned}
R\left(\vec{x}^{n}, \vec{F}(\vec{z})\right) & \leftrightarrow\left(\bigwedge_{i=1}^{q} \bigvee x_{i}^{l_{i}}\left(x_{i}^{l_{i}}=F_{i}(\vec{z})\right)\right. \\
& \left.\wedge \bar{H}_{\vec{z}} \models \varphi\left[\vec{x}^{n}\right]\right)
\end{aligned}
$$

But $\bigwedge_{i=1}^{q} \bigvee x_{i}^{l_{i}}\left(x_{i}^{l_{i}}=F_{i}(\vec{z})\right)$ is $\Sigma_{0}^{(n)}$, so the result follows by applying Lemma 2.6.7 to φ.

QED (Claim)

But then, setting: $R^{\prime}\left(\vec{x}^{n}, \vec{z}\right) \leftrightarrow R\left(\vec{x}^{n}, F(\vec{z})\right)$, we have:

$$
R(\vec{F}(\vec{x})) \leftrightarrow \vee \vec{x}^{n}\left(\bigwedge_{i=1}^{q} x_{i}^{n}=F_{i}(\vec{z}) \wedge R^{\prime}\left(\vec{x}^{n}, \vec{z}\right)\right)
$$

QED (Lemma 2.6.11)
Note that if, in the last claim, we took $R\left(\vec{x}^{n}, x_{1}^{l_{1}}, \ldots, x_{q}^{l_{q}}\right)$ as being $\Sigma_{0}^{(n)}$ instead of $\Sigma_{1}^{(n)}$, then in the proof of the claim we could take φ as being Σ_{0} instead of Σ_{1}. But then the application of Lemma 2.6.7 to $\bar{H}_{\vec{z}} \models \varphi\left[\vec{x}^{n}\right]$ yields a $\Sigma_{0}^{(n)}$ formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let $R\left(\vec{x}^{n}, y_{1}^{l_{1}}, \ldots, y_{q}^{l_{q}}\right)$ be $\Sigma_{0}^{(n)}$ where $l_{1}, \ldots, l_{r}<n$. Let $F_{i}(\vec{z})$ be a $\Sigma_{1}^{\left(l_{i}\right)}$ map to $H^{l_{i}}$ for $i=1, \ldots, r$. Then $R\left(x^{n}, \vec{F}(\vec{z})\right)$ is (uniformly) $\Sigma_{0}^{(n)}$ 。

As corollaries of Lemma 2.6.11 we then get:
Corollary 2.6.14. $\operatorname{Let} G\left(x_{1}^{j_{1}}, \ldots, x_{p}^{j_{p}}\right)$ be a $\Sigma_{1}^{(n)}$ map to H^{n}, where $j_{1}, \ldots, j_{p} \leq$ n. Let $F_{i}(\vec{z})$ be a $\Sigma_{1}^{(n)}$ map to $H^{j_{i}}$ for $i=1, \ldots, p$. Then $H(\vec{z}) \simeq G(\vec{F}(\vec{z}))$ is uniformly $\Sigma_{1}^{(n)}$.

Proof:

$$
y=H(\vec{z}) \leftrightarrow \bigvee \vec{x}\left(\bigwedge_{i=1}^{p} x_{i}^{j_{i}}=F_{i}(\vec{z}) \wedge y=G(\vec{x})\right)
$$

QED (Corollary 2.6.14)
Corollary 2.6.15. Let $R\left(x_{1}^{j_{1}}, \ldots, x_{p}^{j_{p}}\right)$ be $\Sigma_{1}^{(n)}$ where $j_{i} \leq n$ for $i=1, \ldots, p$. There is a $\Sigma_{1}^{(n)}$ relation $R^{\prime}\left(z_{1}^{0}, \ldots, z_{p}^{0}\right)$ with the same field

Proof: Set:

$$
R^{\prime}(\vec{z}) \leftrightarrow: \bigvee \vec{x}\left(\bigwedge_{i=1}^{p} x_{i}^{j_{i}}=z_{i}^{0} \wedge R(\vec{x})\right)
$$

QED (Corollary 2.6.15)
Thus in theory we can always get by with relations that have only arguments of type 0 . (Let one make too much of this, however, we remark that the defining formula of R^{\prime} will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type $\leq n$, then the property of being $\Sigma_{1}^{(n)}$ depends only on the field of R. Let us define:

Definition 2.6.8. $R^{\prime}\left(z_{1}^{j_{1}}, \ldots, z_{r}^{j_{r}}\right)$ is a reindexing of the relation $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ iff both relations have the same field i.e.

$$
R^{\prime}(\vec{y}) \leftrightarrow R(\vec{y}) \text { for } y_{1}, \ldots, y_{r} \in M
$$

Then:
Corollary 2.6.16. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{1}^{(n)}$ where $i_{1}, \ldots, i_{r} \leq n$. Let $R^{\prime}\left(z_{1}^{j_{1}}, \ldots, z_{r}^{j_{r}}\right)$ be a reindexing of R, where $j_{1}, \ldots, j_{r} \leq n$. Then R^{\prime} is $\Sigma_{1}^{(n)}$.

Proof:

$$
\begin{aligned}
\left.R^{\prime} \vec{z}\right) & \leftrightarrow R\left(F_{1}\left(z_{1}\right), \ldots, F_{r}\left(z_{r}\right)\right) \\
& \leftrightarrow \vee \vec{x}\left(\bigvee_{l=1}^{r} x_{l}^{i_{l}}=z_{l}^{j_{l}} \wedge R(\vec{x})\right)
\end{aligned}
$$

where

$$
x^{i_{l}}=F_{l}\left(z^{j_{l}}\right) \leftrightarrow: x^{i_{l}}=z^{j_{l}} .
$$

QED (Corollary 2.6.16)
We now consider the relationship between Σ^{*} theory and the theory developed in $\S 2.5 . \Sigma_{1}^{(0)}$ is of course the same as Σ_{1} and ϱ_{1} is the same as the Σ_{1} projectum ϱ which we defined in $\S 2.5 .2$. In $\S 2.5 .2$ we also defined the set P of good parameters and the set R of very good parameters. We then define the reduct M of M for any $\in\left[\mathrm{On}_{M}\right]^{<\omega}$. We now generalize these notions to $\Sigma_{1}^{(n)}$. We have already defined the $\Sigma_{1}^{(n)}$ projectum ϱ^{n}. In analogy with the above we now define the sets P^{n}, R^{n} of $\Sigma_{1}^{(n)}$ good parameters. We also define the $\Sigma_{1}^{(n)}$ reduct $M^{n p}$ of M by $\left.p \in\left[\mathrm{On}_{M}\right]^{<\omega}\right]$.

Under the special assumption of soundness, there will turn out to be the same as the concepts defined in §2.5.3.

Definition 2.6.9. Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ be acceptable. We define sets $M_{x^{n-1}, \ldots, x^{0}}^{n}$ and predicates $T^{n}\left(x^{n}, \ldots, x^{0}\right)$ as follows:

$$
\begin{aligned}
& M^{0}=: M, T^{0}=: B \text { (i.e. } M_{\vec{x}}^{n}=M \text { for } n=0 \text {) } \\
& M_{\vec{x}}^{n+1}=:\left\langle J_{\varrho^{n+1}}^{A}, T_{\vec{x}}^{n+1}\right\rangle \text { for } \vec{x}=x^{n}, \ldots, x^{0} \\
& T^{n+1}\left(x^{n+1}, \vec{x}\right) \leftrightarrow \bigvee z^{n+1} \bigvee i<\omega\left(x^{n+1}=\left\langle i, z^{n+1}\right\rangle\right. \\
& \left.\quad \wedge M_{x^{n-1}, \ldots, x^{0}}^{n} \models \varphi_{i}\left[z^{n+1}, x^{n}\right]\right)
\end{aligned}
$$

(where $\left\langle\varphi_{i}\right| i\langle\omega\rangle$ is our fixed canonical enumeration of Σ_{1} formulae.)
(Then $\left.T^{n+1}\left(\left\langle i, x^{n+1}\right\rangle, x^{n}, \ldots, x^{0}\right) \leftrightarrow M_{x^{n-1}, \ldots, x^{0}}^{n} \models \varphi_{i}\left[x^{n+1}, x^{n}\right]\right)$.
Clearly T^{n+1} is uniformly $\Sigma_{1}^{(n)}(M)$.

Lemma 2.6.17.

(a) T^{n+1} is $\Sigma_{1}^{(n)}$
(b) Let φ be Σ_{j}. Then $\left\{\left\langle\vec{x}^{n+1}, \vec{x}\right\rangle \mid M_{\vec{x}}^{n+1} \models \varphi\left[\vec{x}^{n+1}\right]\right\}$ is $\Sigma_{j}^{(n+1)}$.

Proof: We first note that $M_{\vec{x}}^{n+1}$ can be written as $H_{\vec{x}}=\left\langle H^{n+1}, A_{\vec{x}}^{n+1}, T_{\vec{x}}^{n+1}\right\rangle$, where $A^{n+1}\left(x^{n+1}, \vec{x}\right) \leftrightarrow: A\left(x^{n+1}\right)$. Hence by Lemma 2.6.7:
(1) If (a) holds at n, so does (b). But (a) then follows by induction on n :

Case $1 n=0$ is trivial since $\Vdash_{N}^{\Sigma_{1}}$ is $\Sigma_{1}(N)$ for all rud closed N.
Case $2 n=m+1$. Then $T^{(n+1)}$ is $\Sigma_{1}^{(n)}$ by (1) applied to m.
QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.
Lemma 2.6.18. (a) Let $R\left(x^{n+1}, \ldots, x^{0}\right)$ be $\Sigma_{1}^{(n)}$. Then there is $i<\omega$ such that

$$
R\left(x^{n+1}, \vec{x}\right) \leftrightarrow T^{n+1}\left(\left\langle i, x^{n+1}\right\rangle, \vec{x}\right) .
$$

(b) Let $R\left(\vec{x}^{n+1}, \ldots, x^{0}\right)$ be $\Sigma_{1}^{(n+1)}$. Then there is a Σ_{1} formula φ such that

$$
R\left(\vec{x}^{n+1}, \vec{x}\right) \leftrightarrow M_{\vec{x}}^{n+1} \models \varphi\left[\vec{x}^{n+1}\right] .
$$

Proof:

(1) Let (a) hold at n. Then so does (b).

Proof: We know that

$$
R\left(\vec{x}^{n+1}, \vec{x}\right) \leftrightarrow \bigvee z^{n+1} P\left(z^{n+1}, x^{n+1}, \vec{x}\right)
$$

for a $\Sigma_{0}^{(n+1)}$ formula P. Hence it suffices to show:

Claim Let $P\left(\vec{x}^{n+1}, \vec{x}\right)$ be $\Sigma_{0}^{(n+1)}$. Then there is a Σ_{1} formula φ such that

$$
P\left(\vec{x}^{n+1}, \vec{x}\right) \leftrightarrow M_{\vec{x}}^{n+1} \models \varphi\left[\vec{x}^{n+1}\right] .
$$

Proof: We know that there are $Q_{i}\left(\vec{z}_{i}^{n+1}, \vec{x}\right)(i=1, \ldots, p)$ such that Q_{i} is $\Sigma_{1}^{(n)}$ and
(2) $P\left(\vec{x}^{n+1}, \vec{x}\right) \leftrightarrow H_{\vec{x}}^{n+1} \models \Psi\left[\vec{x}^{n+1}\right]$ where Ψ is Σ_{0} and

$$
H_{\vec{x}}^{n}=\left\langle H^{n+1}, \vec{Q}_{\vec{x}}\right\rangle
$$

Applying (a) to the relation:

$$
\bigvee u^{n+1}\left(u^{n+1}=\left\langle\vec{z}_{i}^{n+1}\right\rangle \wedge Q_{i}\left(\vec{z}_{i}^{n+1}, \vec{x}\right)\right)
$$

we see that for each i there is $j_{i}<\omega$ such that

$$
Q_{i}\left(\vec{z}_{i}^{n+1}, \vec{x}\right) \leftrightarrow\left\langle j_{i},\left\langle\vec{z}^{n+1}\right\rangle\right\rangle \in T_{v e c x}^{n+1}
$$

Thus Q_{i}, \vec{x} is uniformly rud in $T_{\vec{x}}^{n+1}$ for $i=1, \ldots, p . P_{\vec{x}}$ is the restriction of a relation rud in $Q_{i, \vec{x}}(i=1, \ldots, p)$ to H^{n+1}, by (2). By $\S 2$ Corollary 2.2 .8 it follows that $P_{\vec{x}}$ is the restriction of a relation rud in $T_{\vec{x}}^{n+1}$ to H^{n+1} uniformly. Since $M_{\vec{x}}^{n+1}=\left\langle J_{\varrho n+1}^{A}, T_{\vec{x}}^{n+1}\right\rangle$ is rud closed, it follows by $\S 2$ Corollary 2.2 .8 that:

$$
P\left(\vec{x}^{n+1}, \vec{x}\right) \leftrightarrow M_{\vec{x}}^{n+1} \models \varphi\left[\vec{x}^{n+1}\right]
$$

for a Σ_{1} formula φ.
QED (1)

Given (1) we can now prove (a) by induction on n.

Case $1 n=0$.
Since $\Sigma_{1}=\Sigma_{1}^{(0)}$, there is φ_{i} such that

$$
\begin{aligned}
R\left(x^{1}, x^{0}\right) & \leftrightarrow M \models \varphi_{i}\left[x^{1}, x^{0}\right] \\
& \leftrightarrow T^{1}\left(\left\langle i, x^{1}\right\rangle, x^{0}\right)
\end{aligned}
$$

Case $2 n=m+1$.
Let $R\left(x^{n+1}, \ldots, x^{0}\right)$ be $\Sigma_{1}^{(n)}$. By the induction hypothesis and (1) we know that (b) holds at n. Hence:

$$
\begin{aligned}
& R\left(x^{n+1}, x^{m+1}, x^{m}, \ldots, x^{0}\right) \leftrightarrow \\
& \leftrightarrow M_{x^{m}, \ldots, x^{0}}^{n} \models \varphi_{i}\left[x^{n+1}, x^{m+1}\right]
\end{aligned}
$$

for some i. But then

$$
R\left(x^{n+1}, \ldots, x^{0}\right) \leftrightarrow T^{n+1}\left(\left\langle i, x^{n+1}\right\rangle, x^{m+1}, \ldots, x^{0}\right)
$$

QED (Lemma 2.6.18)

Note The reductions in (a) and (b) are both uniform. We have in fact implicitly defined algorithms which in case (a) takes us from the $\Sigma_{1}^{(n)}$ definition of R to the integer i, and in case (b) takes us from the $\Sigma_{1}^{(n+1)}$ definition of R to the Σ_{1} formula φ.

We now generalize the definition of reduct given in $\S 2.5 .2$ as follows:

Definition 2.6.10. Let $a \in\left[\mathrm{On}_{M}\right]^{<\omega} . M^{0, a}=: M ; M^{n+1, a}=: M_{a^{(0)}, \ldots, a^{(n)}}^{n+1}$ where $a^{(i)}=a \cap \varrho_{M}^{i}$.

Thus $M^{n+1, a}=\left\langle J_{\varrho^{n+1}}^{A}, T^{n+1, a}\right\rangle$ where $T^{n+1, a}=: T_{a^{(0)}, \ldots, a^{(n)}}^{n+1, a}$.
Thus by Lemma 2.6.18
Corollary 2.6.19. Set $a^{(i)}=a \cap \varrho^{i}$ for $a \in\left[\mathrm{On}_{M}\right]^{<\omega}$.
(a) If $D \subset H^{n+1}$ is $\Sigma_{1}^{(n)}$ in $a^{(0)}, \ldots, a^{(n)}$, there is (uniformly) an $i<\omega$ such that

$$
D\left(x^{n+1}\right) \leftrightarrow\left\langle i, x^{n+1}\right\rangle \in T^{n+1, a}
$$

(b) If $D\left(\vec{x}^{n+1}\right)$ is $\Sigma_{1}^{(n+1)}$ in $a^{(0)}, \ldots, a^{(n)}$ there is (uniformly) a Σ_{1} formula φ such that $D\left(\vec{x}^{n+1}\right) \leftrightarrow M^{n+1, a} \models \varphi\left[\vec{x}^{n+1}\right]$.
(Note Being $\Sigma_{1}^{(n)}$ in a is the same as being $\Sigma_{1}^{(n)}$ in $a^{(0)}, \ldots, a^{(n)}$, but I do not see how this is uniformly so. To see that a $\Sigma_{1}^{(n)}$ relation R in $a^{(0)}, \ldots, a^{(n)}$ is $\Sigma_{1}^{(n)}$ in a we note that for each n there is k such that $y=a \cap \varrho^{n} \leftrightarrow \bigvee f(f$ is the monotone enumeration of a and $y=f^{\prime \prime} k$), which is Σ_{1} in a. However, k cannot be inferred from the $\Sigma_{1}^{(n)}$ definition of R, so the reduction is not uniform.)

We can generalize the good parameter sets P, R of $\S 2.5 .2$ as follows:
Definition 2.6.11. $P_{M}^{0}=:[\mathrm{On}]^{<\omega}$.
$P_{M}^{n+1}=$: the set of $a \in P_{M}^{n}$ such that there is D which is $\Sigma_{1}^{(n)}(M)$ in a with $D \cap H_{M}^{n} \notin M$.
(Thus we obviously have $P^{1}=P$.)
Similarly:
Definition 2.6.12. $R_{M}^{0}=: P_{M}^{0}$.
$R_{M}^{n+1}=$: The set of $a \in R_{M}^{n}$ such that

$$
M^{n, a}=h_{M^{n, a}}\left(\varrho^{n+1} \cup\left(a \cap \varrho^{n}\right)\right)
$$

Comparing these definitions with those in $\S 2.5 .6$ it is apparent that R_{M}^{n} has the same meaning and that, whenever $a \in R_{M}^{n}$, then $M^{n, a}$ is the same structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:

Lemma 2.6.20. $a \in P^{n} \leftrightarrow T^{n a} \notin M$.

We also note the following fact:
Lemma 2.6.21. Let $a \in R^{n}$. Let D be $\underline{\Sigma}_{1}^{(n)}$. Then D is $\Sigma_{1}^{(n)}$ in parameters from $\varrho^{n+1} \cup\left\{a^{(0)}, \ldots, a^{(n)}\right\}$, where $a^{(i)}=: a \cap \varrho^{i}$. (Hence D is $\Sigma_{1}^{(n)}(M)$ in parameters from $\varrho^{n+1} \cup\{a\}$.)

Proof: We use induction on n. Let it hold below n. Then:

$$
D(\vec{x}) \leftrightarrow D^{\prime}\left(\vec{x} ; a^{(0)}, \ldots, a^{(n-1)}, \vec{\xi}\right)
$$

where $\xi_{1}, \ldots, \xi_{r}<\varrho^{n}$. (If $n=0$ the sequence $a^{(0)}, \ldots, a^{(n-1)}$ is vacuous and $\varrho^{n}=\mathrm{On}_{M}$.)

Let $\xi_{i}=h_{M^{n+1}}\left(j_{i},\left\langle\mu_{i}, a^{(n)}\right\rangle\right)$, where $\mu_{1}, \ldots, \mu_{r}<\varrho^{n+1}$. The functions:

$$
F_{i}(x) \simeq h_{M^{n a}}\left(j_{i},\left\langle x, a^{(n)}\right\rangle\right)
$$

are $\Sigma_{1}^{(n)}$ to H^{n} in the parameters $a^{(0)}, \ldots, a^{(n)}$. But $D(\vec{x})$ then has the form:

$$
D^{\prime}\left(\vec{x}, a^{(0)}, \ldots, a^{(n-1)}, F_{1}\left(\mu_{1}\right), \ldots, F_{r}\left(\mu_{r}\right)\right)
$$

which is $\Sigma_{1}^{(n)}$ in $a^{(0)}, \ldots, a^{(n)}, \mu_{1}, \ldots, \mu_{k}$ by Corollary 2.6.12.
QED (Lemma 2.6.21)
Definition 2.6.13. π is a $\Sigma_{h}^{(n)}$ preserving map of \bar{M} to M (in symbols $\left.\pi: \bar{M} \rightarrow_{\Sigma_{h}^{(n)}} M\right)$ iff the following hold:

- \bar{M}, M are acceptable structures of the same type.
- $\pi^{\prime \prime} H_{\bar{M}}^{i} \subset H_{M}^{i}$ for $i \leq n$.
- Let $\varphi=\varphi\left(v_{1}^{j_{1}}, \ldots, v_{m}^{j_{m}}\right)$ be a $\Sigma_{h}^{(n)}$ formula with a good sequence \vec{v} of variables such that $j_{1}, \ldots, j_{m} \leq n$. Let $x_{i} \in H \frac{j_{i}}{M}$ for $i=1, \ldots, m$. Then:

$$
\bar{M} \models \varphi[\vec{x}] \leftrightarrow M \models \varphi[\pi(\vec{x})] .
$$

π is then a structure preserving injection. If it is $\Sigma_{h}^{(n)}$-preserving, it is $\Sigma_{1}^{(m)}$-preserving for $m<n$ and $\Sigma_{i}^{(n)}$-preserving for $i<h$. If $h \geq 1$ then $\pi^{-1 \prime \prime} H_{M}^{n} \subset H_{M}^{n}$, as can be seen using:

$$
x \in H_{M}^{n} \leftrightarrow M \models \bigvee u^{n} u^{n}=v^{0}[x] .
$$

We say that π is strictly $\Sigma_{h}^{(n)}$ preserving (in symbols $\pi: \bar{M} \rightarrow_{\Sigma_{h}^{(n)}} M$ strictly) iff it is $\Sigma_{h}^{(n)}$ preserving and $\pi^{-1 \prime} H_{M}^{n} \subset H_{M}^{n}$. (Only if $h=0$ can the embedding fail to be strict.)

We say that π is Σ^{*} preserving $\left(\pi: \bar{M} \rightarrow_{\Sigma^{*}} M\right)$ iff it is $\Sigma_{1}^{(n)}$ preserving for all $n<\omega$. We call $\pi \Sigma_{\omega}^{(n)}$ preserving iff it is $\Sigma_{h}^{(n)}$ preserving for all $h<\omega$.

Good functions

Let $n<\omega$. Consider the class \mathbb{F} of all $\Sigma_{1}^{(n)}$ functions $F\left(x^{i_{1}}, \ldots, x^{i_{m}}\right)$ to H^{j}, where $j, i_{1}, \ldots, i_{m} \leq n$. This class is not necessarily closed under composition. If, however, \mathbb{G}^{0} is the class of $\Sigma_{1}^{(j)}$ functions $G\left(z^{i_{1}}, \ldots, z^{i_{m}}\right)$ to H^{j} where $j, i_{1}, \ldots, i_{m} \leq n$, then $\mathbb{G}^{0} \subset \mathbb{F}$ and, as we have seen, elements of \mathbb{G}^{0} can be composed into elements of \mathbb{F} - i.e. if $F\left(z^{i_{1}}, \ldots, z^{i_{m}}\right)$ is in \mathbb{F} and $G_{l}(\vec{x})$ is in \mathbb{G}^{0} for $l=1, \ldots, m$, then $F(\vec{G}(\vec{x}))$ lies in \mathbb{F}. The class \mathbb{G} of good $\Sigma_{1}^{(n)}$ functions is the result of closing \mathbb{G}^{0} under composition. The elements of \mathbb{G} are all $\Sigma_{1}^{(n)}$ functions and \mathbb{G} is closed under composition. The precise definition is:
Definition 2.6.14. Fix acceptable M. We define sets $\mathbb{G}^{k}=\mathbb{G}_{n}^{k}$ of $\Sigma_{1}^{(n)}$ functions by:
$\mathbb{G}^{0}=$ The set of partial $\Sigma_{1}^{(i)}$ maps $F\left(x_{1}^{j_{1}}, \ldots, x_{m}^{j_{m}}\right)$ to H^{i}, where $i \leq n$ and $j_{1}, \ldots, j_{m} \leq n$.
$\mathbb{G}^{k+1}=$ The set of $H(\vec{x}) \simeq G(\vec{F}(\vec{x}))$, such that $G\left(y^{j_{1}}, \ldots, y_{m}^{j_{m}}\right)$ is in G^{k} and $F_{l} \in \mathbb{G}^{0}$ is a map to j_{l} for $l=1, \ldots, m$.

It follows easily that $\mathbb{G}^{k} \subset \mathbb{G}_{k+1}^{k}\left(\right.$ since $G(\vec{y}) \simeq G(\vec{h}(\vec{y}))$ where $h\left(y_{1}^{j_{1}}, \ldots, y_{m}^{j_{m}}\right)=$ $y_{i}^{j_{i}}$ for $\left.i=1, \ldots, m\right) . \quad \mathbb{G}=\mathbb{G}_{n}=: \bigcup_{k} \mathbb{G}^{k}$ is then the set of all good $\Sigma_{1}^{(n)}$ functions $\mathbb{G}^{*}=\bigcup_{n} \mathbb{G}_{n}$ is the set of all good Σ^{*} functions. All good $\Sigma_{1}^{(n)}$ functions have a functionally absolute $\Sigma_{1}^{(n)}$ definition. Moreover, the good $\Sigma_{1}^{(n)}$ functions are closed under permutation of arguments, insertion of dummy arguments, and fusion of arguments of same type (i.e. if $F\left(x_{0}^{i_{1}}, \ldots, x_{m-1}^{j_{p}}\right)$ is good, then so is $F^{\prime}(\vec{y}) \simeq F\left(y_{\sigma(1)}^{j_{\sigma(1)}}, \ldots, y_{\sigma(m)}^{j_{\sigma(m)}}\right)$ where $\sigma: m \rightarrow p$ such that $j_{\sigma(l)}=i_{l}$ for $l<m$.

To see this, one proves by a simple induction on k that:
Lemma 2.6.22. Each \mathbb{G}_{n}^{k} has the above properties.

The proof is quite straightforward. We then get:
Lemma 2.6.23. The good $\Sigma_{1}^{(n)}$ functions are closed under composition: Let $G\left(y_{1}^{j_{1}}, \ldots, y_{m}^{j_{m}}\right)$ be good and let $F_{l}(\vec{x})$ be a good function to $H^{j_{l}}$ for $l=\ldots, m$. Then the function $G(\vec{F}(\vec{x}))$ is good.

Proof: By induction in $k<\omega$ we prove:

Claim The above holds for $F_{l} \in \mathbb{G}^{k}(l=1, \ldots, m)$.
Case $1 k=0$.
This is trivial by the definition of "good function".
Case $2 k=h+1$.
Let:

$$
F_{l}(\vec{x}) \simeq H_{l}\left(F_{l, 1}(\vec{x}), \ldots, F_{l, p_{l}}(\vec{x})\right)
$$

for $l=1, \ldots, m$, where $H_{l}\left(z_{l, 1}, \ldots, z_{l, p_{l}}\right)$ is in \mathbb{G}^{h} and $F_{l, i} \in G^{0}$ is a map to $H^{j_{l, i}}$ for $l=1, \ldots, m, i=1, \ldots, p_{l}$.

Let $\left\langle\left\langle l_{\xi}, i_{\xi}\right\rangle \mid \xi=1, \ldots, p\right\rangle$ enumerate

$$
\left\{\langle l, i\rangle \mid l=1, \ldots, m ; i=1, \ldots, p_{l}\right\} .
$$

Define $\sigma_{l}:\left\{1, \ldots, p_{l}\right\} \rightarrow\{1, \ldots, p\}$ by:

$$
\sigma_{l}(i)=\text { that } \xi \text { such that }\langle l, i\rangle=\left\langle l_{\xi}, i_{\xi}\right\rangle .
$$

Set:

$$
H_{l}^{\prime}\left(z_{1}, \ldots, z_{p}\right) \simeq H_{l}\left(z_{\sigma_{l}(1)}, \ldots, z_{\sigma_{l}\left(p_{l}\right)}\right)
$$

for $l=1, \ldots, m . F_{\xi}^{\prime}=F_{l_{\xi}, i_{\xi}}$ for $\xi=1, \ldots, p$.
Clearly we have:

$$
F_{l}(\vec{x})=H_{l}^{\prime}\left(F_{1}^{\prime}(\vec{x}), \ldots, F_{p}^{\prime}(\vec{x})\right)
$$

where $H_{l}^{\prime} \in \mathbb{G}^{h}$ for $l=1, \ldots, m$. Set:

$$
G^{\prime}\left(z_{1}, \ldots, z_{p} \mid \simeq G\left(H_{1}(\vec{z}), \ldots, H_{m}(\vec{z})\right)\right.
$$

Then G^{\prime} is a good $\Sigma_{1}^{(n)}$ function by the induction hypothesis. But:

$$
G(\vec{F}(\vec{x})) \simeq G^{\prime}\left(F_{1}^{\prime}(\vec{x}), \ldots, F_{p}^{\prime}(\vec{x})\right)
$$

The conclusion then follows by Case 1 , since $F_{i}^{\prime} \in \mathbb{G}^{0}$ for $i=1, \ldots, p$.
QED (Lemma 2.6.23)

An entirely similar proof yields:
Lemma 2.6.24. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{1}^{(n)}$ where $i_{1}, \ldots, i_{r} \leq n$. Let $F_{l}(\vec{z})$ be a good $\Sigma_{1}^{(n)}$ map to $H^{i^{l}}(L=1, \ldots, m)$. Then $R(\vec{F}(\vec{z}))$ is $\Sigma_{1}^{(n)}$.

Recall that $R(\vec{F}(\vec{z}))$ means:

$$
\left.\bigvee y_{1}, \ldots, y_{r}\left(\bigwedge_{l=1}^{r} y_{l}=F(\vec{z}) \wedge R(\vec{y})\right) .\right)
$$

Applying Corollary 2.6.13 we also get:
Lemma 2.6.25. Let $n=m+1$. Let $R\left(\vec{x}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$ where $i_{1}, \ldots, i_{r} \leq m$. Let $F_{l}(\vec{z})$ be a good $\Sigma_{1}^{(n)}$ map to $H^{i_{l}}$ for $l=1, \ldots, r$. Then $R\left(\vec{x}^{n}, \vec{F}(\vec{z})\right)$ is $\Sigma_{0}^{(n)}$.

By a reindexing of a function $G\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ we mean any function G^{\prime} which is a reindexing of G as a relation. (In other words G, G^{\prime} have the same field, i.e.

$$
\left.G(\vec{x}) \simeq G^{\prime}(\vec{x}) \text { for all } x_{1}, \ldots, x_{r} \in M .\right)
$$

Then:
Corollary 2.6.26. Let $G\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be a good $\Sigma_{1}^{(m)}$ map to H^{i}. Let $G^{\prime}\left(y_{1}^{j_{1}}, \ldots, y_{r}^{j_{r}}\right)$ be a map to H^{j}, where $j, j_{1}, \ldots, j_{r} \leq n$. If G^{\prime} is a reindexing of G, then G^{\prime} is a good $\Sigma_{1}^{(m)}$ function.

Proof: $G^{\prime}(y) \simeq F\left(G\left(F_{1}\left(y_{1}^{j_{1}}\right), \ldots, F\left(y_{r}^{j_{r}}\right)\right)\right)$ where F is defined by $x^{i}=y^{i}$ and F_{l} is defined by $x_{l}^{i_{l}}=y_{l}^{j_{l}}$. (Then e.g.

$$
F(y)=\left\{\begin{array}{l}
y \text { if } y \in H_{M}^{\min \{i, j\}}, \\
\text { undefined if not. }
\end{array}\right.
$$

where F is a map to i with arity j.)
But $F, F_{1} \ldots, F_{r}$ are $\Sigma_{1}^{(n)}$ good.
QED (Corollary 2.6.26)
The statement made earlier that every good $\Sigma_{1}^{(n)}$ function has a functionally absolute $\Sigma_{1}^{(n)}$ definition can be improved. We define:

Definition 2.6.15. φ is a good $\Sigma_{1}^{(n)}$ definition iff φ is a $\Sigma_{1}^{(n)}$ formula which defines a good $\Sigma_{1}^{(n)}$ function over any acceptable M of the given type.

Lemma 2.6.27. Every good $\Sigma_{1}^{(n)}$ function has a good $\Sigma_{1}^{(n)}$ definition.

Proof: By induction on k we show that it is true for all elements of \mathbb{G}^{k}. If $F \in \mathbb{G}^{0}$, then F is a $\Sigma_{1}^{(i)} \operatorname{map}$ to H^{i} for an $i \leq n$. Hence any functionally absolute $\Sigma_{1}^{(i)}$ definition will do. Now let $F \in \mathbb{G}^{k+1}$. Then $F(\vec{x}) \simeq$ $G\left(H_{1}(\vec{x}), \ldots, H_{p}(\vec{x})\right)$ where $G \in \mathbb{G}^{k}$ and $H_{i} \in \mathbb{G}^{0}$ for $i=1, \ldots, p$. Then G has a good definition φ and every H_{i} has a good definition Ψ_{i}. By the uniformity expressed in Corollary 2.6 .14 there is a $\Sigma_{1}^{(n)}$ formula χ such that, given any acceptable M of the given type, if φ defines G^{\prime} and Ψ_{i} defines $H_{i}^{\prime}(i=1, \ldots, p)$, then χ defines $F^{\prime}(\vec{x}) \simeq G^{\prime}\left(\vec{H}^{\prime}(\vec{x})\right)$. Thus χ is a good $\Sigma_{1}^{(n)}$ definition of F.

QED (Lemma 2.6.27)
Definition 2.6.16. Let $a \in\left[\mathrm{On}_{M}\right]^{<\omega}$. We define partial maps h_{a} from $\omega \times H^{n}$ to H^{n} by:

$$
h_{a}^{n}(i, x) \simeq: h_{M^{n, a}}\left(i,\left\langle x, a^{(n)}\right\rangle\right) .
$$

Then ${\underset{\sim}{a}}_{a}^{n}$ is uniformly $\Sigma_{1}^{(n)}$ in $a^{(n)}, \ldots, a^{(0)}$ by Corollary ??. We then define maps \tilde{h}_{a}^{n} from $\omega \times H^{n}$ to H^{0} by:

$$
\begin{aligned}
& \tilde{h}_{a}^{0}(i, x) \simeq h_{a}^{o}(i, x) \\
& \tilde{h}_{a}^{n+1}(i, x) \simeq \tilde{h}_{a}^{n}\left((i)_{0}, h_{a}^{n+1}\left((i)_{1}, x\right)\right) .
\end{aligned}
$$

Then \tilde{h}_{a}^{n} is a good $\Sigma_{1}^{(n)}$ function uniformly in $a^{(n)}, \ldots, a^{(0)}$.
Clearly, if $a \in R^{n+1}$, then

$$
h_{a}^{n \prime \prime}\left(\omega \times \varrho^{n+1}\right)=H^{n}
$$

Hence:
Lemma 2.6.28. If $a \in R^{n+1}$, then $\tilde{h}_{a}^{n \prime \prime}\left(\omega \times \varrho^{n+1}\right)=M$.
Corollary 2.6.29. If $R^{n} \neq \emptyset$, then $\underline{\Sigma}_{l} \subset \underline{\Sigma}_{l}^{(n)}$ for $l \geq 1$.

Proof: Trivial for $n=0$, since $\Sigma_{l}^{(0)}=\Sigma_{l}$. Now let $n=m+1$. Set: $D=H^{n} \cap \operatorname{dom}\left(h_{a}^{n}\right)$, where $a \in R^{n}$. Then D is $\underline{\Sigma}_{1}^{(n)}$ by Lemma 2.6.24, since:

$$
\begin{aligned}
x^{n} \in D & \leftrightarrow h_{a}^{n}\left(x^{n}\right)=h_{a}^{n}\left(x^{n}\right) \\
& \leftrightarrow \bigvee z^{0}\left(z^{0}=h_{a}^{n}\left(x^{n}\right) \wedge z^{0}=z^{0}\right)
\end{aligned}
$$

Let $R(\vec{x})$ be $\Sigma_{l}(M)$. Let

$$
R(\vec{x}) \leftrightarrow Q_{1} z_{1} \ldots Q z_{l} P(\vec{z}, \vec{x})
$$

where P is Σ_{0}. Set:

$$
P^{\prime}\left(\vec{u}^{n}, \vec{x}\right) \leftrightarrow: P\left(\vec{h}^{n}\left(\vec{u}^{n}\right), \vec{x}\right)
$$

Then P^{\prime} is $\Sigma_{1}^{(n)}$ in a. But for $u_{1}^{n}, \ldots, u_{l}^{n} \in D, \neg P^{\prime}\left(\vec{u}^{n}, \vec{x}\right)$ can also be written as a $\Sigma_{1}^{(n)}$ formula. Hence

$$
R(\vec{x}) \leftrightarrow Q u_{1}^{n} \in D \ldots Q u_{l}^{n} \in D P^{\prime}\left(\vec{u}^{n}, \vec{x}\right)
$$

is $\Sigma_{l}^{(n)}$ in a.
QED (Corollary 2.6.29)
We have seen that every $\underline{\Sigma}_{\omega}^{(n)}$ relation is $\underline{\Sigma}_{\omega}$. Hence:
Corollary 2.6.30. Let $R^{n} \neq \emptyset$. Then $\underline{\Sigma}_{\omega}^{(n)}=\underline{\Sigma}_{\omega}$.
An obvious corollary of Lemma 2.6.28 is:
Corollary 2.6.31. Let $a \in R_{M}^{n}$. Then every element of M has the form $F\left(\xi, a^{(0)}, \ldots, a^{(n)}\right)$ where F is a good $\Sigma_{1}^{(n)}$ function and $\xi<\varrho^{n+1}$.

Using this we now prove a downward extension of embeddings lemma which strengthens and generalizes Lemma 2.5.12
Lemma 2.6.32. Let $n=m+1$. Let $a \in\left[\mathrm{On}_{M}\right]^{<\omega}$ and let $N=M^{n a}$. Let $\bar{\pi}: \bar{N} \rightarrow_{\Sigma_{j}} N$, where \bar{N} is a J-model. Then:
(a) There are unique \bar{M}, \bar{a} such that $\bar{a} \in R_{\bar{M}}^{n}$ and $\bar{M}^{n \bar{a}}=\bar{N}$.
(b) There is a unique $\pi \supset \bar{\pi}$ such that $\pi: \bar{M} \rightarrow_{\Sigma_{0}^{(m)}} M$ strictly and $\pi(\bar{a})=a$.
(c) $\pi: \bar{M} \rightarrow_{\Sigma_{j}^{(n)}} M$.

Proof: We first prove existence, then uniqueness. The existence assertion in (a) follows by:

Claim 1 There are $\bar{M}, \bar{a}, \hat{\pi} \supset \bar{\pi}$ such that $\bar{M}^{n a}=\bar{N}, a \in R_{\bar{M}}^{n}$,
$\hat{\pi}: \bar{M} \rightarrow \Sigma_{1} M, \hat{\pi}(\bar{a})=a$.
Proof: We proceed by induction on m. For $m=0$ this immediate by Lemma 2.5.12. Now let $m=h+1$. We first apply Lemma 2.5.12 to $M^{m a}$. It is clear from our definition that $\varrho_{M^{m, a}} \geq \varrho_{M}^{n}$. Set $N^{\prime}=$ $\left(M^{m, a}\right)^{a} \varrho_{M}^{m}$. Then $N^{\prime}=\left\langle J_{\varrho^{\prime}}^{A}, T^{\prime}\right\rangle$, where $\varrho^{\prime}=\varrho_{M^{m a}}$. But it is clear from our definition that $T^{n a}=T^{\prime} \cap J_{\varrho_{M}^{n}}^{A}$. Hence:
(1) $\bar{\pi}: \bar{N} \rightarrow_{\Sigma_{0}} N^{\prime}$.

By Lemma 2.5.12 there are then $\tilde{M}, \tilde{a}, \tilde{\pi} \supset \bar{\pi}$ such that $\tilde{M}^{\tilde{a}}=N^{\prime}$, $\tilde{a} \in R_{\tilde{M}}, \tilde{\pi}: \tilde{M} \rightarrow_{\Sigma_{1}} M^{m, a}$ and $\tilde{\pi}(\tilde{a})=a \cap \varrho_{M}^{m}=a^{(m)}$.
(Note: Throughout this proof we use the notation:

$$
\left.a^{(i)}=: a \cap \varrho^{i} \text { for } i=0, \ldots, m .\right)
$$

By the induction hypothesis there are then $\bar{M}, \bar{a}, \hat{\pi} \supset \tilde{\pi}$ such that $\bar{M}^{m \bar{a}}=\tilde{M}, \hat{\pi}: \bar{M} \rightarrow_{\Sigma_{1}} M$, and $\hat{\pi}(\bar{a})=a$.
We observe that:
(2) $\tilde{a}=\bar{a} \cap \varrho \frac{m}{M}$.

Proof:

(С) Let $\tilde{\varrho}=: \varrho \frac{m}{M}=$ On $\cap \tilde{M}$. Then $\tilde{a} \subset \tilde{\varrho}$. But $\hat{\pi}(\tilde{a})=\tilde{\pi}(\tilde{a})=$ $a \cap \varrho_{M}^{m} \subset a=\hat{\pi}(\bar{a})$. Hence $\tilde{a} \subset a$.
$(\supset) \hat{\pi}(\bar{a} \cap \tilde{\varrho})=\hat{\pi}^{\prime \prime}(\bar{a} \cap \tilde{\varrho}) \subset \varrho_{M}^{m} \cap a=\hat{\pi}(\tilde{a})$, since $\hat{\pi}^{\prime \prime} \tilde{\varrho} \subset \varrho_{M}^{m}$. Hence $\bar{a} \cap \tilde{\varrho}=\tilde{a}$.

QED (2)
Since $\tilde{a} \in R_{\bar{M}}^{m \bar{a}}$ we conclude that $a \in R_{\bar{M}}^{n}$ and $\bar{N}=\left(M^{m \bar{a}}\right)^{a \cap \tilde{\varrho}}=$ $\bar{M}^{n, \bar{a}}$.

QED (Claim 1)
We now turn to the existence assertion in (b).
Claim 2 Let $\bar{M}^{\bar{a}}=N$ and $\bar{a} \in R_{\bar{M}}^{n}$. There is $\pi \supset \bar{\pi}$ sucht that $\pi: \bar{M} \rightarrow_{\Sigma_{1}^{(m)}}$ M and $\pi(\bar{a})=a$.
Proof: Let $x_{1}, \ldots, x_{n} \in \bar{M}$ with $x_{i}=\bar{F}_{i}\left(z_{i}\right)(i=1, \ldots, r)$, where \bar{F}_{i} is a $\Sigma_{1}^{(m)}(\bar{M})$ good function in the parameters $\bar{a}^{(0)}, \ldots, \bar{a}^{(n)}$ and $z_{i} \in \bar{N}$. Let F_{i} have the same $\Sigma_{1}^{(m)}(M)$-good definition in $a^{(0)}, \ldots, a^{(m)}$. Let $\bar{R}\left(u_{1}, \ldots, u_{r}\right)$ be a $\Sigma_{1}^{(n)}(\bar{M})$ relation and let R be $\Sigma_{1}^{(n)}(M)$ by the same definition.
Then $\bar{R}\left(\bar{F}_{1}\left(z_{1}\right), \ldots, \bar{F}_{r}\left(z_{r}\right)\right)$ is $\Sigma_{1}^{(m)}(\bar{M})$ in $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$ and $R\left(F_{1}\left(z_{1}\right), \ldots, F_{r}\left(z_{r}\right)\right)$ is $\Sigma_{1}^{(m)}(M)$ in $a^{(0)}, \ldots, a^{(m)}$ by the same definition. Hence there is $i<\omega$ such that

$$
\begin{aligned}
& \bar{R}(\bar{F}(\vec{z}) \leftrightarrow\langle i,\langle\vec{z}\rangle\rangle \in \bar{T} \\
& R(F(\vec{z})) \leftrightarrow\langle i,\langle\vec{z}\rangle\rangle \in T
\end{aligned}
$$

where $\bar{N}=\left\langle J_{\bar{\varrho}}^{\bar{A}}, \bar{T}\right\rangle, N=\left\langle J_{\varrho}^{A}, T\right\rangle$. Thus $\bar{R}(\bar{F}(\vec{z}))$ is rud in \bar{N} and $R(F(\vec{z}))$ is rud in N by the same rud definition. But $\bar{\pi}: \bar{N} \rightarrow_{\Sigma_{0}} N$.
Hence:

$$
\bar{R}\left(\bar{F}_{1}\left(z_{i}\right), \ldots, \bar{F}_{r}\left(z_{r}\right)\right) \leftrightarrow R\left(F_{1}\left(\bar{\pi}\left(z_{1}\right)\right), \ldots, F_{r}\left(\bar{\pi}\left(z_{r}\right)\right)\right) .
$$

Thus there is $\pi: \bar{M} \rightarrow_{\Sigma_{1}^{(n)}} M$ defined by $\pi(\bar{F}(\xi))=: F(\bar{\pi}(\xi))$ whenever $\xi \in \mathrm{On} \cap \bar{N}, \bar{F}$ is $\Sigma_{1}^{(m)}(\bar{M})-$ good in $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$ and F is $\Sigma_{1}^{(m)}(M)-$ good in $a^{(0)}, \ldots, a^{(m)}$ by the same definition. But then

$$
\pi(z)=\pi(\operatorname{id}(z))=\bar{\pi}(z) \text { for } z \in \bar{N}
$$

Hence $\pi \supset \bar{\pi}$. But clearly

$$
\begin{aligned}
\pi(\bar{a}) & =\pi\left(\bar{a}^{(0)} \cup \ldots \cup \bar{a}^{(m)}\right) \\
& =a^{(0)} \cup \ldots \cup a^{(m)}=a
\end{aligned}
$$

QED (Claim 2)
We now verify (c):
Claim 3 Let \bar{M}, \bar{a}, π be as in Claim 2. Then $\pi: \bar{M} \rightarrow_{\Sigma_{j}^{(n)}} M$.
Proof: We first note that π, being $\Sigma_{1}^{(n)}$-preserving, is strictly so i.e. $\varrho_{\bar{M}}^{i}=\pi^{-1 \prime \prime} \varrho_{M}^{i}$ for $i=0, \ldots, m$. It follows easily that:

$$
\pi\left(\bar{a}^{(i)}\right)=\pi^{\prime \prime} \bar{a}^{(i)}=a^{(i)} \text { for } i=0, \ldots, m
$$

We now proceed the cases.
Case $1 j=0$.
It suffices to show that if φ is $\Sigma_{1}^{(n)}$ and $x_{1}, \ldots, x_{r} \in \bar{N}$, then

$$
\bar{M} \models \varphi\left[x_{1}, \ldots, x_{r}\right] \rightarrow M \models \varphi\left[\pi\left(x_{1}\right), \ldots, \pi\left(x_{r}\right)\right] .
$$

Let $x_{1}, \ldots, x_{r} \in \bar{M}$. Then $x_{i}=\bar{F}_{i}\left(z_{i}\right)(i=1, \ldots, r)$ where $z_{i} \in \bar{N}$ and \bar{F}_{i} is $\Sigma_{1}^{(m)}(\bar{M})-\operatorname{good}$ in $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$. Let F_{i} be $\Sigma_{1}^{(m)}(M)-$ good in $a^{(0)}, \ldots, a^{(m)}$ by the same good definition.
By Corollary 2.6.19, we know that $\bar{M} \models \varphi\left[\bar{F}_{1}\left(z_{1}\right), \ldots, \bar{F}_{r}\left(z_{r}\right)\right]$ is equivalent to

$$
\bar{N} \models \Psi\left[z_{1}, \ldots, z_{r}\right]
$$

for a certain Σ_{1} formula Ψ. The same reduction on the M side shows that $M \models \varphi\left[F_{1}\left(z_{1}\right), \ldots, F_{r}\left(z_{r}\right)\right]$ is equivalent to: $N \neq$ $\Psi\left[z_{1}, \ldots, z_{r}\right]$ for $z_{1}, \ldots, z_{r} \in N$, where Ψ is the same formula.
Since π is Σ_{0}-preserving we then get:

$$
\begin{aligned}
\bar{M} \models \varphi[\vec{x}] & \leftrightarrow \bar{M} \models \varphi[\bar{F}(\vec{z})] \\
& \leftrightarrow \bar{N} \models \Psi[\vec{z}] \\
& \rightarrow N \models \Psi[\pi(\vec{z})] \\
& \leftrightarrow M \models \varphi[F(\pi(\vec{z}))] \\
& \leftrightarrow M \models \varphi[\pi(\vec{x})]
\end{aligned}
$$

QED (Case 1)
Case $2 j>0$.
This is entirely similar. Let φ be $\Sigma_{j}^{(n)}$. By Corollary 2.6.19 it
follows easily that there is a Σ_{j} formula Ψ such that: $\bar{M} \models$ $\varphi\left[\bar{F}_{1}\left(z_{1}\right), \ldots, \bar{F}_{r}\left(z_{r}\right)\right]$ is equivalent to:

$$
\bar{N} \models \Psi\left[z_{1}, \ldots, z_{r}\right] .
$$

Since the corresponding reduction holds on the M-side, we get

$$
\bar{M} \models \varphi[\vec{x}] \leftrightarrow M \models \varphi[\pi(\vec{x})]
$$

since $\pi\left(x_{i}\right)=\pi\left(\bar{F}_{i}\left(z_{i}\right)\right)=F_{i}\left(\bar{\pi}\left(z_{i}\right)\right)$.
QED (Claim 3)

This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.
Proof: Let \hat{M}, \hat{a} be such that $\hat{M}^{n, \hat{a}}=\bar{N}$ and $\hat{a} \in R_{\hat{M}}^{N}$.
Claim $\hat{M}=\bar{M}, \hat{a}=\bar{a}$.
Proof: By a virtual repetition of the proof in Claim 2 there is a $\pi: \hat{M} \rightarrow_{\Sigma_{1}^{(m)}} \bar{M}$ defined by:
(3) $\pi(\hat{F}(z))=\bar{F}(z)$ whenever $z \in \bar{N}, \hat{F}$ is a $\operatorname{good} \Sigma_{1}^{(m)}(\hat{M})$ function in $\hat{a}^{(0)}, \ldots, \hat{a}^{(m)}$ and \bar{F} is the $\Sigma_{1}^{(m)}(\bar{M})$ function in $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$ with the same good definition.

But π is then onto. Hence π is an isomorphism of \hat{M} with \bar{M}. Since \hat{M}, \bar{M} are transitive, we conclude that $\bar{M}=\hat{M}, \bar{a}=\hat{a}$.

QED (Claim 4)
Finally we prove the uniqueness assertion of (b):

Claim 5 Let $\pi^{\prime}: \bar{M} \rightarrow_{\Sigma_{0}^{(m)}} M$ strictly, such that $\pi^{\prime}(\bar{a})=a$. Then $\pi^{\prime}=\pi$.
Proof: By strictness we can again conclude that $\pi^{\prime}\left(\bar{a}^{(i)}\right)=a^{(i)}$ for $i=0, \ldots, m$. Let $x \in \bar{M}, x=\bar{F}(z)$, where $z \in \bar{N}$ and \bar{F} is a $\Sigma_{1}^{(m)}(\bar{M})$ good function in the parameters $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$. Let F be $\Sigma_{1}^{(m)}(M)$ in $a^{(0)}, \ldots, a^{(m)}$ by the same good definition. The statement: $x=\bar{F}(z)$ is $\Sigma_{2}^{(m)}(\bar{M})$ in $\bar{a}^{(0)}, \ldots, \bar{a}^{(m)}$. Since π^{\prime} is $\Sigma_{0}^{(m)}$-preserving, the corresponding statement must hold in M - i.e. $\pi^{\prime}(x)=F(\bar{\pi}(z))=\pi(x)$.

2.7 Liftups

2.7.1 The Σ_{0} liftup

A concept which, under a variety of names, is frequently used in set theory is the liftup (or as we shall call it here, the Σ_{0} liftup). We can define it as follows:

Definition 2.7.1. Let M be a J-model. Let $\tau>\omega$ be a cardinal in M. Let $H=H_{\tau}^{M} \in M$ and let $\pi: H \rightarrow_{\Sigma_{0}} H^{\prime}$ cofinally. We say that $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is a Σ_{0} liftup of $\langle M, \pi\rangle$ iff M^{\prime} is transitive and:
(a) $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow_{\Sigma_{0}} M^{\prime}$
(b) Every element of M^{\prime} has the form $\pi^{\prime}(f)(x)$ for an $x \in H^{\prime}$ and an $f \in \Gamma^{0}$, where $\Gamma^{0}=\Gamma^{0}(\tau, M)$ is the set of functions $f \in M$ such that $\operatorname{dom}(f) \in H$.
(Note The condition of being a J-model can be relaxed considerably, but that is uninteresting for our purposes.)

Until further notice we shall use the word 'liftup' to mean ' Σ_{0} liftup'.
If $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is a liftup of $\langle M, \pi\rangle$ it follows easily that:
Lemma 2.7.1. $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$ cofinally.

Proof: Let $y \in M^{\prime}, y=\pi^{\prime}(f)(x)$ where $x \in H^{\prime}$ and $f \in \Gamma^{0}$, then $y \in$ $\pi^{\prime}(\operatorname{rng}(f))$.

QED (Lemma 2.7.1)
Lemma 2.7.2. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the only liftup of $\langle M, \pi\rangle$.

Proof: Suppose not. Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be another liftup. Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Then

$$
\begin{aligned}
& M^{\prime} \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{n}\right)\left(x_{n}\right)\right] \leftrightarrow \\
& \left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(\{\langle\vec{z}\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\}) \leftrightarrow \\
& M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{n}\right)\left(x_{n}\right)\right] .
\end{aligned}
$$

Hence there is an isomorphism σ of M^{\prime} onto M^{*} defined by:

$$
\begin{aligned}
& \sigma\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(x) \\
& \text { for } f \in \Gamma^{0}, x \in \pi(\operatorname{dom}(f)) .
\end{aligned}
$$

But M^{\prime}, M^{*} are transitive. Hence $\sigma=\mathrm{id}, M^{\prime}=M^{*}, \pi^{\prime}=\pi^{*}$.
QED (Lemma 2.7.2)
(Note $M \models \varphi[\vec{f}(\vec{z})]$ means the same as

$$
\bigvee y_{1} \ldots y_{n}\left(\bigwedge_{i=1}^{n} y_{i}=f_{i}\left(z_{i}\right) \wedge M \models \varphi[\vec{y}]\right)
$$

Hence if $e=\{\langle\vec{z}\rangle|M| \varphi[\vec{f}(\vec{z})]\}$, then $e \subset \underset{i=1}{\times} \operatorname{dom}\left(f_{i}\right) \in H$. Hence $e \in M$ by rud closure, since e is $\underline{\Sigma}_{0}(M)$. But then $e \in H$, since $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.)

But when does the liftup exist? In answering this question it is useful to devise a 'term model' for the putative liftup rather like the ultrapower construction:

Definition 2.7.2. Let $M, \tau, \pi: H \rightarrow \Sigma_{0} H^{\prime}$ be as above. The term model $\mathbb{D}=\mathbb{D}(M, \pi)$ is defined as follows. Let e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle . \mathbb{D}=:\langle D, \cong$, $\tilde{\in}, \tilde{A}, \tilde{B}\rangle$ where
$D=$ the set of pairs $\langle f, x\rangle$ such that $f \in \Gamma_{0}$ and $x \in H^{\prime}$

$$
\begin{aligned}
& \langle f, x\rangle \cong\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(\{\langle z, w\rangle \mid f(z)=g(y)\}) \\
& \langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(\{\langle z, w\rangle \mid f(z) \in g(y)\}) \\
& \tilde{A}\langle f, x\rangle \leftrightarrow: x \in \pi(\{z \mid A f(z)\}) \\
& \tilde{B}\langle f, x\rangle \leftrightarrow: x \in \pi(\{z \mid B f(z)\})
\end{aligned}
$$

(Note \mathbb{D} is an 'equality model', since the identity predicate $=$ is interpreted by \cong rather than the identity.)

Eos theorem for \mathbb{D} then reads:
Lemma 2.7.3. Let $\varphi=\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Then

$$
\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] \leftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(\{\langle\vec{z}\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\})
$$

Proof: (Sketch)
We prove this by induction on the formula φ. We display a typical case of the induction. Let $\varphi=\bigvee u \in v_{1} \Psi$. By bound relettering we can assume w.l.o.g. that u is not among v_{1}, \ldots, v_{n}. Hence u, v_{1}, \ldots, v_{n} is a good sequence for Ψ. We first prove (\rightarrow). Assume:

$$
\mathbb{D} \mid=\varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

Claim $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e)$ where

$$
e=\left\{\left\langle z_{1}, \ldots, z_{n}\right\rangle \mid M \models \varphi\left[f_{1}\left(z_{1}\right) \ldots f_{n}\left(z_{n}\right)\right]\right\} .
$$

Proof: By our assumption there is $\langle g, y\rangle \in D$ such that $\langle g, y\rangle \tilde{\in}\left\langle f_{1}, x_{1}\right\rangle$ and:

$$
\mathbb{D} \models \Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

By the induction hypothesis we conclude that $\langle y, \vec{x}\rangle \in \pi(\tilde{e})$ where:

$$
\tilde{e}=\left\{\langle w, \vec{z}\rangle \mid g(w) \in f_{1}\left(z_{1}\right) \wedge M \models \Psi[g(w), \vec{f}(\vec{z})\} .\right.
$$

Clearly $e, \tilde{e} \in H$ and

$$
H \models \bigwedge w, \vec{z}(\langle w, \vec{z}\rangle \in \tilde{e} \rightarrow\langle\vec{z}\rangle \in e) .
$$

Hence

$$
H^{\prime} \models \bigwedge w, \vec{z}(\langle w, \vec{z}\rangle \in \pi(e) \rightarrow\langle\vec{z}\rangle \in \pi(e)) .
$$

Hence $\langle\vec{x}\rangle \in \pi(e)$.

$$
\operatorname{QED}(\rightarrow)
$$

We now prove (\leftarrow)
We assume that $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e)$ and must prove:
Claim $\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right]$.
Proof: Let $r \in M$ be a well ordering of $\operatorname{rng}\left(f_{1}\right)$. For $\langle\vec{z}\rangle \in e$ set:

$$
\begin{aligned}
g(\langle\vec{z}\rangle)= & \text { the } r \text {-least } w \text { such that } \\
& M \models \Psi\left[w, f_{1}\left(z_{1}\right), \ldots, f_{n}\left(z_{n}\right)\right] .
\end{aligned}
$$

Then $g \in M$ and $\operatorname{dom}(g)=e \in H$. Now let \tilde{e} be defined as above with this g. Then:

$$
H \models \bigwedge z_{1}, \ldots, z_{n}(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \tilde{e}) .
$$

But then the corresponding statement holds of $\pi(e), \pi(\tilde{e})$ in H^{\prime}. Hence

$$
\langle\langle\vec{x}\rangle, \vec{x}\rangle \in \pi(\tilde{e}) .
$$

By the induction hypothesis we conclude:

$$
\mathbb{D} \models \Psi\left[\langle g,\langle\vec{x}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{n}, x_{n}\right\rangle\right] .
$$

The conclusion is immediate.
QED (Lemma 2.7.3)
The liftup of $\langle M, \pi\rangle$ can only exist if the relation \tilde{e} is well founded:
Lemma 2.7.4. Let $\tilde{\in}$ be ill founded. Then there is no $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime} . M^{\prime}$ is transitive, and $\pi^{\prime} \supset \pi$.

Proof: Suppose not. Let $\left\langle f_{i+1}, x_{i+1}\right\rangle \tilde{\in}\left\langle f_{i}, x_{i}\right\rangle$ for $i<w$. Then

$$
\left\langle x_{i+1}, x_{i}\right\rangle \in \pi\left\{\langle z, w\rangle \mid f_{i+1}(z) \in f_{i}(w)\right\} .
$$

Hence $\pi^{\prime}\left(f_{i+1}\right)\left(x_{i+1}\right) \in \pi^{\prime}\left(f_{i}\right)\left(x_{i}\right)(i<w)$.
Contradiction!
QED (Lemma 2.7.4)
Conversely we have:
Lemma 2.7.5. Let $\tilde{\in}$ be well founded. Then the liftup of $\langle M, \pi\rangle$ exists.

Proof: We shall explicitly construct a liftup from the term model \mathbb{D}. The proof will stretch over several subclaims.

Definition 2.7.3. $x^{*}=\pi^{*}(x)=:\left\langle\operatorname{const}_{x}, 0\right\rangle$, where const $_{x}=:\{\langle x, 0\rangle\}=$ the constant function x defined on $\{0\}$.

Then:
(1) $\pi^{*}: M \rightarrow_{\Sigma_{0}} \mathbb{D}$.

Proof: Let $\varphi\left(v_{1}, \ldots, v_{n}\right)$ be Σ_{0}. Set:

$$
e=\left\{\left\langle z_{1}, \ldots, z_{n}\right\rangle \mid M \models \varphi\left[\operatorname{const}_{x_{1}}\left(z_{1}\right), \ldots, \operatorname{const}_{x_{n}}\left(z_{n}\right)\right]\right\}
$$

Obviously:

$$
e=\left\{\begin{array}{l}
\{\langle 0, \ldots, 0\rangle\} \text { if } M \models \varphi\left[x_{1}, \ldots, x_{n}\right] \\
\emptyset \text { if not. }
\end{array}\right.
$$

Hence by Łoz theorem:

$$
\begin{aligned}
\mathbb{D} \models \varphi\left[x_{1}^{*}, \ldots, x_{n}^{*}\right] & \leftrightarrow\langle 0, \ldots, 0\rangle \in \pi(e) \\
& \leftrightarrow M \models \varphi\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

(2) $\mathbb{D} \vDash$ Extensionality.

Proof: Let $\varphi(u, v)=: \bigwedge w \in u w \in v \wedge \bigwedge w \in v w \in u$.
Claim $\mathbb{D} \vDash \varphi[a, b] \rightarrow a \cong b$ for $a, b \in \mathbb{D}$. This reduces to the Claim:
Let $a=\langle f, x\rangle, b=\langle g, y\rangle$. Then

$$
\begin{aligned}
\mathbb{D} \models \varphi[\langle f, x\rangle,\langle g, y\rangle] & \leftrightarrow\langle x, y\rangle \in \pi(e) \\
& \leftrightarrow\langle f, x\rangle \cong\langle g, y\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
e & =\{\langle z, w\rangle|M|=\varphi[z, w]\} \\
& =\{\langle z, w\rangle \mid f(z)=g(w)\}
\end{aligned}
$$

QED (2)
Since \cong is a congruence relation for \mathbb{D} we can factor \mathbb{D} by \cong, getting:

$$
\hat{\mathbb{D}}=(\mathbb{D} \backslash \cong)=\langle\hat{D}, \hat{\in}, \hat{A}, \hat{B}\rangle
$$

where:

$$
\begin{aligned}
& \hat{D}=\{\hat{s} \mid s \in D\} \\
& \hat{s}=:\{t \mid t \cong s\} \text { for } s \in D \\
& \hat{s} \hat{\in} \hat{t} \leftrightarrow: s \tilde{\in} t \\
& \hat{A} \hat{s} \leftrightarrow: \tilde{A} s, \hat{B} \hat{s} \leftrightarrow: \tilde{B} s .
\end{aligned}
$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M^{\prime}, where $M^{\prime}=\langle | M^{\prime}\left|, \in, A^{\prime}, B^{\prime}\right\rangle$ is transitive.
Set:

$$
\begin{aligned}
& {[s]=: k(\hat{s}) \text { for } s \in D} \\
& \pi^{\prime}(x)=:\left[x^{*}\right] \text { for } x \in M .
\end{aligned}
$$

Then by (1):
(3) $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$.

Lemma 2.7.5 will then follow by:
Lemma 2.7.6. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the liftup of $\langle M, \pi\rangle$.
We shall often write $[f, x]$ for $[\langle f, x\rangle]$. Clearly every $s \in M^{\prime}$ has the form $[f, x]$ where $f \in M$; $\operatorname{dom}(f) \in H, x \in H^{\prime}$.

Definition 2.7.4. $\tilde{H}=$: the set of $[f, x]$ such that $\langle f, x\rangle \in D$ and $f \in H$.

We intend to show that $[f, x]=\pi(f)(x)$ for $x \in \tilde{H}$. As a first step we show:
(4) \tilde{H} is transitive.

Proof: Let $s \in[f, x]$ where $f \in H$.
Claim $s=[g, y]$ for a $g \in H$.
Proof: Let $s=\left[g^{\prime}, y\right]$. Then $\langle y, x\rangle \in \pi(e)$ where: $e=\left\{\langle u, v\rangle \mid g^{\prime}(u) \in\right.$ $f(v)\}$ set:

$$
e^{\prime}=\left\{u \mid g^{\prime}(u) \in \operatorname{rng}(f)\right\}, g=g^{\prime} \upharpoonright e^{\prime}
$$

Then $g \subset \operatorname{rng}(f) \times \operatorname{dom}\left(g^{\prime}\right) \in H$. Hence $g \in H$. Then $\left[g^{\prime}, y\right]=[g, y]$ since $\pi\left(g^{\prime}\right)(y)=\pi(g)(y)$ and hence
$\langle y, y\rangle \in \pi\left(\left\{\langle u, v\rangle \mid g^{\prime}(u)=g(v)\right\}\right)$. But $e=\{\langle u, v\rangle \mid g(u) \in f(v)\}$. Hence $[g, y] \in[f, x]$.

QED (4)
But then:
(5) $[f, x]=\pi(f)(x)$ for $f \in H,\langle f, x\rangle \in D$.

Proof: Let $f, g \in H,\langle f, x\rangle,\langle g, y\rangle \in D$. Then:

$$
\begin{aligned}
{[f, x] \in[g, y] } & \leftrightarrow\langle x, y\rangle \in \pi(e) \\
& \leftrightarrow \pi(f)(x) \in \pi(g)(y)
\end{aligned}
$$

where $e=\{\langle u, v\rangle \mid f(u) \in g(v)\}$. Hence there is an \in-isomorphism σ of H onto \tilde{H} defined by:

$$
\begin{equation*}
\sigma(\pi(f)(x))=:[f, x] . \tag{5}
\end{equation*}
$$

But then $\sigma=$ id, since H, \tilde{H} are transitive.
But then:
(6) $\pi^{\prime} \supset \pi$.

Proof: Let $x \in H$. Then $\pi^{\prime}(x)=\left[\operatorname{const}_{x}, 0\right]=\pi\left(\operatorname{const}_{x}\right)(0)=\pi(x)$ by (5).
(7) $[f, x]=\pi^{\prime}(f)(x)$ for $\langle f, x\rangle \in D$.

Proof: Let $a=\operatorname{dom}(f)$. Then $\left[\mathrm{id}_{a}, x\right]=\operatorname{id}_{\pi(a)}(x)=x$ by (5). Hence it suffices to show:

$$
[f, x]=\left[\operatorname{const}_{f}, 0\right]\left(\left[\mathrm{id}_{a}, x\right]\right) .
$$

But this says that $\langle x, 0\rangle \in \pi(e)$ where:

$$
\begin{aligned}
e & =\left\{\langle z, u\rangle \mid f(z)=\operatorname{const}_{f}(u)\left(\operatorname{id}_{a}(z)\right)\right\} \\
& =\{\langle z, 0\rangle \mid f(z)=f(z)\}=a \times\{0\} .
\end{aligned}
$$

QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)
Lemma 2.7.7. Let $\pi^{*} \supset \pi$ such that $\pi^{*}: M \rightarrow \Sigma_{0} M^{*}$. Then the liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ of $\langle M, \pi\rangle$ exists. Moreover there is a $\sigma: M^{\prime} \rightarrow_{\Sigma_{0}} M^{*}$ uniquely defined by the condition:

$$
\sigma \upharpoonright H^{\prime}=\mathrm{id}, \sigma \pi^{\prime}=\pi^{*}
$$

Proof: $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ exists, since $\tilde{\epsilon}$ is well founded, since $\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow \pi^{*}(f)(x) \in$ $\pi^{*}(g)(y)$. But then:

$$
\begin{aligned}
M^{\prime} & \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(x_{r}\right)\right] \leftrightarrow \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{r}\right)\left(x_{r}\right)\right]
\end{aligned}
$$

where $e=\left\{\left\langle z_{1}, \ldots, z_{r}\right\rangle \mid M \models \varphi[\vec{f}(\vec{z})]\right\}$. Hence there is $\sigma: M^{\prime} \rightarrow_{\Sigma_{0}} M^{*}$ defined by:

$$
\sigma\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(x) \text { for }\langle f, x\rangle \in D
$$

Now let $\tilde{\sigma}: M^{\prime} \rightarrow_{\Sigma_{0}} M^{*}$ such that $\tilde{\sigma} \upharpoonright H^{\prime}=\mathrm{id}$ and $\tilde{\sigma} \pi^{\prime}=\pi^{r}$.
Claim $\tilde{\sigma}=\sigma$.
Let $s \in M^{\prime}, s=\pi^{\prime}(f)(x)$. Then $\tilde{\sigma}\left(\pi^{\prime}(f)\right)=\pi^{*}(f), \tilde{\sigma}(x)=x$. Hence $\tilde{\sigma}(s)=\pi^{*}(f)(x)=\sigma(s) . \quad$ QED (Lemma 2.7.7)

2.7.2 The $\Sigma_{0}^{(n)}$ liftup

From now on suppose M to be acceptable. We now attempt to generalize the notion of Σ_{0} liftup. We suppose as before that $\tau>w$ is a cardinal in M and $H=H_{\tau}^{M}$. As before we suppose that $\pi^{\prime}: H \rightarrow \Sigma_{0} H^{\prime}$ cofinally. Now let $\varrho^{n} \geq \tau$. The Σ_{0}-liftup was the "minimal" $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow \Sigma_{0} M^{\prime}$. We shall now consider pairs $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ such that $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow \Sigma_{0}^{n} M^{\prime}$. Among such pairs $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ we want to define a "minimal" one and show, if possible, that it exists. The minimality of the Σ_{0} liftup was expressed by the condition that every element of M^{\prime} have the form $\pi^{\prime}(f)(x)$, where $x \in H^{\prime}$ and $f \in \Gamma^{0}(\tau, M)$. As a first step to generalizing this definition we replace $\Gamma^{0}(\tau, M)$ by a larger class of functions $\Gamma^{n}(\tau, M)$.
Definition 2.7.5. Let $n>0$ such that $\tau \leq \varrho_{M}^{n}$. $\Gamma^{n}=\Gamma^{n}(\tau, M)$ is the set of maps f such that
(a) $\operatorname{dom}(f) \in H$
(b) For some $i<n$ there is a good $\Sigma_{1}^{(i)}(M)$ function G and a parameter $p \in M$ such that $f(x)=G(x, p)$ for all $x \in \operatorname{dom}(f)$.

Note Good $\Sigma_{1}^{(i)}$ functions are many sorted, hence any such function can be identified with a pair consisting of its field and its arity. An element of Γ^{n}, on the other hand, is 1 -sorted in the classical sense, and can be identified with its field.

Note This definition makes sense for the case $n=\omega$, and we will not exclude this case. A $\Sigma_{0}^{(\omega)}$ formula (or relation) then means any formula (or relation) which is $\Sigma_{0}^{(i)}$ for an $i<\omega$ - i.e. $\Sigma_{0}^{(\omega)}=\Sigma^{*}$.

We note:
Lemma 2.7.8. Let $f \in \Gamma^{n}$ such that $\operatorname{rng}(f) \subset H^{i}$, where $i<n$. Then $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$ where G is a good $\Sigma_{1}^{(h)}$ function to H^{i} for some $h<n$.

Proof: Let $f(x)=G^{\prime}(x, p)$ for $x \in \operatorname{dom}(f)$ where G^{\prime} is a good $\Sigma_{1}^{(n)}$ function to H^{j} where $h, j<n$. Since every good $\Sigma_{1}^{(h)}$ function is a good Σ_{1}^{k} function for $k \geq h$, we can assume w.l.o.g. that $i, j \leq h$. Let F be the identity function defined by $v^{i}=u^{j}$ (i.e. $y^{i}=F\left(x^{j}\right) \leftrightarrow y^{i}=x^{j}$). Set: $G(x, y) \simeq: F\left(G^{\prime}(x, y)\right)$. Then F is a good $\Sigma_{1}^{(h)}$ function and so is G, where $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$.

QED (Lemma 2.7.8)
Lemma 2.7.9. $\Gamma^{i}(\tau, M) \subset \Gamma^{n}(\tau, M)$ for $i<n$.

Proof: For $0<i$ this is immediat by the definition. Now let $i=0$. If $f \in \Gamma^{0}$, then $f(x)=G(x, f)$ for $x \in \operatorname{dom}(f)$ where G is the $\Sigma_{0}^{(0)}$ function defined by

$$
\begin{aligned}
y=G(x, f) \leftrightarrow: & (f \text { is a function } \wedge \\
& \wedge\langle y, x\rangle \in f)
\end{aligned}
$$

QED (Lemma 2.7.9)
The "natural" minimality condition for the $\Sigma_{0}^{(n)}$ liftup would then read: Each element of M has the form $\pi^{\prime}(f)(x)$ where $x \in H^{\prime}$ and $f \in \Gamma^{n}$. But what sense can we make of the expression " $\pi^{\prime}(f)(x)$ " when f is not an element of M ? The following lemma rushes to our aid:

Lemma 2.7.10. Let $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ where $n>0$ and $\pi^{\prime} \supset \pi$. There is a unique map $\pi^{\prime \prime}$ of $\Gamma^{n}(\tau, M)$ to $\Gamma^{n}\left(\pi(\tau), M^{\prime}\right)$ with the following property:

* Let $f \in \Gamma^{n}(\tau, M)$ such that $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$ where G is a good $\Sigma_{1}^{(i)}$ function for an $i<n$ and χ is a good $\Sigma_{1}^{(i)}$ definition of G. Let G^{\prime} be the function defined on M^{\prime} by χ. Let $f^{\prime}=\pi^{\prime \prime}(f)$. Then $\operatorname{dom}\left(f^{\prime}\right)=\pi(\operatorname{dom}(f))$ and $f^{\prime}(x)=G^{\prime}\left(x, \pi^{\prime}(p)\right)$ for $x \in \operatorname{dom}\left(f^{\prime}\right)$.

Proof: As a first approximation, we simply pick G, χ with the above properties. Let G^{\prime} then be as above. Let $d=\operatorname{dom}(f)$. The statement $\bigwedge x \in d \bigvee y y=G(x, p)$ is $\Sigma_{0}^{(n)}$ is d, p, so we have:

$$
\bigwedge x \in \pi(d) \bigvee y y=G^{\prime}(x, \pi(p))
$$

Define f_{0} by $\operatorname{dom}\left(f_{0}\right)=\pi(d)$ and $f_{0}(x)=G^{\prime}(x, \pi(p))$ for $x \in \pi(d)$. The problem is, of course, that G, χ were picked arbitrarily. We might also have:

$$
f(x)=H(x, q) \text { for } x \in d
$$

where H is $\Sigma_{1}^{(j)}(M)$ for a $j<n$ and Ψ is a good $\Sigma_{1}^{(j)}$ definition of H. Let H^{\prime} be the good function on M^{\prime} defined by Ψ. As before we can define f_{1}
by $\operatorname{dom}\left(f_{1}\right)=\pi(d)$ and $f_{1}(x)=H^{\prime}\left(x, \pi^{\prime}(q)\right)$ for $x \in \pi(d)$. We must show: $f_{0}=f_{1}$. We note that:

$$
\bigwedge x \in d G(x, p)=H(x, q)
$$

But this is a $\Sigma_{0}^{(n)}$ statement. Hence

$$
\bigwedge x \in \pi(d) G^{\prime}(x, p)=H^{\prime}(x, q)
$$

Then $f_{0}=f_{1}$.
QED (Lemma 2.7.10)
Moreover, we get:
Lemma 2.7.11. Let $n, \pi, \tau, \pi^{\prime}, \pi^{\prime \prime}$ be as above. Then $\pi^{\prime \prime}(f)=\pi^{\prime}(f)$ for $f \in \Gamma^{0}(\tau, M)$.

Proof: We know $f(x)=G(x, f)$ for $x \in d=\operatorname{dom}(f)$, where:

$$
y=G(x, f) \leftrightarrow:(f \text { is a function } \wedge y=f(x))
$$

Then $\pi^{\prime \prime}(f)(x)=G^{\prime}\left(x, \pi^{\prime}(f)\right)=\pi^{\prime}(f)(x)$ for $x \in \pi(d)$, where G^{\prime} has the same definition over M^{\prime}.

QED (Lemma 2.7.11)
Thus there is no ambignity in writing $\pi^{\prime}(f)$ instead of $\pi^{\prime \prime}(f)$ for $f \in \Gamma^{n}$. Doing so, we define:

Definition 2.7.6. Let $\omega<\tau<\varrho_{M}^{n}$ where $n \leq \omega$ and τ is a cardinal in M. Let $H=H_{\tau}^{M}$ and let $\pi: H \rightarrow \Sigma_{0} H^{\prime}$ cofinally. We call $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ a $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ iff the following hold:
(a) $\pi^{\prime} \supset \pi$ and $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$.
(b) Each element of M^{\prime} has the form $\pi^{\prime}(f)(x)$, where $f \in \Gamma^{n}(\tau, M)$ and $x \in H^{\prime}$.
(Thus the old Σ_{0} liftup is simply the special case: $n=0$.)
Definition 2.7.7. $\Gamma_{i}^{n}(\tau, M)=$: the set of $f \in \Gamma^{n}(\tau, M)$ such that either $i<n$ and $\operatorname{rng}(f) \subset H_{M}^{i}$ or $i=n<\omega$ and $f \in H_{M}^{i}$.
(Here, as usual, $H^{i}=J_{\varrho_{M}^{i}}[A]$ where $M=\left\langle J_{\alpha}^{A}, B\right\rangle$.)
Lemma 2.7.12. Let $f \in \Gamma_{i}^{n}(\tau, M)$. Let $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ where $\pi^{\prime} \supset \pi$. Then $\pi^{\prime}(f) \in \Gamma_{i}^{n}\left(\pi^{\prime}(\tau), M^{\prime}\right)$.

Proof:

Case $1 i=n$. Then $f \in H_{\varrho_{M}^{n}}^{M}$. Hence $\pi^{\prime}(f) \in H_{\varrho_{M}^{n}}^{M^{\prime}}$.
Case $2 i<n$.

By Lemma 2.7.9 for some $h<n$ there is a good $\Sigma_{1}^{(n)}(M)$ function $G(u, v)$ to H^{i} and a parameter p such that

$$
f(x)=G(x, p) \text { for } x \in \operatorname{dom}(f)
$$

Hence:

$$
\pi^{\prime}(f)(x)=G^{\prime}\left(x, \pi^{\prime}(p)\right) \text { for } x \in \operatorname{dom}(\pi(f))
$$

where G^{\prime} is defined over M^{\prime} by the same good $\left.\Sigma^{(} n\right)$ definition. Hence $\operatorname{rng}\left(\pi^{\prime}(f)\right) \subset H_{M}^{i}$.

QED (Lemma 2.7.12)
The following lemma will become our main tool in understanding $\Sigma_{0}^{(n)}$ liftups.
Lemma 2.7.13. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$ where $i_{1}, \ldots, i_{r} \leq n$. Let $f_{l} \in$ $\Gamma_{i_{l}}^{n}(l=1, \ldots, r)$. Then:
(a) The relation P is $\Sigma_{0}^{(n)}$ in a parameter p where:

$$
P(\vec{z}) \leftrightarrow: R\left(f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right) .
$$

(b) Let $\pi^{\prime} \supset \pi$ such that $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$. Let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ by the same definition as R. Then P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition as P in p, where:

$$
P^{\prime}(\vec{z}) \leftrightarrow: R^{\prime}\left(\pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right)
$$

Before proving this lemma we note some corollaries:
Corollary 2.7.14. Let $e=\{\langle\vec{z}\rangle \mid P(\vec{z})\}$. Then $e \in H$ and $\pi(e)=\left\{\langle\vec{z}\rangle \mid P^{\prime}(\vec{z})\right\}$.

Proof: Clearly $e \subset d=\underset{l=1}{\stackrel{r}{\times}} \operatorname{dom}\left(f_{l}\right) \in H$. But then $d \in H_{\varrho^{n}}$ and $e \in H_{\varrho^{n}}$ since $\left\langle H_{\varrho^{n}}, P \cap H_{\varrho^{n}}\right\rangle$ is amenable. Hence $e \in H$, since $H=H_{\tau}^{M}$ and therefore $\mathbb{P}(u) \cap M \subset H$ for $u \in H$.

Now set $e^{\prime}=\left\{\langle\vec{z}\rangle \mid P^{\prime}(\vec{z})\right\}$. Then $e^{\prime} \subset \pi(d)=\underset{l=1}{\stackrel{r}{\times}} \operatorname{dom}\left(\pi\left(f_{l}\right)\right)$ since $\pi^{\prime} \supset \pi$ and hence $\pi\left(\operatorname{dom}\left(f_{l}\right)\right)=\operatorname{dom}\left(\pi\left(f_{l}\right)\right)$. But

$$
\bigwedge\langle\vec{z}\rangle \in d(\langle\vec{z}\rangle \in e \leftrightarrow P(\vec{z}))
$$

which is a $\Sigma_{0}^{(n)}$ statement about e, p. Hence the same statement holds of $\pi(e), \pi(p)$ in M^{\prime}. Hence

$$
\bigwedge\langle\vec{z}\rangle \in \pi(d)\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow P^{\prime}(\vec{z})\right) .
$$

Hence $\pi(e)=e^{\prime}$.
QED (Corollary 2.7.14)
Corollary 2.7.15. $\langle M, \pi\rangle$ has at most one $\Sigma_{0}^{(n)}$ liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$.

Proof: Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be a second such. Let $\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ be a $\Sigma_{0}^{(n)}$ formula. (In fact, we could take it here as being $\Sigma_{0}^{(0)}$.) Let $e=\{\langle\vec{z}\rangle \mid M \models$ $\left.\varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$ where $f_{l} \in \Gamma_{i_{l}}^{n}(l=1, \ldots, r)$. Then:

$$
\begin{aligned}
M^{\prime} & \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(x_{r}\right)\right] \leftrightarrow \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{*}\left(f_{r}\right)\left(x_{r}\right)\right]
\end{aligned}
$$

for $x_{l} \in \pi\left(\operatorname{dom}\left(f_{l}\right)(l=1, \ldots, r)\right.$.
Hence there is an isomorphism $\sigma: M^{\prime} \underset{\rightarrow}{\boldsymbol{\sim}} M^{*}$ defined by:

$$
\sigma\left(\pi^{\prime}(f)(x)\right)=: \pi^{*}(f)(x)
$$

for $f \in \Gamma^{n}, x \in \pi(\operatorname{dom}(f))$. But M^{\prime}, M^{*} are transitive. Hence $\sigma=\mathrm{id}, M^{\prime}=$ $M^{*}, \pi^{\prime}=\pi^{*}$.

QED (Corollary 2.7.15)
We now prove Lemma 2.7.13 by induction on n.

Case $1 n=0$.
Then $f_{1}, \ldots, f_{r} \in M$ and P is Σ_{0} in $p=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, since f_{i} is rudimentary in p and for sufficiently large h we have:

$$
P(\vec{z}) \leftrightarrow \bigvee_{y_{1}, \ldots, y_{r}} \in C_{h}(p)\left(\bigwedge_{i=1}^{r} y_{i}=f_{i}\left(\vec{z}_{i}\right) \wedge R(\vec{y})\right)
$$

where R is Σ_{0}. If P^{\prime} has the same Σ_{0} definition over M^{\prime} in $\pi^{\prime}(p)$, then

$$
\begin{aligned}
P^{\prime}(z) & \leftrightarrow \bigvee_{y_{1}, \ldots, y_{r}} \in C_{h}(\pi(p))\left(\bigwedge_{n=1}^{r} y_{i}=\pi\left(f_{i}\right)\left(z_{i}\right) \wedge R(\vec{y})\right) \\
& \leftrightarrow R(\pi(\vec{f})(\vec{z}))
\end{aligned}
$$

Case $2 n=\omega$.
Then $\Sigma_{0}^{\omega}=\bigcup_{h<w} \Sigma_{1}^{(h)}$. Let $R\left(x_{1}^{i_{1}}, \ldots, x_{r}^{l_{r}}\right)$ be $\Sigma_{1}^{(h)}$. Since every $\Sigma_{1}^{(h)}$ relation is $\Sigma_{1}^{(k)}$ for $k \geq h$, we can assume h taken large enough that $i_{1}, \ldots, i_{r} \leq h$. We can also choose it large enough that:

$$
f_{l}(z) \simeq G_{l}(z, p) \text { for } l=1, \ldots, v
$$

where G_{l} is a good $\Sigma_{1}^{(h)} \operatorname{map}$ to $H^{i_{l}}$. (We assume w.l.o.g. that p is the same for $l=1, \ldots, r$ and that $d_{l}=\operatorname{dom}\left(f_{l}\right)$ is rudimentary in p.) Set:

$$
\left.P(\vec{z}, y) \leftrightarrow: R\left(G_{1} x_{1}, y\right), \ldots, G\left(x_{r}, y\right)\right) .
$$

By $\S 6$ Lemma $2.6 .24, P$ is $\Sigma_{1}^{(h)}$ (uniformly in the $\Sigma_{1}^{(h)}$ definition of R and $\left.G_{1}, \ldots, G_{r}\right)$. Moreover:

$$
P(\vec{z}) \leftrightarrow P(\vec{z}, p)
$$

Thus P is uniformly $\Sigma_{1}^{(h)}$ in p, which proves (a). But letting P^{\prime} have the same $\Sigma_{1}^{(h)}$ definition in $\pi^{\prime}(p)$ over M^{\prime}, we have:

$$
\begin{aligned}
P^{\prime}(\vec{z}) & \leftrightarrow P^{\prime}\left(\vec{z}, \pi^{\prime}(p)\right) \\
& \leftrightarrow R^{\prime}\left(\pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right),
\end{aligned}
$$

which proves (b).
QED (Case 2)
Case $30<n<w$.
Let $n=m+1$. Rearranging arguments as necessary, we can take R as given in the form:

$$
R\left(y_{1}^{n}, \ldots, y_{s}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)
$$

where $i_{1}, \ldots, i_{r} \leq m$. Let $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$ and let $g_{1}, \ldots, g_{1} \in$ Γ_{n}^{n}.

Claim

(a) P is $\Sigma_{0}^{(n)}$ in a parameter p where

$$
P(\vec{w}, \vec{z}) \leftrightarrow: R(\vec{g}(\vec{w}), \vec{f}(\vec{z})) .
$$

(b) If π^{\prime}, M^{\prime} are as above and P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition, then

$$
P^{\prime}(w, \vec{z}) \leftrightarrow R^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \pi^{\prime}(\vec{f})(\vec{z})\right)
$$

where R^{\prime} has the same $\Sigma_{0}^{(n)}$ definition over M^{\prime}.

We prove this by first substituting $\vec{f}(\vec{z})$ and then $\vec{g}(\vec{w})$, using two different arguments. The claim then follows from the pair of claims:

Claim 1 Let:

$$
P_{0}\left(\vec{y}^{n}, \vec{z}\right) \leftrightarrow=R\left(y^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right)
$$

Then:
(a) P_{0} is $\Sigma_{0}^{(n)}(M)$ in a parameter p_{0}.
(b) Let $\pi^{\prime}, M^{\prime}, R^{\prime}$ be as above. Let P_{0}^{\prime} have the same $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ definition in $\pi^{\prime}\left(p_{0}\right)$. Then:

$$
P_{0}^{\prime}\left(\vec{y}^{n}, \vec{z}\right) \leftrightarrow R^{\prime}\left(y^{n}, \pi^{\prime}(\vec{f})(\vec{z})\right)
$$

Claim 2 Let

$$
P(\vec{w}, \vec{z}) \leftrightarrow: P_{0}\left(g_{1}\left(w_{1}\right), \ldots, g_{s}\left(w_{s}\right), \vec{z}\right)
$$

Then:
(a) P is $\Sigma_{0}^{(n)}(M)$ in a parameter p.
(b) Let $\pi^{\prime}, M^{\prime}, P_{0}^{\prime}$ be as above. Let P^{\prime} have the same $\Sigma_{1}^{(n)}\left(M^{\prime}\right)$ definition in $\pi^{\prime}(p)$. Then

$$
P^{\prime}(\vec{w}, \vec{z}) \leftrightarrow P_{0}^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \vec{z}\right) .
$$

We prove Claim 1 by imitating the argument in Case 2, taking $h=m$ and using $\S 6$ Lemma 2.6.11. The details are left to the reader. We then prove Claim 2 by imitating the argument in Case 1: We know that $g_{1}, \ldots, g_{s} \in H^{n}$. Set: $p=\left\langle g_{1}, \ldots, g_{n}, p\right\rangle$. Then P is $\Sigma_{0}^{(n)}(M)$ in p, since:

$$
P(\vec{w}, \vec{z}) \leftrightarrow \bigvee y_{1} \ldots y_{s} \in C_{h}(p)\left(\bigwedge_{i=1}^{s} y_{i}=g_{i}\left(w_{i}\right) \wedge P_{0}(\vec{y}, \vec{z})\right)
$$

where g_{i}, p_{0} are rud in P, for a sufficiently large h. But if P^{\prime} is $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\Pi^{\prime}(P)$ by the same definition, we obviously have:

$$
\begin{aligned}
P^{\prime}(\vec{w}, \vec{z}) & \leftrightarrow \bigvee y_{1} \ldots y_{r}\left(\bigwedge_{i=1}^{s} y_{i}=\pi^{\prime}(g)\left(w_{i}\right) \wedge P_{0}^{\prime}(\vec{y}, \vec{z})\right) \\
& P_{0}^{\prime}\left(\pi^{\prime}(\vec{g})(\vec{w}), \vec{z}\right) .
\end{aligned}
$$

QED (Lemma 2.7.13)
We can repeat the proof in Case 3 with "extra" arguments \vec{u}^{n}. Thus, after rearranging arguments we would have $R\left(\vec{u}^{n}, \vec{y}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ where $i_{1}, \ldots, i_{r}<$ n. We would then define

$$
P\left(\vec{u}^{n}, \vec{w}, \vec{z}\right) \leftrightarrow: R\left(\vec{u}^{n}, \vec{g}(\vec{w}), \vec{f}(\vec{z})\right)
$$

This gives us:

Corollary 2.7.16. Let $n<w$. Let $R\left(\vec{u}^{n}, x_{1}^{i_{1}}, \ldots, x_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$ where $i_{1}, \ldots, i_{p} \leq$ n. Let $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$. Set:

$$
P\left(\vec{u}^{n}, \vec{z}\right) \leftrightarrow: R\left(\vec{u}^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right) .
$$

Then:
(a) $P\left(\vec{u}^{n}, \vec{z}\right)$ is $\Sigma_{0}^{(n)}$ in a parameter p.
(b) Let $\pi^{\prime} \supset \pi$ such that $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$. Let R^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ by the same definition. Let P^{\prime} be $\Sigma_{0}^{(n)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same definition. Then

$$
P^{\prime}\left(\vec{u}^{n}, \vec{z}\right) \leftrightarrow R^{\prime}\left(\vec{u}^{n}, \pi^{\prime}\left(f_{1}\right)\left(z_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right)\left(z_{r}\right)\right)
$$

By Corollary 2.7.15 $\langle M, \pi\rangle$ can have at most one $\Sigma_{0}^{(n)}$ liftup. But when does it have a liftup? In order to answer this - as before - define a term model $\mathbb{D}=\mathbb{D}^{(n)}$ for the supposed liftup, which will then exist whenever \mathbb{D} is well founded.

Definition 2.7.8. Let $M, \tau, H, H^{\prime}, \pi$ be as above where $\varrho_{M}^{n} \geq \tau, n \leq w$. The $\Sigma_{0}^{(n)}$ term model $\mathbb{D}=\mathbb{D}^{(n)}$ is defined as follows: (Let e.g. $M=\left\langle J_{\alpha}^{A}, B\right\rangle$.) We set: $\mathbb{D}=\langle D, \cong, \tilde{\epsilon}, \tilde{A}, \tilde{B}\rangle$ where:

$$
\begin{aligned}
D=D^{(n)}=: & \text { the set of pairs }\langle f, x\rangle \\
& \text { such that } f \in \Gamma^{n}(\tau, M) \text { and } \\
& x \in \pi(\operatorname{dom}(f))
\end{aligned}
$$

$\langle f, x\rangle \cong\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(e)$, where

$$
e=\{\langle z, w\rangle \mid f(z)=g(w)\}
$$

$\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow:\langle x, y\rangle \in \pi(e)$, where

$$
e=\{\langle z, w\rangle \mid f(z) \in g(w)\}
$$

(similarly for $\tilde{A}, \tilde{B})$.

We shall interpret the model \mathbb{D} in a many sorted language with variables of type $i<\omega$ if $n=\omega$ and otherwise of type $i \leq n$. The variables v^{i} will range over the domain D_{i} defined by:
Definition 2.7.9. $D_{i}=D_{i}^{(n)}=:\left\{\langle f, x\rangle \in D \mid f \in \Gamma_{i}^{n}\right\}$.

Under this interpretation we obtain Łos theorem in the form:

Lemma 2.7.17. Let $\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ be $\Sigma_{0}^{(n)}$. Then:

$$
\mathbb{D} \models \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] \leftrightarrow\left\langle x_{1}, \ldots, x_{r}\right\rangle \in \pi(e)
$$

where $e=\left\{\langle\vec{z}\rangle|M|=\varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$ and $\left\langle f_{l}, x_{l}\right\rangle \in D_{i_{l}}$ for $l=1, \ldots, r$.

Proof: By induction on i we show:

Claim If $i<n$ or $i=n<\omega$, then the assertion holds for $\Sigma_{0}^{(i)}$ formulae.

Proof: Let it hold for $j<i$. We proceed by induction on the formula φ.

Case 1φ is primitive (i.e. φ is $v_{i} \dot{\in} v_{j}, v_{i} \doteq v_{j}, \dot{A} v_{i}$ or $\dot{B} v_{i}\left(\right.$ for $\left.M=\left\langle J_{\alpha}^{A}, B\right\rangle\right)$.
This is immediate by the definition of \mathbb{D}.
Case 2φ is $\Sigma_{h}^{(j)}$ where $j<i$ and $h=0$ or 1 . If $h=0$ this is immediate by the induction hypothesis. Let $h=1$. Then $\varphi=\bigvee u^{j} \Psi$, where Ψ is $\Sigma_{0}^{(i)}$. By bound relettering we can assume w.l.o.g. that u^{i} is not in our good sequence $v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}$. We prove both directions, starting with (\rightarrow) :
Let $\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right]$. Then there is $\langle g, y\rangle \in D_{j}$ such that

$$
\mathbb{D} \models \Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right]
$$

$\left(u^{j}, \vec{v}\right.$ being the good sequence for $\left.\Psi\right)$. Set $e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \models \Psi[g(w), \vec{z}(\vec{x})]\}$. Then $\langle y, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$ by the induction hypothesis on i. But in M we have:

$$
\bigwedge w, \vec{z}\left(\langle w, \vec{z}\rangle \in e^{\prime} \rightarrow\langle\vec{z}\rangle \in e\right)
$$

This is a Π_{1} statement about e^{\prime}, e. Since $\pi: H \rightarrow_{\Sigma_{1}} H^{\prime}$ we can conclude:

$$
\bigwedge w, \vec{z}\left(\langle w, \vec{z}\rangle \in \pi\left(e^{\prime}\right) \rightarrow\langle\vec{z} \in \pi(e)) .\right.
$$

But $\langle y, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$ by the induction hypothesis. Hence $\langle\vec{x} \in \pi(e)$. This proves (\rightarrow). We now prove (\leftarrow). Let $\langle\vec{x}\rangle \in \pi(e)$. Let R be the $\Sigma_{0}^{(j)}$ relation

$$
R\left(w, z_{1}, \ldots, z_{r}\right) \leftrightarrow=M \models \varphi\left[w, z_{1}, \ldots, z_{r}\right] .
$$

Let G be a $\Sigma_{0}^{(j)}(M)$ map to H^{j} which uniformizes R. Then G is a spezialization of a function $G^{\prime}\left(z_{1}^{h_{1}}, \ldots, z_{r}^{h_{r}}\right)$ such that $h_{l} \leq j$ for $l \leq j$. Thus G^{\prime} is a good $\Sigma_{0}^{(j)}$ function. But

$$
f_{l}(z)=F_{l}(z, p) \text { for } z \in \operatorname{dom}\left(f_{l}\right) \text { for } l=1, \ldots, r
$$

where F_{l} is a good $\Sigma_{0}^{(k)} \operatorname{map}$ to $H^{h_{l}}$ for $l=1, \ldots, r$ and $j \leq k<i$. (We assume w.l.o.g. that the parameter p is the same for all $l=1, \ldots, r_{n}$.) Define $G^{\prime \prime}\left(u^{k}, w\right)$ by:

$$
G^{\prime \prime}(u, w) \simeq: G^{\prime}\left((u)_{0}^{r-1}, \ldots,(u)_{r-1}^{r-1}, w\right)
$$

then $G^{\prime \prime}$ is a good $\Sigma_{1}^{(k)}$ function. Define g by: $\operatorname{dom}(g)=\underset{i=1}{\stackrel{r}{\times}} \operatorname{dom}\left(f_{i}\right)$ and: $g(\langle\vec{z}\rangle)=G^{\prime \prime}(\langle\vec{z}\rangle, p)$ for $\langle\vec{z}\rangle \in \operatorname{dom}(g)$. Then $g \in \Gamma^{n}$ and $g(\langle\vec{z}\rangle)=$ $G\left(f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right)$. Hence, letting:

$$
e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \models \Psi[g(w), \vec{f}(\vec{z})]\}
$$

we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in e^{\prime}\right) .
$$

This is a Π_{1} statement about e, e^{\prime} in H. Hence in H^{\prime} we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)\right) .
$$

But then $\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)$. By the induction hypothesis we conclude:

$$
\mathbb{D} \mid=\Psi\left[\langle g,\langle\vec{z}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

Hence:

$$
\mathbb{D} \mid=\varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

QED (Case 2)
Case 3φ is $\Psi_{0} \wedge \Psi_{1}, \Psi_{0} \wedge \Psi_{1}, \Psi_{0} \rightarrow \Psi_{1}, \Psi_{0} \leftrightarrow \Psi_{1}$, or $\neg \Psi$.
This is straightforward and we leave it to the reader.
Case $4 \varphi=\bigvee u^{i} \in v_{l} \chi$ or $\bigwedge u^{i} \in v_{l} \chi$, where v_{l} has type $\geq i$. We display the proof for the case $\varphi=\bigvee u^{i} \in v_{l} \chi$. We again assume w.l.o.g. that $u^{\prime} \neq v_{j}$ for $j=1, \ldots, r$. Set: $\Psi=\left(u^{i} \in v_{l} \wedge \chi\right)$. Then φ is equivalent to $\bigvee u^{i} \Psi$. Using the induction hypothesis for χ we easily get:

$$
\begin{align*}
\mathbb{D} \models & \Psi\left[\langle g, y\rangle,\left\langle f_{1}, x_{i}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] \leftrightarrow \tag{*}\\
& \left\langle y, x_{1}, \ldots, x_{n}\right\rangle \in \pi\left(e^{\prime}\right)
\end{align*}
$$

where $e^{\prime}=\{\langle w, \vec{z}\rangle \mid M \models \Psi[g(w), \vec{f}(\vec{z})]\}$. Using (*), we consider two subcases:

Case $4.1 i<n$.

We simply repeat the proof in Case 2 , using $(*)$ and with i in place of j.

Case $4.2 i=n<w$.
(Hence v_{l} has type n.) For the direction (\rightarrow) we can again repeat the proof in Case 2. For the other direction we essentially revert to the proof used initially for Σ_{0} liftups.
We know that $e \in H$ and $\langle\vec{x}\rangle \in \pi(e)$, where $e=\left\{\langle\vec{z}\rangle \mid M \models \varphi\left[f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right]\right\}$. Set:

$$
R\left(w^{n}, \vec{z}\right) \leftrightarrow: M \models \Psi\left[w^{n}, f_{1}\left(z_{1}\right), \ldots, f_{r}\left(z_{r}\right)\right] .
$$

Then R is $\underline{\Sigma}_{0}^{(n)}$ by Corollary 2.7.16. Moreover $\bigvee w^{n} R\left(w^{n}, \vec{z}\right) \leftrightarrow\langle\vec{z}\rangle \in e$. Clearly $f_{l} \in H_{M}^{n}$ since $f_{l} \in \Gamma_{n}^{n}$. Let $s \in H_{M}^{n}$ be a well odering of $\bigcup \operatorname{rng}\left(f_{l}\right)$. Clearly:

$$
\begin{aligned}
R\left(w^{n}, \vec{z}\right) & \rightarrow w^{n} \in f_{l}\left(z_{l}\right) \\
& \rightarrow w^{n} \in \bigcup \operatorname{rng}\left(f_{l}\right) .
\end{aligned}
$$

We define a function g with domain e by:

$$
g(\langle\vec{z}\rangle)=\text { the } s \text {-least } w \text { such that } R(w, \vec{z}) .
$$

Since R is $\underline{\Sigma}_{0}^{(n)}$, it follows easily that $g \in H_{\varrho^{n}}^{M}$. Hence $g \in \Gamma_{n}^{n}$. But then
$\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in e \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in e^{\prime}\right)$, where e^{\prime} is defined as above, using this g.
Hence in H^{\prime} we have:

$$
\bigwedge \vec{z}\left(\langle\vec{z}\rangle \in \pi(e) \leftrightarrow\langle\langle\vec{z}\rangle, \vec{z}\rangle \in \pi\left(e^{\prime}\right)\right) .
$$

Since $\langle\vec{x}\rangle \in \pi(e)$ we conclude that $\langle\langle\vec{x}\rangle, \vec{x}\rangle \in \pi\left(e^{\prime}\right)$. Hence:

$$
\mathbb{D} \models \Psi\left[\langle g,\langle\vec{x}\rangle\rangle,\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

Hence:

$$
\mathbb{D} \vDash \varphi\left[\left\langle f_{1}, x_{1}\right\rangle, \ldots,\left\langle f_{r}, x_{r}\right\rangle\right] .
$$

QED (Lemma 2.7.17)
Exactly as before we get:
Lemma 2.7.18. If $\tilde{\epsilon}$ is ill founded, then the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ does not exist.

We leave it to the reader and prove the converse:
Lemma 2.7.19. If $\tilde{\epsilon}$ is well founded, then the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$ exists.

Proof: We shall again use the term model \mathbb{D} to define an explicit $\Sigma_{0}^{(n)}$ liftup. We again define:

Definition 2.7.10. $x^{*}=\pi^{*}(x)=$: $\left\langle\operatorname{const}_{x}, 0\right\rangle$, where $\operatorname{const}_{x}=:\{\langle x, 0\rangle\}=$ the constant function x defined on $\{0\}$.

Using Łos theorem Lemma 2.7.17 we get:
(1) $\pi^{*}: M \rightarrow_{\Sigma_{0}^{(n)}} \mathbb{D}$
(where the variables v^{i} range over D_{i} on the \mathbb{D} side).
The proof is exactly like the corresponding proof for Σ_{0}-liftups ((1) in Lemma 2.7.5). In particular we have: $\pi^{*}: M \rightarrow_{\Sigma_{0}} \mathbb{D}$. Repeating the proof of (2) in Lemma 2.7.5 we get:
(2) $\mathbb{D} \vDash$ Extensionality.

Hence \cong is again a congruenzrelation and we can factor \mathbb{D}, getting:

$$
\hat{\mathbb{D}}=(\mathbb{D} \backslash \cong)=\langle\hat{D}, \hat{\epsilon}, \hat{A}, \hat{B}\rangle
$$

where

$$
\begin{aligned}
& \hat{D}=:\{\hat{s} \mid s \in D\}, \hat{s}=:\{t \mid t \cong s\} \text { for } s \in D \\
& \hat{s} \hat{\in} \hat{t} \leftrightarrow: s \tilde{\in} t \\
& \hat{A} \hat{s} \leftrightarrow: \tilde{A} s, \hat{B} \hat{s} \leftrightarrow: \tilde{B} s
\end{aligned}
$$

Then $\hat{\mathbb{D}}$ is a well founded identity model satisfying extensionality. By Mostowski's isomorphism theorem there is an isomorphism k of $\hat{\mathbb{D}}$ onto M^{\prime}, where $M^{\prime}=\langle | M^{\prime}\left|, \in, A^{\prime}, B^{\prime}\right\rangle$ is transitive. Set:

$$
\begin{aligned}
& {[s]=: k(\hat{s}) \text { for } s \in D} \\
& \pi^{\prime}(x)=:\left[x^{*}\right] \text { for } x \in M \\
& H_{i}=:\left\{\hat{s} \mid s \in D_{i}\right\}(i<n \text { or } i=n<\omega) .
\end{aligned}
$$

We shall initially interpret the variables v^{i} on the M^{\prime} side as ranging over H_{i}. We call this the pseudo interpretation. Later we shall show that it (almost) coincides with the intended interpretation. By (1) we have
(3) $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$ in the pseudo interpretation. (Hence $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}}$ $\left.M^{\prime}.\right)$
Lemma 2.7.19 then follows from:
Lemma 2.7.20. $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ is the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$.

For $n=0$ this was proven in Lemma 2.7.6, so assume $n>0$. We again use the abbreviation:

$$
[f, x]=:[\langle f, x\rangle] \text { for }\langle f, x\rangle \in D
$$

Defining \tilde{H} exactly as in the proof of Lemma 2.7.6, we can literally repeat our previous proofs to get:
(4) \tilde{H} is transitive.
(5) $[f, x]=\pi(f)(x)$ if $f \in H$ and $\langle f, x\rangle \in D$. (Hence $\tilde{H}=H^{\prime}$.)
(6) $\pi^{\prime} \supset \pi$.
(However (7) in Lemma 2.7.6 will have to be proven later.)
In order to see that $\pi: M \rightarrow_{\Sigma^{(n)}} M^{\prime}$ in the intended interpretation we must show that $H_{i}=H_{M}^{i}$, for $i<n$ and that $H_{n} \subset H_{M}^{n}$. As a first step we show:
(7) H_{i} is transitive for $i \leq n$.

Proof: Let $s \in H_{i}, t \in s$. Let $s=[f, x]$ where $f \in \Gamma_{i}^{n}$. We must show that $t=[g, y]$ for $g \in \Gamma_{i}^{n}$. Let $t=\left[g^{\prime}, y\right]$. Then $\langle y, x\rangle \in \pi(e)$ where

$$
e=\left\{\langle u, v\rangle \mid g^{\prime}(u) \in f(v)\right\} .
$$

Set:

$$
a=:\left\{u \mid g^{\prime}(u) \in \operatorname{rng}(f)\right\}, g=g^{\prime} \upharpoonright a
$$

Claim $1 g \in \Gamma_{i}^{n}$.
Proof: $a \subset \operatorname{dom}\left(q^{\prime}\right)$ is $\underline{\Sigma}_{0}^{(n)}$. Hence $a \in H$ and $g \in \Gamma^{n}$. If $i<n$, then $\operatorname{rng}(g) \subset \operatorname{rng}(f) \subset H_{M}^{i}$. Hence $g \in \Gamma_{i}^{n}$. Now let $i=n$. Then $\operatorname{rng}(f) \in \Gamma_{n}^{n}$ and the relation $z=g(y)$ is $\underline{\Sigma}_{0}^{(n)}$. Hence $g \in H_{M}^{n}$.

QED (Claim 1)
Claim $2 t=[g, y]$

Proof:

$$
\bigwedge u, v\left(\langle u, v\rangle \in e \rightarrow\langle u, u\rangle \in e^{\prime}\right)
$$

where $e^{\prime}=\left\{\langle u, w\rangle \mid g(u)=g^{\prime}(w)\right\}$. Hence the same Π_{1} statement holds of $\pi(e), \pi\left(e^{\prime}\right)$ in H^{\prime}. Hence $\langle y, y\rangle \in \pi\left(e^{\prime}\right)$. Hence $[g, y]=$ $\left[g^{\prime}, y\right]=t$.

QED (7)
We can improve (3) to:
(8) Let $\Psi=\bigvee v_{v_{1}}^{i_{1}}, \ldots, v_{r}^{i_{r}} \varphi$, where φ is $\Sigma_{0}^{(n)}$ and $i_{l}<n$ or $i_{l}=n<\omega$ for $l=1, \ldots, r$. Then π^{\prime} is " Ψ-elementary" in the sense that:

$$
M \models \Psi[\vec{x}] \leftrightarrow M^{\prime} \models \Psi\left[\pi^{\prime}(\vec{x})\right] \text { in the pseudo interpretation. }
$$

Proof: We first prove (\rightarrow). Let $M \models \varphi[\vec{z}, \vec{x}]$. Then $M^{\prime} \models \varphi\left[\pi^{\prime}(\vec{z}), \pi^{\prime}(\vec{x})\right]$ by (3).
We now prove (\leftarrow). Let:

$$
M^{\prime} \models \varphi\left[\left[f_{1}, z_{1}\right], \ldots,\left[f_{r}, z_{r}\right], \pi^{\prime}(\vec{x})\right]
$$

where $f_{l} \in \Gamma_{i_{l}}^{n}$ for $l=1, \ldots, r$. Since $\pi^{\prime}(x)=\left[\operatorname{const}_{x}, 0\right]$, we then have: $\left\langle z_{1}, \ldots, z_{r}, 0 \ldots 0\right\rangle \in \pi(e)$, where:

$$
e=\left\{\left\langle u_{1}, \ldots, u_{r}, 0 \ldots 0\right\rangle: M \models \varphi[\vec{f}(\vec{u}), \vec{x}]\right\} .
$$

Hence $e \neq \emptyset$. Hence

$$
\bigvee v_{1} \ldots v_{r} M \models \varphi[\vec{f}(\vec{v}), \vec{x}]
$$

where $\operatorname{rng}\left(f_{l}\right) \subset H^{i_{l}}$ for $l=1, \ldots, r$. Hence $M \models \Psi[\vec{x}]$.
QED (8) If $i<n$, then every $\Pi_{1}^{(i)}$ formula is $\Sigma_{0}^{(n)}$. Hence by (8):
(9) If $i<n$ then

$$
\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime} \text { in the pseudo interpretation. }
$$

We also get:
(10) Let $n<w$. Then:

$$
\pi^{\prime} \upharpoonright H_{M}^{n}: H_{M}^{n} \rightarrow_{\Sigma_{0}} H_{n} \text { cofinally. }
$$

Proof: Let $x \in H_{n}$. We must show that $x \in \pi^{\prime}(a)$ for an $a \in H_{M}^{n}$. Let $x=[f, y]$, where $f \in \Gamma_{n}^{n}$. Let $d=\operatorname{dom}(f), a=\operatorname{rng}(f)$. Then $y \in \pi(d)$ and:

$$
\bigwedge z \in d\langle z, 0\rangle \in e
$$

where

$$
\begin{aligned}
e & =\left\{\langle u, v\rangle \mid f(u) \in \operatorname{const}_{a}(v)\right\} \\
& =\{\langle u, 0\rangle \mid f(u) \in a\} .
\end{aligned}
$$

This is a Σ_{0} statement about d, e. Hence the same statement holds of $\pi(d), \pi(e)$ in H_{n}. Hence $\langle z, 0\rangle \in \pi(e)$. Hence $[f, y] \in \pi^{\prime}(a)$. QED (10)
(Note: (10) and (3) imply that $\pi^{\prime}: M \rightarrow_{\Sigma_{1}^{(n)}} M^{\prime}$ is the pseudo interpretation, but this also follows directly from (8).)
Letting $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ and $M^{\prime}=\langle | M^{\prime}\left|, A^{\prime}, B^{\prime}\right\rangle$ we define:

$$
M_{i}=\left\langle H_{M}^{i}, A \cap H_{M}^{i}, B \cap H_{M}^{i}\right\rangle, M_{i}^{\prime}=\left\langle H_{i}, A^{\prime} \cap H_{i}, B^{\prime} \cap H_{i}\right\rangle
$$

for $i<n$ or $i=n<w$. Then each M_{i} is acceptable. It follows that:
(11) M_{i}^{\prime} is acceptable.

Proof: If $i=n$, then $\pi^{\prime} \upharpoonright M_{n}: M_{n} \rightarrow_{\Sigma_{0}} M_{n}^{\prime}$ cofinally by (3) and (10). Hence M_{n}^{\prime} is acceptable by $\S 5$ Lemma 2.5.5. If $i<n$, then $\pi^{\prime} \upharpoonright M_{i}$: $M_{i} \rightarrow_{\Sigma_{2}^{(i)}} M_{i}^{\prime}$ by (9). Hence M_{i}^{\prime} is acceptable since acceptability is a Π_{2} condition.

QED (11)
We now examine the "correctness" of the pseudo interpretation. As a first step we show:
(12) Let $i+1 \leq n$. Let $A \subset H_{i+1}$ be $\underline{\Sigma}_{1}^{(i)}$ in the pseudo interpretation. Then $\left\langle H_{i+1}, A\right\rangle$ is amenable.
Proof: Suppose not. Then there is $A^{\prime} \subset H_{i+1}$ such that A^{\prime} is $\underline{\Sigma}_{1}^{(i)}$ in the pseudo interpretation, but $\left\langle H_{i}, A^{\prime}\right\rangle$ is not amenable. Let:

$$
A^{\prime}(x) \leftrightarrow B^{\prime}(x, p)
$$

where B^{\prime} is $\Sigma_{1}^{(i)}$ in the pseudo interpretation. For $p \in M^{\prime}$ we set:

$$
A_{p}^{\prime}=:\left\{x \mid B^{\prime}(x, p)\right\}
$$

Let B be $\Sigma_{1}^{(i)}(M)$ by the same definition. For $p \in M$ we set:

$$
A_{p}=:\{x \mid B(x, p)\}
$$

Case $1 \quad i+1<n$.
Then $\bigvee p \bigvee a^{i+1} \bigwedge b^{i+1} b^{i+1} \neq a^{l+1} \cap A_{p}^{\prime}$ holds in the pseudo interpretation. This has the form: $\bigvee p \bigvee a^{i+1} \varphi\left(p, a^{i+1}\right)$ where φ is $\Pi_{1}^{(i+1)}$, hence $\Sigma_{0}^{(n)}$ in the pseudo interpretation. By (8) we conclude that $M \models \varphi\left(p, a^{i+1}\right)$ for some $p, a^{i+1} \in M$. Hence $\left\langle H_{M}^{i+1}, A_{p}\right\rangle$ is not amenable, where A_{p} is $\underline{\Sigma}_{1}^{(i)}(M)$. Contradiction!

QED (Case 1)

Case 2 Case 1 fails.

Then $i+1=n$. Since π^{\prime} takes H_{M}^{n} cofinally to H_{n}. There must be $a \in H_{M}^{n}$ such that $\pi(a) \cap A^{\prime} \notin H_{n}$. From this we derive a contradiction. Let $A^{\prime}=A_{p}^{\prime}$ where $p=[f, z]$. Set: $\tilde{B}=\{\langle z, w\rangle \mid B(w, f(z))\}$. Then \tilde{B} is $\underline{\Sigma}_{1}^{(i)}(M)$. Set: $b=(d \times a) \cap \tilde{B}$, where $d=\operatorname{dom}(f)$. Then $b \in H_{M}^{n}$. Define $g: d \rightarrow H_{M}^{n}$ by:

$$
g(z)=: A_{f(z)} \cap a=\{x \in a \mid\langle z, x\rangle \in b\} .
$$

Then $g \in H_{M}^{n}$, since it is rudimentary in $a, b \in H_{M}^{n}$. Let $\varphi\left(u^{n}, v^{n}, w\right)$ be the $\Sigma_{0}^{(n)}$ statement expressing

$$
u=A_{w} \cap v^{n} \text { in } M
$$

Then setting:

$$
e=\{\langle v, 0, w\rangle \mid M \models \varphi[g(v), a, f(z)]\}
$$

we have:

$$
\bigwedge v \in d\langle v, 0, v\rangle \in e .
$$

But then the same holds of $\pi(d), \pi(e)$ in H_{n}. Hence $\langle z, 0, z\rangle \in$ $\pi(e)$. Hence: $[g, z]=A_{[f, z]} \cap \pi(a) \in H_{n}$. Contradiction!

QED (12)
On the other hand we have:
(13) Let $i+1<n$. Let $A \subset H_{M}^{i+1}$ be $\Sigma_{1}^{(i)}(M)$ in the parameter p such that $A \notin M$. Let A^{\prime} be $\Sigma_{1}^{(i)}\left(M^{\prime}\right)$ in $\pi^{\prime}(p)$ by the same $\Sigma_{1}^{(i)}\left(M^{\prime}\right)$ definition in the pseudo interpretation. Then $A^{\prime} \cap H_{i+1} \notin M^{\prime}$.
Proof: Suppose not. Then in M^{\prime} we have:

$$
\bigvee a \bigwedge v^{i+1}\left(v^{i+1} \in a \leftrightarrow A^{\prime}\left(v^{i+1}\right)\right) .
$$

This has the form $\bigvee a \varphi(a, \pi(p))$ where φ is $\Pi_{1}^{(i+1)}$ hence $\Sigma_{0}^{(n)}$. By (8) it then follows that $\bigvee a \varphi(a, p)$ holds in M. Hence $A \in M$. Contradiction!

QED (13)
Recall that for any acceptable $M=\left\langle J_{\alpha}^{A}, B\right\rangle$ we can define $\varrho_{M}^{i}, H_{M}^{i}$ by:

$$
\begin{aligned}
& \varrho^{0}=\alpha \\
& \varrho^{i+1}=\text { the least } \varrho \text { such that there is } A \text { which is } \\
& \\
& \quad \underline{\Sigma}_{1}^{(i)}(M) \text { with } A \cap \varrho \notin M \\
& H^{i}=J_{\varrho_{i}}[A] .
\end{aligned}
$$

Hence by (11), (12), (13) we can prove by induction on i that:
(14) Let $i<n$. Then
(a) $\varrho_{M^{\prime}}^{i}=\varrho_{i}, H_{M^{\prime}}^{i}=H_{i}$
(b) The pseudo interpretation is correct for formulae φ, all of whose variables are of type $\leq i$.

By (9) we then have:
(15) $\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime}$ for $i<n$.

This means that if $n=\omega$, then π^{\prime} is automatically Σ^{*}-preserving. If $n<\omega$, however, it is not necessarily the case that $H_{n}=H_{M}^{n}$, 一 i.e. the pseudo interpretation is not always correct. By (12), however we do have:
(16) $\varrho_{n} \leq \varrho_{M}^{n}$, (hence $H_{n} \subset H_{M^{\prime}}^{n}$).

Using this we shall prove that π^{\prime} is $\Sigma_{0}^{(n)}$-preserving. As a preliminary we show:
(17) Let $n<w$. Let φ be a $\Sigma_{0}^{(n)}$ formula containing only variables of type $i \leq n$. Let $v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}$ be a good sequence for φ. Let $x_{1}, \ldots, x_{r} \in M^{\prime}$ such that $x_{l} \in H_{i_{l}}$ for $l=1, \ldots, r$. Then $M \models \varphi\left[x_{1}, \ldots, x_{r}\right]$ holds in the correct sense iff it holds in the pseudo interpretation.
Proof: (sketch)
Let C_{0} be the set of all such φ with: φ is $\Sigma_{1}^{(i)}$ for an $i<n$. Let C be the closure of C_{0} under sentential operation and bounded quantifications of the form $\bigwedge v^{n} \in w^{n} \varphi, \bigvee v^{n} \in w^{n} \varphi$. The claim holds for $\varphi \in C_{0}$ by (15). We then show by induction on φ that it holds for $\varphi \in C$. In passing from φ to $\bigwedge v^{n} \in w^{n} \varphi$ we use the fact that w^{n} is interpreted by an element of H_{n}.

QED (17)
Since $\pi^{\prime \prime \prime} H_{M}^{i} \subset H_{i}$ for $i \leq n$, we then conclude:
(18) $\pi^{\prime}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{\prime}$.

It now remains only the show:
(19) $[f, x]=\pi^{\prime}(f)(x)$.

Proof: Let $f(x)=G(x, p)$ for $x \in \operatorname{dom}(f)$, where G is $\Sigma_{1}^{(j)}$ good for a $j<n$. Let $a=\operatorname{dom}(f)$. Let $\Psi(u, v, w)$ be a good $\Sigma_{1}^{(j)}$ definition of G. Set:

$$
e=\left\{\langle z, y, w\rangle \mid M \models \Psi\left[f(z), \operatorname{id}_{a}(y), \operatorname{const}_{p}(w)\right]\right\} .
$$

Then $z \in a \rightarrow\langle z, z, 0\rangle \in e$. Hence the same holds of $\pi(a), \pi(e)$. But $x \in \pi(a)$. Hence:

$$
M^{\prime} \models \Psi\left[[f, x],\left[\mathrm{id}_{a}, x\right],\left[\operatorname{const}_{p}, x\right]\right],
$$

where $\left[\mathrm{id}_{a}, x\right]=x,\left[\operatorname{const}_{p}, 0\right]=\pi^{\prime}(p)$. Hence:

$$
[f, x]=G^{\prime}\left(x, \pi^{\prime}(p)\right)=\pi^{\prime}(f)(x),
$$

where G^{\prime} has the same $\Sigma_{1}^{(j)}$ definition.
QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).
QED (Lemma 2.7.19)
As a corollary of the proof we have:
Lemma 2.7.21. Let $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ be the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$. Let $i<n$. Then
(a) $\pi^{\prime}: M \rightarrow_{\Sigma_{2}^{(i)}} M^{\prime}$
(b) If $\varrho_{M}^{i} \in M$, then $\pi^{\prime}\left(\varrho_{M}^{i}\right)=\varrho_{M}^{i}$.
(c) If $\varrho_{M}^{i}=\mathrm{On}_{M}$, then $\varrho_{M^{\prime}}^{i}=\mathrm{On}_{M^{\prime}}$.

Proof:

(a) follows by (9) and (14).
(b) In M we have:

$$
\bigwedge \xi^{0} \bigvee \xi^{i}\left(\xi^{0}<\varrho_{M}^{i} \leftrightarrow \xi^{0}=\xi^{i}\right)
$$

This has the form $\bigwedge \xi^{0} \Psi\left(\xi^{0}, \varrho_{M}^{i}\right)$ where Ψ is $\Sigma_{0}^{(n)}$. But then the same holds of $\pi^{\prime}\left(\varrho_{M}^{i}\right)$ in M^{\prime} by (8) and (14) - i.e.

$$
\bigwedge \xi^{0} \bigvee \xi^{i}\left(\xi^{0}<\pi\left(\varrho_{M}^{i}\right) \leftrightarrow \xi^{0}=\xi^{i}\right)
$$

(c) In M we have $\bigwedge \xi^{0} \bigvee \xi^{i} \xi^{0}=\xi^{i}$, hence the same holds in M^{\prime} just as above.

QED (Lemma 2.7.21)

The interpolation lemma for $\Sigma_{0}^{(n)}$ liftups reads:
Lemma 2.7.22. Let $\sigma: H^{\prime} \rightarrow_{\Sigma_{0}}\left|M^{*}\right|$ and $\pi^{*}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\pi^{*} \supset \sigma \pi$. Then the $\Sigma_{0}^{(n)}$ liftup $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ of $\langle M, \pi\rangle$ exists. Moreover there is a unique map $\sigma^{\prime}: M^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\sigma^{\prime} \upharpoonright H^{\prime}=\sigma$ and $\sigma^{\prime} \pi^{\prime}=\pi^{*}$.

Proof: $\tilde{\epsilon}$ is well founded since:

$$
\langle f, x\rangle \tilde{\in}\langle g, y\rangle \leftrightarrow \pi^{*}(f)(\sigma(x)) \in \pi^{*}(g)(\sigma(y))
$$

Thus $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ exists. But for $\Sigma_{0}^{(n)}$ formulae $\varphi=\varphi\left(v_{1}^{i_{1}}, \ldots, v_{r}^{i_{r}}\right)$ we have:

$$
\begin{aligned}
& \left.M^{\prime} \models \varphi\left[\pi^{\prime}\left(f_{1}\right)\left(x_{1}\right), \ldots, \pi^{\prime}\left(f_{r}\right) v_{r}\right)\right] \\
& \leftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \pi(e) \\
& \leftrightarrow\left\langle\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right\rangle \in \sigma(\pi(e))=\pi^{*}(e) \\
& \leftrightarrow M^{*} \models \varphi\left[\pi^{*}\left(f_{1}\right)\left(\sigma\left(x_{1}\right)\right), \ldots, \pi^{*}\left(f_{r}\right)\left(\sigma\left(x_{r}\right)\right)\right]
\end{aligned}
$$

where:

$$
e=\left\{\left\langle x_{1}, \ldots, x_{r}\right\rangle \mid M \models \varphi\left[f_{1}\left(x_{1}\right), \ldots, f_{r}\left(x_{r}\right)\right]\right\}
$$

and $\left\langle f_{l}, x_{l}\right\rangle \in \Gamma_{i_{l}}^{n}$ for $i=1, \ldots, r$. Hence there is a $\Sigma_{0}^{(n)}$-preserving embed$\operatorname{ding} \sigma: M^{\prime} \rightarrow M^{*}$ defined by:

$$
\sigma^{\prime}\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(\sigma(x)) \text { for }\langle f, x\rangle \in \Gamma^{n} .
$$

Clearly $\sigma^{\prime} \upharpoonright H^{\prime}=\sigma$ and $\sigma^{\prime} \pi^{\prime}=\pi^{*}$. But σ^{\prime} is the unique such embedding, since if $\tilde{\sigma}$ were another one, we have

$$
\tilde{\sigma}\left(\pi^{\prime}(f)(x)\right)=\pi^{*}(f)(\sigma(x))=\sigma^{\prime}\left(\pi^{\prime}(f)(x)\right) .
$$

QED (Lemma 2.7.22)
We can improve the result by making stronger assumptions on the map π, vor instance:

Lemma 2.7.23. Let $\left\langle M^{*}, \pi^{*}\right\rangle$ be the $\Sigma_{0}^{(n)}$ liftup of $\langle M, \pi\rangle$. Let $\pi^{*} \upharpoonright \varrho_{M}^{n+1}=\mathrm{id}$ and $\mathbb{P}\left(\varrho_{M}^{n+1}\right) \cap M^{*} \subset M$. Then $\varrho_{M^{*}}^{n}=\sup \pi^{*^{\prime \prime}} \varrho_{M}^{n}$.
(Hence the pseudo interpretation is correct and π^{*} is $\Sigma_{1}^{(n)}$ preserving.)
Proof: Suppose not. Let $\tilde{\varrho}=\sup \pi^{*^{\prime \prime}} \varrho_{M}^{n}<\varrho_{M^{*}}^{n}$. Set:

$$
H^{n}=H_{M}^{n}=J_{\varrho_{M}^{n}}^{A_{M}} ; \quad \tilde{H}=J_{\tilde{\varrho}}^{A_{M}} .
$$

Then $\tilde{H} \in M^{*}$. Let A be $\Sigma^{(n)}(M)$ in p such that $A \cap \varrho_{M}^{n+1} \notin M$. Let:

$$
A x \leftrightarrow \bigvee y^{n} B\left(y^{n}, x\right),
$$

where B is $\Sigma_{0}^{(n)}$ in p. Let B^{*} be $\Sigma_{0}^{(n)}\left(M^{*}\right)$ in $\pi^{*}(p)$ by the same definition. Then

$$
\pi^{*} \upharpoonright H^{n}:\left\langle H^{n}, B \cap H^{n}\right\rangle \rightarrow_{\Sigma_{1}}\left\langle\tilde{H}, B^{*} \cap \tilde{H}\right\rangle .
$$

Then $A \cap \varrho_{M}^{n+1}=\tilde{A} \cap \varrho_{M}^{n+1}$, where:

$$
\tilde{A}=\left\{x \mid \bigvee_{y^{n}} \in \tilde{H} B^{*}(y, x)\right\}
$$

But \tilde{A} is $\Sigma_{0}^{(n)}\left(M^{*}\right)$ in $\pi^{*}(p)$ and \tilde{H}. Hence

$$
A \cap \varrho_{M}^{n+1}=\tilde{A} \cap \varrho_{M}^{n+1} \in \mathbb{P}\left(\varrho_{M}^{n+1}\right) \cap M^{*} \subset M
$$

Contradiction!
QED (Lemma 2.7.13)

Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine structural inner models which go beyond L. The concept of "mouse" is central to this endeavor. We begin with a historical introduction which traces the genesis of that notion. This history, and the concepts which it involves, are familiar to many students of set theory, but the thread may grow fainter as the history proceeds. If you, the present reader, find the introduction confusing, we advise you to skim over it lightly and proceed to the formal development in §3.2. The introduction should then make more sense later on.

Fine structure theory was originally developed as a tool for understanding the constructible hierarchy. It was used for instance in showing that $V=L$ implies \square_{β} for all infinite cardinals β, and that every non weakly compact regular cardinal carries a Souslin tree. It was then used to prove the covering lemma for L, a result which pointed in a different direction. It says that, if there is no non trivial elementary embedding of L into itself, then every uncountable set of ordinals is contained in a constructible set having the same cardinality. This implies that if any $\alpha \geq \omega_{2}$ is regular in L, then its cofinality is the same as its cardinality. In particular, successors of singular cardinals are absolute in L. Any cardinal $\alpha \geq \omega_{2}$ which is regular in L remains regular in V. In general, the covering lemma says that despite possible local irregularities and cofinalities in L is retained in V.

If, however, L can be imbedded non trivially into itself, then the structure of cardinalities and cofinalities in L is virtually wiped out in V. There is
then a countable object known as $0^{\#}$ which encodes complete information about the class L and a non trivial embedding of $L .0^{\#}$ has many concrete representations, one of the most common being a structure $L_{\nu}^{U}=\left\langle L_{\nu}[U], \in\right.$ $, U\rangle$, where ν is the successor of an inaccessible cardinal κ in L and U is a normal ultrafilter on $\mathbb{P}(\kappa) \cap L$. (Later, however, we shall find it more convenient to work with extenders than with ultrafilters.) This structure, call it M_{0}, is iterable, giving rise to iterates $M_{i}(i<\infty)$ and embedding $\pi_{i j}: M_{i} \rightarrow \Sigma_{0} M_{j}(i \leq j<\infty)$. The iteration points $\kappa_{i}(i<\infty)$ are called the indiscernables for L and form a closed proper class of ordinals. Each κ_{c} is inaccessible in L. Thus there are unboundedly many inaccessibles of L which become ω-cofinal cardinals in V. It can also be shown that all infinite successor cardinals in L are collapsed and become ω-cofinal in V. If we chose κ_{0} minimally, then $M_{0}=0^{\#}$ is unique. We briefly sketch the argument for this, since it involves a principle which will be of great importance later on. By the minimal choice of κ_{0} it can be shown that $h_{M_{0}}(\emptyset)=M_{0}$ (i.e. $\varrho_{M_{0}}^{1}=\omega$ and $\emptyset \in P_{M_{0}}^{1}$). Now let $M_{0}^{\prime}=L_{\nu_{0}^{\prime}}^{U_{0}^{\prime}}$ be another such structure. Iterate M_{0}, M_{0}^{\prime} out to ω_{1}, getting iteration $\left\langle M_{i} \mid i \leq \omega_{1}\right\rangle,\left\langle M_{i}^{\prime} \mid i \leq \omega_{1}\right\rangle$ with iteration points $\kappa_{i}, \kappa_{i}^{\prime}$. Then $\kappa_{\omega_{1}}=\kappa_{\omega_{1}}^{\prime}=\omega_{1}$. Moreover the sets:

$$
C=\left\{\kappa_{i} \mid i<\omega_{1}\right\}, C^{\prime}=\left\{\kappa_{i}^{\prime} \mid i<\omega_{1}\right\}
$$

are club in ω_{1}. Hence $C \cap C^{\prime}$ is club in ω_{1}. But the ultrafilters $U_{\omega_{1}}, U_{\omega_{1}}^{\prime}$ are uniquely determined by $C \cap C^{\prime}$. Hence $M_{\omega_{1}}=M_{\omega_{1}}^{\prime}$. But then:

$$
M_{0} \simeq h_{M_{\omega_{1}}}(\emptyset)=h_{M_{\omega_{1}}^{\prime}}(\emptyset) \simeq M_{0}^{\prime}
$$

Hence $M_{0}=M_{0}^{\prime}$. This comparision iteration of two iterable structures will play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which significantly differed from L was made by Solovay in the early 1970's. Solovay developed this fine structure of L^{U} (where U is a normal measure on $\left.\mathbb{P}(\kappa) \cap L^{U}\right)$. He showed that each level $M=J_{\alpha}^{U}$ had a viable fine structure, with $\varrho_{M}^{n}, P_{M}^{n}, R_{M}^{n}(n<\omega)$ defined in the usual way, although M might be neither acceptable nor sound. If e.g. $\alpha>\kappa$ and $\varrho_{M}^{1}<\kappa$ (a case which certainly occurs), the we clearly have $R_{M}^{1}=\emptyset$. However, M has a standard parameter $p=p_{M} \in P_{M}^{1}$ and if we transitivize $h_{M}(P)$, we get a structure $\bar{M}=J \overline{\bar{U}}$ which iterates up to M in κ many steps. \bar{M} is then called the core of M. (\bar{M} itself might still not be acceptable, since a proper initial segment of \bar{M} might not be sound.) (If $n<1$ and $\varrho_{M}^{n}<\kappa$, we can do essentially the same analysis, but when iterating \bar{M} to M we must use $\Sigma_{0}^{(n)}$-preserving ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay's analysis on its head by defining a mouse (or Solovay mouse) to be (roughly) any J_{α} or iterable structure of the
form $M=J_{\alpha}^{U}$ where U is a normal measure at some κ on M and $\varrho_{M}^{\omega} \leq \kappa$. They then defined the core model K to be the union of all Solvay mice. They showed that, if there is no non trivial elementary embedding of K into K, then the covering lemma for K holds. If, on the other hand, there is such an embedding π with critical point κ, then U is a normal measure on κ in $L^{U}=\langle L[u], \in, u\rangle$, where:

$$
U=\{x \in \mathbb{P}(\kappa) \cap K \mid \kappa \in \pi(X)\}
$$

(This showed, in contrast to the prevailing ideology, that an inner model with a measurable cardinal can indeed be "reached from below".) The simplest Solovay mouse is $0^{\#}$ as described above. What K is depends on what there is. If $0^{\#}$ does not exist, then $K=L$. If $0^{\#}$ exists but $0^{\# \#}$ does not, then $K=L\left(0^{\#}\right)$ etc. In order to define the general notion of Solovay mouse, one must employ the full paraphanalia of fine stucture theory.

Thus we have reached the situation that fine structure theory is needed not only to analyze a previously defined inner model, but to define the model itself.

If we have reached L^{U} with U a normal ultrafilter on κ and $\tau=\kappa^{+}$in L^{U}, then we can regard L_{τ}^{U} as the "next mouse" and continue the process. If $\left(L_{\tau}^{\kappa}\right)^{\#}$ does not exist, however, this will mean that L^{U} is the core model. The full covering lemma will then not necessarily hold, since V could contain a Prikry sequence for κ.

However, we still get the weak covering lemma:

$$
c f(\beta)=\operatorname{card}(\beta) \text { if } \beta \geq \omega_{2} \text { is a cardinal in } K
$$

We also have generic absoluteness:
The definition of K is absolute in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discovered. For instance the "core model below two measurables" defined a unique model with the above properties under the assumption that there is no inner model with two measurable cardinals. Similarly with the "core model up to a measurable limit of measurables" etc. Initially this work was pursued by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other. Mitchell got further, introducing several important innovations. He divided the construction of K into two stages: In the first he constructed an inner model K^{C}, which may lack the two properties stated above. He then "extracted" K from K^{C}, in the process defining an elementary embedding of K into K^{C}. This approach has been basic to everything done since. Mitchell
also introduced the concept of extenders, having realized that the normal ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a mouse is regarded as a structure $M=J_{\nu}^{E}$ where E describes an indexed sequence of ultrafilters or extenders. A major requirement is that M be iterable, which entails that any of the indexed extenders or ultrafilters can be employed in the iteration. But this would seem to imply that eny F lying on the indeved sequence must be total - i.e. an ultrafilter or extender on the whole of $\mathbb{P}(\kappa) \cap M$ (κ being the critical point). Unfortunately the most natural representations of mice involve "allowing extenders (or ultrafilters) to die". Letting $M=J_{\nu}^{U}$ be the representation of $0^{\#}$ described above, it is known that $\varrho_{M}^{1}=\omega$. Hence $J_{\nu+1}^{U}$ contains new subsets of κ which are not "measured" by the ultrafilter U. The natural representation of $0^{\# \#}$ would be $M^{\prime}=J_{\nu^{\prime}}^{U, U^{\prime}}$ where:

$$
U^{\prime}=\left\{X \mid \kappa^{\prime} \in \pi(x)\right\}
$$

and π is an embedding of L^{U} into itself with critical point $\kappa^{\prime}>\kappa$. But U is not total. How can one iterate such a structure? Because of this conundrum, researchers for many years followed Solovay's lead in allowing only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay's representation of $0^{\# \#}$ was $J_{\nu^{\prime}}^{U^{\prime}}$ This structre is not acceptable, however, since there is a $\gamma<\nu^{\prime}$ set. $\kappa^{\prime}<\gamma$ and $\varrho_{J_{\gamma}^{U}}^{1}=\omega<\kappa^{\prime}$. Such representation of mice were unnatural and unwieldy. The conundrum was finally resolved by Mitchell and Stewart Baldwin, who observed that the structures in which extenders are "allowed to die" are in fact, iterable in a very good sense. We shall deal with this in $\S 3.4$. All of the innovations mentioned here were then incorporated into [MS] and [CMI]. They where also employed in [MS] and [NFS].

It was originally hoped that one could define the core model below virtually any large cardinal - i.e. on the assumption that no inner model with the cardinal exists one could define a unique inner model K satisfying weak covering and generic absoluteness. It was then noticed, however, that if we assume the existence of a Woodin cardinal, then the existence of a definable K with the above properties is provably false. (This is because Woodin's "stationary tower" forching would enable us to change the successor of ω_{ω} while retainig ω_{ω} as a singular cardinal. Hence, by the covering lemma, K would have to change.) This precludes e.g. the existence of a core model below "an inaccessible above a Woodin", bit it does not preclude constructing a core model below one Woodin cardinal. That is, in fact, the main theorem of this book: Assuming that no inner model with a Woodin cardinal exists, we define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
proving the following theorem: Let κ be a measurable cardinal. Assume that V_{κ} has no inner model with a Woodin cardinal. Then there is V-definable inner model K of V_{κ} which, relativized to V_{κ}, has he above two properties. This result, which was exposited in [CMI] was an enormous breakthrough, which laid the foundation for all that has been done in inner model theory since then. There remained, however, the pesky problem of doing without the measurable - i.e. constructing K and proving its properties assuming only "ZFC + there is no inner model with a Woodin". The first step was to construct the model K^{C} from this assumption. This was almost achieved by Mitchell and Schindler in 2001, except that they needed the additional hypothesis: GCH. Steel then showed that this hypothesis was superfluous. These results were obtained by directly weakening the "background condition" originally used by Steel in constructing K^{C}. The result of Mitchell and Schindler were published in [UEM]. Independently, Jensen found a construction of K^{C} using a different background condition called "robustness". This is exposited in [RE]. There reamained the problem of extracting a core model K from K^{C}. Jensen and Steel finally achieved this result in 2007. It was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential to the rest of the book. (We shall, however, deal only with so called "short extenders", whose length is less than or equal to the image of the critical points.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter at κ can be described by a two valued function on $\mathbb{P}(\kappa)$. An extender, on the other hand, is characterized by a map of $\mathbb{P}(\kappa)$ to $\mathbb{P}(\lambda)$, where $\lambda>\kappa$. λ is then called the length of the extender. Like a normal ultrafilter an extender F induces a canonical elementary embedding of the universe V into an inner model W. We express this in symbols by: $\pi: V \rightarrow_{F} W . W$ is then called the ultrapower of V by F and π is called the canonical embedding induced by F. The pair $\langle W, \pi\rangle$ is called the extension of V by F. We will always have: $\lambda \leq \pi(\kappa)$. However, just as with ultrafilters, we shall also want to apply extenders to transitive models M which may be smaller than V. F might then not be an element of M. Moreover $\mathbb{P}(\kappa)$ might not be a subset of M, in which case F is defined on the smaller set $U=\mathbb{P}(\kappa) \cap M$. Thus we must generalize the notion of extenders, countenancing "suitable" subsets of $\mathbb{P}(\kappa)$ as extenders domain. (However, the ultrapower of M by F may not exist.)

We first define:
Definition 3.2.1. S is a base for κ iff S is transitive and $\langle S, \epsilon\rangle$ models:

$$
\mathrm{ZFC}^{-}+\kappa \text { is the largest cardinal. }
$$

By a suitable subset of $\mathbb{P}(\kappa)$ we mean $\mathbb{P}(\kappa) \cap S$, where S is a base for κ.

We note:
Lemma 3.2.1. Let S be a base for κ. Then S is uniquely determined by $\mathbb{P}(\kappa) \cap S$.

Proof: For $a, e \in \mathbb{P}(\kappa) \cap S$ set:
$u(a, e) \simeq$: that transitive U such that
$\langle u, \in\rangle$ is isomorphic to $\langle a, \tilde{e}\rangle$,
where $\tilde{e}=\{\langle\nu, \tau\rangle \mid \prec \nu, \tau \succ \in e\}$.

Claim $S=$ the union of all $u(a, e)$ such that $a, e \in \mathbb{P}(\kappa) \cap S$ and $u(a, e)$ is defined.

Proof: To prove (\subset), note that if $u \in S$ is transitive, then there exist $\alpha \leq \kappa, f \in S$ such that $f: \alpha \leftrightarrow u$. Hence $u=u(\alpha, e)$ where $e=\{\prec \nu, \tau \succ<$ $f(\nu) \in f(\tau)\}$. Conversely, if $u=u(a, e)$ and $a, e \in \mathbb{P}(\kappa) \cap S$, then $u \in S$, since the isomorphism can be constructed in S.

QED (Lemma 3.2.1)
Definition 3.2.2. An ordinal λ is called Gödel closed iff it is closed under Gödel's pair function \prec, \succ as defined in §2.4. (It follows that λ is closed under Gödel n-tuples $\prec x_{1}, \ldots, x_{n} \succ$.)

We now define
Definition 3.2.3. Let S be a base for κ. Let λ be Gödel closed. F s an extender at κ with length λ, base S and domain $\mathbb{P}(\kappa) \cap S$ iff the following hold:

- F is a function defined on $\mathbb{P}(\kappa) \cap S$
- There exists a pair $\left\langle S^{\prime}, \pi\right\rangle$ such that
(a) $\pi: S \prec S^{\prime}$ where S^{\prime} is transitive
(b) $\kappa=\operatorname{crit}(\pi), \pi(\kappa) \geq \lambda>\kappa$
(c) Every element of S^{\prime} has the form $\pi(f)(\alpha)$ where $\alpha<\lambda$ and $f \in S$ is a function defined on κ.
(d) $F(X)=\pi(X) \cap \lambda$ for $x \in \mathbb{P}(\kappa) \cap S$.

Note If F is an extender at κ, then κ is its critical point in the sense that $F \upharpoonright \kappa=\operatorname{id}, F(\kappa)$ is defined, and $\kappa<F(\kappa)$. Thus we set: $\operatorname{crit}(F)=: \kappa$.

Note (c) can be equivalenly replaced by:

$$
\pi: S \prec S^{\prime} \text { cofinally. }
$$

We leave this to the reader.
Note $\mathbb{P}(\kappa) \cap S \subset S^{\prime}$ since $X=\pi(X) \cap \kappa \in S^{\prime}$. But the proof of Lemma 3.2.1 then shows that $S \subset S^{\prime}$. (We leave this to the reader.)

Note As an immediate consequence of this definition we get a form of $£ o z$ Theorem for the base:

$$
\begin{aligned}
S^{\prime}= & \varphi\left[\pi\left(f_{1}\right)\left(\alpha_{1}\right), \ldots,\left(f_{n}\right)\left(\alpha_{n}\right)\right] \leftrightarrow \\
& \prec \vec{\alpha} \succ \in F\left(\left\{\langle\vec{\xi}\rangle \mid S \models \varphi\left[f_{1}\left(\xi_{1}\right), \ldots, f_{n}\left(\xi_{n}\right)\right]\right\}\right)
\end{aligned}
$$

where $\alpha_{1}, \ldots, \alpha_{n}<\lambda$ and $f_{i} \in S$ is a function defined on κ for $i=1, \ldots, n$.
Note $\left\langle S^{\prime}, \pi\right\rangle$ is uniquely determined by F since if $\langle\tilde{S}, \tilde{\pi}\rangle$ were a second such pair, we would have:

$$
\begin{aligned}
\pi(f)(\alpha) \in \pi(g)(\beta) & \leftrightarrow \prec \alpha, \beta \succ \in F(\{\prec \xi, \delta \succ \mid f(\xi) \in g(\xi)\}) \\
& \leftrightarrow \tilde{\pi}(f)(\alpha) \in \tilde{\pi}(g)(\beta)
\end{aligned}
$$

Thus there is an isomorphism $i: S^{\prime} \tilde{\leftrightarrow} \tilde{S}$ defined by $i(\pi(f)(\alpha))=\tilde{\pi}(f)(\alpha)$. Since S^{\prime}, \tilde{S} are transitive, we conclude that $i=i d, S^{\prime}=\tilde{S}$.

But then we can define:

Definition 3.2.4. Let S, F, S^{\prime}, π be as above. We call $\left\langle S^{\prime}, \pi\right\rangle$ the extension of S by F (in symbols: $\pi: S \rightarrow_{F} S^{\prime}$).

Note It is easily seen that:

- S^{\prime} is a base for $\pi(\kappa)$
- The embedding $\pi: S \rightarrow S^{\prime}$ is cofinal (since $\left.\pi(f)(\alpha) \in \pi(\operatorname{rng}(f))\right)$.

Note The concept of extender was first introduced by Bill Mitchell. He regarded it as a sequence of ultrafilters (or measures) $\left\langle F_{\alpha} \mid \alpha<\lambda\right\rangle$, where $F_{\alpha}=\{X \mid \alpha \in F(X)\}$. For this reason he called it a hypermeasure. We shall retain this name and call $\left\langle F_{\alpha} \mid \alpha<\lambda\right\rangle$ the hypermeasure representation of F. We can recover F by: $F(X)=\left\{\alpha \mid X \in F_{\alpha}\right\}$.

Definition 3.2.5. We call an extender F on κ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$ full iff $\pi(\kappa)$ is the length of F.

In later sections we shall work almost entirely with full extenders. We leave it to the reader to show that if S is a ZFC $^{-}$model with largest cardinal κ and $\pi: S \prec S^{\prime}$ cofinally. Then $\pi \upharpoonright \mathbb{P}(\kappa)$ is a full extender with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$.

Lemma 3.2.2. Let F be an extender with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$. Then:
(a) $\left\langle S^{\prime}, \pi\right\rangle$ is amenable
(b) If F is full, then $\left\langle S^{\prime}, F\right\rangle$ is amenable.

Proof: (b) follows from (a), since then:

$$
F \cap u=\{\langle Y, X\rangle \in \pi \cap u \mid X \subset \kappa \wedge Y \subset \lambda\} .
$$

We prove (a). Since π takes S to S^{\prime} cofinally, it suffices to show: $\pi \cap \pi(u) \in S^{\prime}$ for $u \in S$. We can assume w.l.o.g. that u is transitive and non empty. If $\langle\pi(X), X\rangle \in \pi \cap \pi(u)$, then $\pi(X) \in \pi(u)$ by transitivity, hence $X \in u$. Thus $\pi \cap \pi(u)=(\pi \upharpoonright u) \cap \pi(u)$ and it suffices to show:

Claim $\pi \upharpoonright u \in S^{\prime}$.
Let $f=\langle f(i) \mid(i)<\kappa\rangle$ enumerate u. Then $\pi \upharpoonright u=\{\langle\pi(f)(i), f(i)\rangle \mid i<\kappa\}$.
QED (Lemma 3.2.2)
Definition 3.2.6. Let F be an extender at κ with base S, length λ, and extension $\left\langle S^{\prime}, \pi\right\rangle$. The expansion of F is the function F^{*} on $\bigcup_{n<\omega} \mathbb{P}\left(\kappa^{n}\right) \cap S$ defined by:

$$
F^{*}(X)=\pi(X) \cap \lambda^{n} \text { for } X \in \mathbb{P}\left(\kappa^{n}\right) \cap S .
$$

We also expand the hypermeasure by setting:

$$
F_{\alpha_{1}, \ldots, \alpha_{n}}^{*}=\left\{X \mid\langle\vec{\alpha}\rangle \in F^{*}(X)\right\}
$$

for $\alpha_{1}, \ldots, \alpha_{n}<\lambda$. By an abuse of notation we shall usually not distinguish between F and F^{*}, writing $F(X)$ for $F^{*}(X)$ and $F_{\vec{\alpha}}$ for $F_{\vec{\alpha}}^{*}$.

Using this notation we get another version of Łos Lemma:

$$
\begin{aligned}
S^{\prime} \models & \varphi\left[\pi\left(f_{1}\right)(\vec{\alpha}), \ldots, \pi\left(f_{n}\right)(\vec{\alpha})\right] \leftrightarrow \\
& \left\{\langle\vec{\xi}\rangle \mid S \models \varphi\left[f_{1}(\vec{\xi}), \ldots, f_{n}(\vec{\xi})\right]\right\} \in F_{\vec{\alpha}}
\end{aligned}
$$

for $\alpha_{1}, \ldots, \alpha_{m}<\lambda$ and $f_{i} \in M$ a function with domain k^{m} for $i=1, \ldots, n$.
Note Most authors permit extenders to have length which are not Gödel closed. We chose not to for a very technical reason: If λ is not Gödel closed, the expanded extender F^{*} is not necessarily determined by $F=F^{*} \upharpoonright \mathbb{P}(\kappa)$.

Hence if we drop the requirement of Gödel completeness, we must work with expanded extenders from the beginning. We shall, in fact, have little reason to consider extenders whose length is not Gödel closed, but for the sake of completeness we give the general definition:

Definition 3.2.7. Let S be a base for κ. Let $\lambda>\kappa$. F is an expanded extender at κ with base S, length λ, and extension $\left\langle S^{\prime}, \pi\right\rangle$ iff the following hold:

- F is a function defined on $\bigcup_{n<\omega} \mathbb{P}\left(\kappa^{n}\right) \cap S$
- $\pi: S \prec S^{\prime}$ where S^{\prime} is transitive
- $\kappa=\operatorname{crit}(\pi), \pi(\kappa) \geq \lambda$
- Every element of S^{\prime} has the form $\pi(f)\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}<$ λ and $f \in S$ is a function defined on κ^{n}
- $F(X)=\pi(X) \cap \kappa^{n}$ for $X \in \mathbb{P}\left(\kappa^{n}\right) \cap S$.

This makes sense for any $\lambda>\kappa$. If, indeed, λ is Gödel closed and F is an extender of length λ as defined previously, then F^{*} is the unique expanded extender with $F=F^{*} \upharpoonright \mathbb{P}(\kappa)$.

Definition 3.2.8. Let F be an extender at κ of length λ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle . X \subset \lambda$ is a set of generators for F iff every $\beta<\lambda$ has the form $\beta=\pi(f)(\vec{\alpha})$ where $\alpha_{1}, \ldots, \alpha_{n} \in X$ and $f \in S$.

If X is a set of generators, then every $x \in S^{\prime}$ will have the form $\pi(f)(\vec{\alpha})$ where $\alpha_{1}, \ldots, \alpha_{n} \in X$ and $f \in S$. Thus only the generators are relevant. In some cases $\{\kappa\}$ will be a set of generators. (This will happen for instance if λ is the first admissible above κ or if $\lambda=\kappa+1+F$ is the expanded extender.) This means that every element of S^{\prime} has the form $\pi(f)(\kappa)$ and that:

$$
S^{\prime} \models \varphi[\pi(\vec{f})(\kappa)] \leftrightarrow\{\xi \mid S \models \varphi[\vec{f}(\xi)]\} \in F_{\kappa} .
$$

Thus, in this case, S^{\prime} is the ultrapower of S by the normal ultrafilter F_{κ}.
In $\S 2.7$ we used a "term model" construction to analyze the conditions under which the liftup of a given embedding exists. This construction emulated the well known construction of the ultrapower by a normal ultrafilter. We could use a similar construction to determine wheter a given F is, in fact, an extender with base S - i.e. whether the extension $\left\langle S^{\prime}, \pi\right\rangle$ by F exists. However, the only existence theorem for extenders which we shall actually need is:

Lemma 3.2.3. Let S be a base for κ. Let $\pi^{*}: S \prec S^{*}$ such that $\kappa=\operatorname{crit}\left(\pi^{*}\right)$ and $\kappa<\lambda \leq \pi^{*}(\kappa)$ where λ is Gödel closed. Set

$$
F(X)=: \pi^{*}(X) \cap \lambda \text { for } X \in \mathbb{P}(\kappa) \cap S
$$

Then
(a) F is an extender of length λ.
(b) Let $\left\langle S^{\prime}, \pi\right\rangle$ be the extension by F. Then there is a unique $\sigma: S^{\prime} \prec S^{*}$ such that $\sigma \pi=\pi^{*}$ and $\pi \upharpoonright \lambda=\mathrm{id}$.

Proof: We first prove (a). Let Z be the set of $\pi^{*}(f)(\alpha)$ such that $\alpha<\lambda$ and $f \in S$ is a function on κ.
(1) $Z \prec S^{*}$

Proof: Let $S^{*} \models \bigvee v \varphi[\vec{x}]$ where $x_{1}, \ldots, x_{n} \in Z$. We must show:
Claim $V y \in Z S^{*}=\varphi[y, \vec{x}]$.
We know that there are functions $f_{i} \in S$ and $\alpha_{i}<X$ such that $x_{i}=$ $\pi^{*}\left(f_{i}\right)\left(\alpha_{i}\right)$ for $i=1, \ldots, n$. By replacement there is a $g \in S$ such that $\operatorname{dom}(g)=\kappa$ and in S :

$$
\begin{aligned}
\bigwedge_{\xi_{1} \ldots \xi_{n}}<\kappa \quad & \left(\bigvee y \varphi\left(y, f_{1}\left(\xi_{1}\right), \ldots, f_{n}\left(\xi_{n}\right)\right) \rightarrow\right. \\
& \left.\varphi\left(g\left(\prec \xi_{1}, \ldots, \xi_{n} \succ, f_{1}\left(\xi_{1}\right), \ldots, f_{n}\left(\xi_{n}\right)\right)\right)\right) .
\end{aligned}
$$

But then the corresponding statement holds of $\pi^{*}(\kappa), \pi^{*}(g), \pi^{*}\left(f_{1}\right), \ldots, \pi^{*}\left(f_{n}\right)$ in S^{*}. Hence, setting $\beta=\prec \alpha_{1}, \ldots, \alpha_{n} \succ$ we have:

$$
S^{*} \models \varphi\left[\pi^{*}(g)(\beta), \pi^{*}\left(f_{1}\right)\left(\alpha_{1}\right), \ldots, \pi^{*}\left(f_{n}\right)\left(\alpha_{n}\right)\right] .
$$

Now let $\sigma: S^{\prime} \underset{\leftrightarrow}{\leftrightarrow} Z$ where S^{\prime} is transitive. Set: $\pi=\sigma^{-1} \pi^{*}$. Then $S \prec S^{\prime}$. $\sigma: S^{\prime} \prec S^{*}$, and $\sigma(\pi(f)(\alpha))=\pi^{*}(f)(\alpha)$ for $\alpha<\lambda$. It follows easily that F is an extender and $\left\langle S^{\prime}, \pi\right\rangle$ is the extension by F.

This proves (a). It also proves the existence part of (b), since $\sigma \upharpoonright \lambda=\mathrm{id}$ and $\sigma \pi=\pi^{*}$. But if σ^{\prime} also has the properties, then $\sigma^{\prime}(\pi(f)(\alpha))=\pi^{*}(f)(\alpha)=$ $\sigma(\pi(f)(\alpha))$. Then $\sigma^{\prime}=\sigma$ and σ is unique.

QED (Lemma 3.2.3)
Definition 3.2.9. Let F be an extender at κ with extension $\left\langle S^{\prime}, \pi\right\rangle$. Let $\kappa<\lambda \leq \pi(\kappa)$ where λ is Gödel closed. $F \mid \lambda$ is the function F^{\prime} defined by: $\operatorname{dom}\left(F^{\prime}\right)=\operatorname{dom}(F)$ and

$$
F^{\prime}(X)=\pi(X) \cap \lambda \text { for } X \in \operatorname{dom}(F) .
$$

It follows immediately from Lemma 3.2.3 that $F \mid \lambda$ is an extender at κ with length λ.

The main use of an extender F with base S is to embed a larger model M with $\mathbb{P}(\kappa) \cap M=\mathbb{P}(\kappa) \cap S \in M$ into another transitive model M^{\prime}, which we then call the ultrapower of M by F. Ther is a wide class of models to which F can be so applied, but we shall confine ourselves to J-models.

Definition 3.2.10. Let M be a J-model. F is an extender at κ on M iff F is an extender with base S and $\mathbb{P}(\kappa) \cap M=\mathbb{P}(\kappa) \cap S \in M$, where κ is the largest cardinal in S. (In other words $S=H_{\tau}^{M} \in M$ were $\tau=\kappa^{+}$.)

Making use of the notion of liftups developed in $\S 2.7 .1$ we define:
Definition 3.2.11. Let F be an extender at κ on M. Let $H=H_{\tau}^{M}$ be the base of F and let $\left\langle H^{\prime}, \pi^{\prime}\right\rangle$ be the extension of H by F. We call $\langle N, \pi\rangle$ the extension of M by F (in symbols $\pi: M \rightarrow_{F} N$) iff $\langle N, \pi\rangle$ is the liftup of $\left\langle M, \pi^{\prime}\right\rangle$.

We then call N the ultrapower of M by F. We call π the canonical embedding given by F.

Note that π is Σ_{0} preserving but not necessarily elementary.
Lemma 3.2.4. Let F be an extender at κ on M of length λ. Let $\langle N, \pi\rangle$ be the extension of M by F. Then every element of N has the form $\pi(f)(\alpha)$ where $\alpha<\lambda$ and $f \in M$ is a function with domain κ.

Proof: Let $H=H_{\tau}^{M}$ and let $\left\langle H^{\prime}, \pi^{\prime}\right\rangle$ be the extension of H by F, where $\tau=\tau^{+M}$. Each $x \in N$ has the form $x=\pi(f)(z)$, where $f \in M$ is a function,
$\operatorname{dom}(f) \in H$ and $z \in \pi(\operatorname{dom}(f))$. But then $z=\pi(g)(\alpha)$ where $\alpha<\lambda, g \in H$ and $\operatorname{dom}(g)=\kappa$. We may assume w.l.o.g. that $\operatorname{rng}(g) \subset \operatorname{dom}(f)$. (Otherwise redefine g slightly.) Thus $x=\pi(f \circ g)(\alpha)$. QED (Lemma 3.2.4)

Using the expanded extenders we then get Łos Theorem in the form:
Lemma 3.2.5. Let M, F, λ, N, π be as above. Let $\alpha_{1}, \ldots, \alpha_{n}<\lambda$ and let $f_{i} \in M$ be such that $f_{i}: \kappa^{m} \rightarrow M$ for $i=1, \ldots, n$. Let φ be Σ_{0}. Then

$$
N \models \varphi\left[\pi(\vec{f}(\vec{\alpha})] \leftrightarrow\{\langle\vec{\xi}\rangle \mid M \models \varphi[\vec{f}(\vec{\xi})]\} \in F_{\vec{\alpha}} .\right.
$$

Proof: As in $\S 2.7 .1$ we set:

$$
\begin{aligned}
\Gamma^{0}= & \Gamma^{0}(\tau, M)=\text { the set of } f \in M \text { such that } \\
& f \text { is a function and } \operatorname{dom}(f) \in H_{\tau}^{M} .
\end{aligned}
$$

Then $f_{i} \in \Gamma^{0}, \operatorname{dom}\left(f_{i}\right)=\kappa^{m}$. By Łos Theorem for liftups we get:

$$
N \models \varphi[\pi(\vec{f})(\vec{\alpha})] \leftrightarrow\langle\vec{\alpha}\rangle \in \pi(e) \cap \lambda^{m}=F(e)
$$

where

$$
e=\{\langle\vec{\xi}\rangle \mid M \models \varphi[\vec{f}(\vec{\xi})]\} .
$$

QED (Lemma 3.2.5)
The following lema is often useful:
Lemma 3.2.6. Let F, κ, M, π be as above. Let τ be regular in M such that $\tau \neq \kappa$. Then $\pi(\tau)=\sup \pi^{\prime \prime} \tau$.

Proof: If $\tau<\kappa$ this is trivial. Now let $\tau>\kappa$. Let $\xi=\pi(f)(\alpha)<\pi(\tau)$, where $\alpha<\lambda$. Set $\beta=\sup f^{\prime \prime} \kappa$. Then $\beta<\tau$ by regularity. Hence:

$$
\xi=\pi(f)(\alpha) \leq \sup \pi(f)^{\prime \prime} \pi(\kappa) \neq \pi(\beta)<\pi(\tau)
$$

QED (Lemma 3.2.6)
The following lemma is often useful:
Lemma 3.2.7. Let F, κ, M, π be as above. Let τ be regular in M such that $\tau \neq \kappa$. Then $\pi(\tau)=\sup \pi^{\prime \prime} \tau$.

Proof: If $\tau<\kappa$ this is trivial. Now let $\tau>\lambda$. Set $\beta=\sup f^{\prime \prime} \kappa$. Then $\beta<\tau$ by regularity. Hence:

$$
\begin{equation*}
\xi=\pi(f)(\alpha) \leq \sup \pi(f)^{\prime \prime} \pi(\kappa)=\pi(\beta)<\pi(\tau) \tag{3.2.7}
\end{equation*}
$$

3.2.1 Extendability

Definition 3.2.12. Let F be an extender at κ on $M . M$ is extendible by F iff the extension $\langle N, \pi\rangle$ of M by F exists.
(Note This requires that N be a transitive model.)
$\langle N, \pi\rangle$, if it exists, is the liftup of $\left\langle M, \pi^{\prime}\right\rangle$ where $H=H_{\tau}^{M}, \tau=k^{+M}$ and $\left\langle H^{\prime}, \pi^{\prime}\right\rangle$ is the extension of its base H by F. In $\S 2.7 .1$ we formed a term model \mathbb{D} in order to investigate when this liftup exists. The points of \mathbb{D} consisted of packs $\langle f, z\rangle$ where

$$
f \in \Gamma^{0}(\tau, M):=\text { the set of functions } f \in M \text { such that } \operatorname{dom}(f) \in H .
$$

The equality and set membership relation where defined by

$$
\begin{aligned}
& \langle f, z\rangle \simeq\langle g, w\rangle \leftrightarrow:\langle z, w\rangle \in \pi^{\prime}(\{\langle x, y\rangle \mid f(x)=g(y)\}) \\
& \langle f, z\rangle \tilde{\in}\langle g, w\rangle \leftrightarrow:\langle z, w\rangle \in \pi^{\prime}(\{\langle x, y\rangle \mid f(x)=g(y)\})
\end{aligned}
$$

Now set:
Definition 3.2.13. $\Gamma_{*}^{0}=\Gamma_{*}^{0}(\kappa, M)=:\left\{f \in \Gamma^{0} \mid \operatorname{dom}(f)=\kappa\right\}$.
Set $\mathbb{D}^{*}=\mathbb{D}^{*}(\kappa, M)=$: the restriction of \mathbb{D} to terms $\langle t, \alpha\rangle$ sucht that $t \in \Gamma_{*}^{0}$ and $\alpha<\lambda$. The proof of Lemma 3.2.4 implicitely contains a basely disguised proof that:

$$
\bigwedge x \in \mathbb{D} \bigvee y \in \mathbb{D}^{*} x \simeq y
$$

The set membership relation of \mathbb{D}^{*} is:

$$
\left.\langle f, \alpha\rangle \in^{*}\langle g, \beta\rangle \leftrightarrow \prec \alpha, \beta \succ \in \pi^{\prime}(\{\xi, \zeta\} \mid f(\xi) \in g(\zeta)\}\right) .
$$

In §2.7.1. we used the term model to show that the liftup $\langle N, \pi\rangle$ exists if and only if $\tilde{\in}$ is well founded. In this case \mathbb{D}^{*} contains all the points of interest, so we may conclude:

Lemma 3.2.8. M is extendible iff $\epsilon^{\prime} *$ is well founded.

Note In the future, when dealing with extenders, we shall often fail to distinguish notationally between $\Gamma_{*}^{0}, \mathbb{D}^{*}, \epsilon^{*}$ and $\Gamma^{0}, \mathbb{D}, \tilde{\epsilon}$.

Using this principle we develop a further criterion of extendability. We define:
Definition 3.2.14. Let \bar{F} be an extender on \bar{M} at $\bar{\kappa}$ of length $\bar{\lambda}$. Let F be an extender on M at κ of length λ.

$$
\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle
$$

means:
(a) $\pi: \bar{M} \rightarrow_{0} M$ and $\pi(\bar{\kappa})=\kappa$
(b) $g: \bar{\lambda} \rightarrow \lambda$
(c) Let $\bar{X} \subset \bar{\kappa}, \pi(\bar{X})=X, \alpha_{1}, \ldots, \alpha_{n}<\bar{\lambda}$. Let $\varrho_{i}=g\left(\alpha_{i}\right)$ for $i=$ $1, \ldots, n$. Then

$$
\prec \vec{\alpha} \succ \in \bar{F}(\bar{X}) \leftrightarrow \prec \vec{\beta} \succ \in F(X) .
$$

Lemma 3.2.9. Let $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\rangle M, F\rangle$, where M is extendible by F. Then \bar{M} is extendible by \bar{F}. Moreover, if $\langle N, \sigma\rangle,\langle\bar{N}, \bar{\sigma}\rangle$ are the extensions of M, N respectively, then there is a unique π^{\prime} such that

$$
\pi^{\prime}: \bar{N} \rightarrow_{\Sigma_{0}} N, \pi^{\prime} \bar{\sigma}=\sigma \pi, \text { and } \pi^{\prime} \upharpoonright \bar{\lambda}=g .
$$

π^{\prime} is defined by:

$$
\pi^{\prime}(\bar{\sigma}(f)(\bar{\alpha}))=\sigma \pi(f)(g(\alpha))
$$

for $f \in \Gamma^{0}$ and $\alpha<\bar{\lambda}$.

Proof: We first show that \bar{M} is extendible by \bar{F}. Let $\sigma: M \rightarrow_{F} N$. The relation $\tilde{\epsilon}$ on the term model $\overline{\mathbb{D}}=\mathbb{D}(\bar{\kappa}, \bar{M})$ is well founded, since:

$$
\begin{aligned}
\langle f, \alpha\rangle \tilde{E}\langle h, \beta\rangle & \leftrightarrow \prec \alpha, \beta \succ \in \bar{F}(\{\prec \xi, \zeta \succ \mid f(\xi) \in h(\zeta)\}) \\
& \leftrightarrow \prec g(\alpha), g(\beta) \succ \in F(\{\prec \xi, \zeta \succ \mid \pi(f)(\xi) \in \pi(h)(\zeta)\}) \\
& \leftrightarrow \sigma \pi(f)(g(\alpha)) \in \sigma \pi(h)(g(\beta))
\end{aligned}
$$

Now let $\bar{\sigma}: \bar{M} \rightarrow \bar{N}$. Let φ be a Σ_{0} formula.
Then:

$$
\begin{aligned}
\bar{N} & \models \varphi\left[\bar{\sigma}\left(f_{1}\right)\left(\alpha_{1}\right), \ldots, \bar{\sigma}\left(f_{n}\right)\left(\alpha_{n}\right)\right] \\
& \leftrightarrow \prec \vec{\alpha} \succ \in \bar{F}(\{\prec \vec{\xi} \succ \mid \bar{M} \models \varphi[\vec{f}(\vec{\xi})]\}) \\
& \leftrightarrow \prec g(\vec{\alpha}) \in F(\{\vec{\xi} \mid M \models \varphi[\pi(\vec{f})(\vec{\xi})]\}) \\
& \leftrightarrow N \models \varphi\left[\sigma \pi\left(f_{1}\right)\left(g\left(\alpha_{1}\right)\right), \ldots, \sigma \pi\left(f_{n}\right)\left(\alpha_{n}\right)\right] .
\end{aligned}
$$

Hence there is $\pi^{\prime}: \bar{N} \rightarrow_{\Sigma_{0}} N$ defined by:

$$
\pi^{\prime}(\bar{\sigma}(f)(\alpha))=\sigma \pi(f)(g(\alpha)) .
$$

But any π^{\prime} fulfilling the above conditions will satisfy this definition.
QED (Lemma 3.2.9)

3.2.2 Fine Structural Extensions

These lemmas show that N is the ultrapower of M in the usual sense. However, the canonical embedding can only be shown to be Σ_{0}-preserving. If, however, M is acceptable and $\kappa<\varrho_{M}^{n}$, the methods of $\S 2.7 .8$ suggest another tpe of ultrapower with a $\Sigma_{0}^{(n)}$-preserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F be an extender at κ on M. Let $H=H_{\tau}^{M}$ be the base of F and let $\left\langle H^{\prime}, \pi^{\prime}\right\rangle$ be the extension of H by F. Let $\varrho_{M}^{n}>\kappa$ (hence $\varrho_{M}^{n} \geq \tau$). We call $\langle N, \pi\rangle$ the $\Sigma_{0}^{(n)}$-extension of M by F (in symbols: $\pi: M \rightarrow_{F}^{(n)} N$) iff $\langle N, \pi\rangle$ is the $\Sigma_{0}^{(n)}$ liftup of $\left\langle M, \pi^{\prime}\right\rangle$.

The extension we originally defined is then the Σ_{0} ultrapower (or $\Sigma_{0}^{(0)}$ ultrapower). The $\Sigma_{0}^{(n)}$ analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained by a virtual repetition of our proofs, which we leave to the reader.

Letting $\Gamma^{n}=\Gamma^{n}(\tau, M)$ be defined as in $\S 2.7 .2$ we get the analogue of Lemma 3.2.4.

Lemma 3.2.10. Let F be an extender at κ on M of length λ. Let $\varrho_{M}^{n}>\kappa$ and let $\langle N, \pi\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by F. Then every element of N has the form $\pi(f)(\alpha)$ where $\alpha<\lambda$ and $f \in \Gamma^{n}$ such that $\operatorname{dom}(f)=\kappa$.

Lemma 3.2.11. Let M, F, λ, N, π be as above. Let $\alpha_{1}, \ldots, \alpha_{m}<\lambda$ and let $f_{i} \in \Gamma^{n}$ such that $\operatorname{dom}\left(f_{i}\right)=\kappa^{m}$ for $i=1, \ldots, p$. Let φ be a $\Sigma_{0}^{(n)}$ formula. Then:

$$
N \models \varphi[\pi(\vec{f})(\vec{\alpha})] \leftrightarrow\{\langle\vec{\xi}\rangle \mid M \models \varphi[\vec{f}(\vec{\xi})]\} \in F_{\vec{\alpha}} .
$$

Note We remind the reader that an element f of Γ^{n} is not, in general, an element of M. The meaning of $\pi(f)$ is explained in $\S 2.7 .2$.

Using Lemma 2.7.22 we get:
Lemma 3.2.12. Let $\pi^{*}: M \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ where $\kappa=\operatorname{crit}\left(\pi^{*}\right)$ and $\pi^{*}(\kappa) \geq \lambda$, where λ is Gödel closed. Assume: $\mathbb{P}(\kappa) \cap M \in M$. Set:

$$
F(X)=: \pi^{*}(X) \cap \lambda \text { for } X \in \mathbb{P}(\kappa) \cap M
$$

Then:
(a) F is an extender at κ of length λ on M.
(b) The $\Sigma_{0}^{(n)}$ extension $\left\langle M^{\prime}, \pi\right\rangle$ of M by F exists.
(c) There is a unique $\sigma: M^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\sigma^{\prime} \upharpoonright \lambda=\mathrm{id}$ and $\sigma \pi=\pi^{*}$.

Proof: Let $H=H_{\tau}^{M}, H^{*}=\pi^{*}(H)$. Then H is a base for κ and $\pi^{*} \upharpoonright$ $H: H \prec H^{*}$. Hence by Lemma 3.2.3 F is an extender at κ with base H and extension $\left\langle H^{\prime}, \pi^{\prime}\right\rangle$. Moreover, there is a unique $\sigma^{\prime}: H^{\prime} \prec H^{*}$ such that $\sigma^{\prime} \mid \lambda=$ id and $\sigma^{\prime} \pi^{\prime}=\pi^{*} \upharpoonright H$. But by Lemma 2.7.22 the $\Sigma_{0}^{(n)}$ liftup $\left\langle M^{\prime}, \pi\right\rangle$ of $\left\langle M, \pi^{\prime}\right\rangle$ exists. Moreover, there is a unique $\sigma: M^{\prime} \rightarrow_{\Sigma_{0}^{(n)}} M^{*}$ such that $\sigma \upharpoonright H^{\prime}=\sigma^{\prime}$ and $\sigma \pi^{\prime}=\pi^{*}$. In particular, $\sigma \upharpoonright \lambda=\mathrm{id}$. But σ is then unique with these properties, since if $\tilde{\sigma}$ had them, we would have:

$$
\tilde{\sigma}(\pi(f)(\alpha))=\pi^{*}(f)(\alpha)=\sigma(\pi(f)(\alpha))
$$

for $f \in \Gamma^{n}, \operatorname{dom}(f)=\kappa, \alpha<\lambda$.
QED (Lemma 3.2.12)
By Lemma 2.7.21 we get:
Lemma 3.2.13. Let $\pi: M \longrightarrow{ }_{F}^{(n)} N$. Let $i<n$. Then:
(a) π is $\Sigma_{2}^{(i)}$ preserving.
(b) $\pi\left(\varrho_{M}^{i}\right)=\varrho_{M^{\prime}}^{i}$ if $\varrho_{M}^{i} \in M$.
(c) $\varrho_{M^{\prime}}^{i}=\mathrm{On} \cap M^{\prime}$ if $\varrho_{M}^{i}=\mathrm{On} \cap M$.

The following definition expresses an important property of extenders:
Definition 3.2.16. Let F be an extender at κ of length λ with base S. F is weakly amenable iff whenever $X \in \mathbb{P}\left(\kappa^{2}\right) \cap S$, then $\{\nu<\kappa \mid\langle\nu, \alpha\rangle \in F(X)\} \in$ S for $\alpha<\lambda$.

Lemma 3.2.14. Let F be an extender at κ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$. Then F is weakly amenable iff $\mathbb{P}(\kappa) \cap S^{\prime} \subset S$.

Proof:

(\rightarrow) Let $Y \in \mathbb{P}(\kappa) \cap S^{\prime}, Y=\pi(f)(\alpha), \alpha<\lambda$. Set $X=\left\{\langle\nu, \xi\rangle \in \kappa^{2} \mid \nu \in\right.$ $f(\xi)\}$. Then $\pi(f)(\alpha)=\{\nu<\kappa \mid\langle\nu, \alpha\rangle \in F(X)\} \in S$, since $F(X)=$ $\pi(X) \cap \lambda$.
(\leftarrow) Let $X \in \mathbb{P}\left(\kappa^{2}\right) \cap S, \alpha<\lambda$. Then $\{\nu<\kappa \mid\langle\nu, \alpha\rangle \in \pi(X)\} \in \mathbb{P}(\kappa) \cap S^{\prime} \subset$ S.

Corollary 3.2.15. Let M be acceptable. Let F be a weakly amenable extender at κ on M. Let $\langle N, \pi\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by F. Then $\mathbb{P}(\kappa) \cap N \subset M$.

Proof: Let $H=H_{\tau}^{M}, \tilde{H}=\bigcup_{u \in H} \pi(u), \tilde{\pi}=\pi \upharpoonright H$. Then H is the base for F and $\langle\tilde{H}, \tilde{\pi}\rangle$ is the extension of H by F. Hence $\mathbb{P}(\kappa) \cap \tilde{H} \subset H \subset M$. Hence it suffices to show:
$\operatorname{Claim} \mathbb{P}(\kappa) \cap N \subset \tilde{H}$.

Proof: Since $\pi(\kappa)>\kappa$ is a cardinal in N and N is acceptable, we have:

$$
\mathbb{P}(\kappa) \cap N \subset H_{\pi(\kappa)}^{N}=\pi\left(H_{\kappa}^{M}\right) \in \tilde{H}
$$

QED (Corollary 3.2.15)
Corollary 3.2.16. Let M, F, N, π be as above. Then κ is inaccessible in M (hence in N by Corollary 3.2.15).

Proof:

(1) κ is regular in M.

Proof: If not there is $f \in M$ mapping a $\gamma<\kappa$ cofinally to κ. But then $\pi(f)$ maps γ cofinally to $\pi(\kappa)$. But $\pi(f)(\xi)=\pi(f(\xi))=f(\xi)<\kappa$ for $\xi<\gamma$. Hence $\sup \{\pi(f)(\xi) \mid \xi<\gamma\} \subset \kappa$. Contradiction!
(2) $\kappa \neq \gamma^{+}$in M for $\gamma<\kappa$.

Proof: Suppose not. Then $\pi(\kappa)=\gamma^{+}$in N where $\pi(\kappa)>\kappa$. Hence $\overline{\bar{\kappa}}=\gamma$ in N and N has a new subset of κ. Contradiction!

QED (Corollary 3.2.16)
By Corollary 3.2.15 and Lemma 2.7.22 we get:
Lemma 3.2.17. Let $\pi: M \rightarrow_{F}^{(n)} N$ where F is weakly amenable. Then $\varrho_{N}^{n}=\sup \pi^{\prime \prime} \varrho_{M}^{n}$. (Hence π is $\Sigma_{1}^{(n)}$ preserving.)

With further conditions on F and n we can considerably improve this result. We define:

Definition 3.2.17. Let F be an extender at κ on M of length λ. F is close to M if F is weakly amenable and F_{α} is $\underline{\Sigma}_{1}(M)$ for all $\alpha<\lambda$.

This very important notion is due to John Steel. Using it we get the following remarkable result:
Theorem 3.2.18. Let M be acceptable. Let F be an extender at κ on M which is close to M. Let $n \geq \omega$ be maximal such that $\varrho^{n}>\kappa$ in M. Let $\langle N, \pi\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by F. Then π is Σ^{*} preserving.

Proof: If $n=\omega$ this is immediate, so let $n<\omega$. Then $\varrho^{n+1} \subseteq \kappa<\varrho^{n}$ in M. By the previous lemma π is Σ_{1}-preserving. Hence $\pi(\kappa)$ is regular in N. Set: $H=H_{\kappa}^{M}$. Then $H=H_{\kappa}^{N}$.
(1) Let $D \subset H$ be $\underline{\Sigma}_{1}^{(n)}(N)$. Then D is $\underline{\Sigma}_{1}^{(n)}(M)$.

Proof: Let:

$$
D(z) \leftrightarrow \bigvee x^{n} D^{\prime}\left(x^{n}, z, \pi(f)(\alpha)\right)
$$

where $\alpha<\lambda, f \in \Gamma^{n}$ such that $\operatorname{dom}(f)=\kappa$, and D^{\prime} is $\Sigma_{0}^{(n)}$. Then by Lemma 3.2.14:

$$
\begin{aligned}
D(z) & \leftrightarrow \bigvee u \in H_{M}^{n} \bigvee x \in \pi(u) D^{\prime}(x, z, \pi(f)(\alpha)) \\
& \leftrightarrow \bigvee u \in H_{M}^{n} \alpha \in \pi(e) \\
& \leftrightarrow \bigvee u \in H_{M}^{n} e \in F_{\alpha}
\end{aligned}
$$

where $e=\{\xi \mid \bigvee x \in u \bar{D}(x, z, f(\xi))\}$ where \bar{D} is $\Sigma_{0}^{(n)}(M)$ by the same definition as D^{\prime} over N.

QED (1)

By induction on m we then prove:
(2) (a) $H_{M}^{m}=H_{N}^{m}$
(b) $\Sigma_{-1}^{(m)}(M) \cap \mathbb{P}(H)=\Sigma_{-1}^{(m)}(N) \cap \mathbb{P}(H)$
(c) π is $\Sigma_{1}^{(m)}$-preserving.

Proof:

Case $1 m=n+1$
(a) Let $M=\left\langle J_{\alpha}^{A}, B\right\rangle, N=\left\langle J_{\alpha^{\prime}}^{A^{\prime}}, B^{\prime}\right\rangle$. Then: $H=J_{\kappa}^{A}=J_{\kappa}^{A^{\prime}}$. But

$$
\mathbb{P}(\varrho) \cap M=\mathbb{P}(\varrho) \cap N=\mathbb{P}(\varrho) \cap H \text { for } \varrho \leq \kappa
$$

But then in M and N we have:

$$
\begin{gathered}
\varrho^{m}=\text { the least } \varrho<\kappa \text { such that } D \cap J_{\varrho}^{A} \notin H \text { for } D \in \underline{\Sigma}_{1}^{(n)} \\
\text { and } H^{m}=J_{\varrho^{m} .}^{A} .
\end{gathered}
$$

Hence $\varrho_{M}^{m}=\varrho_{N}^{m}, H_{M}^{m}=H_{N}^{m}$.
QED (a)
(b) Let $\bar{A}\left(\vec{x}^{m}, x^{i_{1}}, \ldots, i_{p}\right)$ be $\Sigma_{1}^{(m)}(M)$, where $i_{1}, \ldots, i_{p} \leq n$. Let A be $\Sigma_{1}^{(m)}(N)$ by the same definition. Then there are $\Sigma_{1}^{(m)}(M)$ relations $\bar{B}^{j}\left(\vec{z}^{m}, \vec{x}\right)(j=1, \ldots, q)$ and a Σ_{1} formula φ such that

$$
\bar{A}\left(\vec{x}^{m}, \vec{x}\right) \leftrightarrow \bar{H}_{\vec{x}}^{m} \models \varphi\left[\vec{x}^{m}\right]
$$

where $\bar{H}_{\vec{x}}^{m}=\left\langle H^{m}, \bar{B}_{\vec{x}}^{1}, \ldots, \bar{B}_{\vec{x}}^{q}\right\rangle$ and

$$
\bar{B}_{\vec{x}}^{j}=\left\{\left\langle\vec{x}^{m}\right\rangle \mid \bar{B}^{j}\left(\vec{z}^{m}, \vec{x}\right)\right\}(j=1, \ldots, q) .
$$

Let $B^{j}\left(z^{m}, \vec{x}\right)$ have the same $\Sigma_{1}^{(n)}$ definition over N. Define $H_{\vec{x}}^{m}$ the same way, using B^{1}, \ldots, B^{q} in place of $\bar{B}^{1}, \ldots, \bar{B}^{q}$. Then

$$
A\left(\vec{x}^{m}, \vec{x}\right) \leftrightarrow H_{\vec{x}}^{m} \models \varphi\left[\vec{x}^{m}\right] .
$$

But $H_{M}^{m}=H_{N}^{m}$. Hence, since π is $\Sigma_{1}^{(n)}$ preserving, we have: $\bar{B}_{\vec{x}}^{j}=$ $B_{\pi(\vec{x})}^{j}$. Hence $\bar{H}_{\vec{x}}^{m}=H_{\pi(\vec{x})}^{m}$. But then:

$$
\begin{aligned}
\bar{A}\left(\vec{x}^{m}, \vec{x}\right) & \leftrightarrow \bar{H}_{\vec{x}}^{m} \models \varphi\left[\vec{x}^{m}\right] \\
& \leftrightarrow H_{\pi(\vec{x})}^{m} \models \varphi\left[\vec{x}^{m}\right] \\
& \leftrightarrow A\left(\vec{x}^{m}, \pi(\vec{x})\right) \\
& \leftrightarrow A\left(\pi\left(\vec{x}^{m}\right), \pi(\vec{x})\right)
\end{aligned}
$$

since $\pi\left(\vec{x}^{m}\right)=\vec{x}^{m}$.
QED (b)
(c) The direction \subset follows straightforwardly from (c). We prove the direction \supset. Let $A \subset H_{N}^{m}$ be $\underline{\Sigma}_{1}^{(m)}(N)$. Then there are $B^{j} \subset H_{N}^{m}(j=$ $1, \ldots, q)$ and a Σ_{1} formula φ such that B^{j} is $\Sigma_{1}^{(n)}(N)$ and

$$
A_{x} \leftrightarrow\left\langle H_{N}^{n}, B^{1}, \ldots, B^{q}\right\rangle \models \varphi[x] .
$$

But $H_{N}^{n}=H_{M}^{n}$ and B^{1}, \ldots, B^{q} are $\underline{\Sigma}_{1}^{(n)}(M)$ by (1). Hence A is $\underline{\Sigma}_{1}^{(m)}(M)$.

QED (Case 1)

Case $2 m=h+1$ where $h>n$.
This is virtually identical to Case 1 except that we use:

$$
\underline{\Sigma}_{1}^{(h)} \cap \mathbb{P}\left(H_{M}^{h}\right)=\underline{\Sigma}_{1}^{(h)} \cap \mathbb{P}\left(H_{N}^{h}\right)
$$

in place of (1).
QED (Theorem 3.2.18)
As a corollary of the proof we have:
Corollary 3.2.19. Let $m>n$ where M, N, n are as in Theorem 3.2.18. Then

- $H_{M}^{m}=H_{N}^{m}$
- $\underline{\Sigma}_{1}^{(m)}(M) \cap \mathbb{P}\left(H_{M}^{m}\right)=\Sigma_{1}^{(m)}(N) \cap \mathbb{P}\left(H_{N}^{m}\right)$.

Theorem 3.2.18 justifies us in defining:
Definition 3.2.18. Let F be an extender at κ on M. Let $n \leq \omega$ be maximal such that $\varrho_{M}^{m}>\kappa$. We call $\langle N, \pi\rangle$ the $\Sigma^{*}-$ extension of M by F (in symbols $\left.\pi: M \rightarrow_{F}^{*} N\right)$ iff F is close to M and $\langle N, \pi\rangle$ is the $\Sigma_{0}^{(n)}$ extension by F.

3.2.3 n-extendibility

Definition 3.2.19. Let F be an extender of length λ at κ on $M . M$ is n-extendible by F iff $\kappa<\varrho_{M}^{n}$ and the $\Sigma_{0}^{(n)}$ extension $\langle N, \pi\rangle$ of M by F exists.
$\langle N, \pi\rangle$, if it exists, is the $\Sigma_{0}^{(n)}$ liftup of $\left\langle M, \pi^{\prime}\right\rangle$ where $H=H_{\tau}^{M}$ is the base of $F, \tau=\kappa^{+M}$, and $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ ist the extension of H by F. To analyse this situation we use the term model $\mathbb{D}=\mathbb{D}^{(n)}\left(\pi^{\prime}, M\right)$ defined in $\S 2.7 .2$. The points of \mathbb{D} are pairs $\langle f, z\rangle$ such that $f \in \Gamma^{n}=\Gamma^{n}(\tau, M)$ as defined in §2.7.2. and $z \in \pi^{\prime}(\operatorname{dom}(f))$. The equality and set membership relation of \mathbb{D} are again defined by:

$$
\begin{aligned}
& \langle f, z\rangle \simeq\langle g, w\rangle \leftrightarrow\langle z, w\rangle \in \pi^{\prime}(\{\langle x, y\rangle \mid f(x)=g(y)\}) \\
& \langle f, z\rangle \tilde{\epsilon}\langle g, w\rangle \leftrightarrow\langle z, w\rangle \in \pi^{\prime}(\{\langle x, y\rangle \mid f(x)=g(y)\})
\end{aligned}
$$

Set: $\Gamma_{*}^{n}=\Gamma_{*}^{n}(\kappa, M)=$: the set of $f \in \Gamma^{n}$ such that $\operatorname{dom}(f)=\kappa$. Let $\mathbb{D}_{*}=\mathbb{D}_{*}^{(n)}(F, M)$ be the restriction of \mathbb{D} to points $\langle f, d\rangle$ such that $f \in \Gamma_{*}^{n}$ and $\alpha<\lambda$. The proof of Lemma 3.2.8 tells us that

$$
\bigwedge x \in \mathbb{D} \bigvee y \in \mathbb{D}_{*} x \simeq y
$$

Hence M is $\Sigma_{0}^{(n)}$ extendable iff the restriction ϵ^{*} of the relation $\tilde{\epsilon}$ to \mathbb{D}_{*} is well founded.

We have:

$$
\langle f, \alpha\rangle \in^{*}\langle g, \beta\rangle \leftrightarrow \prec \alpha, \beta \succ \in F(\{\xi, \zeta \succ \mid f(\xi) \in g(\zeta)\}) .
$$

Note When dealing with extenders, we shall again sometimes fail to distinguish notationally between $\Gamma_{*}^{n}, \mathbb{D}_{*}^{(n)}, \epsilon^{*}$ and $\Gamma^{n}, \mathbb{D}^{(n)}, \tilde{\epsilon}$.

We now prove:

Lemma 3.2.20. Let $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle$, where M is m-extendible by F. Let $n \leq m$ and let π be strictly $\Sigma_{0}^{(n)}$ preserving. Then \bar{M} is n-extendible by \bar{F}. Moreover, if $\langle N, \sigma\rangle$ is the $\Sigma_{0}^{(m)}$ extension of M by F and $\langle\bar{N}, \bar{\sigma}\rangle$ is the $\Sigma_{0}^{(n)}$ extension of \bar{M} by F. There is a unique π^{\prime} such that

$$
\pi^{\prime}: \bar{N} \rightarrow_{\Sigma_{0}^{(n)}} N, \pi^{\prime} \bar{\sigma}=\sigma \bar{\pi}, \pi^{\prime} \mid \bar{\lambda}=g
$$

π^{\prime} is defined by:

$$
\pi^{\prime}(\bar{\sigma}(f)(\alpha))=\sigma \pi(f)(g(\alpha))
$$

for $f \in \Gamma_{*}^{n}(\bar{\kappa}, \bar{M}), \alpha<\bar{\beta}$.

Proof: $\bar{\kappa}<\varrho_{\bar{M}}^{n}$, since otherwise $\kappa \geq \pi\left(\varrho_{\bar{M}}^{n}\right) \geq \varrho_{M}^{n}$, by strictness. Let \in^{*} be the set membership relation of $\overline{\mathbb{D}}_{*}=\overline{\mathbb{D}}_{*}(\bar{F}, \bar{M})$.

Then:

$$
\begin{aligned}
\langle f, \alpha\rangle \in^{*}\langle h, \beta\rangle & \leftrightarrow \prec \alpha, \beta \succ \in \bar{F}(\{\prec \xi, \zeta \succ \mid f(\xi) \in g(\zeta)\}) \\
& \leftrightarrow \prec g(\alpha), g(\beta) \succ \in F(\{\prec \xi, \zeta \succ \mid \pi(f)(\xi) \in \pi(g(\zeta)\}) \\
& \leftrightarrow \sigma \pi(f)(\xi) \in \sigma \pi(h)(\zeta) .
\end{aligned}
$$

Hence there is $\pi^{\prime}: \bar{N} \rightarrow_{\Sigma_{0}^{(n)}} N$ defined by:

$$
\pi^{\prime}(\bar{\sigma}(f)(\alpha))=\sigma \pi(f)(g(\alpha))
$$

But any π^{\prime} fulfilling the above conditions satisfies this definition.
QED (Lemma 3.2.20)
Taking π, g as id, we get:
Corollary 3.2.21. Let M be $\Sigma_{0}^{(m)}$ extendible by F. Let $n \leq m$. Then M is $\Sigma_{0}^{(n)}$ extendible by F. Moreover, if $\sigma: M \rightarrow_{F}^{(m)} N$ and $\bar{\sigma}: M \rightarrow_{F}^{(m)} \bar{N}$, there is $\pi: \bar{N} \rightarrow_{\Sigma_{0}^{(n)}} N$ defined by:

$$
\pi\left(\bar{\sigma}(f)(\alpha)=\sigma(f)(\alpha) \text { for } f \in \Gamma^{n}, \alpha<\lambda\right.
$$

Lemma 3.2.20 is somewhat unsatisfactory, since although we assumed the strictness of the $\Sigma_{0}^{(n)}$ embedding π, we could not conclude that π^{\prime} is strict. Similary, even if we assume that π is fully $\Sigma_{1}^{(n)}$ preserving, we get no corresponding strenghtening of π^{\prime}. We can remedy this situation by strengthening our basic premiss. We define:

Definition 3.2.20. $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{*}\langle M, F\rangle$ iff the following hold:

- $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow\langle M, F\rangle$
- \bar{F}, F are weakly amenable
- Let $\alpha<\bar{\lambda}=$ length (\bar{F}). Then \bar{F}_{α} is $\Sigma_{1}(\bar{M})$ in a parameter \bar{p} and $F_{g(\alpha)}$ is $\Sigma_{1}(M)$ in $p=\pi(\bar{p})$ by the same definition.
(Hence \bar{F} is close to \bar{M}.) Taking $n=M$ in Lemma 3.2.20 we prove:
Lemma 3.2.22. Let $\langle\pi, g\rangle=\langle\bar{M}, \bar{F}\rangle \rightarrow^{*}\langle M, F\rangle$. Let $\sigma: M \rightarrow{ }_{F}^{(n)} N$ where π is $\Sigma_{1}^{(n)}$ preserving. Let $\bar{\sigma}: \bar{M} \rightarrow_{F}^{(n)} \bar{N}, \pi^{\prime}: \bar{N} \rightarrow N$ be given by Lemma 3.2.20. Then π^{\prime} is $\Sigma_{1}^{(n)}$ preserving.

We derive this from a stronger lemma:
Lemma 3.2.23. Let $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{*}\langle M, F\rangle$. Let $n, \bar{N}, N^{-}, \pi^{\prime}$ be as above, where π is $\Sigma_{1}^{(n)}$ preserving. Let $\bar{D}\left(y, x_{1}, \ldots, x_{r}\right)$ be $\Sigma_{1}^{(n)}(\bar{N})$ and $D\left(\vec{y}, x_{1}, \ldots, x_{r}\right)$ be $\Sigma_{1}^{(n)}(N)$ by the same definition. Let $\pi^{\prime}\left(\bar{x}_{i}\right)=x_{i}(i=$ $1, \ldots, r)$. Then

$$
\left\{\langle\vec{y}\rangle \in H_{\bar{\kappa}}^{\bar{M}} \mid D\left(\vec{y}, \bar{x}_{1}, \ldots, \bar{x}_{r}\right)\right\}
$$

is $\Sigma_{1}^{(n)}(\bar{M})$ in a parameter \bar{p}
and:

$$
\left\{\langle\vec{y}\rangle \in H_{\kappa}^{M} \mid D\left(\vec{y}, x_{1}, \ldots, x_{r}\right)\right\}
$$

is $\Sigma_{1}^{(n)}(M)$ in $p=\pi(\bar{p})$ by the same definition.

Before proving Lemma 3.2.23 we show that it implies Lemma 3.2.22. Let $\bar{D}\left(x_{1}, \ldots, x_{r}\right)$ be $\Sigma_{1}^{(n)}(\bar{N})$ and let $D\left(x_{1}, \ldots, x_{r}\right)$ be $\Sigma_{1}^{(n)}(N)$ by the same definition. Set:

$$
D^{\prime}(y, \vec{x}) \leftrightarrow: y=\circ \wedge D(\vec{x}) ; \bar{D}^{\prime}(y, \vec{x}) \leftrightarrow: y=\circ \wedge \bar{D}(\vec{x}) .
$$

Let $\pi^{\prime}\left(\bar{x}_{i}\right)=x_{i}(i=1, \ldots, r)$. Applying Lemma 3.2.23 and the $\Sigma_{1}^{(n)}$ preservation of π we have:

$$
\begin{aligned}
\bar{D}\left(\bar{x}_{1}, \ldots, \bar{x}_{r}\right) & \leftrightarrow \circ \in\left\{y \in H_{\bar{M}}^{\bar{M}} \mid \bar{D}^{\prime}\left(y, \bar{x}_{1}, \ldots, \bar{x}_{r}\right)\right\} \\
& \circ \in\left\{y \in H_{\kappa}^{M} \mid D^{\prime}\left(y, x_{1}, \ldots, x_{r}\right)\right\} \\
& D\left(x_{1}, \ldots, x_{r}\right) .
\end{aligned}
$$

We now prove Lemma 3.2.23. For the sake of simplicity we display the proof for the case $n=1$. Let $\bar{D}(\vec{y}, x)$ be $\Sigma_{1}^{(n)}(\bar{N})$ and $D(\vec{y}, x)$ be $\Sigma_{1}^{(n)}(N)$ by the same definition. We may assume:

$$
\left.\bar{D}(\vec{y}, x) \leftrightarrow \bigvee z^{n} \bar{B}\left(z^{n}, y, x\right), D(\vec{y}, x) \leftrightarrow \bigvee z^{n}, y, x\right)
$$

where \bar{B} is $\Sigma_{0}^{(n)}(\bar{N})$ and B is $\Sigma_{0}^{(n)}(N)$ by the same definition. Let \bar{A} have the same definition over \bar{M} and A the same definition over M. Let $x=\pi^{\prime}(\bar{x})$. Then $\bar{x}=\bar{\sigma}(f)(\alpha)$ for an $f \in \Gamma^{n}$ and $\alpha<\bar{\lambda}$. Hence $x=\sigma \pi(f)(g(\alpha))$. Then for $\vec{y} \in H_{\overline{\bar{K}}}^{\bar{M}}$:

$$
\begin{aligned}
\bar{D}(\vec{y}, \bar{x}) & \leftrightarrow \bigvee z^{n} \bar{B}\left(z^{n}, \vec{y}, \bar{x}\right) \\
& \leftrightarrow \bigvee u \in H_{\bar{M}}^{n} \bigvee z \in \bar{\sigma}(u) \bar{B}\left(z^{n}, \vec{y}, \bar{\sigma} H\right)(\alpha) \\
& \leftrightarrow \bigvee u \in H_{\bar{M}}^{n} \bigvee\left\{\xi<\bar{\kappa} \mid \bigvee z \in u \bar{A}(z, \vec{y}, f(\xi)\} \in \bar{F}_{\alpha} .\right.
\end{aligned}
$$

Similarly for $\vec{y} \in H$ we get:

$$
\bar{D}(\vec{y}, \bar{x}) \leftrightarrow \bigvee u \in H_{M}^{n}\left\{\bigvee z \in u A(z, \vec{y}, \pi(f)(\xi)\} \in F_{g(\alpha)}\right.
$$

\bar{F}_{α} is $\Sigma_{1}(\bar{M})$ in a parameter \bar{p} and $F_{g(\alpha)}$ is $\Sigma_{1}(M)$ in a parameter $p=\pi(\bar{p})$. But by the definition of Γ^{n} we know that there are \bar{q}, q such that either:

$$
f=\bar{q} \in H_{\bar{M}}^{n} \text { and } q=\pi(f)
$$

or:

$$
f(\xi) \simeq \bar{G}(\xi, \bar{q}) \text { where } \bar{G} \text { is a good } \Sigma_{1}^{(i)}(\bar{M}) \text { map }
$$

and:
$\pi(f)(\xi) \simeq G(\xi q)$ where G has the same good definition over M.
Hence:

$$
\left\{\langle\vec{y}\rangle \in H_{\bar{\kappa}}^{\bar{M}} \mid \bar{D}(\vec{y}, \bar{x})\right\}
$$

is $\Sigma_{1}^{(n)}(\bar{M})$ in $\bar{\kappa}, \bar{q}, \bar{p}$ and:

$$
\left\{\langle\vec{y}\rangle H_{\kappa}^{M} \mid D(\vec{y}, x)\right\}
$$

is $\Sigma_{1}^{(m)}(M)$ in κ, q, p by the same definition.
QED (Lemma 3.2.23)

3.2.4 *-extendability

Definition 3.2.21. Let F be an extender of length λ at κ on $M . M$ is *-extendible by F iff F is close to M and M is n-extendible by F, where $n \leq w$ is maximal such that $\kappa<\varrho_{M}^{n}$.
(Hence $\pi: M \rightarrow_{F}^{*} N$ where $\langle N, \pi\rangle$ is the $\Sigma_{0}^{(n)}$-extension.)
Lemma 3.2.24. Assume $\langle\pi, g\rangle:\langle\bar{M}, \bar{F}\rangle \rightarrow^{*}\langle M, F\rangle$ where M is $*$-extendible by F. Assume that π is Σ^{*} preserving. Then \bar{M} is $*-$ extendible by E. Moreover, if $\bar{\sigma}: \bar{M} \rightarrow \frac{*}{F} \bar{N}$ and $\sigma: M \rightarrow_{F}^{*} N$, there is a unique $\pi^{\prime}: \bar{N} \rightarrow_{\Sigma^{*}} N$ such that $\pi^{\prime} \bar{\sigma}=\sigma \pi$ and $\pi^{\prime} \upharpoonright \bar{\lambda}=g$.

Proof: Let n be maximal such that $\kappa<\varrho_{M}^{n}$. Let $\sigma: M \rightarrow_{F}^{(n)} N$. By Lemma 3.2.22 we have $\bar{\kappa}<\varrho_{\bar{M}}^{n}$ and ther is $\bar{\sigma}: \bar{M} \rightarrow \frac{(n)}{\bar{F}} M$. Moreover there is $\pi^{\prime}: \bar{N} \rightarrow_{\Sigma_{1}^{(n)}} N$ such that $\pi^{\prime} \bar{\sigma}=\sigma \pi$ and $\pi^{\prime} \upharpoonright \bar{\lambda}=g$.

Claim $1 n$ is maximal such that $\bar{\kappa}<\varrho_{\bar{M}}^{n}$.
Proof: If not $n<w$ and $\varrho_{M}^{n+1} \leq \kappa<\varrho_{M}^{n}$. Hence

$$
\bigwedge z^{n+1} z^{n+1} \neq \kappa \text { holds in } M .
$$

Thus $\bigwedge z^{n+1} z^{n+1} \neq \bar{\kappa}$ in \bar{M}, since π is $\Sigma_{0}^{(n+1)}$ preserving. Hence $\varrho_{\bar{M}}^{n+1} \leq \bar{\kappa}<\varrho_{M}^{n}$.
(QED Claim 1)

Note In the case $n<w$ we needed only the $\Sigma_{0}^{(n+1)}$ preservation of π to establish Claim 1.

By Claim 1 we then have:

$$
\text { (1) } \pi: \bar{M} \rightarrow_{\bar{F}}^{*} \bar{N} \text {. }
$$

Hence \bar{M} is $*$-extendible by \bar{F}. It remains only to show:

Claim $2 \pi^{\prime}$ is Σ^{*} preserving.
Proof: If $n=w$, ther is nothing to prove, so assume $n<w$. We must show that π^{\prime} is $\Sigma_{0}^{(m)}$ preserving for $n<m<w$. Let $n<m<w$. Since $\sigma: M \rightarrow_{F}^{*} N$, we know that:
(2) $\varrho_{M}^{m}=\varrho_{N}^{m}$ and $\sigma \upharpoonright \varrho_{M}^{m}=\mathrm{id}$.

By Claim 1 an (1) we similarly conclude:
(3) $\varrho_{\bar{M}}^{\frac{m}{M}}=\varrho_{\bar{N}}^{\frac{m}{N}}$ and $\bar{\sigma} \upharpoonright \varrho_{\bar{M}}^{m}=\mathrm{id}$.

Using (2), (3) and Lemma 3.2.23 we can then show:
(4) Let $\bar{D}\left(\vec{y}^{m}, \vec{x}\right)$ be $\Sigma_{j}^{(m)}(\bar{N})$. Let $D\left(\vec{y}^{m}, \vec{x}\right)$ be $\Sigma_{j}^{(m)}(N)$ by the same definition. Let

$$
\pi^{\prime}\left(\bar{x}_{i}\right)=x_{i}(i=1, \ldots, r)
$$

Then:

$$
\bar{D}_{\bar{x}_{1}, \ldots, \bar{x}_{r}}=:\left\{\left\langle\bar{y}_{m}\right\rangle \upharpoonright \bar{D}\left(\vec{y}^{m}, \bar{x}_{1}, \ldots, \bar{x}_{r}\right)\right\}
$$

is $\quad \Sigma_{j}^{(m)}(\bar{M})$ in a parameter \bar{p} and:

$$
D_{x_{1}, \ldots, x_{r}}=:\left\{\left\langle\vec{y}_{m}\right\rangle \mid D\left(\vec{y}_{m}, x_{1}, \ldots, x_{r}\right)\right\}
$$

is $\quad \Sigma_{j}^{(m)}(M)$ in $p=\pi(\bar{p})$ by the same definition.
Proof: By induction on m.
Case $1 m=n+1$
We know:

$$
\bar{D}\left(\vec{y}_{m}, \vec{x}\right) \leftrightarrow \bar{H}_{\vec{x}}^{m} \models \varphi\left[\vec{y}^{m}\right]
$$

where φ is Σ_{j} and

$$
\bar{H}_{\vec{x}}^{m}=\left\langle H \frac{m}{M}, \bar{B}_{\vec{x}}^{1}, \ldots, \bar{B}_{\vec{x}}^{q}\right\rangle
$$

where $\bar{B}_{\vec{x}}^{i}=\left\{\left\langle\vec{z}^{m}\right\rangle \mid \bar{B}^{i}\left(\vec{z}^{m}, x\right)\right\}$ and \bar{B}^{i} is $\Sigma_{1}^{M}(\bar{N})$ for $i=1, \ldots, q$. Since $D\left(y^{m}, \vec{x}\right)$ has the same $\Sigma_{j}^{(m)}$ definition, we can assume

$$
D(\vec{y} m, \vec{x}) \leftrightarrow H_{\vec{x}}^{m} \models \varphi[\vec{y} m]
$$

where:

$$
H_{\vec{x}}^{m}=\left\langle H_{M}^{m}, B_{\vec{x}}^{1}, \ldots, B_{\vec{x}}^{q}\right\rangle
$$

where $B_{\vec{x}}^{i}=\left\{\left\langle z^{m}\right\rangle \mid B^{i}\left(\vec{z}^{m}, x\right)\right\}$ and B^{i} is $\Sigma_{1}^{(n)}(N)$ by the same definition as \bar{B}^{i} over \bar{N}. Letting $\pi^{\prime}\left(\bar{x}_{i}\right)=x_{i}(i=q, \ldots, r)$, we know by Lemma 3.2.23 that each of $\bar{B}_{\bar{x}_{1}, \ldots, \bar{x}_{r}}^{i}$ is $\Sigma_{1}^{(n)}(\bar{M})$ in a parameter \bar{p} and $B_{x_{1}, \ldots, x_{r}}^{i}$ is $\Sigma_{1}^{(n)}(M)$ in $p=\pi(\bar{p})$ by the same definition. (We can without loss of generality assume that \bar{p} is the same for $i=1, \ldots, r$.) But then $\bar{D}_{\bar{x}, \ldots, \bar{x}_{r}}$ is $\Sigma_{j}^{(m)}(\bar{M})$ in \bar{p} and $D_{x_{1}, \ldots, x_{r}}$ is $\Sigma_{j}^{(m)}(M)$ in $p=\pi(p)$ by the same definition.

QED (Case 1)
Case $2 m=h+1$ where $h>n$.
We repeat the same argument using the induction hypothesis in place of Lemma 3.2.23.

QED (4)
But Claim 2 follows easily from Claim 4 and the fact that π is Σ^{*} preserving. Let $\bar{D}(\vec{x})$ be $\Sigma_{0}^{(m)}(\bar{N})$ and $D(\vec{x})$ be $\Sigma_{0}^{(m)}(N)$ by the same definition. Set:

$$
\begin{aligned}
& \bar{D}^{\prime}(y, \vec{x}) \leftrightarrow: y=0 \wedge \bar{D}(\vec{x}) \\
& D^{\prime}(y, \vec{x}) \leftrightarrow: y=0 \wedge D(\vec{x})
\end{aligned}
$$

By (4) we have:

$$
\bar{D}(\vec{x}) \leftrightarrow 0 \in \bar{D}_{\vec{x}} \leftrightarrow 0 \in D_{\pi^{\prime}(\vec{x})} \leftrightarrow D\left(\pi^{\prime}(\vec{x})\right)
$$

for $x_{1}, \ldots, x_{r} \in \bar{M}$, using the $\Sigma_{0}^{(m)}$ preservation of π and $\pi(0)=0$.
QED (Lemma 3.2.24)
(Note The last past of the proof also shows that π^{\prime} is $\Sigma_{j}^{(m)}$ preserving if π is.)

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of infinity". These are principles which posit the existence of a large set or class, not provable in ZFC. Among these principles are the embedding axioms, which posit the existence of a non trivial elementary embedding of one inner model into another. The best known example of this is the measurability axiom, which posits the existence of a non trivial elementary embedding π of V into an inner model. ("Non trivial" here means simply that $\pi \neq \mathrm{id}$. Hence there is a unique critical point $\kappa=\operatorname{crit}(\pi)$ such that $\pi \upharpoonright \kappa=\mathrm{id}$ and $\pi(\kappa)>\kappa$.) The critical point κ of π is then called a measurable cardinal, since the existence of such an embedding is equivalent to the existence of an ultrafilter (or two valued measure) on κ.

This is a typical example of the recursing case that an axiom positing the existence of a proper class (hence not formulable in ZFC) reduces to a statement about set existence. The weakest embedding axiom posits the existence of a non trivial embedding of L into itself. This is equivalent to the existence of a countable transitive set called $0^{0^{\#}}$, which can be coded by a real number. (There are many representations of $0^{\#}$, but all have the same degree of constructability.) The "small" object 0 \# in fact contains complete information about both the proper class L and an embedding of L into itself. We can then form $L\left(0^{\#}\right)$, the smallest universe containing the set $0^{\#}$. If $L\left(0^{\#}\right)$ is embeddable into itself we get $0^{\# \#}$, which gives complete information about $L\left(0^{\#}\right)$ and its embedding ... etc. This process can be continued very far. Each stage in this progression of embeddings, leading to larger and larger universes, is coded by a specific set, called a mouse. $0^{\#}$ and $0^{\# \#}$ are the first two examples of mice. It is not yet known how far this process goes, but it is conjectured that all stages can be represented by mice, as long as the embeddings are representable by extenders. (Extenders in our sense are also called short extenders, since one must modify the notion in order to go still
further.) The concept of mouse, however hard it is to explicate, will play a central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which takes a set a to $a^{\#}$, since applications of this operation give us the smallest mice $0^{\#}, 0^{\# \#}$, etc.

Let a be a set such that $a \in L[a]$. Suppose moreover that there is an elementary embedding π of $L^{a}=\langle L[a], \in, a\rangle$ into itself such that $a \in L_{\kappa}^{0}$, where $\kappa=\operatorname{crit}(\pi)$. We also assume without loss of generality, that κ is minimal for π with this property. Let $\tau=\kappa^{+L^{a}}$ and $\nu=\sup \pi^{\prime \prime} \tau$. Then $\tilde{\pi}: L_{\tau}^{a} \prec L_{\nu}^{a}$ cofinally, where $\tilde{\pi}=\pi \upharpoonright L_{\tau}^{a}$. Set $F=\pi \upharpoonright \mathbb{P}(\kappa) . F$ is then an extender at κ with base $L_{\tau}[a]$ and extension $\left\langle L_{\nu}[a], \tilde{\pi}\right\rangle$.
$\left\langle L_{\nu}^{a}, F\right\rangle=\left\langle L_{\nu}[a], a, F\right\rangle$ is then amenable by Lemma 3.2.2. It can be shown, moreover, that F is uniquely defined by the above condition. We then define:
Definition 3.3.1. $a^{\#}$ is the structure $\left\langle L_{\nu}[a], a, F\right\rangle$.

Note In the literature $a^{\#}$ has many different representations, all of which have the same constructibility degree as $\left\langle L_{\nu}[a], a, F\right\rangle$. $a^{\#}$ has a number of interesting properties, which we state here without proof. F is clearly an extender at κ on $\left\langle L_{\nu}^{a}, F\right\rangle$. Moreover, we can form the extension:

$$
\pi_{0}:\left\langle L_{\nu}^{a}, F\right\rangle \rightarrow_{F}\left\langle L_{\nu_{1}}^{a}, F_{1}\right\rangle
$$

We then have $\pi_{0} \supset \tilde{\pi}, \pi_{0}(\kappa)=\nu$. (In fact $\pi_{0}=\pi^{\prime} \upharpoonright L_{\nu}^{a}$.) But we can then apply F_{1} to $\left\langle L_{\nu_{1}}^{a}, F_{1}\right\rangle \ldots$ etc. This can be repeated indefinitely, showing that $a^{\#}$ is iterable in the following sense:

There are sequences $\kappa_{i}, \tau_{i}, \nu_{i}, F_{i}(i<\infty)$ and $\pi_{i j}(i \leq j<\infty)$ such that

- $\kappa_{0}=\kappa, \tau_{0}=\tau, \nu_{0}=\nu, F_{0}=F$.
- $\kappa_{i+1}=\pi_{i, i+1}^{\prime}\left(\kappa_{i}\right), \nu_{i}=\pi_{i, i+1}^{\prime}\left(\pi_{i}\right), \tau_{i}=\kappa_{i}^{+L_{\nu_{i}}^{a}}$.
- F_{i} is a full extender at κ_{i} with base $L_{\tau_{i}}[a]$ and extension $\left\langle L_{\nu_{i}}[a], \pi_{i, i+1}^{\prime} \upharpoonright\right.$ $\left.L_{\tau_{i}}^{[a]}\right\rangle$.
- $\pi_{i, i+1}^{\prime}:\left\langle L_{\nu_{i}}^{a}, F_{i}\right\rangle \rightarrow_{F_{i}}\left\langle L_{\nu_{i+1}}^{a}, F_{i+1}\right\rangle$.
- The maps $\pi_{i j}^{\prime}$ commute - i.e.

$$
\pi_{i i}^{\prime}=\mathrm{id} ; \pi_{i j}^{\prime} \pi_{h i}^{\prime}=\pi_{h j}^{\prime}
$$

- For limit $\lambda,\left\langle L_{\nu_{\lambda}}^{a}, F_{\lambda}\right\rangle,\left\langle\pi_{i \lambda}^{\prime} \mid i<\lambda\right\rangle$ is the transitivized direct limit of

$$
\left\langle\left\langle L_{\nu_{0}}^{a}, F_{i}\right\rangle \mid i<\lambda\right\rangle,\left\langle\pi_{i j}^{\prime} \mid i \leq j<\lambda\right\rangle .
$$

It turns out that $a^{\#}=\left\langle L_{\nu}^{a}, F\right\rangle$ is uniquely defined by the conditions:

- $\left\langle L_{\nu}^{a}, F\right\rangle$ is iterable in the above sense
- ν is minimal for such $\left\langle L_{\nu}^{a}, F\right\rangle$.

If $a=\emptyset$ we write: $0^{\#} .0^{\#}=\left\langle L_{\nu}, F\right\rangle$ is then acceptable. By a LöwenheimSkolem type argument it follows that $0^{\#}$ is sound and $\varrho_{0 \#}^{1}=\omega$. (To see this let $M=0^{\#}, x=h_{M}(\omega)$. Let $\sigma: \bar{M} \stackrel{\sim}{\leftrightarrow} X$ be the transitivization of X, where $\bar{M}=\left\langle L_{\nu}, \bar{F}\right\rangle$. Using the fact that $\sigma: \bar{M} \rightarrow M$ is Σ_{1}-preserving and M is iterable, it can be shown that \bar{M} is iterable. Hence $\bar{M}=M$, since $\bar{\nu} \leq \nu$ and ν is minimal.) But then $0^{\#}$ is countable and can be coded by a real number. But this is real given complete information about the proper class L, since we can recover the satisfaction relation for L by:

$$
L \models \varphi[\vec{x}] \leftrightarrow L_{\kappa_{i}} \models \varphi[\vec{x}]
$$

where i is chosen large enough that $x_{1}, \ldots, x_{n} \in L_{\kappa_{i}}$. But from $0^{\#}$ we also recover a nontrivial elementary embedding of L into itself, namely:

$$
\pi: L \rightarrow_{F} L \text { where } 0^{\#}=\left\langle L_{\nu}, F\right\rangle
$$

$0^{\#}$ is our first example of a mouse. All of its iterates, however, are not sound, since if $i>0$, then $\operatorname{rng}\left(\pi_{0 i}\right)=h_{M_{i}}(\omega)$, where $\varrho_{M_{i}}^{1}=\varrho_{M_{0}}^{1}=\omega$. But $\kappa_{0} \notin \operatorname{rng}\left(\pi_{0 i}\right)$.

We can iterate the operation $\#$, getting $0,0^{\#},\left(0^{\#}\right)^{\#}, \ldots$ etc. This notation is not literally correct, however, since $a^{\#}$ is defined only when $a \in L[a]$. Thus, setting:

$$
0^{\#(n)}=0^{\# \ldots \#} \overbrace{\#}^{n}
$$

we need to set: $0^{\#(n+1)}=\left(e^{n}\right)^{\#}$, where e^{n} codes $0, \ldots, 0^{\#(n)}$. If we do this in a uniform way, we can in fact define $0^{\#(\xi)}$ for all $\xi<\infty$.

Definition 3.3.2. Define $e^{i}, \nu_{i}, 0^{\#(i)}=\left\langle L_{\nu_{i}}^{e^{i}}, E_{\nu_{i}}\right\rangle(i<\infty)$ as follows:

$$
\begin{gathered}
e^{i}=:\left\{\left\langle x, \nu_{i}\right\rangle \mid j<i \wedge x \in E_{\nu_{j}}\right\}\left(\text { hence } e^{0}=\emptyset\right) \\
0^{\#(0)}=:\langle\emptyset, \emptyset\rangle\left(\text { hence } \nu_{0}=0\right) \\
0^{\#(i+1)}=:\left(e^{i}\right)^{\#}\left(\text { hence } \nu_{i+1}>\nu_{i}\right)
\end{gathered}
$$

For limit λ we set:

$$
\left.\nu=: \sup _{i<\lambda} \nu_{i}, 0^{\#(\lambda)}=:\left\langle L_{\nu_{\lambda}}^{e^{\lambda}}, \emptyset\right\rangle, \quad \text { hence } \emptyset=E_{\nu_{\lambda}}\right)
$$

By induction on $i<\infty$ it can be shown that each $0^{\#(i)}$ is acceptable and sound, although we skip the details here. Each $0^{\#(i)}$ is also iterable in a sense which we have yet to explicate. As before, it will turn out that the iterates are acceptable but not necessarily sound. Set:

$$
E=: \bigcup_{i<\infty} e^{i}
$$

Then $L[E]$ is the smallest inner model which is closed under the \# operation. (For this reason it is also called $L^{\#}$.) We of course set: $L^{E}=:\langle L[E], \in, E\rangle$.
L^{E} is a very L-like model, so much so in fact, that we can obtain the next mouse after all the $0^{\#(i)}(i<\infty)$ by repeating the construction of $0^{\#}$ with L^{E} in place of L : Suppose that $\pi: L^{E} \prec L^{E}$ is a nontrivial elementary embedding. Without loss of generality assume the critical point κ of π to be minimal for all such π. Let $\tau=\kappa^{+L^{E}}$ and $\nu=\sup \pi^{\prime \prime} \tau$. Then $\tilde{\pi}=\pi \upharpoonright L_{\tau}^{E}$. Set: $F=\pi \upharpoonright \mathbb{P}(\kappa)$. Then F is an extender with base $L_{\tau}[E]$ and extension $\left\langle L_{\nu}[E], \tilde{\pi}\right\rangle$. The new mouse is then $\left\langle L_{\nu}^{E}, F\right\rangle$.

As before, we can recover full information about L^{E} from $\left\langle L_{\nu}^{E}, F\right\rangle$ and we can recover a nontrivial embedding of L^{E} by: $\pi: L^{E} \rightarrow_{F} L^{E} . e=E \cup\{\langle x, \nu\rangle \mid x \in$ $F\}$ then codes all the mice up to and including $\left\langle L_{\nu}^{E}, F\right\rangle$, so the next mouse is $e^{\#} \ldots$ etc.
(Note that $L^{E} \| \nu=\left\langle L_{\nu}^{E}, \emptyset\right\rangle$ since, if $\kappa_{i}=\operatorname{crit}\left(E_{\nu_{i+1}}\right)$, then the sequence $\left\langle\kappa_{i} \mid i<\infty\right\rangle$ of all critical points of previous mice is discrete, whereas $\kappa=$ $\operatorname{crit}(F)$ is a fixed point of this sequence.)

This process can be continued indefinitely. At each stage it yields a set which encodes full information about an inner model. We call these sets mice. Each mouse will be an acceptable structure of the form $M=\left\langle J_{\alpha}^{E}, E_{\alpha}\right\rangle$ where $E=\left\{\langle x, \nu\rangle \mid \nu<\alpha \wedge x \in E_{\nu}\right\}$ codes the set of 'previous' mice. For $\nu=\alpha$ we have: Either $E_{\nu}=\emptyset$ or ν is a limit ordinal and E_{ν} is a full extender at a $\kappa<\nu$ with extension $\left\langle J_{\nu}[E], \pi\right\rangle$ and base $J_{\tau}[E]$, where $\tau=\kappa^{+M}$.

For limit $\xi \leq \alpha$ we set: $M \| \xi=:\left\langle J_{\xi}^{E}, E_{\xi}\right\rangle$. A class model L^{E} is called a weasel iff $E=\left\{\langle x, \nu\rangle \mid \nu<\infty \wedge x \in E_{\nu}\right\}$ and $L^{E} \| \alpha=:\left\langle J_{\alpha}^{E}, E_{\alpha}\right\rangle$ is a mouse of all limit α.

When dealing with such structures M satisfying, we shall often use the following notation: If $E_{\nu} \neq \emptyset$, then $\kappa_{\nu}=$ the critical point of $E_{\nu}, \tau_{\nu}=\kappa^{+} J_{\nu}^{E}$, and $\lambda_{\nu}=$ the length of $E_{\nu}=\pi\left(\kappa_{\nu}\right)$, where $\left\langle J_{\nu}^{E}, \pi\right\rangle$ is the extension of $J_{\tau_{\nu}}^{E}$ by E_{ν}.

In the above examples, the extenders E_{ν} were so small that τ_{ν} eventually got collapsed in $L\left[E_{\nu}\right]$. Thus E_{ν} was no longer an extender in $L\left[E_{\nu}\right]$, since
it was not defined on all subsets of κ. However, if we push the construction far enough, we will eventually reach an E_{ν} which does not have this defect. $L\left[E_{\nu}\right]$ will then be the smallest inner model with a measurable cardinal.

In the above examples the extender E_{ν} is always generated by $\left\{\kappa_{\nu}\right\}$ Hence we could just as wel have worked with ultrafilters as with extenders. Eventually, however, we shall reach a point where genuine extenders are needed. In the examples we also chose $\lambda_{\nu}=\pi\left(\kappa_{\nu}\right)$ minimally - i.e. we imposed an initial segment condition which says that $E_{\nu} \mid \lambda$ is not a full extender for any $\lambda<\lambda_{\nu}$. This condition can become unduly restrictive, however: It might happen that we wish to add a new extender E_{ν} and that $E_{\nu} \mid \lambda$ is an extender which we added at an earlier stage. In that case we will have: $E_{\nu} \mid \lambda \in J_{\nu}^{E}$. In order to allow for this situation we modify the initial segment condition to read:

Definition 3.3.3. Let F be a full extender at κ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle . F$ satisfies the initial segment condition iff whenever $\lambda<\pi(\kappa)$ such that $F \mid \lambda$ is a full extender, then $F \mid \lambda \in S^{\prime}$.

As indicated above, we expect our mice to be iterable. The example of an iteration given above is quite straightforward, but the general notion of iterability which we shall use is quite complex. We shall, therefore, defer it until later. We mention, however, that, since mice are fine structural etities, we shall iterate by Σ^{*}-extensions rather than the usual Σ_{0}-extensions. In the above examples, the minimal choice we made in our construction guaranteed that the mice we constructed were sound. However, in general we want the iterates of mice to themselves be mice. Thus we cannot require all mice to be sound: Suppose e.g. that $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a mouse and we form: $\pi: M \rightarrow_{F}^{*} M^{\prime}$. Then M^{\prime} is no longer sound. (To see this, let $p \in P_{M}^{1}$. It follows easily that $\pi(p) \in P_{M^{\prime}}^{1}$. But $\kappa \notin \operatorname{rng}(\pi)$; hence κ is not $\Sigma_{1}\left(M^{\prime}\right)$ in $\pi(p)$.

As we said, however, our initial construction is designed to produce sound structures. Hence we can require that if $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a mouse and $\lambda<\nu$, then $M \| \lambda$ is sound, since this property will not be changed by iteration.

By a premouse we mean a structure which has the salient properties of a mouse, but is not necessarily iterable. Putting our above remarks together, we arrive at the following definition:

Definition 3.3.4. $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a premouse iff it is acceptable and:
(a) Either $F=\emptyset$ or F is a full extender at a $\kappa<\nu$ with base $J_{\nu}[E]$, where $\tau=\kappa^{+M}$, and extension $\left\langle J_{\nu}[E], \pi\right\rangle$. Moreover F is weakly amenable and satisfies the initial segment condition.
(b) Set $E_{\gamma}=E^{\prime \prime}\{\gamma\}$ for $\gamma<\nu$. If $\gamma<\nu$ is a limit ordinal, then $M \| \gamma=$: $\left\langle J_{\gamma}^{E}, E_{\gamma}\right\rangle$ is sound and satisfies (a).
(c) $E=\left\{\langle x, \eta\rangle \mid x \in E_{\eta} \cap \eta<\nu\right.$ is a limit ordinal $\}$.

We call a premouse $M=\left\langle J_{\nu}^{E}, F\right\rangle$ active iff $F \notin \emptyset$. If F is inactive we often write J_{ν}^{E} for $\left\langle J_{\nu}^{E}, \emptyset\right\rangle$. We classify active premice into three types:

Definition 3.3.5. Let F be an extender on κ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$. We set:

- $C=C_{F}=:\{\lambda|\kappa<\lambda<\pi(\kappa) \wedge F| \lambda$ is full $\}$
- F is of type 1 iff $C=\emptyset$
- F is of type 2 iff $C \neq \emptyset$ but is bounded in $\pi(\kappa)$
- F is of type 3 iff C is unbounded in $\pi(\kappa)$
- Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$ be a premouse. The type of M is the type of F. We also set: $C_{M}=C_{F}$.

It is evident that F satisfies the initial segment condition iff $F \mid \lambda \in S^{\prime}$ whenever $\lambda \in C_{F}$.

Premice of differing type will very often require different treatment in our proofs. In much of this book we will assume that there is no inner model with a Woodin cardinal, which implies that all mice are of type 1. For now, however, we continue to work in greater generality.
Lemma 3.3.1. Let F be an extender at κ with base S and extension $\left\langle S^{\prime}, \pi\right\rangle$. Let $\kappa<\lambda<\pi(\kappa)$. Then $\lambda \in C_{F}$ iff $\pi(f)\left(\alpha_{1}, \ldots, \alpha_{n}\right)<\lambda$ for all $f \in M$ such that $f: \kappa^{n} \rightarrow \kappa$ and all $\alpha_{1}, \ldots, \alpha_{n}<\lambda$.

Proof: We first prove the direction (\rightarrow). Let $F^{*}=F \mid \lambda$ be full with extension $\left\langle S^{*}, \pi^{*}\right\rangle$. Let $f, \alpha_{1}, \ldots, \alpha_{n}$ be as above. Let $\beta=\pi^{*}(f)(\vec{\alpha})$. Set $e=\left\{\left\langle\xi_{1}, \ldots, \xi_{n}, \delta\right\rangle \mid f(\vec{\xi})=\delta\right\}$. Then $\beta<\lambda$ and:

$$
\langle\vec{\alpha}, \beta\rangle \in F^{*}(e)=\lambda^{n+1} \wedge F(e)
$$

Hence $\pi(f)(\vec{\alpha})=\beta<\lambda$.
QED (\rightarrow)
We now prove (\leftarrow). Let $f, \alpha_{1}, \ldots, \alpha_{n}$ be as above. Then $\pi(f)(\vec{\alpha})=\beta<\lambda$. Hence

$$
\langle\vec{\alpha}, \beta\rangle \in F(e) \cap \lambda^{n+1}=F^{*}(e)
$$

Hence $\pi^{*}(f)(\vec{\alpha})=\beta<\lambda$. But each $\gamma<\pi^{*}(\kappa)$ has the form $\pi^{*}(f)(\vec{\alpha})$ for some such $f, \alpha_{1}, \ldots, \alpha_{n}<\lambda$. Hence $\pi^{*}(\kappa)=\lambda=$ length $\left(F^{*}\right)$.

QED (Lemma 3.3.1)

Corollary 3.3.2. C_{F} is closed in $\pi(\kappa)$.
Corollary 3.3.3. Let F, S, S^{\prime}, π be as above and let F be weakly amenable. Then C_{F} is uniformly $\Pi_{1}\left(\left\langle S^{\prime}, F\right\rangle\right)$ in κ.

Proof: S^{\prime} is admissible and the Gödel function \prec, \succ is uniformly Σ_{1} over admissible structures. By weak amenability we know that $\mathbb{P}\left(\kappa^{2}\right) \cap S=$ $\mathbb{P}\left(\kappa^{2}\right) \cap S^{\prime} . S^{\prime}$ is admissible and Gödel's pair function \prec, \succ is $\Sigma_{1}\left(S^{\prime}\right)$ and defined on $\left(\mathrm{On}_{S^{\prime}}\right)^{2}$. Then " λ is Gödel-closed" is $\Delta_{1}\left(S^{\prime}\right)$, since it is expressed by $\Lambda \xi, \delta<\lambda \prec \xi, \delta \succ<\lambda$. By Lemma 3.3.1, " $\lambda \in C_{F}$ " is equivalent in S^{\prime} to:

$$
\begin{aligned}
& \kappa<\lambda \subset \pi(\kappa) \wedge \lambda \text { is Gödel-closed } \wedge \\
& \wedge \wedge f: n \rightarrow k \wedge \alpha<\lambda \bigvee \beta<\lambda \prec \alpha, \beta \succ \in F\left(e_{f}\right)
\end{aligned}
$$

where $e_{f}=\{\prec \delta, \xi \succ<\kappa \mid f(\xi)=\delta\}$. The function $f \mapsto e_{f}$ is $\Sigma_{1}\left(S^{\prime}\right)$ in κ and defined on $\{f \in S \mid f: \kappa \rightarrow \kappa\}$. Note that $\mu=\pi(\kappa)$ is expressible over $\left\langle S^{\prime}, F\right\rangle$ by $\langle\mu, \kappa\rangle \in F$ and $e^{\prime}=F(e)$ is expressible by $\left\langle e^{\prime}, e\right\rangle \in F$. Thus $\lambda \in C_{F}$ is equivalent to the conjunction of ' λ is Gödel-closed' and:

$$
\begin{aligned}
& \bigwedge e, e^{\prime}, \mu, f\left(\left(\left\langle e^{\prime}, e\right\rangle \in F \wedge\langle\mu, \kappa\rangle \in F \wedge f: \kappa \rightarrow \kappa \wedge e=e_{f}\right)\right. \\
& \left.\rightarrow\left(\kappa<\lambda<\mu \wedge \wedge \alpha<\lambda \bigvee \beta<\lambda \prec \alpha, \beta \succ \in e^{\prime}\right)\right)
\end{aligned}
$$

QED (Lemma 3.3.3)
We now turn to the task of analyzing the complexity of the property of being a premouse and the circumstances under which this property is preserved by an embedding $\sigma: M \rightarrow M^{\prime}$. If $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is an active premouse, the answer to these question can vary with the type of F.

We shall be particularly interested in the case that, for some weakly amenable extender G on M at a $\tilde{\kappa}<\varrho_{M}^{n}, M^{\prime}$ is the $\Sigma_{0}^{(n)}$ extension $\left\langle M^{\prime}, \sigma\right\rangle$ of M by G (i.e. $\sigma: M \rightarrow{ }_{G}^{(n)} M^{\prime}$). In this case we shall prove:

- M^{\prime} is a premouse
- If M is active, then M^{\prime} is active and of the same type
- If M is of type 2 , then $\sigma\left(\max C_{M}\right)=\max C_{M^{\prime}}$.

This will be the content of Theorem 3.3.22 below. Note that if G is close to M in the sense of $\S 3.2$, and n is maximal with $\tilde{\kappa}<\varrho_{M}^{n}$, then M^{\prime} is a fully Σ^{*}-preserving ultrapower of M (i.e. $\sigma: M \rightarrow_{G}^{*} M^{\prime}$). In later sections we shall consider mainly iterations of premice by Σ^{*}-ultrapowers.
(Note In later sections we shall mainly restrict ourselves to premice of type 1. For the sake of completeness, however, we here prove the above result in full generality. The proof will be arduous.)

We first define:
Definition 3.3.6. $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a mouse precurseor (or precurseor for short) at κ iff the followin hold:

- M is acceptable
- $\kappa \in M$ and $\tau=\kappa^{+M} \in M$
- F is a full extender at κ on J_{τ}^{E} with extension $\left\langle J_{\nu}^{E}, \pi\right\rangle$.
(Note F then has base $J_{\tau}[E]$ and extension $\left\langle J_{\nu}[E], \pi\right\rangle$.)
(Note F is weakly amenable, since $\mathbb{P}(\kappa) \cap M \subset J_{\tau}[E]$ by acceptability.)
Lemma 3.3.4. $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a precurseor at κ iff the following hold:
(a) M is acceptable
(b) F is a function defined on $\mathbb{P}(\kappa) \cap M$
(c) $F \upharpoonright \kappa=\mathrm{id}, \kappa<F(\kappa)=\lambda$, where λ is the largest cardinal in M.
(d) Let $a_{1}, \ldots, a_{n} \in \mathbb{P}(\kappa) \cap M$. Let φ be a Σ_{1} forumla. Then:

$$
J_{\nu}^{E} \models \varphi[\vec{a}] \leftrightarrow J_{\nu}^{E} \models \varphi[F(\vec{a})]
$$

(e) Let $\xi<\nu$. There is $X \in \mathbb{P}(\kappa) \cap M$ such that

$$
F(X) \notin J_{\xi}^{E}
$$

Proof: We first note that $J_{\nu}^{E} \models \varphi[\vec{a}]$ can be replaced by $J_{\tau}^{E} \models \varphi[\vec{a}]$ where $\tau=\kappa^{+M}$, by acceptability. The direction (\rightarrow) then follows easily. We prove (\leftarrow).

We first note that F injects $\mathbb{P}(\kappa) \cap M$ into $\mathbb{P}(\lambda) \cap M . F$ is injective by (d). But if $X \subset \kappa$, then $F(x) \subset F(k)=\lambda$ by (d).
(1) $J_{\kappa}^{E} \prec J_{\lambda}^{E}$.

Proof: We first recall that by $\S 2.4$ each $x \in J_{\kappa}^{E}$ has the form $f(a)$ for some first $a \subset \kappa$, where f is $\Sigma_{1}\left(J_{\kappa}^{E}\right)$. By $\S 2.4$ we can choose the Σ_{1} definition of f as being functionally absolute in J-models. Now let $x_{1}, \ldots, x_{n} \in J_{\kappa}^{E}$.

Let φ be a first order formula. We claim:

$$
J_{\kappa}^{E} \models \varphi[\vec{x}] \rightarrow J_{\lambda}^{E} \models \varphi[\vec{x}] .
$$

Let $x_{i}=f_{i}\left(a_{i}\right)$, where $a_{i} \subset \kappa$ is finite and f_{i} has a functionally absolute definition ' $x=f_{i}(a)$ '. Then $J_{\lambda}^{E} \models{ }^{\prime} x_{i}=f_{i}\left(a_{i}\right)$ 'for $i=1, \ldots, n$. Let Ψ be the formula:

$$
\bigvee x_{1} \ldots x_{n}\left(\bigwedge_{i=1}^{n} x_{i}=f_{i}\left(a_{i}\right) \wedge \varphi(\vec{x})\right)
$$

Then:

$$
J_{\kappa}^{E} \models \varphi[\vec{x}] \leftrightarrow J_{\kappa}^{E} \models \Psi[\vec{a}]
$$

and:

$$
J_{\lambda}^{E} \models \varphi[\vec{x}] \leftrightarrow J_{\lambda}^{E} \models \Psi[\vec{a}] .
$$

But $J_{\kappa}^{E} \models \Psi[\vec{a}]$ is $\Sigma_{1}(M)$ in κ, \vec{a} and $J_{\lambda}^{E} \models \Psi[\vec{a}]$ is $\Sigma_{1}(M)$ in λ, \vec{a} by the same definition. Moreover $F\left(a_{i}\right)=a_{i}(i=1, \ldots, n)$ and $F(\kappa)=\lambda$.

Hence by (d):

$$
\begin{aligned}
J_{\kappa}^{E} \models \varphi[\vec{x}] & \leftrightarrow J_{\kappa}^{E} \models \Psi[\vec{a}] \\
& \leftrightarrow J_{\lambda}^{E} \models \Psi[\vec{a}] \\
& \leftrightarrow J_{\lambda}^{E} \models \varphi[\vec{x}] .
\end{aligned}
$$

QED (1)
It follows easily, using acceptability, that J_{κ}^{E} and J_{λ}^{E} are ZFC^{-}models. Gödel's pair function \prec, \succ then has a uniform definition on J_{κ}^{E} and J_{λ}^{E}. Hence $\left\langle\prec \alpha, \beta \succ \mid \alpha, \beta \in J_{\kappa}^{E}\right\rangle$ is $\Sigma_{1}(M)$ in κ and $\left\langle\prec \alpha, \beta \succ \mid \alpha, \beta \in J_{\lambda}^{E}\right\rangle$ is $\Sigma_{1}(M)$ in λ by the same definition.

For any $X \subset \kappa$ there is at most one function $\Gamma=\Gamma_{X}$ defined on κ such that $\Gamma(\alpha)=\{\Gamma(\beta) \mid \prec \beta, \alpha \succ \in X\}$ for $\alpha<\kappa$. For $X \in \mathbb{P}(\kappa) \cap M$ the statement $f=\Gamma_{X}$ is uniformly $\Sigma_{1}(M)$ in X, f, κ. Moreover the statement $\bigvee f f=\Gamma_{X}$ (' Γ_{X} is defined') is uniformly $\Sigma_{1}(M)$ in X, κ. The same is true at λ : For $Y \subset \lambda$ the statement $f=\Gamma_{Y}$ is uniformly $\Sigma_{1}(M)$ in Y, f, λ and the statement $\bigvee f f=\Gamma_{Y}$ is uniformly $\Sigma_{1}(M)$ in Y, λ by the same definition.

We must define a π such that $\left\langle J_{\nu}[E], \pi\right\rangle$ is the extension of F. The above remarks suggest a way of doing so:
Definition 3.3.7. Let $x \in J_{\tau}^{E}, x \in u$, werhe $u \in J_{\tau}^{E}$ is transitive. Let $f \in J_{\tau}^{E} \operatorname{map} \kappa$ onto u. Set:

$$
X=:\{\prec \alpha, \beta \succ \mid f(\alpha) \in f(\beta)\},
$$

then $f=\Gamma_{X}$. Let $f^{\prime \prime}=: \Gamma_{F(X)}$. Let $x=f(\xi)$ where $\xi<\kappa$. Set:

$$
\pi(x)=\pi_{f, \xi}(x)=: f^{\prime}(\xi)
$$

We must first show that π is independent of the choice of f, ξ. Suppose that $x \in v$, where $v \in J_{\tau}^{E}$ is transitive, and $g \in J_{\tau}^{E}$ maps κ onto v. Then, letting $Y=\{\prec \alpha, \beta \succ \mid g(\alpha) \in g(\beta)\}$, we have: Let $x=g(\zeta)$. Then by (d):

$$
f(\xi)=\Gamma_{X}(\xi)=\Gamma_{Y}(\zeta) \rightarrow \pi_{f, \xi}(x)=\Gamma_{F(X)}(\xi)=\Gamma_{F(Y)}(\zeta)=\pi_{g, \zeta}(x)
$$

Similarly we get:
(2) $\pi: J_{\tau}^{E} \rightarrow \Sigma_{0} j_{\nu}^{E}$.

Proof: Let $x_{1}, \ldots, x_{n} \in J_{\tau}^{E}$. Let $x_{1}, \ldots, x_{n} \in u$, where $u \in J_{\tau}^{E}$ is transitive. Let $f_{i} \in J_{\tau}^{E} \operatorname{map} \kappa$ onto $u(i=1, \ldots, n)$. Set: $X_{i}=\left\{\prec \alpha, \beta \succ \mid f_{i}(\alpha) \in\right.$ $\left.f_{i}(\beta)\right\}$. Let $x_{i}=f_{i}\left(\xi_{i}\right)$. Let φ be Σ_{0}. By (d) we conclude:

$$
\begin{aligned}
J_{\tau}^{E} \models \varphi[\vec{x}] & \leftrightarrow J_{\tau}^{E} \models \varphi\left(\Gamma_{\vec{X}}(\vec{\xi})\right) \\
& \leftrightarrow J_{\tau}^{E} \models \varphi\left(\Gamma_{F(\vec{X})}(\vec{\xi})\right)
\end{aligned}
$$

where $F\left(X_{i}\right)\left(\xi_{i}\right)=\pi\left(\chi_{i}\right)$.
QED (2)
(3) $F(X)=\pi(X)$ for $X \in \mathbb{P}(\kappa) \cap M$.

Proof: Let $X=f(\mu)$ where $\mu<\kappa, f \in J_{\tau}^{E}$, and $f: \kappa \rightarrow u$, where u is transitive. Set: $Y=:\{\prec \alpha, \beta \succ \mid f(\alpha) \in f(\beta)\}$. Then $f=\Gamma_{Y}$ and $X=\Gamma_{Y}(\mu)$. By (d) we conclude:

$$
F(X)=\Gamma_{F(Y)}(\mu)=\pi(X)
$$

QED (3)
It remains only to show:
(4) $\pi: J_{\tau}^{E} \rightarrow J_{\nu}^{E}$ cofinally.

Proof: Let $y \in J_{\nu}^{E}$. If $y \in J_{\xi}^{E}, \xi<\nu$, there is an $X \in \mathbb{P}(\kappa) \cap M$ such that $F(X) \notin J_{\xi}^{E}$. Let $X \in J_{\mu}^{E}, \mu<\tau$. Then:

$$
F(X)=\pi(X) \in J_{\pi(\mu)}^{E}
$$

Hence $\pi(\mu)>\xi$ and:

$$
y \in J_{\pi(\mu)}^{E}=\pi\left(J_{\mu}^{E}\right)
$$

QED (Lemma 3.3.4)

Corollary 3.3.5. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$. The statement ' M is a precursor' is uniformly $\Pi_{2}(M)$.

Proof: The conjunction of (a) - (e) is uniformly $\Pi_{2}(M)$ in the parameters κ, λ. Let it have the form $R(\kappa, \lambda)$, where R is Π_{2}. It is evident that if $R(\kappa, \lambda)$ holds, then $\langle\kappa, \lambda\rangle$ is the unique pair of ordinals which is an element of F. Hence the conjuncion of (a) - (e) is expressible by:

$$
\bigvee \kappa, \lambda\langle\kappa, \lambda\rangle \in F \wedge \bigwedge \kappa, \lambda(\langle\kappa, \lambda\rangle \in F \rightarrow R(\kappa, \lambda))
$$

QED (Corollary 3.3.5)
Definition 3.3.8. $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a good precursor iff M is a precursor and F satisfies the initial segment condition.

Corollary 3.3.6. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$. The statement ' M is a good precursor at κ ' is uniformly $\Pi_{3}(M)$.

Proof: Let M be a precursor. Then F satisfies the initial segment condition iff in M we have:

$$
\begin{aligned}
& \wedge \eta \in C \bigvee F^{\prime}\left(F^{\prime} \text { is a function } \wedge \operatorname{dom}(F)=\mathbb{P}(\kappa)\right) \\
& \wedge \bigwedge Y, X\left(\langle Y, X\rangle \in F \rightarrow\langle Y \cap \eta, X\rangle \in F^{\prime}\right)
\end{aligned}
$$

This is Π_{3} since C is Π_{2}.
QED (Lemma 3.3.6)
Lemma 3.3.7. Let $M=\left\langle J_{\nu}, F\right\rangle$ be a precursor at κ. Let $\tau=\kappa^{+M}$ and let $\left\langle J_{\nu}^{E}, \pi\right\rangle$ be the extension of J_{τ}^{E} by F. Then π and $\operatorname{dom}(\pi)$ are uniformly $\Delta_{1}(M)$.

Proof: π is uniformly $\Sigma_{1}(M)$ in κ, λ since by the definition of π in the proof of Lemma 3.3.4 we have:

$$
\begin{aligned}
y & =\pi(x) \leftrightarrow \bigvee f \bigvee u \bigvee X \bigvee \xi \bigvee Y(u \text { is transitive } \wedge \\
& f: \kappa \xrightarrow{\text { onto }} u \wedge x=f(\xi) \wedge X=\{\prec \alpha, \beta \succ \mid f(\alpha) \in f(\beta)\} \\
& \left.\wedge Y=F(X) \wedge y=\Gamma_{Y}(\xi)\right) .
\end{aligned}
$$

Let $\varphi(\kappa, \lambda, y, x)$ be the uniform Σ_{1} definition of π from κ, λ. Then $\langle\kappa, \lambda\rangle$ is the unique pair of ordinals such that $\langle\kappa, \lambda\rangle \in F$. Hence:

$$
y=\pi(x) \leftrightarrow \bigvee \kappa, \lambda(\langle\kappa, \lambda\rangle \in F \wedge M \models \varphi[\kappa, \lambda, y, x])
$$

Then π is uniformly $\Sigma_{1}(M)$. But $\operatorname{dom}(\pi)=J_{\tau}^{E}$; hence:

$$
\begin{aligned}
y \in \operatorname{dom} \pi & \leftrightarrow \bigvee \kappa, \lambda\left(\langle\kappa, \lambda\rangle \in F \wedge y \in\left(J_{\kappa^{+}}^{E}\right)^{J_{\lambda}^{E}}\right) \\
& \bigwedge \kappa, \lambda\left(\langle\kappa, \lambda\rangle \in F \rightarrow y \in\left(J_{\kappa^{+}}^{E}\right)^{J_{\lambda}^{E}}\right) .
\end{aligned}
$$

Thus $\operatorname{dom}(\pi)$ is uniformly $\Delta_{1}(M)$. But then

$$
\begin{aligned}
y= & \pi(x) \leftrightarrow(y \in \operatorname{dom}(\pi) \wedge \\
& \left.\bigwedge y^{\prime} \in M\left(y \neq y^{\prime} \rightarrow y^{\prime} \neq \pi(x)\right)\right) .
\end{aligned}
$$

Thus π is $\Delta_{1}(M)$.
QED (Lemma 3.3.7)
But then:
Corollary 3.3.8. Let $\sigma: M \rightarrow{ }_{\Sigma_{1}} M^{\prime}$ where $M=\left\langle J_{\nu}^{E}, F\right\rangle$ and $M^{\prime}=\left\langle J_{\nu^{\prime}}^{E^{\prime}} F^{\prime}\right\rangle$ are precursors. Let $\left\langle J_{\nu}^{E}, \pi\right\rangle$ be the extension of J_{τ}^{E} by F and $\left\langle J_{\nu^{\prime}}^{E^{\prime}}, \pi^{\prime}\right\rangle$ be the extension of $J_{\tau^{\prime}}^{E^{\prime}}$ by F. Then:

$$
\sigma \pi(x) \simeq \pi^{\prime} \sigma(x) \text { for } x \in M
$$

The satisfaction relation for an amenable structure $\left\langle J_{\nu}^{E}, B\right\rangle$ is uniformly $\Delta_{1}(M)$ in the parameter $\left\langle J_{\nu}^{E}, B\right\rangle$ whenever $M \ni\left\langle J_{\nu}^{E}, B\right\rangle$ is transitive and rudimentarily closed.
(To see this note that, letting $E=E \cap J_{\nu}^{E}$, the structure $\langle M, E, B\rangle$ is rud closed. Hence its Σ_{0}-satisfaction is $\Delta_{1}(\langle M, E, B\rangle)$ or in other words $\Delta_{1}(M)$ in E, B. But if φ is any formula in the language of $\left\langle J_{\nu}^{E}, B\right\rangle$, we can convert it to a Σ_{0} formula $\bar{\varphi}$ in the language of $\langle M, E, B\rangle$ simply by bounding all quantifiers by a new variable v. Then:

$$
\left\langle J_{\nu}^{E}, B\right\rangle \models \varphi[\vec{x}] \leftrightarrow\langle M, E, B\rangle \models \bar{\varphi}\left[J_{\nu}[E], \vec{x}\right]
$$

for all $x_{1}, \ldots, x_{n} \in J_{\nu}^{E}$.)
It is apparent from $\S 2.5$ that for each n there is a statement φ_{n} such that

$$
\left\langle J_{\nu}^{E}, B\right\rangle \text { is } n \text {-sound } \leftrightarrow\left\langle J_{\nu}^{E}, B\right\rangle \models \varphi_{n}
$$

Moreover the sequence $\left\langle\varphi_{n} \mid n<\omega\right\rangle$ is recursive. Thus
Lemma 3.3.9. " $\left\langle J_{\nu}^{E}, B\right\rangle$ is sound" is uniformly $\Pi_{1}(M)$ in $\left\langle J_{\nu}^{E}, B\right\rangle$ for all transitive rud closed $M \ni\left\langle J_{\nu}, B\right\rangle$.

Using this we get:
Lemma 3.3.10. Let J_{ν}^{E} be acceptable. The statement ' $\left\langle J_{\nu}^{E}, \emptyset\right\rangle$ is a premouse' is uniformly $\Pi_{1}\left(J_{\nu}^{E}\right)$.

Proof: $\left\langle J_{\nu}^{E}, \emptyset\right\rangle$ is a premouse iff the following hold in J_{ν}^{E} :

- $\wedge x \in E \bigvee \nu, z \in T C(x)\left(x=\langle z, \nu\rangle \wedge \nu \in \operatorname{Lm} \wedge z \in J_{\nu}^{E}\right)$
- $\wedge \nu\left(\nu \in \operatorname{Lm} \rightarrow\left\langle J_{\nu}^{E}, E^{\prime \prime}\{\nu\}\right\rangle\right.$ is sound $)$
- $\wedge \nu\left(E^{\prime \prime}\{\nu\} \neq \emptyset \rightarrow\left\langle J_{\nu}^{E}, E^{\prime \prime}\{v\}\right\rangle\right.$ is a good precursor).

QED (Lemma 3.3.10)

An immediate corollary is:
Corollary 3.3.11. Let \bar{M}, M be acceptable. Then:

- If $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M$ and \bar{M} is a passive premouse, then so is M.
- If $\pi: \bar{M} \rightarrow_{\Sigma_{0}} M$ and M is a passive premouse, then so is \bar{M}.

The property of being an active premouse will be harder to preserve. $\left\langle J_{\nu}^{E}, F\right\rangle$ is an active premouse iff $\left\langle J_{\nu}^{E}, \emptyset\right.$ is a passive premouse and $\left\langle J_{\nu}^{E}, F\right\rangle$ is a good precursor. Hence:
Lemma 3.3.12. ' $\left\langle J_{\nu}^{E}, F\right\rangle$ is an active premouse' is uniformly $\Pi_{3}\left(\left\langle J_{\nu}^{E}, F\right\rangle\right)$.
(Note This uses that being acceptable is uniformly $\Pi_{1}\left(\left\langle J_{\nu}^{E}, F\right\rangle\right)$ when $\nu \in$ Lm^{*}.) An immediate, but not overly useful, corollary is:

Corollary 3.3.13. Let \bar{M}, M, be J-models.

- If $\pi: \bar{M} \rightarrow_{\Sigma_{3}} M$ and \bar{M} is an active premouse, then so is M.
- If $\pi: \bar{M} \rightarrow_{\Sigma_{2}} M$ and M is an active premouse, then so is \bar{M}.

In order to get better preservation lemmas, we must think about the type of F in $\left\langle J_{\nu}^{E}, F\right\rangle . F$ is of type 1 iff $C_{F}=\emptyset$. By Corollary 3.3.3 the condition $C_{F}=\emptyset$ is $\Pi_{2}\left(\left\langle J_{\nu}, F\right\rangle\right)$ uniformly. Hence

Lemma 3.3.14. The statement ' M is an active premouse of type 1 ' is uniformly $\Pi_{2}(M)$ for $M=\left\langle J_{\nu}^{E}, F\right\rangle$.

Hence
Corollary 3.3.15. Let \bar{M}, M be J-models.

- If $\pi: \bar{M} \rightarrow_{\Sigma_{2}} M$ and \bar{M} is an active premouse of type 1 , then so is M.
- If $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M$ and M is an active premouse of type 1 , then so is \bar{M}.

A more important theorem is this:

Lemma 3.3.16. Let \bar{M} be an active premouse of type 1. Let G be a weakly amenable extender on M at $\tilde{\kappa}$, where $\tilde{\kappa}<\varrho_{M}^{n}$. Let $\left\langle M^{\prime}, \sigma\right\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by G. Then M^{\prime} is an active premouse of type 1 .

Proof: We consider two cases:

Case $1 n=0$.
Claim $1 M^{\prime}=\left\langle J_{\nu^{\prime}}^{E^{\prime}}, F^{\prime}\right\rangle$ is a precursor.
(1) F^{\prime} is a function and $\operatorname{dom}\left(F^{\prime}\right) \subset \mathbb{P}(\kappa)$, since these statements are Π_{1} and σ is Σ_{1} preserving
For $\xi<\tau=\kappa^{+M}$ set: $\pi(\xi)=\pi \upharpoonright J_{\xi}^{E}, \pi^{\prime}(\xi)=\sigma(\pi(\xi))$, then
(2) $\pi^{\prime}(\xi): J_{\sigma(\xi)}^{E} \prec J_{\sigma \pi(\xi)}^{E}$,
since $\pi(\xi): J_{\xi}^{E} \prec J_{\pi(\xi)}^{E}$.
Set: $\pi^{\prime}=\bigcup_{\xi} \pi^{\prime}(\xi)$. Since $\sup \pi^{\prime \prime} \tau=\nu$ and $\sup \sigma^{\prime \prime} \nu=\nu^{\prime}$, we have
(3) $\sigma:\langle M, \pi\rangle \rightarrow_{\Sigma_{0}}\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ cofinally.
(4) $\operatorname{dom}\left(\pi^{\prime}\right)=\bigcup_{\xi<\tau} \tau\left(J_{\xi}^{E}\right)=J_{\tau^{\prime}}^{E^{\prime}}$,
where $\tau^{\prime}=\sigma(\tau)=\kappa^{\prime+M^{\prime}}$ and $\kappa^{\prime}=\sigma(\kappa)$. Hence
(5) $\pi^{\prime}: J_{\tau^{\prime}}^{E^{\prime}} \rightarrow \Sigma_{0} J_{\nu^{\prime}}^{E^{\prime}}$ cofinally.
(6) $F^{\prime}=\pi^{\prime} \upharpoonright \mathbb{P}\left(\kappa^{\prime}\right)$
by (1) and:

$$
\bigwedge X\left(X \in J_{\sigma(\xi)}^{E} \wedge \mathbb{P}\left(\kappa^{\prime}\right) \rightarrow\left\langle\pi^{\prime}(X), X\right\rangle \in F^{\prime}\right)
$$

since the corresponding Π_{1} statement holds of ξ in M.
It follows easily that $\left\langle J_{\nu^{\prime}}\left[E^{\prime}\right], \pi^{\prime}\right\rangle$ is the extension of $J_{\tau^{\prime}}^{E}$ by F^{\prime}.
QED (Claim 1)
Claim $2 F^{\prime}$ is of type 1 (hence F^{\prime} satisfies the initial segment condition).
Proof: Let $\xi<\lambda^{\prime}=\pi^{\prime}\left(\kappa^{\prime}\right)$. Using Lemma 3.3.1 we show:
Claim $\xi \notin C_{F^{\prime}}$.
Let $\zeta \in M$ be least such that $\sigma(\zeta) \geq \zeta$. Since $\zeta \notin C_{F}$, there is $f: \kappa^{n} \rightarrow \kappa$ in M such that $\pi(f)(\vec{\alpha})>\zeta$ for some $\alpha_{1}, \ldots, \alpha_{n}<\zeta$. But then $\sigma\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)<\xi$ and

$$
\left.\pi^{\prime}(\sigma(f))(\sigma(\vec{\alpha}))=\sigma(\pi(f))(\vec{\alpha})\right)>\sigma(\zeta) \geq \xi
$$

Hence $\xi \notin C_{F^{\prime}}$.
QED (Claim 2)
Thus $J_{\nu^{\prime}}^{E^{\prime}}$ is a premouse by Corollary 3.3.11 and M^{\prime} is a good precursor of type 1 . Hence M^{\prime} is a premouse of type 1 .

QED (Case 1)

Case $2 n>1$.
Then σ is Σ_{2}-preserving by Lemma 3.2.13. Hence M^{\prime} is a premouse of type 1 by Corollary 3.3.15

QED (Corollary 3.3.16)
We now consider premice of type 2. $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a premouse of type 2 iff J_{ν}^{E} is a premouse, M is a precursor and $F \mid \eta \in J_{\nu}^{E}$ where $\eta=\max C_{F}$. (It then follows that $F|\mu=(F \mid \eta)| \mu \in J_{\nu}^{E}$ whenever $\mu \in C_{F}$.) The statement $e=F \mid \mu$ is uniformly $\Pi_{1}(M)$ in e, u, μ, since it says:

$$
e \text { is a function } \wedge \bigwedge x \in \mathbb{P}(\kappa) \cap M e(X)=F(X) \cap \mu
$$

But then the statement:

$$
e=F \mid \eta \wedge \eta=\max C_{F}
$$

is $\Pi_{2}(M)$ in e, η, κ uniformly, since it says: $e=F \mid \eta \wedge C_{F} \backslash \eta=\emptyset$, where C_{F} is uniformly $\Pi_{2}(M)$. It then follows easily that:

Lemma 3.3.17. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle, M=\left\langle J_{\nu^{\prime}}^{E^{\prime}}, \bar{F}\right\rangle$.

- If $\pi: \bar{M} \rightarrow_{\Sigma_{2}} M$ and \bar{M} is a premouse of type 2 , then so is M. Moreover, $\pi\left(\max C_{E}\right)=\max C_{F}$.
- If $\pi: \bar{M} \rightarrow_{\Sigma_{1}} M, M$ is a premouse of type 2 and $e=F \mid \max \left(C_{F}\right) \in$ $\operatorname{rng}(\pi)$, then \bar{M} is a premouse of type 2 and $\pi\left(\max C_{\bar{F}}\right)=\max C_{F}$.

We also get:
Lemma 3.3.18. Let M be a premouse of type 2. Let G be a weakly amenable extender on M at $\tilde{\kappa}$, where $\tilde{\kappa}<\varrho_{M}^{n}$. Let $\left\langle M^{\prime}, \sigma\right\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by G. Then M^{\prime} is a premouse of type 2. Moreover, $\sigma\left(\max C_{M}\right)=\max C_{M^{\prime}}$.

Proof: If $n>0$, then σ is $\Sigma_{2}-$ preserving and the result follows by Lemma 3.3.17. Now let $n=0$. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$ where F is an extender at κ on J_{τ}^{E} (where $\tau=\kappa^{+M}$. Let $M^{\prime}=\left\langle J_{\nu^{\prime}}^{E^{\prime}}, F^{\prime}\right\rangle$. It follows exactly as in Lemma 3.3.16 that $J_{\nu^{\prime}}^{E^{\prime}}$ is a premouse and M^{\prime} is a precursor. We must prove:

Claim F^{\prime} is of type 2. Moreover, $\tau\left(\max C_{F}\right)=\max C_{F^{\prime}}$.
Proof: Let $\eta=\max C_{F}, e=F \mid \eta$. Then $\sigma(e)=F^{\prime} \mid \eta^{\prime}$, since this is a Π_{1} condition. But then $C_{F^{\prime}} \backslash \eta^{\prime}=\emptyset$ follows exactly as in Lemma 3.3.16, since $C_{F} \backslash \eta=\emptyset$ and σ takes $\lambda=F(\kappa)$ cofinally to $\lambda^{\prime}=F^{\prime}\left(\kappa^{\prime}\right)$.

QED (Lemma 3.3.18)

We now turn to premice of type 3. One very important property of these structures is:

Lemma 3.3.19. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$ be a premouse of type 3. Let $\lambda=F(\kappa)$ where F is at κ. Then $\varrho_{M}^{1}=\lambda$.

Proof:

(1) $h_{M}(\lambda)=M$ (hence $\varrho_{M}^{1} \leq \lambda$).

Proof: Note that if $X \in \mathbb{P}(\kappa) \cap M$, then $X \in J_{\tau}^{E} \subset h_{M}(\tau)$. Hence $F(X) \in h_{M}(\tau)$. Now let $\left\langle J_{\nu}^{E}, \pi\right\rangle$ be the extension of J_{τ}^{E} by F. Then $\pi^{\prime \prime} \tau$ is cofinal in ν. But $\pi^{\prime \prime} \tau \subset h_{M}(\tau)$, since if $f \in M, f: \kappa \leftrightarrow \eta$, and $X=\{\prec \xi, \zeta \succ \mid f(\xi)<f(\zeta)\}$, then $F(X)=\{\prec \xi, \zeta \succ \mid \pi(f)(\xi)<$ $\pi(f)(\zeta)\}$, where $\pi(f): \lambda \leftrightarrow \pi(\eta)$. Hence $\pi(\eta)=\operatorname{otp}(F(X)) \in h_{M}(\tau)$. But iff $g=$ the J_{ν}^{E}-least $g: \lambda \xrightarrow{\text { onto }} \pi(\eta)$, then $g \in h_{M}(\tau)$. Hence $\pi(\eta)=g^{\prime \prime} \lambda \subset h_{M}(\lambda)$ for all $\eta<\tau$. Hence $\nu \subset h_{M}(\lambda)$.

QED (1)
(2) Let $D \subset \lambda$ be $\underline{\Sigma}_{1}(M)$. Then $\left\langle J_{\lambda}^{E}, D\right\rangle$ is amenable. (Hence $\varrho_{M}^{n} \geq \lambda$.)

Proof: By (1) D is $\Sigma_{1}(M)$ in a parameter $\alpha<\lambda$. Let $\eta \in C_{F}$ such that $\eta>\alpha$. Then $E=F \mid \eta \in M$. Since J_{λ}^{E} is a ZFC^{-}model, we have:

$$
\left\langle J_{\bar{\nu}}^{\bar{E}}, \bar{F}\right\rangle \in J_{\lambda}^{E}, \text { where } \pi: J_{\tau}^{E} \rightarrow_{\bar{F}} J_{\bar{\nu}}^{\bar{E}}
$$

We then observe that there is a unique $\sigma: J_{\bar{\nu}}^{\bar{E}} \prec J_{\nu}^{E}$ defined by

$$
\begin{aligned}
& \sigma(\bar{\pi}(f)(\beta))=\pi(f)(\beta) \text { for } \\
& f \in J_{\tau}^{E}, f: \kappa \rightarrow J_{\tau}^{E}, \beta<\eta
\end{aligned}
$$

Moreover, $\sigma \upharpoonright \eta=\mathrm{id}$ and σ is cofinal.
(To see that this definition works, let $\beta_{1}, \ldots, \beta_{n}<\eta, f_{1}, \ldots, f_{n} \in \tau$ such that $f_{i}: \kappa \rightarrow J_{\tau}^{E}$ for $i=1, \ldots, n$. Set:

$$
X=\left\{\prec \xi_{1}, \ldots, \xi_{n} \succ \mid J_{\tau}^{E} \models \varphi\left[f_{1}\left(\xi_{1}\right), \ldots, f_{n}\left(\xi_{n}\right)\right]\right\}
$$

Then:

$$
\begin{aligned}
J_{\bar{\nu}}^{\bar{E}} \models \varphi[\bar{\pi}(\vec{f}(\vec{\beta})] & \leftrightarrow \prec \vec{\beta} \succ \in \bar{F}(X)=\eta \cap F(X) \\
& \left.\leftrightarrow J_{\nu}^{E} \models \varphi[\pi(\vec{f})(\vec{\beta})] .\right)
\end{aligned}
$$

But $\sigma(\langle\bar{F}(Z), Z\rangle)=\langle F(Z), Z\rangle$ for $Z \in \mathbb{P}(\kappa) \cap M$. Hence:

$$
\sigma(\bar{F} \cap U)=\sigma^{\prime \prime}(\bar{F} \cap U)=F \cap U
$$

By this we get:

$$
\sigma:\left\langle J_{\bar{\nu}}^{\bar{E}}, \bar{F}\right\rangle \rightarrow_{\Sigma_{0}}\left\langle J_{\nu}^{E}, F\right\rangle \text { cofinally. }
$$

Thus $\bar{D}=D \cap \mu$ is $\Sigma_{1}\left(\left\langle J_{\bar{\nu}}^{\bar{E}}, \bar{F}\right\rangle\right)$ in α by the same definition as D over $\left\langle J_{\nu}^{E}, F\right\rangle$. Hence $\bar{D} \in J_{\lambda}^{E}$, since $\left\langle J_{\bar{\nu}}^{\bar{E}}, \bar{F}\right\rangle \in J_{\nu}^{E}$. QED (Lemma 3.3.19)

If $M=\left\langle J_{\nu}^{E}, F\right\rangle$ is a precursor, then " F is of type 3 " is uniformly $\Pi_{3}(M)$ in κ, since it is the conjunction of:

$$
\bigwedge \xi<\lambda \bigvee \eta<\lambda \cdot \eta \in C_{F} \wedge \bigwedge \eta \in C_{F} \bigvee e \in J_{\lambda}^{E} e=F \mid \eta
$$

Hence:
Lemma 3.3.20. (a) Let $\pi: \bar{M} \rightarrow: \Sigma_{3} M$ where \bar{M} is a premouse of type 3. Then so is M.
(b) Let $\pi: \bar{M} \rightarrow: \Sigma_{2} M$ where M is a premouse of type 3. Then so is \bar{M}.

We also get:
Lemma 3.3.21. Let $M=\left\langle J_{\nu}^{E}, F\right\rangle$ be a premouse of type 3. Let G be a weakly amenable extender at $\tilde{\kappa}$ on M. Let $\tilde{\kappa}<\varrho_{M}^{n}$ and let $\left\langle M^{\prime}, \sigma\right\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by G. Then M^{\prime} is a premouse of type 3.

Proof: Let $M^{\prime}=\left\langle J_{\nu^{\prime}}^{E^{\prime}}, F^{\prime}\right\rangle$. We consider three cases:

Case $1 n=0$.
Exactly as in the previous lemmas we get: $J_{\nu^{\prime}}^{E^{\prime}}$ is a premouse and M^{\prime} is a precursor. We must show:

Claim F is of type 3 .
We know that σ takes λ cofinally to λ^{\prime}. Let $\eta<\lambda, \eta \in C_{F}$. Let $e=F \mid \eta \in M$. Then $\sigma(\eta) \in C_{F^{\prime}}$ and $\sigma(e)=F^{\prime} \mid \sigma(\eta)$, since these statements are Π_{1}. Hence if $\mu<\lambda^{\prime}$ there is $\eta \in C_{F}$ such that $\mu \leq \sigma(\eta)$ and

$$
F^{\prime}\left|\mu=\left(F^{\prime} \mid \sigma(\eta)\right)\right| \mu \in J_{\lambda^{\prime}}^{E^{\prime}}
$$

QED (Case 1)
Case $2 n=1$.
Then σ is $\Sigma_{2}-$ preserving. Hence $J_{\nu^{\prime}}^{E^{\prime}}$ is a premouse and M^{\prime} is a precursor. Let $\langle M, \pi\rangle$ be the extension of J_{τ}^{E} by F and $\left\langle M^{\prime}, \pi^{\prime}\right\rangle$ the extension of $J_{\tau^{\prime}}^{E^{\prime}}$ by F^{\prime}, where $\tau=\kappa^{+M}, \tau^{\prime}=\sigma(\tau)=\kappa^{\prime+M^{\prime}}$.
We know that:

$$
\sigma \upharpoonright J_{\lambda}^{E}: J_{\lambda}^{E} \rightarrow_{G} J_{\varrho^{\prime}}^{E}
$$

where $\lambda=\pi(\kappa)=\varrho_{M}^{1}$ and $\varrho^{\prime}=\sup \sigma^{\kappa} \lambda=\varrho_{M^{\prime}}^{1}$. Since τ is a successor cardinal in J_{λ}^{E}, we have $\tau \neq \operatorname{crit}(G)$. But then $\tau^{\prime}=\sup \sigma^{\prime \prime} \tau$ by Lemma 3.2.6 of $\S 3.2$. π takes τ cofinally to ν and π^{\prime} takes τ^{\prime} cofinally to ν^{\prime}.

Using this we see:

$$
\text { (1) } \nu^{\prime}=\sup \sigma^{\prime \prime} \nu
$$

Proof: Let $\xi<\nu^{\prime}$. Let $\zeta<\tau^{\prime}$ such that $\pi^{\prime}(\zeta)>\xi$. Let $\eta<\tau$ such that $\sigma(\eta)>\zeta$. By Corollary 3.3.8 we have:

$$
\sigma \pi(\eta)=\pi^{\prime} \sigma(\eta)>\xi
$$

QED (1)
But then it suffices to show:
Claim $\sigma: M \rightarrow_{G} M^{\prime}$,
since then we can argue as in Case 1.
Let $x \in M^{\prime}$. Let $\tilde{\kappa}=\operatorname{crit}(\pi)$. We must show that $x=\sigma(f)(\xi)$ for an $f \in M$ such that $f: \kappa \rightarrow M$. Since M^{\prime} is the $\Sigma_{0}^{(1)}$-ultrapower, we know:

$$
x=\sigma(f)(\xi), \text { where } f: \kappa \rightarrow M \text { is } \underline{\Sigma}_{1}(M)
$$

Choosing a functionally absolute definition for f we have:

$$
v=f(w) \leftrightarrow \bigvee y A(y, v, w, p)
$$

where A is $\Sigma_{0}(M)$ and $p \in M$. By functional absoluteness we have:

$$
v=\sigma(f)(w) \leftrightarrow \bigvee y A^{\prime}(\eta, v, w, \sigma(p))
$$

where A^{\prime} is $\Sigma_{0}\left(M^{\prime}\right)$ by the same definition. Let $A^{\prime}(y, x, \xi, \sigma(p))$. Since σ takes M cofinally to M^{\prime} there is $a \in M$ such that $y, x \in \sigma(a)$ and $\tilde{\kappa} \subset a$. Set:

$$
g(\mu)=\left\{\begin{array}{l}
x \text { if } x \in a \wedge \bigvee y \in a A(y, x, \mu, p) \\
0 \text { if no such } x \text { exists }
\end{array}\right.
$$

Then $g \in M, g: \tilde{\kappa} \rightarrow M$ and $x=\sigma(g)(\xi)$.
QED (Case 2)
Case $3 n>1$.
Then $\varrho_{M^{\prime}}^{1}=\tau\left(\varrho_{M}^{1}\right)=\lambda^{\prime}$ and σ is $\Sigma_{2}^{(1)}$-preserving by Lemma 3.2.13. But C_{F} is now $\Sigma_{0}^{(1)}(M)$ and $e=F \mid \eta$ is $\Sigma_{0}^{(1)}(M)$ for $e, \eta \in J_{\lambda}^{E}$. The statements:

$$
\bigwedge \xi<\lambda \bigvee \eta<\lambda\left(\xi<\eta \in C_{F}, \bigwedge \eta \in C_{F}\left(\bigvee e \in J_{\lambda}^{E} e=F \mid \eta\right)\right.
$$

are now $\Pi_{2}^{(1)}(M)$. Hence the corresponding statements hold in M^{\prime}. Hence $C_{F^{\prime}}$ is unbounded in λ^{\prime} and $F^{\prime} \mid \eta \in J_{\lambda^{\prime}}^{E^{\prime}}$ for $\eta \in C_{F^{\prime}}$. Then M^{\prime} is of type 3 .

QED (Lemma 3.3.21)

Combining lemmas $3.3 .11,3.3 .13,3.3 .18$ and 3.3 .21 we have:

Theorem 3.3.22. Let M be a premouse. Let G be an extender at $\tilde{\kappa}$ on M where $\varrho_{M}^{n}>\tilde{\kappa}$. Let $\left\langle M^{\prime}, \sigma\right\rangle$ be the $\Sigma_{0}^{(n)}$ extension of M by G. Then:

- M^{\prime} is a premouse
- If M is active then M^{\prime} is active and of the same type
- If M is of type 2, then

$$
\sigma\left(\max C_{M}\right)=\max C_{M^{\prime}}
$$

In order to show that premousehood is preserved under iteration we shall also need:

Theorem 3.3.23. Let M_{0} be a premouse. Let $\pi_{i j}: M_{i} \rightarrow_{\Sigma_{1}} M_{j}$ for $i \leq j \leq$ η, where:

- $\pi_{i, i+1}: M_{i} \rightarrow_{G_{i}}^{\left(n_{i}\right)} M_{i+1}$, where G_{i} is an extender at $\tilde{\kappa}_{i}$ on $G_{i}(i<\eta)$
- M_{i} is transitive and the $\pi_{i j}$ commate
- If $\lambda \leq \eta$ is a limit ordinal, then $M_{\lambda},\left\langle\pi_{i} \mid i<\lambda\right\rangle$ is the transitivized direct limit of $\left\langle M_{i} \mid i<\lambda\right\rangle,\left\langle\pi_{i j} \mid i \leq j<\lambda\right\rangle$.

Then:

- M_{η} is a premouse
- If M_{0} is active, then M_{η} is active and of the same type as M_{0}
- If M_{0} is of type 2, then $\pi_{0 \eta}\left(C_{M_{0}}\right)=C_{M_{\eta}^{\prime}}$.

Proof: We proceed by induction on η. Thus the assertion holds at every $i<\eta$. The case $\eta=0$ is trivial, as is $\eta=\mu+1$ by Theorem 3.3.22. Hence we assume that η is a limit ordinal. We make the following observation:
(1) Let φ be a Π_{3} formula. Let $i<\eta, x_{1}, \ldots, x_{n} \in M_{i}$ such that $M_{j} \models$ $\varphi\left[\pi_{i j}(\vec{x})\right]$ for $i \leq j<\eta$. Then $M_{\eta}=\varphi\left[\pi_{i \eta}(\vec{x})\right]$.

Proof: Let $y \in M_{\eta}$. Pick j such that $i \leq j<\eta$ and $y=\pi_{i \eta}(\bar{y})$. Then $M_{j} \vDash \Psi\left[\bar{y}, \pi_{i j}(\vec{x})\right]$, where $\varphi=\bigwedge v \Psi$. Hence $M_{j} \models \chi\left[\bar{z}, \bar{x}, \pi_{i j}(\vec{x})\right]$ for some \bar{z}, where $\Psi=\bigvee u \chi$. Hence $M_{\eta} \models \chi\left[z, y, \pi_{i \eta}(\vec{x})\right]$ where $z=\pi_{i \eta}(\bar{z})$, since $\pi_{j \eta}$ is Σ_{1}-preserving.

QED (1)

Each M_{i} is a premouse for $i<\eta$. But this condition is uniformly $\Pi_{3}\left(M_{i}\right)$ by Lemma 3.3.12. Hence M_{η} is a premouse. If M_{0} is of type 1 , then $C_{M_{i}}=\emptyset$ for $i<\eta$. But this condition is uniformly $\Pi_{2}\left(M_{i}\right)$; Hence M_{η} is of type 1 .

Now let M_{0} be of type 2 and let $\mu_{0}=\max C_{M_{0}}$. Then M_{i} is of type 2 and $\mu_{i}=\max C_{M_{i}}$ for $i<\eta$, where $\mu_{i}=\Pi_{0 i}\left(\mu_{0}\right)$. Let $e_{0}=F_{0} \mid \mu_{0}$ where $M_{0}=\left\langle J_{\nu_{0}}^{E_{0}}, F_{0}\right\rangle$. Then $e_{i}=F_{i} \mid \mu_{i}$ for $i<\eta$, since $e=F \mid \mu$ is a Π_{1} condition. Thus for $i<\varrho$ each M_{i} satisfies the Π_{2} condition in e_{i}, μ_{i} :

$$
e_{0}=F_{i} \mid \mu_{i} \wedge C_{F_{i}} \backslash \mu_{i}=\emptyset
$$

Hence M_{η} satisfies the corresponding condition. Hence M_{η} is of type 2 and $\mu_{\eta}=\max \left(C_{\eta}\right)$. Clearly $C_{M_{i}}=C_{F_{i}} \cup\left\{\max C_{M_{i}}\right\}$ for $i \leq \eta$. Hence $\pi_{i j}\left(C_{M_{i}}\right)=C_{M_{i}}$.

Now assume that M_{0} is of type 3 . Then each $M_{i}(i<\eta)$ satisfies the Π_{3} condition:

$$
\begin{aligned}
& \wedge \xi<\lambda_{i} \vee \zeta<\lambda_{i}\left(\xi<\zeta \in C_{M_{i}}\right), \\
& \wedge \zeta \in C_{M_{i}} \vee e \in J_{\lambda_{i}}^{E_{i}} e=F_{i} \mid \zeta .
\end{aligned}
$$

But then M_{η} satisfies the corresponding conditions. Hence M_{η} is of type 3 .
QED (Theorem 3.3.23)

Bibliography

[PR] R. Jensen, C. Karp: Primitive Recursive Set Functions in Axiomatic Set Theory. AMS Proceedings of Symposia in Pure Mathematics. Vol XIII Part 1, 1971
[AS] R. Jensen: Admissible Sets.
[ASS] J. Barwise: Admissible Sets and Structures. Perspectives in Mathematical Logic, Vol 7, Springer 1976
[MS] R. Jensen: Measures of order 0. ${ }^{1}$
[NFS] R. Jensen: A New Fine Structure Theory. ${ }^{2}$
[RE] R. Jensen: Robust Extenders. ${ }^{3}$
[MS] Mitchell, W. and Steel, J.: Fine structure and Iteration Trees. Lecture Notes in Logic 3, Springer Berlin (1994)
[CMI] Steel, J.R.: The Core Model Iterability Problem. Lecture Notes in Logik 8, Springer, Berlin (1996)
[JS] Jensen, R. and Steel J.: κ without the measurable. JSL, vol. 78 no. 3, 2013
[UEM] Mitchell, W. and Schindler, R.: A universal extender model without large cardinals in V. JSL, vol. 69, (2004), pp. 219 - 255

[^1]
[^0]: ${ }^{1}$ ("uniformly" meaning, of course, that the Σ_{1} definition of F depends only on the Σ_{1} definition of G, h.)

[^1]: ${ }^{1}$ Handwritten notes
 ${ }^{2}$ Handwritten notes
 ${ }^{3}$ Handwritten notes

